JP5572965B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5572965B2
JP5572965B2 JP2009051897A JP2009051897A JP5572965B2 JP 5572965 B2 JP5572965 B2 JP 5572965B2 JP 2009051897 A JP2009051897 A JP 2009051897A JP 2009051897 A JP2009051897 A JP 2009051897A JP 5572965 B2 JP5572965 B2 JP 5572965B2
Authority
JP
Japan
Prior art keywords
reformer
air
output
heating
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009051897A
Other languages
English (en)
Other versions
JP2010205647A (ja
Inventor
元久 上條
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009051897A priority Critical patent/JP5572965B2/ja
Publication of JP2010205647A publication Critical patent/JP2010205647A/ja
Application granted granted Critical
Publication of JP5572965B2 publication Critical patent/JP5572965B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池(SOFC)を用いた燃料電池システムに関する。
この種の燃料電池システムとして、車載用システムスペックの決定と性能評価とした名称で、非特許文献1に記載された構成のものがある。
非特許文献1に記載されている車載用システムは、固体酸化物形燃料電池スタックとPre改質器とに、第一,第二の熱交換器をそれぞれ密接配置するとともに、固体酸化物形燃料電池スタックの空気極に送給する空気を加熱するための空気加熱器、第一,第二の熱交換器に送給する燃料ガスを燃焼させるための第一,第二の燃焼器、Pre改質器に送給する原燃料を蒸発させるための蒸発器を設けた構成のものである。
上記の構成においては、アノード排ガスを高温のまま改質器に再循環させる方式を採用している。改質器、固体酸化物形燃料電池スタック等、システム全体の熱バランスはあらゆる可能性を追求し、例えば、熱が不足したユニットへの熱供給源として新規な燃料を燃焼させる燃焼器を利用することや、アノード排ガスの熱、改質器若しくはカソードガスの加熱に利用し、カソードガスの排ガスは蒸発器に利用し、できうる限りの熱回収を行えるようにしている。
三輪博通 他1名,"車載用システムスペックの決定と性能評価",成果報告書,財団法人福岡県産業・科学技術振興財団,平成20年3月,p28‐37
すなわち、上記非特許文献1においては、現行APUのエネルギー効率(21%)を大きく上回るポテンシャルを有することを明らかにしているが、固体酸化物形燃料電池スタックから放射熱が大きければ大きいほど、システム効率が低くなることがわかる。
また、発電出力が低い方は高い場合に比較して、低電流領域においては、発電効率が高くなる傾向にあるが、高電流領域においては、固体酸化物形燃料電池スタックからの放熱熱損の影響が大きくなり、発電出力が高い場合の方がシステム効率が高くなるという逆転現象が起きる。
さらに、発電出力の高低により、急激にシステム効率が低下しているが、それは、システムを熱的に自立させるために加熱用の燃焼器を作動させる必要があるために、新規燃料を燃焼させることによって効率が低下するためであり、システム全体としてみれば、固体酸化物形燃料電池スタックの放射放熱をできる限り下げる必要があり、特に低出力運転時にその影響が大きい。
そこで本発明は、固体酸化物型燃料電池スタックの出力の高低に関わらず、発電を高い効率で行うことができる燃料電池システムの提供を目的としている。
上記目的を達成するための本発明に係る燃料電池システムは、電解質の両側に積層した燃料極と空気極とに、燃料ガスと空気とを互いに分離して流接させることによる発電を行う固体酸化物型燃料電池スタックに、この固体酸化物型燃料電池スタックの出力を測定するための出力測定器と、その固体酸化物型燃料電池スタックの温度を測定するための温度センサとを配設しているとともに、空気極に空気を送給するための空気極送気装置を有する構成になっており、上記温度センサによって測定した温度と、出力測定器によって測定した出力とに基づいて、システム熱バランスを維持しつつ固体酸化物型燃料電池スタックの発電効率が高くなるように、空気極に送給する空気量を決定する空気極送気量決定手段と、空気極送気量決定手段によって決定された空気量を、空気極送気装置によって空気極に送給させる第一の空気送給手段とを設け、固体酸化物型燃料電池スタックに、これを加熱するためのスタック加熱装置が配設されており、固体酸化物型燃料電池スタックの加熱が必要か否かを判定するスタック加熱要否判定手段と、固体酸化物型燃料電池スタックの加熱が必要と判定したときには、スタック加熱装置によって固体酸化物型燃料電池スタックを加熱させるスタック加熱手段を設けており、固体酸化物型燃料電池スタックの出力と温度の測定値と、固体酸化物型燃料電池スタックの発電効率が高くなる出力と温度との対応関係を示すルックアップテーブルを予め記憶したメモリが設けられており、空気極送気量決定手段は、メモリに記憶されているルックアップテーブルを参照して、出力に対応する温度となるように、空気極に送給する空気量を決定し、この際、空気極送気量決定手段は、スタック加熱手段による固体酸化物型燃料電池スタックの加熱が必要と判定される出力が低い発電出力では、出力が高い発電出力に比べて、固体酸化物型燃料電池スタックの温度が低くなるように、空気極に送給する空気量を決定することを特徴としている。
本発明によれば、固体酸化物型燃料電池スタックの温度と出力に基づいて、固体酸化物型燃料電池スタックの発電効率が高くなるように空気極に送給する空気量を決定し、この決定された送気量の空気を空気極送気装置によって空気極に送給しているので、固体酸化物型燃料電池スタックの出力の高低に関わらず、高い効率での発電を行うことができる。
本発明の一実施形態に係る燃料電池システムの構成を示すブロック図である。 同上の燃料電池システムの一部をなす一例に係る燃料電池の構成を示すブロック図である。 同上の燃料電池システムの一部をなすコントロールユニットが有する機能を示すブロック図である。。 同上の燃料電池システムの動作を示すフローチャートである。 同上の燃料電池システムの一部をなすスタックの出力とカソード空気流量の関係を示す関係図である。 同上のスタックの出力と燃焼器の出力の関係を示す関係図である。 同上のスタックのカソード空気流量との空気ブロワの出力との関係を示す関係図である。 燃料改質器の酸素と炭素のモル比とスタックの出力との関係を示す関係図である。 同上の燃料電池システムの一部をなすスタックの出力と燃焼器の出力の関係を示す関係図である。 同上の燃料電池システムの一部をなす燃料改質器の酸素と炭素のモル比と空気ブロワの出力との関係を示す関係図である。 同上の燃料電池システムのアノードリサイクル量とスタックの出力との関係を示す関係図である。
以下に、本発明を実施するための形態について、図面を参照して説明する。図1は、本発明の一実施形態に係る燃料電池システムの構成を示すブロック図、図2は、その燃料電池システムの一部をなす一例に係る燃料電池の構成を示すブロック図である。また、図3は、一実施形態に係る燃料電池システムの一部をなすコントロールユニットが有する機能を示すブロック図である。
本発明の一実施形態に係る燃料電池システムA1は、一例に係る燃料電池10、これに接続された例えばモータ等の外部負荷15、電圧計23、電流計24及びコントロールユニット30等を有して構成されており、コントロールユニット30の制御下において、その燃料電池10から、これに接続された外部負荷15に電力を送給するものである。
一例に係る燃料電池10は、図1に示す固体酸化物型燃料電池スタック16の他、図2に示す燃料ポンプ53,21,52、燃料蒸発器50、スタック加熱熱交換器54、循環ブロワ55、ミキサ57、燃料改質器58、改質器加熱熱交換器70、燃焼器59,60、カソード空気加熱器61、空気ブロワ22,63,64,69、遮断弁66、及び温度センサS1〜S3等を有して構成されている。
固体酸化物型燃料電池スタック(以下、単に「スタック」という。)16は、図1に示すように、複数のセルユニット12…を互いに積層したものであり、ケース13内に収容されている。
セルユニット12は、図2に示すように、Niを有する燃料極10aと空気極10bとを電解質10cの両側に対設した固体酸化物型セルを備えたものであり、その燃料極10aと空気極10bとに、二種類の発電用ガスを互いに分離して流接させることによる発電を行うものである。
本実施形態における二種類の発電用ガスは、空気と炭化水素燃料ガスである。
上記したスタック16の出力端子14a,14b(図1参照)のうちの一方には、出力電流を測定するための上記した電流計24を、また、出力端子14a,14b間には当該出力電圧を測定するための電圧計23をそれぞれ配設している。
また、上記の電流計23と電圧計24は、コントロールユニット(以下、「C/U」と略記する。)30の入力ポート側に接続されて、各取得した出力の測定値が入力されるようになっている。
本実施形態においては、上記の電流計23と電圧計24とが、燃料電池10の出力を測定するための出力測定器である。
燃料ポンプ21は、燃料電池10の発電に必要な燃料を燃料蒸発器50に送給するものであり、この燃料ポンプ21と燃料蒸発器50との間には送給パイプ51aが連結されている。
また、燃料ポンプ21は、C/U30の出力ポート側に接続されて適宜駆動されるようになっている。
燃料蒸発器50は、燃料ポンプ21によって送給された燃料を蒸気化するものであり、この燃料蒸発器50とミキサ57との間には送給パイプ50aが接続されている。
ミキサ57は、燃料蒸発器50から送給される蒸気化した原燃料、空気ブロワ69から送給される空気又は燃料極10aから排出される排ガスを混合する機能を有するものであり、燃料改質器58と空気ブロワ69との各間にそれぞれ送給パイプ57a,69a、また、燃料極10aとの間に送給パイプ56aが連結されている。
本実施形態においては、空気ブロワ69が、燃料改質器58に送給する燃料に混合する空気を、その燃料改質器58に送給するための改質器送気装置である。
燃料改質器58は、蒸気化した原燃料を水素リッチな燃料ガスに改質するものであり、これと燃料極10aとの間に送給パイプ58aが接続されており、その燃料ガスを燃料極10aに送給するようにしている。
温度センサS1は、燃料改質器58から排出される改質燃料ガスの温度を測定するためのものであり、上記送給パイプ58aに配設されている。
温度センサS2は、空気極10bから排出される排ガスの温度を測定するためのものであり、送給パイプ50bに配設されている。
温度センサS3は、燃料極10aから排出される排ガスの温度を測定するためのものであり、送給パイプ55aに配設されている。
上記した燃料極10aの排出側には、送給パイプ56a,60aに連結した送給パイプ55aが配設されており、その送給パイプ55aの途中に、燃料極10aから排出された排ガスを循環させるための循環ブロワ55が配設されている。
なお、上記した空気ブロワ69、循環ブロワ55及び遮断弁66は、C/U30の出力ポート側に接続されて適宜駆動されるようになっている。
空気ブロワ22は、燃料電池10の発電に必要な空気をカソード空気加熱器61を介してスタック16の空気極10bに送給する空気極送気装置であり、その空気ブロワ22とカソード空気加熱器61との間には送給パイプ62aが連結されている。
また、空気ブロワ62は、C/U30の出力ポート側に接続されて適宜駆動されるようになっている。
カソード空気加熱器61は、スタック16の空気極10bに送給する空気を加熱するものであり、そのカソード空気加熱器61と空気極10bとの間に送給パイプ61aが連結されている。
また、空気極10bと上記した燃料蒸発器50との間には送給パイプ50bが連結されており、その空気極10bから排出された空気(排ガス)を燃料蒸発器50に送出して、燃料蒸発器50から送給される蒸気化した燃料との熱交換を行えるようにしている。
燃焼器59は、燃料ポンプ52と空気ブロワ63とにより送給された燃料と空気とを燃焼させるものであり、この燃焼器59とスタック加熱熱交換器54との間には送給パイプ59aが連結されている。
スタック加熱熱交換器54は、スタック16に密接配置されており、上記した燃焼器59から送出された加熱ガスによってスタック16を加熱するとともに、熱交換を行うためのものである。
本実施形態においては、燃焼器59とスタック加熱熱交換器54とが、スタック16を加熱するためのスタック加熱装置25を構成している。
また、スタック加熱熱交換器54と上記したカソード空気加熱器61との間には送給パイプ54aが連結されており、そのスタック加熱熱交換器54から排出された加熱された排ガスをカソード空気加熱器61に送給して、空気極10bに送給される空気との熱交換を行えるようにしている。
燃焼器60は、燃料ポンプ53と空気ブロワ64とにより送給された燃料と空気、及び燃料極10aから排出された排ガスとを燃焼させるものであり、その燃焼器60と上記した燃料極10aとの間には、上記した送給パイプ55a,60aが連結されている。
燃料ポンプ52,53、空気ブロワ63,64も、C/U30の出力ポート側に接続されて適宜駆動されるようになっている。
改質器加熱熱交換器70は、燃料改質器58に密接して配置されており、燃焼器60との間に送給パイプ60bが接続されており、燃料極10aから排出されて燃焼器60によって加熱された排出ガスと、燃料改質器58により改質された燃料ガスとの間においては熱交換を行うようにしたものである。
また、改質器加熱熱交換器70と送給パイプ61aとの間に送給パイプ70aが連結されており、改質器加熱熱交換器70から排出された排ガスをカソード空気加熱器61に送給するようにしている。これにより、カソード空気加熱器61における熱交換をさらに効率的に行える。
本実施形態においては、燃焼器60と改質器加熱熱交換器70によって、改質器加熱装置26を構成している。
図3に示すように、C/U30は、CPU(Central Processing Unit)、インターフェース回路等(いずれも図示しない)からなる中央制御部31と、ハードディスク,半導体メモリ等からなるメモリ32とを有するものである。
メモリ32には、中央制御部31に所要の機能を発揮させるためのプログラムの他、スタック16の出力と温度との対応関係を示すルックアップテーブル33等が記憶されている。
C/U30、従ってまた、中央制御部31は、メモリ32に記憶されている本燃料電池システムA1に用いるプログラムの実行により以下の各機能を発揮する。
(1)温度センサS2,S3によって測定した温度と、出力測定器23(24)によって測定した出力とに基づいて、スタック16の発電効率が高くなるように、空気極10bに送給する空気量を決定する機能。この機能を「空気極送気量決定手段31a」という。
本実施形態においては、上記したようにメモリ32に記憶した、スタック16の出力と温度との対応関係を示すルックアップテーブル33を参照することにより、空気極10bに送給する空気量を決定している。
本実施形態においては、出力測定器(電流計)23により測定した出力電流値に基づく例について説明しているが、電圧計24に測定した出力電圧値に基づくようにしてもよいことは勿論である。
(2)空気極送気量決定手段31aによって決定された空気量を、空気極送気装置(空気ブロワ)22によって空気極10bに送給させる機能。この機能を「第一の空気送給手段31b」という。
(3)温度センサS2,S3によって測定した温度と、出力測定器23(24)によって測定した出力とに基づいて、スタック16の発電効率が高くなるように、燃料改質器58に送給する空気量を決定する機能。この機能を「改質器送気量決定手段31c」という。
本実施形態においては、上記したようにメモリ32に記憶した、スタック16の出力と温度との対応関係を示すルックアップテーブル33を参照することにより、燃料改質器58に送給する空気量を決定している。
(4)改質器送気量決定手段31cによって決定された空気量を、改質器送気装置69によって燃料改質器58に送給させる機能。この機能を「第二の空気送給手段31d」という。
(5)スタック16の加熱が必要か否かを判定する機能。この機能を「スタック加熱要否判定手段31e」という。
(6)スタック16の加熱が必要と判定したときには、スタック加熱装置25によってスタック16を加熱させる機能。この機能を「スタック加熱手段31f」という。
(7)燃料改質器58の加熱が必要か否かを判定する機能。この機能を「改質器加熱要否判定手段31g」という。
本実施形態においては、上記したメモリ32に燃料改質器58の加熱が必要な加熱開始温度と、加熱を停止させる加熱停止温度とを記録しておき、温度センサS1によって測定した燃料改質器58の温度が上記加熱開始温度を下回ったときに、燃料改質器58の加熱が必要であると判定している。
また、温度センサS1によって測定した燃料改質器58の温度が上記加熱停止温度を上回ったときに、燃料改質器58の加熱が不要であると判定している。
(8)燃料改質器58の加熱が必要と判定したときには、改質器加熱装置26によって燃料改質器58を加熱させる機能。この機能を「改質器加熱手段31h」という。
上記した構成からなる燃料電池システムA1の動作について、図4を参照して説明する。図4は、燃料電池システムA1の動作を示すフローチャート、図5は、スタックの出力とカソード空気流量の関係を示す関係図である。また、図6は、スタックの出力と燃焼器の出力の関係を示す関係図、図7は、カソード空気流量との空気ブロワ22の出力との関係を示す関係図である。
<第一の実施例>
本実施例は、スタック16の空気極10bに送給する空気量を増減制御する場合について示す。
ステップ1(図中、「S1」と略記する。以下同様。):電力使用状況等の要因から、C/U30に出力変更指令が入力されると、ステップ2に進む。
ステップ2:本燃料電池システムA1の運転状態を検知して、ステップ2に進む。
運転状態パラメータは、スタック16の温度と発電出力としている。
スタック16の温度と発電出力の検知方法は、カソードガス出口流路に設置された温度センサS2によって取得した温度信号、スタック16の出力端子14a,14bに配設した電流計23又は電圧計24で取得した出力信号から検知している。
ステップ3:得られた運転状態からシステム制御値を決定する。
具体的には、目標とするスタック16の出力と、予め設定した目標とするスタック16の温度の関係から、カソード空気流量を設定する。
例えば、低い発電出力(例:1500W)では、スタック16の温度を650℃、高い発電出力(例:5500W)では、スタック16の温度を775℃となるように、カソード空気流量を変更する。以上の制御は、図5の点aと点bの運転点を選ぶことに相当する。
ここで、スタック16の温度及びシステム熱バランス維持のために、図6に示すスタックの出力が低い領域において、燃焼器59を作動させる必要がある。
さらに、カソード流量と空気ブロワ回転数の関係(図7)から、目標となる空気ブロワ22の回転数を算出する。
比較として、出力に関わらず同じスタック温度となる運転点、すなわち点aと点cの運転点を選ぶと、スタック温度を維持するための燃焼器59の出力を大きくすることが必要になり、燃費の悪化を招く(図6)。
ステップ4:C/U30により、ステップ3で決定した空気ブロワ22の回転数となるように、その空気ブロワ22を制御する。
<第二の実施例>
本実施例は、燃料改質器58に送給する空気量を増減制御する場合について示す。図8は、燃料改質器の酸素と炭素のモル比とスタックの出力との関係を示す関係図、図9は、スタックの出力と燃焼器の出力の関係を示す関係図、図10は、燃料改質器の酸素と炭素のモル比と空気ブロワ69の出力との関係を示す関係図である。
なお、出力変更処理、運転状態検知処理、制御値を計算する処理、及び制御値を変更する処理の順序については、上記した図4に示すものと同じであるため、本例においても図4を参照して説明する。
ステップ1(図中、「S1」と略記する。以下同様。):電力使用状況等の要因から、燃料電池システムのC/U30に出力変更指令が入力されると、ステップ2に進む。
ステップ2:システムの運転状態を検知する。
本実施例においては、運転状態パラメータを、燃料改質器58の温度と、スタック16の発電出力としている。
燃料改質器58の温度と発電出力の検知方法は、燃料改質器58の送給パイプ58aに設置された温度センサS1の信号、スタック16の出力端子14a,14bに直並列に設置された電流計23又は電圧計24により取得した信号によって検知している。
ステップ3:得られた運転状態からシステム制御値決定する。
具体的には、目標となるスタック16の出力と、予め設定した目標とするスタック16の温度の関係から、燃料改質器58のモル比O2/Cを設定する。例えば、低い発電出力(例:1500W)ではモル比O2/C=0.3、高い発電出力(例えば5500W)では、モル比O2/C=0.2となるように、燃料改質器58に送給する空気量を変更する。以上の制御は、図8の点aと点bの運転点を選ぶことに相当する。
ここで、スタック16の温度とシステム熱バランス維持のために、出力が低い領域において燃焼器60を作動させる必要がある。
さらに、モル比O2/Cと、空気ブロワ69の回転数の関係(図10参照)から、目標となる空気ブロワの回転数を算出する。
(比較として、出力に関わらず同じスタック16の温度となる運転点、つまり点aと点cの運転点を選ぶと、スタック16の温度を維持するための燃焼器60の出力を大きくすることが必要になって、燃費悪化を招く(図9参照)。)
ステップ4:C/U30により、ステップ3で決定した空気ブロワ回転数となるように、その空気ブロワ69を制御する。
図11は、アノードリサイクル量とスタックの出力との関係を示す関係図である。
アノードリサイクル量は、低出力時により少なくしたほうが効率が高くなる。すなわち、アノードリサイクル量はS/C(Steam/C)に対応している。そのS/Cと、燃料改質器58において吸熱反応である水蒸気改質反応が優勢になる。
スタック(燃料電池)16からの放熱が少ない低負荷領域で、S/Cをより少なく設定することにより、燃焼器60への燃料投入量を少なくすることが可能になる。これにより、システムの効率が向上する。
なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
・上記の実施形態においては、燃料改質器に送給する空気量と、スタックの空気極に送給する空気量とを別の実施例として説明したが、それら双方の空気量の増減制御を互いに連係させるようにしてもよい。
・上述した実施形態においては、セル加熱器の加熱源と、改質器加熱器の加熱源とを別体にした構成したものを例示したが、それらを同一の加熱源にするとともに、セル加熱器と改質器加熱器とに加熱ガスを分流する分流路を配設した構成してもよい。
・また、加熱ガスに限るものではなく、セル加熱器、改質器加熱器ともに電気ヒータにし、加熱源としてバッテリを採用してもよい。
10c 電解質
10a 燃料極
10b 空気極
16 固体酸化物型燃料電池スタック
22 空気極送気装置
23,24 出力測定器(電流計,電圧計)
25 スタック加熱装置
26 改質器加熱装置
31a 空気極送気量決定手段
31b 第一の空気送給手段
31c 改質器送気量決定手段
31d 第二の空気送給手段
31e スタック加熱要否判定手段
31f スタック加熱手段
31g 改質器加熱要否判定手段
31h 改質器加熱手段
32 メモリ
33 ルックアップテーブル
69 改質器送気装置
S1〜S3 温度センサ

Claims (2)

  1. 電解質の両側に積層した燃料極と空気極とに、燃料ガスと空気とを互いに分離して流接させることによる発電を行う固体酸化物型燃料電池スタックに、この固体酸化物型燃料電池スタックの出力を測定するための出力測定器と、その固体酸化物型燃料電池スタックの温度を測定するための温度センサとを配設しているとともに、空気極に空気を送給するための空気極送気装置を有する燃料電池システムであって、
    上記温度センサによって測定した温度と、出力測定器によって測定した出力とに基づいて、システム熱バランスを維持しつつ固体酸化物型燃料電池スタックの発電効率が高くなるように、空気極に送給する空気量を決定する空気極送気量決定手段と、
    空気極送気量決定手段によって決定された空気量を、空気極送気装置によって空気極に送給させる第一の空気送給手段とを設け、
    固体酸化物型燃料電池スタックに、これを加熱するためのスタック加熱装置が配設されており、
    固体酸化物型燃料電池スタックの加熱が必要か否かを判定するスタック加熱要否判定手段と、
    固体酸化物型燃料電池スタックの加熱が必要と判定したときには、スタック加熱装置によって固体酸化物型燃料電池スタックを加熱させるスタック加熱手段を設けており、
    固体酸化物型燃料電池スタックの出力と温度の測定値と、固体酸化物型燃料電池スタックの発電効率が高くなる出力と温度との対応関係を示すルックアップテーブルを予め記憶したメモリが設けられており、
    空気極送気量決定手段は、メモリに記憶されているルックアップテーブルを参照して、出力に対応する温度となるように、空気極に送給する空気量を決定し、この際、空気極送気量決定手段は、スタック加熱手段による固体酸化物型燃料電池スタックの加熱が必要と判定される出力が低い発電出力では、出力が高い発電出力に比べて、固体酸化物型燃料電池スタックの温度が低くなるように、空気極に送給する空気量を決定することを特徴とする燃料電池システム。
  2. 燃料極に送給する原燃料を改質するための燃料改質器と、その原燃料に混合する空気を燃料改質器に送給するための改質器送気装置と、燃料改質器の温度を測定するための温度センサとを設けており、
    上記温度センサによって測定した温度と、出力測定器によって測定した出力とに基づいて、固体酸化物型燃料電池スタックの発電効率が高くなるように、燃料改質器に送給する空気量を決定する改質器送気量決定手段と、
    改質器送気量決定手段によって決定された空気量を、改質器送気装置によって燃料改質器に送給させる第二の空気送給手段とを設け、
    燃料改質器に、これを加熱するための改質器加熱装置が配設されており、
    燃料改質器の加熱が必要か否かを判定する改質器加熱要否判定手段と、
    燃料改質器の加熱が必要と判定したときには、改質器加熱装置によって燃料改質器を加熱させる改質器加熱手段とを設けており、
    上記メモリには、固体酸化物型燃料電池スタックの出力と燃料改質器の温度と燃料改質器の酸素と炭素のモル比の測定値と、固体酸化物型燃料電池スタックの発電効率が高くなる出力と燃料改質器の酸素と炭素のモル比と温度との対応関係を示すルックアップテーブルが予め記憶されており、
    改質器送気量決定手段は、メモリに記憶されているルックアップテーブルを参照することにより、改質器加熱手段による燃料改質器の加熱が必要とされる固体酸化物型燃料電池スタックの出力が低い発電出力では、出力が高い発電出力に比べて、燃料改質器の酸素と炭素のモル比が高くなるように、燃料改質器に供給する空気量を決定することを特徴とする請求項1に記載の燃料電池システム。
JP2009051897A 2009-03-05 2009-03-05 燃料電池システム Active JP5572965B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051897A JP5572965B2 (ja) 2009-03-05 2009-03-05 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051897A JP5572965B2 (ja) 2009-03-05 2009-03-05 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010205647A JP2010205647A (ja) 2010-09-16
JP5572965B2 true JP5572965B2 (ja) 2014-08-20

Family

ID=42966928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051897A Active JP5572965B2 (ja) 2009-03-05 2009-03-05 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5572965B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659868B2 (ja) * 2011-03-03 2015-01-28 日産自動車株式会社 燃料電池システム
JP6149355B2 (ja) * 2012-06-28 2017-06-21 日産自動車株式会社 燃料電池システム
KR101461822B1 (ko) * 2013-09-03 2014-11-14 주식회사 포스코 고체산화물 연료전지의 전처리장치 및 전처리방법
JP6026691B1 (ja) * 2016-03-29 2016-11-16 東京瓦斯株式会社 燃料電池システム
JP6050907B1 (ja) * 2016-03-29 2016-12-21 東京瓦斯株式会社 燃料電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109771B2 (ja) * 1989-02-08 1995-11-22 三井造船株式会社 固体電解質型燃料電池の出力制御方法
JP2003115315A (ja) * 2001-10-05 2003-04-18 Nippon Steel Corp 固体電解質型燃料電池の運転方法
EP2600455A3 (en) * 2005-06-20 2013-10-09 Kyocera Corporation Solid oxide fuel cell system
JP4896901B2 (ja) * 2005-06-20 2012-03-14 京セラ株式会社 固体酸化物形燃料電池システム
JP2007080767A (ja) * 2005-09-16 2007-03-29 Mitsubishi Heavy Ind Ltd 燃料電池モジュールおよび燃料電池モジュールを用いたコンバインド発電システム
JP2007317640A (ja) * 2006-03-14 2007-12-06 Ngk Insulators Ltd 固体酸化物型燃料電池を含んだデバイス
JP5164441B2 (ja) * 2007-06-13 2013-03-21 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法

Also Published As

Publication number Publication date
JP2010205647A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5565749B2 (ja) 固体電解質型燃料電池
WO2010114043A1 (ja) 固体電解質型燃料電池
JP5572965B2 (ja) 燃料電池システム
JP6706820B2 (ja) 水素生成システムおよび燃料電池システム
JP6610003B2 (ja) 燃料電池システム
JP4656611B2 (ja) 固体電解質型燃料電池
JP2015220211A (ja) 燃料電池の制御装置及び燃料電池の制御方法
JP2010211931A (ja) 燃料電池システムと、この燃料電池システムの運転方法
JP5483253B2 (ja) 固体電解質型燃料電池
JP5316826B2 (ja) 固体酸化物型燃料電池
CN102792507A (zh) 燃料电池系统及其电流控制方法
JP2016225103A (ja) 燃料電池システム
JPWO2018221471A1 (ja) 発電装置、制御装置、および制御プログラム
JP6413398B2 (ja) 燃料電池システム
JP6960610B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP2018181455A (ja) 固体酸化物形燃料電池システム
JP2012038608A (ja) 燃料電池システム及び燃料電池システムにおける改質用水供給量の制御方法
JP5646223B2 (ja) 燃料電池発電システムおよびその運転方法
JP6409368B2 (ja) 燃料電池システム
WO2010114044A1 (ja) 固体電解質型燃料電池
JP2018062458A (ja) 水素生成システムおよび燃料電池システム
JP2019160570A (ja) 燃料電池システム
JPWO2013099287A1 (ja) 燃料電池システムおよびその運転方法
JP2011076942A (ja) 固体電解質型燃料電池
JP5659868B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R151 Written notification of patent or utility model registration

Ref document number: 5572965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151