JP5556863B2 - Wide bandgap semiconductor vertical MOSFET - Google Patents

Wide bandgap semiconductor vertical MOSFET Download PDF

Info

Publication number
JP5556863B2
JP5556863B2 JP2012177771A JP2012177771A JP5556863B2 JP 5556863 B2 JP5556863 B2 JP 5556863B2 JP 2012177771 A JP2012177771 A JP 2012177771A JP 2012177771 A JP2012177771 A JP 2012177771A JP 5556863 B2 JP5556863 B2 JP 5556863B2
Authority
JP
Japan
Prior art keywords
conductivity type
layer
gate electrode
breakdown voltage
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012177771A
Other languages
Japanese (ja)
Other versions
JP2012238898A (en
Inventor
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012177771A priority Critical patent/JP5556863B2/en
Publication of JP2012238898A publication Critical patent/JP2012238898A/en
Application granted granted Critical
Publication of JP5556863B2 publication Critical patent/JP5556863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

この発明は、縦型MOSFEに関わるもので、特にシリコンカーバイド(以下SiCと呼ぶ)や窒化ガリウム(以下GaNと記す)を代表とするバンドギャップが3eV程度と、シリコン半導体の1.08eVより広いワイドバンドギャップ半導体を主たる半導体基板の構成材料とするものである。 The present invention relates to the vertical a MOSFET T, in particular (hereinafter referred to as SiC) silicon carbide or gallium nitride (hereinafter referred to as GaN) and about 3eV bandgap typified by, wider than the silicon semiconductor 1.08eV A wide band gap semiconductor is used as a constituent material of a main semiconductor substrate.

従来、大きな電力を扱う、いわゆるパワーデバイスは、主としてシリコン半導体を用いて製造されてきている。パワーデバイスは大きい電流容量を可能にするため、チップの両主面間の縦方向(厚さ方向)へ電流を流す構造にされることが多い。図4、5には従来の代表的なパワーデバイスである縦型MOSFETの断面図を示す。図4に示す縦型MOSFETはゲート電極23とその直下のゲート絶縁膜24が半導体基板の主面に対して、平行な平面状に形成される、所謂プレーナゲート構造を有しており、図示しないMOSチャネル(反転層)はゲート電極23およびゲート絶縁膜24直下のpウェル25表面に形成されることになる。   Conventionally, so-called power devices that handle large electric power have been manufactured mainly using silicon semiconductors. In order to enable a large current capacity, a power device is often configured to allow current to flow in the longitudinal direction (thickness direction) between both main surfaces of a chip. 4 and 5 are sectional views of a vertical MOSFET which is a typical conventional power device. The vertical MOSFET shown in FIG. 4 has a so-called planar gate structure in which the gate electrode 23 and the gate insulating film 24 immediately below the gate electrode 23 are formed in a plane parallel to the main surface of the semiconductor substrate. The MOS channel (inversion layer) is formed on the surface of the p well 25 immediately below the gate electrode 23 and the gate insulating film 24.

この縦型MOSFETはゲート電極23に閾値電圧以上のオン信号が入力されオン状態になると、ゲート絶縁膜24直下のpウエル領域25表面に反転層として形成される図示しないnチャネルを通って、ドレイン側の領域であるn半導体基板20、nバッファ層21およびnドリフト層22からソース領域28へ主電流が流れる。また、このMOSFETはゲート電極への入力信号をオフすることにより主電流が遮断され、nドリフト層22とpウエル領域25間のpn接合を中心として空乏層が広がってオフ電圧を維持する構造を有するので、スイッチングに利用することができる。なお、nバッファ層21は、オフの高電圧印加時にpn接合からの空乏層の延びを抑えて耐圧を維持しつつ高抵抗領域であるnドリフト層22の厚さを減じることができるようにするためのもので、オン電圧を小さくする作用効果を有する層である。符号20はn半導体基板(サブストレート)であり、この半導体基板20の裏面にはドレイン電極29がオーミック接触で形成されている。さらに表面側には、前記ゲート電極23との絶縁性を確保するための層間絶縁膜30を介して覆い、且つnソース領域28表面とは直接に、pウエル領域25表面とは高不純物濃度p領域26を介して共通に、それぞれ接触するソース電極27が形成される。以上説明した縦型MOSFETのプレーナゲート構造は半導体基板表面に平面状に配設される構造であることから、製造しやすいという利点がある。 When this vertical MOSFET is turned on when an ON signal equal to or higher than the threshold voltage is input to the gate electrode 23, the vertical MOSFET passes through an n channel (not shown) formed as an inversion layer on the surface of the p-well region 25 immediately below the gate insulating film 24. The main current flows from the n + semiconductor substrate 20, the n buffer layer 21, and the n drift layer 22, which are the side regions, to the source region 28. This MOSFET has a structure in which the main current is cut off by turning off the input signal to the gate electrode, and the depletion layer spreads around the pn junction between the n drift layer 22 and the p well region 25 to maintain the off voltage. Can be used for switching. The n buffer layer 21 can reduce the thickness of the n drift layer 22, which is a high resistance region, while maintaining the breakdown voltage by suppressing the extension of the depletion layer from the pn junction when an off high voltage is applied. This is a layer having the effect of reducing the on-voltage. Reference numeral 20 denotes an n + semiconductor substrate (substrate). A drain electrode 29 is formed on the back surface of the semiconductor substrate 20 by ohmic contact. Further, the surface side is covered with an interlayer insulating film 30 for ensuring insulation from the gate electrode 23, and directly on the surface of the n + source region 28 and on the surface of the p well region 25 with a high impurity concentration. Source electrodes 27 are formed in common contact with each other through the p + region 26. Since the planar gate structure of the vertical MOSFET described above is a structure arranged in a planar shape on the surface of the semiconductor substrate, there is an advantage that it is easy to manufacture.

一方、図5の断面図に示すMOSFETでは、凹部状のトレンチ51内部にゲート構造が形成される、所謂トレンチゲート構造を備えるので、トレンチ型MOSFETと呼ばれている。このトレンチゲート構造は前記プレーナゲート構造に比べると複雑であり、その分、工程数も増加する。しかし、トレンチゲート構造は、基板表面で、主電流の流れる活性部に形成されるデバイスユニットのパターンを微細化することにより、集積密度を大幅に高めることができるため、オン抵抗の小さい優れたデバイス特性が得られ易く、近年多く採用されるようになった。このトレンチ型MOSFETでは、トレンチゲート構造以外の、以下に記載した諸構成要素については、前記図4のプレーナゲート構造の縦型MOSFETのそれと、それぞれ同様の機能を有するので、ここでは、これ以上の説明を省く。その構成要素とは、たとえば、高不純物濃度n型半導体基板40、n型高不純物濃度バッファ層41、nドリフト領域42、ゲート電極43、ゲート酸化膜44、pウエル領域45、高不純物濃度p領域46、ソース電極47、nソース領域48、層間絶縁膜50、ドレイン電極49などである。 On the other hand, the MOSFET shown in the cross-sectional view of FIG. 5 is called a trench MOSFET because it has a so-called trench gate structure in which a gate structure is formed inside a concave trench 51. The trench gate structure is more complex than the planar gate structure, and the number of processes is increased accordingly. However, since the trench gate structure can greatly increase the integration density by miniaturizing the pattern of the device unit formed in the active part where the main current flows on the substrate surface, it is an excellent device with low on-resistance. It is easy to obtain characteristics and has been widely adopted in recent years. In this trench type MOSFET, the constituent elements described below other than the trench gate structure have the same functions as those of the vertical MOSFET of the planar gate structure shown in FIG. Omit the explanation. The constituent elements include, for example, a high impurity concentration n-type semiconductor substrate 40, an n-type high impurity concentration buffer layer 41, an n drift region 42, a gate electrode 43, a gate oxide film 44, a p well region 45, a high impurity concentration p. A + region 46, a source electrode 47, an n + source region 48, an interlayer insulating film 50, a drain electrode 49, and the like.

しかしながら、シリコン半導体を用いた縦型MOSFETなどのパワーデバイスでは、たとえば、トレンチ型MOSFETの半導体基板表面のデバイスユニットパターンについて、LSIの微細加工技術などを駆使することにより、もはや極限近くまでの微細化が可能になったので、デバイス特性の向上もほぼ限界に近づきつつある。そこでSiCやGaNなどのようにシリコンよりバンドギャップの広い半導体材料によってこの限界をブレークスルーしようという試みがなされている。これらの半導体材料は最大破壊電界がシリコンと比較して一桁近く大きいことから、パワーデバイスにこの半導体材料を採用すると、素子の抵抗が100分の1以下になることが期待される。そこで、SiCやGaNのようなバンドギャップの広い半導体材料を用い、シリコンと同様の工程を採用することにより、図4のプレーナゲート構造や図5のトレンチゲート構造のMOSFETの試作およびその改良が行われている。   However, in power devices such as vertical MOSFETs using silicon semiconductors, for example, the device unit pattern on the semiconductor substrate surface of trench MOSFETs can be miniaturized to the limit by using LSI microfabrication technology. Therefore, the improvement of device characteristics is almost approaching the limit. Attempts have therefore been made to break through this limit with semiconductor materials having a wider band gap than silicon, such as SiC and GaN. Since these semiconductor materials have a maximum breakdown electric field that is almost an order of magnitude higher than that of silicon, when this semiconductor material is used in a power device, the resistance of the element is expected to be 1/100 or less. Therefore, by using a semiconductor material having a wide band gap such as SiC or GaN and adopting a process similar to that of silicon, the MOSFET having the planar gate structure of FIG. 4 or the trench gate structure of FIG. It has been broken.

これらSiCやGaNのようなワイドバンドギャップ半導体を用いたMOSFETなどのパワーデバイスの改良に係わる公知文献としては、ドリフト層より浅いトレンチとトレンチ底部にドリフト層より深い高不純物濃度のn型領域とトレンチ側壁に沿ったSiC−n型のサイドウオール層を形成することにより、低オン抵抗化と高耐圧化の両立を図ることのできるSiC−トレンチMOSFETが発表されている(特許文献1)。   Known documents relating to improvements in power devices such as MOSFETs using wide bandgap semiconductors such as SiC and GaN include trenches shallower than the drift layer, and high impurity concentration n-type regions and trenches deeper than the drift layer at the bottom of the trench. An SiC-trench MOSFET that can achieve both low on-resistance and high breakdown voltage by forming a SiC-n type sidewall layer along the side wall has been disclosed (Patent Document 1).

また、SiC−MOSFETであって、ドリフト層に達するトレンチとトレンチ側壁にチャネル形成領域となるp型SiC半導体層を設けることにより高耐圧と低損失を得るSiC−MOSFETとすることが知られている(特許文献2、3)。   Further, it is known that the SiC-MOSFET is a SiC-MOSFET that obtains a high breakdown voltage and low loss by providing a trench reaching the drift layer and a p-type SiC semiconductor layer serving as a channel formation region on the trench side wall. (Patent Documents 2 and 3).

さらに、シリコンMOSFETであるが、溝の内面に形成したp型のエピタキシャル層をRIE法エッチングにより、溝の側面にのみチャネル形成領域として残す方法についても公知文献がある(特許文献4)。   Furthermore, there is a known document regarding a method of leaving a p-type epitaxial layer formed on the inner surface of a groove as a channel formation region only on the side surface of the groove by RIE etching, although it is a silicon MOSFET (Patent Document 4).

特開平2001−77358号公報(要約、図1)JP 2001-77358 A (summary, FIG. 1) 特許第3415340号公報(0029段落、図4〜図6)Japanese Patent No. 3415340 (paragraph 0029, FIGS. 4 to 6) 特許第3610721号公報(0043段落、図13)Japanese Patent No. 3610721 (paragraph 0043, FIG. 13) 特開平2−91976号公報(第1図(c)、(d))Japanese Patent Laid-Open No. 2-91976 (FIGS. 1 (c) and (d))

しかしながら、シリコン半導体と比較すると、半導体材料としてのSiCやGaNはよりワイドバンドギャップではあるが、デバイス製造プロセス上の制約が極めて大きく、自由度が小さい。通常、シリコンデバイスの製造プロセスではイオン注入によって、ドナー、アクセプタの不純物を導入し、その後1000℃程度の熱処理によって活性化、およびその後につづく熱拡散処理によって、素子設計から必要とされる所望の深さの拡散層を形成することが可能で、デバイス構造におけるほとんどのpn接合などはこの方法により容易に形成される。   However, compared to silicon semiconductors, SiC and GaN as semiconductor materials have a wider band gap, but the restrictions on the device manufacturing process are extremely large and the degree of freedom is small. Usually, in the manufacturing process of a silicon device, impurities of donor and acceptor are introduced by ion implantation, then activated by a heat treatment at about 1000 ° C., and subsequently subjected to a thermal diffusion treatment to obtain a desired depth required from the element design. The diffusion layer can be formed, and most pn junctions in the device structure are easily formed by this method.

ところが、SiCやGaNではイオンによってドナーやアクセプタを半導体基板に導入しても、それに引き続く熱処理で電気的に活性化させることはシリコン半導体に比べると容易ではない。たとえば、SiCでは活性化率を高めるため、1500℃の高温での熱処理を行って活性化する必要がある。この1500℃以上という活性化温度は、ゲート酸化膜やパッシベーション膜として通常用いられるSi膜やSiO膜の耐熱温度を上回る温度である。このため、SiC半導体を用いた製造プロセスにおいては、これらの膜の形成前に、この高温の熱処理を行う必要がある。このようにSiC半導体の製造プロセスでは、必要とする極めて高温のプロセスに伴う制約があるものの、一応、イオン注入プロセスを利用することはできる。 However, in SiC and GaN, even if a donor or acceptor is introduced into a semiconductor substrate by ions, it is not easy to electrically activate it by a subsequent heat treatment as compared to a silicon semiconductor. For example, in order to increase the activation rate of SiC, it is necessary to activate it by performing a heat treatment at a high temperature of 1500 ° C. The activation temperature of 1500 ° C. or higher is a temperature that exceeds the heat resistance temperature of the Si 3 N 4 film or the SiO 2 film normally used as a gate oxide film or a passivation film. For this reason, in a manufacturing process using a SiC semiconductor, it is necessary to perform this high-temperature heat treatment before forming these films. As described above, in the manufacturing process of the SiC semiconductor, although there are limitations associated with the required extremely high temperature process, the ion implantation process can be used.

しかし、SiCでは、MOS界面に界面準位が非常に多く発生しやすく、それによりチャネル中の電子の移動度が非常に低くなるため、基板結晶の優れた特性を充分に引き出せるだけのデバイスを製造することが簡単ではない。   However, in SiC, interface states are very likely to be generated at the MOS interface, and the mobility of electrons in the channel is very low. Therefore, a device capable of sufficiently extracting the excellent characteristics of the substrate crystal is manufactured. Not easy to do.

一方のGaNではいくつかの試みはあるが、イオン注入では一般的にn型もp型も極めて導入が難しく、成功例はほとんど知られていない。このことから、半導体の層や領域の形成をエピタキシャル成長のみで行う必要のあることが製造プロセス上で問題となる。   On the other hand, there are some attempts in GaN, but in general, it is very difficult to introduce both n-type and p-type by ion implantation, and few successful examples are known. For this reason, it is a problem in the manufacturing process that it is necessary to form semiconductor layers and regions only by epitaxial growth.

しかし、GaNでは、前記MOS界面の界面準位に関して、MOSのチャネル中の電子移動度は100cm/Vsを超えるという報告もされており、このMOS界面に関してはSiCよりも優れた特性が得られやすい。以上説明したように、SiCもGaNもそれぞれ、デバイスを製造する上で、諸々の問題点を抱えており、これを克服することは容易ではない。 However, in GaN, it has been reported that the electron mobility in the MOS channel exceeds 100 cm 2 / Vs with respect to the interface state of the MOS interface, and the characteristics superior to SiC are obtained for this MOS interface. Cheap. As described above, both SiC and GaN have various problems in manufacturing devices, and it is not easy to overcome them.

また、窒化ガリウム系化合物半導体基板においては、シリコン半導体基板と比較して、熱膨張係数が50%ほど違い、また格子不整合が15%程度と、シリコン基板に比べて多いために、GaN層をシリコン基板上に積層すると反ってしまうという問題もある。そのために、ウエハのハンドリングが困難であり、チップの場合でも、反りのためにハンダ付けが困難と言われている。また、GaN半導体ではp型ドーパントの活性化率が非常に低いために、不純物濃度を正確に制御することが困難であり、公知のSiC半導体のような耐圧構造を設計することが困難という問題もある。   In addition, the gallium nitride-based compound semiconductor substrate has a thermal expansion coefficient different by about 50% and a lattice mismatch of about 15% compared to the silicon semiconductor substrate. There is also a problem of warping when laminated on a silicon substrate. Therefore, it is difficult to handle the wafer, and even in the case of a chip, it is said that soldering is difficult due to warpage. In addition, since the activation rate of the p-type dopant is very low in the GaN semiconductor, it is difficult to accurately control the impurity concentration, and it is difficult to design a breakdown voltage structure like a known SiC semiconductor. is there.

本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、シリコン半導体よりバンドギャップの広い3eV程度のワイドバンドギャップ半導体を主要構成材料とする縦型MOSFETであっても、低オン抵抗と、高信頼性の高耐圧縦型MOSFETが得られるワイドバンドギャップ半導体縦型MOSFEを提供することである。 The present invention has been made in view of the above points, and the object of the present invention is a vertical MOSFET whose main constituent material is a wide band gap semiconductor of about 3 eV having a wider band gap than a silicon semiconductor. is to provide a low on-resistance, a wide band gap semiconductor vertical a MOSFET T to high-voltage vertical MOSFET high reliability can be obtained.

特許請求の範囲の請求項1記載の発明によれば、バンドギャップが3eV以上のワイドバンドギャップ半導体を主要構成材料とし、主電流の流れる活性部と該活性部を取り巻く周辺に配設される耐圧構造部とを有し、高不純物濃度の一導電型半導体基板の一面に低不純物濃度の一導電型ドリフト層と他導電型ベース層と前記活性部内に配置される一導電型ソース層とを順に備え、前記活性部では前記一導電型ソース層表面から前記一導電型ドリフト層に達し、前記耐圧構造部では最表面の他導電型ベース層から前記一導電型ドリフト層に達する、トレンチと、該トレンチ側壁を覆う他導電型チャネル形成層と、該他導電型チャネル形成層表面を含む前記トレンチ内表面を被覆するゲート酸化膜と前記トレンチを埋めるゲート電極とを備え、前記活性部のゲート電極と前記耐圧構造部のゲート電極異なる電位であり、前記耐圧構造部内のゲート電極は電位的にフローティング状態に構成され、前記他導電型チャネル形成層が前記他導電型ベース層より低不純物濃度であり、前記耐圧構造部の最外周に空乏層のストッパー領域となる一導電型領域が設けられ、前記耐圧構造部を埋めるゲート電極のうち最外周のゲート電極が前記半導体基板の一面側で前記ストッパー領域の表面に導電接続されているワイドバンドギャップ半導体縦型MOSFETにとすることにより、前記本発明の目的は達成される。 According to the first aspect of the present invention, a wide band gap semiconductor having a band gap of 3 eV or more is a main constituent material, and an active portion through which a main current flows and a withstand voltage disposed around the active portion. A one-conductivity type drift layer, a low-concentration one-conductivity type base layer, and a one-conductivity type source layer disposed in the active part in this order The active portion reaches the one conductivity type drift layer from the one conductivity type source layer surface, and the breakdown voltage structure portion reaches the one conductivity type drift layer from the other conductivity type base layer on the outermost surface; An other conductivity type channel forming layer covering the trench sidewall, a gate oxide film covering the inner surface of the trench including the surface of the other conductivity type channel forming layer, and a gate electrode filling the trench, The gate electrode of the voltage withstanding structure portion and the gate electrode of the active part is different potentials, the gate electrode in the voltage withstanding structure portion is configured potentially floating state, the opposite conductivity type channel forming layer is the other conductivity type base layer One conductivity type region having a lower impurity concentration and serving as a depletion layer stopper region is provided on the outermost periphery of the breakdown voltage structure, and the outermost gate electrode of the gate electrode filling the breakdown voltage structure is formed on the semiconductor substrate. The object of the present invention is achieved by using a wide band gap semiconductor vertical MOSFET that is conductively connected to the surface of the stopper region on one side.

特許請求の範囲の請求項2記載の発明によれば、バンドギャップが3eV以上のワイドバンドギャップ半導体を主要構成材料とし、主電流の流れる活性部と該活性部を取り巻く周辺に配設される耐圧構造部とを有し、高不純物濃度の一導電型半導体基板の一面に低不純物濃度の一導電型ドリフト層と他導電型ベース層と前記活性部内に配置される一導電型ソース層とを順に備え、前記活性部では前記一導電型ソース層表面から前記一導電型ドリフト層に達し、前記耐圧構造部では最表面の他導電型ベース層から前記一導電型ドリフト層に達する、トレンチと、該トレンチ側壁を覆う他導電型チャネル形成層と、該他導電型チャネル形成層表面を含む前記トレンチ内表面を被覆するゲート酸化膜と前記トレンチを埋めるゲート電極とを備え、前記活性部のゲート電極と前記耐圧構造部のゲート電極異なる電位であり、前記耐圧構造部を埋めるゲート電極が前記半導体基板の一面側で前記他導電型ベース領域の表面に導電接続され、前記他導電型チャネル形成層が前記他導電型ベース層より低不純物濃度であり、前記耐圧構造部の最外周に空乏層のストッパー領域となる一導電型領域が設けられ、前記耐圧構造部を埋めるゲート電極のうち最外周のゲート電極が前記半導体基板の一面側で前記ストッパー領域の表面に導電接続されているワイドバンドギャップ半導体縦型MOSFETとする。 According to the second aspect of the present invention, a wide band gap semiconductor having a band gap of 3 eV or more is a main constituent material, and an active portion through which a main current flows and a withstand voltage disposed around the active portion. A one-conductivity type drift layer, a low-concentration one-conductivity type base layer, and a one-conductivity type source layer disposed in the active part in this order The active portion reaches the one conductivity type drift layer from the one conductivity type source layer surface, and the breakdown voltage structure portion reaches the one conductivity type drift layer from the other conductivity type base layer on the outermost surface; An other conductivity type channel forming layer covering the trench sidewall, a gate oxide film covering the inner surface of the trench including the surface of the other conductivity type channel forming layer, and a gate electrode filling the trench, The gate electrode of the voltage withstanding structure portion and the gate electrode of the active part is different potentials, the gate electrode to fill the pressure-resistant structure portion is electrically connected to the surface of the other conductivity type base region in one surface of the semiconductor substrate, the other A gate electrode that has a conductivity type channel forming layer having a lower impurity concentration than the other conductivity type base layer, and has one conductivity type region serving as a depletion layer stopper region at the outermost periphery of the breakdown voltage structure portion, and fills the breakdown voltage structure portion Of these, a wide bandgap semiconductor vertical MOSFET in which the outermost gate electrode is conductively connected to the surface of the stopper region on one side of the semiconductor substrate.

特許請求の範囲の請求項記載の発明によれば、前記耐圧構造部を埋めるゲート電極が前記半導体基板の一面側で前記活性部側に隣接する前記他導電型ベース領域の表面に導電接続されている特許請求の範囲の請求項2記載のワイドバンドギャップ半導体縦型MOSFETとする。 According to a third aspect of the present invention, the gate electrode filling the breakdown voltage structure portion is conductively connected to the surface of the other conductivity type base region adjacent to the active portion side on one surface side of the semiconductor substrate. The wide bandgap semiconductor vertical MOSFET according to claim 2 of the present invention.

特許請求の範囲の請求項記載の発明によれば、前記耐圧構造部内のゲート電極が前記半導体基板の一面側で前記活性部とは反対側に隣接する前記他導電型ベース領域の表面に導電接続されている特許請求の範囲の請求項記載のワイドバンドギャップ半導体縦型MOSFETとする。 According to a fourth aspect of the present invention, the gate electrode in the breakdown voltage structure portion is electrically connected to the surface of the other conductivity type base region adjacent to the one surface side of the semiconductor substrate opposite to the active portion. The wide bandgap semiconductor vertical MOSFET according to claim 2 connected thereto.

本発明によれば、シリコン半導体よりバンドギャップの広い3eV程度のワイドバンドギャップ半導体を主要構成材料とする縦型MOSFETであっても、低オン抵抗と、高信頼性の高耐圧縦型MOSFETが得られるワイドバンドギャップ半導体縦型MOSFEを提供することができる。 According to the present invention, even with a vertical MOSFET whose main constituent material is a wide band gap semiconductor of about 3 eV having a wider band gap than that of a silicon semiconductor, a low on-resistance and highly reliable high breakdown voltage vertical MOSFET can be obtained. it is possible to provide a wide band gap semiconductor vertical MOSFE T to be.

本発明にかかる縦型MOSFETの製造プロセスを示す半導体基板の断面図である(その1)。It is sectional drawing of the semiconductor substrate which shows the manufacturing process of the vertical MOSFET concerning this invention (the 1). 本発明にかかる縦型MOSFETの製造プロセスを示す半導体基板の断面図である(その2)。It is sectional drawing of the semiconductor substrate which shows the manufacturing process of the vertical MOSFET concerning this invention (the 2). 本発明にかかる縦型MOSFETの製造プロセスを示す半導体基板の断面図である(その3)。It is sectional drawing of the semiconductor substrate which shows the manufacturing process of the vertical MOSFET concerning this invention (the 3). 本発明にかかるワイドバンドギャップ半導体縦型MOSFETの活性部を取り巻く周辺の耐圧構造部を示す半導体基板の断面図。1 is a cross-sectional view of a semiconductor substrate showing a peripheral voltage-resistant structure surrounding an active part of a wide bandgap semiconductor vertical MOSFET according to the present invention. 本発明にかかる、異なる耐圧構造部を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows a different pressure | voltage resistant structure part concerning this invention. 従来のシリコンの縦型MOSFETのプレーナゲート構造を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows the planar gate structure of the conventional vertical MOSFET of silicon. 従来のシリコンの縦型MOSFETのトレンチゲート構造を示す半導体基板の断面図である。It is sectional drawing of the semiconductor substrate which shows the trench gate structure of the conventional vertical MOSFET of silicon. 本発明にかかるワイドバンドギャップ半導体縦型MOSFETの活性部を取り巻く周辺の耐圧構造部を示す半導体基板の断面図(その1)である。It is sectional drawing (the 1) of the semiconductor substrate which shows the surrounding pressure | voltage resistant structure part surrounding the active part of the wide band gap semiconductor vertical MOSFET concerning this invention. 本発明にかかるワイドバンドギャップ半導体縦型MOSFETの活性部を取り巻く周辺の耐圧構造部を示す半導体基板の断面図(その2)である。It is sectional drawing (the 2) of a semiconductor substrate which shows the surrounding pressure | voltage resistant structure part surrounding the active part of the wide band gap semiconductor vertical MOSFET concerning this invention. 本発明にかかるワイドバンドギャップ半導体縦型MOSFETの活性部を取り巻く周辺の耐圧構造部を示す半導体基板の断面図(その3)である。FIG. 6 is a cross-sectional view (No. 3) of a semiconductor substrate showing a peripheral breakdown voltage structure surrounding an active portion of a wide bandgap semiconductor vertical MOSFET according to the present invention. 本発明にかかるワイドバンドギャップ半導体縦型MOSFETの活性部を取り巻く周辺の耐圧構造部を示す半導体基板の断面図(その4)である。FIG. 6 is a sectional view (No. 4) of a semiconductor substrate showing a peripheral breakdown voltage structure surrounding an active portion of a wide bandgap semiconductor vertical MOSFET according to the present invention.

以下に添付図面を参照して、この発明にかかるワイドバンドギャップ半導体を用いた縦型MOSFETおよびその製造方法について、好適な実施の形態を詳細に説明する。なお、以下の実施例の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。n、nなどの+と−の記号は、それらの記号の無いn型の不純物濃度との比較で、相対的により高不純物濃度、より低不純物濃度をそれぞれ表す。また、一導電型をn型、他導電型をp型として記す。また、本発明は、以下説明する実施例の記載にのみ限定されるものではない。 Exemplary embodiments of a vertical MOSFET using a wide bandgap semiconductor and a method of manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description of the embodiments and the accompanying drawings, the same reference numerals are given to the same components, and duplicate descriptions are omitted. Symbols + and such as n + and n represent a relatively higher impurity concentration and a lower impurity concentration, respectively, in comparison with an n-type impurity concentration without these symbols. One conductivity type is referred to as n-type, and the other conductivity type is referred to as p-type. Further, the present invention is not limited only to the description of the examples described below.

図1−1〜図1−3は、本発明にかかるワイドバンドギャップ半導体を用いた縦型MOSFETの製造方法を製造工程毎に示す半導体基板の断面図である。図2は本発明にかかる縦型MOSFETの耐圧構造部分を示す半導体基板の断面図である。図3は本発明にかかる縦型MOSFETの異なる耐圧構造部分を示す半導体基板の断面図である。図6は本発明にかかる縦型MOSFETの耐圧構造部分内のガードリング構成を示す半導体基板の断面図である(その1)。図7は本発明にかかる縦型MOSFETの耐圧構造部分内のガードリング構成を示す半導体基板の断面図である(その2)。図8は本発明にかかる縦型MOSFETの耐圧構造部分内のガードリング構成を示す半導体基板の断面図である(その3)。図9は本発明にかかる縦型MOSFETの耐圧構造部分内のガードリング構成を示す半導体基板の断面図である(その4)。   1A to 1C are cross-sectional views of a semiconductor substrate showing a method for manufacturing a vertical MOSFET using a wide band gap semiconductor according to the present invention for each manufacturing process. FIG. 2 is a cross-sectional view of a semiconductor substrate showing a breakdown voltage structure portion of a vertical MOSFET according to the present invention. FIG. 3 is a cross-sectional view of a semiconductor substrate showing different breakdown voltage structure portions of a vertical MOSFET according to the present invention. FIG. 6 is a cross-sectional view of a semiconductor substrate showing a guard ring configuration in a breakdown voltage structure portion of a vertical MOSFET according to the present invention (part 1). FIG. 7 is a sectional view of a semiconductor substrate showing a guard ring configuration in the breakdown voltage structure portion of the vertical MOSFET according to the present invention (part 2). FIG. 8 is a cross-sectional view of a semiconductor substrate showing a guard ring configuration in the breakdown voltage structure portion of the vertical MOSFET according to the present invention (part 3). FIG. 9 is a sectional view of a semiconductor substrate showing a guard ring configuration in the breakdown voltage structure portion of the vertical MOSFET according to the present invention (part 4).

図1−1〜図1−3に示す(a)〜(g)では、本発明にかかる縦型MOSFETの製造プロセスを順に示す。(a)において、n型高不純物濃度のワイドバンドギャップ半導体材料としてはSiCやGaNのいずれでもよいが、ここではSiCとして以下の説明を進める。理解し易くするために、以下の製造プロセスではMOSFETの主電流が流れる活性部と活性部を取り巻く周辺部に位置し、耐圧の信頼性を確保するための耐圧構造とに分けて説明する。まず、SiC−n半導体基板1の上に、SiCエピタキシャル成長により形成されるn型高不純物濃度のバッファ層2、さらにその上に、nドリフト層3がSiCエピタキシャル成長により、耐圧の維持可能を考慮した不純物濃度と厚さを有するように形成される、さらにその上にSiCエピタキシャル成長またはイオン注入により所定の不純物濃度と厚さに形成されるpベース層4、最後に高不純物濃度nソース層5をSiCエピタキシャル成長またはイオン注入により順次成膜する。ただし、GaN半導体を用いる場合は、イオン注入法は困難であるので、エピタキシャル成長により形成することが好ましい。それぞれの層は設計により異なる値をとり得るが、一例を挙げると、nバッファ層2は、不純物濃度1×1019〜1×1021cm−3で、厚さは1〜5μmが好ましい。nドリフト層3は、不純物濃度5×1015〜1×1017cm−3で、厚さは5〜15μmが好ましい。pベース層4は、不純物濃度5×1017〜1×1021cm−3で、厚さ0.5〜2μm程度にする。nソース層5は、不純物濃度1×1019〜1×1021cm−3で、厚さ0.2〜1μm程度が好ましい。この工程を本発明にかかる製造方法における第一工程とする。 In FIGS. 1-1 to 1-3, (a) to (g) sequentially show the manufacturing process of the vertical MOSFET according to the present invention. In (a), the n-type high impurity concentration wide bandgap semiconductor material may be either SiC or GaN, but here, the following explanation will be made on SiC. In order to facilitate understanding, the following manufacturing process is divided into an active part through which the main current of the MOSFET flows and a peripheral part surrounding the active part, and a breakdown voltage structure for ensuring the breakdown voltage reliability. First, an n-type high impurity concentration buffer layer 2 formed by SiC epitaxial growth on the SiC-n + semiconductor substrate 1, and further an n drift layer 3 thereon can maintain a breakdown voltage by SiC epitaxial growth. The p base layer 4 is formed to have a predetermined impurity concentration and thickness by SiC epitaxial growth or ion implantation thereon, and finally the high impurity concentration n + source layer 5 is formed. Are sequentially formed by SiC epitaxial growth or ion implantation. However, when a GaN semiconductor is used, the ion implantation method is difficult, so that it is preferably formed by epitaxial growth. Each layer may take different values depending on the design. For example, the n + buffer layer 2 preferably has an impurity concentration of 1 × 10 19 to 1 × 10 21 cm −3 and a thickness of 1 to 5 μm. The n drift layer 3 preferably has an impurity concentration of 5 × 10 15 to 1 × 10 17 cm −3 and a thickness of 5 to 15 μm. The p base layer 4 has an impurity concentration of 5 × 10 17 to 1 × 10 21 cm −3 and a thickness of about 0.5 to 2 μm. The n + source layer 5 has an impurity concentration of 1 × 10 19 to 1 × 10 21 cm −3 and preferably has a thickness of about 0.2 to 1 μm. This step is the first step in the production method according to the present invention.

(b)では、トレンチゲート構造部分を形成するために、まず、異方性のドライエッチング、たとえば、RIE(Reactive Ion Etching)エッチング法などの公知技術により、トレンチ状にエッチングしトレンチ100を形成する。このトレンチ100の深さも設計により異なるが、少なくともpベース層4より深くする必要がある。トレンチ100の表面幅は0.5〜2μm程度とする。この工程を本発明にかかる製造方法における第二工程とする。   In (b), in order to form a trench gate structure portion, first, trench 100 is formed by etching into a trench shape by a known technique such as anisotropic dry etching, for example, RIE (Reactive Ion Etching) etching method. . The depth of the trench 100 also varies depending on the design, but it is necessary to make it deeper than at least the p base layer 4. The surface width of the trench 100 is about 0.5 to 2 μm. This step is the second step in the production method according to the present invention.

(c)では、トレンチ100上を含む基板全面に、不純物濃度と厚さを所定の値に制御されたp型のSiCエピタキシャル半導体層6aを成膜する。このp型のSiCエピタキシャル半導体層6aはMOSチャネル(反転層)を形成することになるトレンチ側壁部分であるp型チャネル形成層6を含む。このp型チャネル形成層6の不純物濃度は1×1017〜5×1017cm−3程度で、厚さは0.2〜1μm程度である。p型チャネル形成層6の不純物濃度は前記pベース層4の不純物濃度より低いことが望ましい。SiC半導体の場合はイオン注入法により前記p型チャネル形成層6を形成することができるが、GaN半導体の場合は、エピタキシャル成長法により前記p型チャネル形成層6を形成することが好ましい。本発明ではMOSチャネル(反転層)をpベース層4とは異なるp型チャネル形成層6として形成するので、不純物濃度をpベース層4とは異ならせることができ、チャネル制御性を考慮して不純物濃度を選ぶ選択幅が広くなるメリットがある。たとえば、前述のようにpベース層4より低濃度にすると、ゲート閾値電圧を小さくすることができる。本発明にかかるp型チャネル形成層6を設けずにpベース層4の側壁面に直接にチャネル(反転層)を形成する場合は、ゲート閾値電圧を低くするためにpベース層4の不純物濃度を低くすると、オフ時の空乏層がpベース層4にも広がり易くなり、pベース層4幅を広くする必要性が出る。すると、チャネル幅(電流方向の長さ)が長くなり、チャネル抵抗が大きくなるという問題が生じる。本発明によれば、ゲート閾値電圧に関係なく、pベース層の不純物濃度を高くして、厚さを薄くできるので、前記チャネル抵抗に関する問題を回避できる。 In (c), a p-type SiC epitaxial semiconductor layer 6a having an impurity concentration and a thickness controlled to a predetermined value is formed on the entire surface of the substrate including the trench 100. The p-type SiC epitaxial semiconductor layer 6a includes a p-type channel forming layer 6 which is a trench side wall portion where a MOS channel (inversion layer) is to be formed. The impurity concentration of the p-type channel formation layer 6 is about 1 × 10 17 to 5 × 10 17 cm −3 and the thickness is about 0.2 to 1 μm. The impurity concentration of the p-type channel formation layer 6 is preferably lower than the impurity concentration of the p base layer 4. In the case of a SiC semiconductor, the p-type channel formation layer 6 can be formed by an ion implantation method. In the case of a GaN semiconductor, the p-type channel formation layer 6 is preferably formed by an epitaxial growth method. In the present invention, since the MOS channel (inversion layer) is formed as the p-type channel formation layer 6 different from the p base layer 4, the impurity concentration can be different from that of the p base layer 4, and the channel controllability is taken into consideration. There is an advantage that the selection range for selecting the impurity concentration is wide. For example, when the concentration is lower than that of the p base layer 4 as described above, the gate threshold voltage can be reduced. When the channel (inversion layer) is formed directly on the side wall surface of the p base layer 4 without providing the p-type channel formation layer 6 according to the present invention, the impurity concentration of the p base layer 4 is reduced in order to reduce the gate threshold voltage. If it is lowered, the depletion layer at the time of off tends to spread to the p base layer 4 and the width of the p base layer 4 needs to be widened. Then, there arises a problem that the channel width (length in the current direction) is increased and the channel resistance is increased. According to the present invention, the impurity concentration of the p base layer can be increased and the thickness can be reduced regardless of the gate threshold voltage, so that the problem related to the channel resistance can be avoided.

(d)では、前述と同様の異方性のドライエッチングを用いて、前記(c)で形成したp型のSiCエピタキシャル半導体層6aの、基板主面に平行な層部分を除去して、トレンチ100の側壁部分のp型チャネル形成層6のみを残すようにする。   In (d), anisotropic dry etching similar to that described above is used to remove the layer portion of the p-type SiC epitaxial semiconductor layer 6a formed in (c) above that is parallel to the main surface of the substrate. Only the p-type channel forming layer 6 on the side wall portion of 100 is left.

(e)では、表面に熱酸化またはCVD法によりゲート絶縁膜7となるSiO膜やSi膜を形成する。SiCでは熱酸化によりSiO膜を形成することも可能である。 In (e), a SiO 2 film or a Si 3 N 4 film to be the gate insulating film 7 is formed on the surface by thermal oxidation or CVD. In SiC, a SiO 2 film can be formed by thermal oxidation.

(f)ではゲート電極8とするために、ゲート電極材料を充填し、ゲートのパターンにエッチングして形成する。ゲート電極材料は通常は導電性ポリシリコンが用いられる。好ましくはトレンチ100を完全に埋めるようにしたほうがよい。完全に埋め込まれない場合には、表面に溝が残るために、その後の工程において、フォトレジストを塗布したりするときに正常に膜が塗られないなど、工程トラブルが発生し易くなる。前記(c)から(f)までの説明における工程を本発明にかかる製造方法における第三工程とする。   In (f), in order to form the gate electrode 8, the gate electrode material is filled and formed by etching into a gate pattern. As the gate electrode material, conductive polysilicon is usually used. Preferably, the trench 100 should be completely filled. If the film is not completely buried, a groove remains on the surface, so that a process trouble is likely to occur, for example, a film is not normally applied when a photoresist is applied in a subsequent process. The steps in the description from (c) to (f) are defined as the third step in the production method according to the present invention.

(g)においては、pベース領域4およびnソース領域5の表面に共通にオーミック接触するソース電極10およびSiC−n半導体基板1の裏面にオーミック接触するドレイン電極9を形成する。これらの金属電極にはNi、Ti、Alなどの積層膜が用いられる。 In (g), a source electrode 10 that is in ohmic contact with the surfaces of the p base region 4 and the n + source region 5 and a drain electrode 9 that is in ohmic contact with the back surface of the SiC-n + semiconductor substrate 1 are formed. For these metal electrodes, a laminated film of Ni, Ti, Al or the like is used.

こうして形成された本発明にかかる縦型MOSFETではMOSチャネル(反転層)がトレンチ側壁のp型チャネル形成層6の表面に形成される。MOSFETのゲート閾値電圧はp型チャネル形成層6の不純物濃度に依存するので、p型チャネル形成層6の不純物濃度を製造プロセスで制御できることのメリットは大きい。またチャネル長はpベース層4の厚さではなく、トレンチ100の深さによって決定できることもメリットになる。この結果、非常に制御性の良いMOSFETが形成可能である。また、この方法では、トレンチ100底のコーナー部分の直近までp型チャネル形成層6を形成することができ、耐圧がトレンチ100深さなどに影響されにくいという特長がある。このため、ゲート絶縁膜7にトレンチコーナー部分で大きな電界がかかるのを緩和することが可能となる。   In the vertical MOSFET according to the present invention thus formed, a MOS channel (inversion layer) is formed on the surface of the p-type channel formation layer 6 on the side wall of the trench. Since the gate threshold voltage of the MOSFET depends on the impurity concentration of the p-type channel formation layer 6, the merit of being able to control the impurity concentration of the p-type channel formation layer 6 by a manufacturing process is great. It is also advantageous that the channel length can be determined not by the thickness of the p base layer 4 but by the depth of the trench 100. As a result, a MOSFET with very good controllability can be formed. In addition, this method has a feature that the p-type channel formation layer 6 can be formed as close as possible to the corner portion at the bottom of the trench 100, and the breakdown voltage is hardly affected by the depth of the trench 100 or the like. Therefore, it is possible to alleviate the application of a large electric field to the gate insulating film 7 at the trench corner portion.

図2、図6、図7、図8、図9では、大きなオフ電圧を維持するための、素子の活性部を取り巻く、本発明にかかる周辺耐圧構造について説明する。製造方法の説明としては図1とあまり変らないが、基板最表面の高不純物濃度n型ソース層5は、本発明にかかる周辺耐圧構造においては、無いほうが好ましいので、この耐圧構造部のみn型ソース層5を除くために、前記(a)で説明する第一工程と(b)で説明する第二工程の製造工程間に周辺の耐圧構造部のみn型ソース層5をドライエッチングなどの処理により除く工程を付け加える。この耐圧構造部では、図6に示すように、活性部におけるpベース層4と同時に形成されたp型島領域14が耐圧構造部内のトレンチ101により島状に分断されてガードリングとしての役割を果たすことになる。このガードリングは活性部内のトレンチ100と同時に形成されたトレンチ101内部に、活性部内のトレンチ100と同様に、p型チャネル形成層6とゲート絶縁膜7とゲート電極8を備えるが、活性部内のゲート電極8と異なる電位であり、外部電極端子のどこにも接続されず、電位的にはフローティング状態にされている。つまり、少なくとも活性部内のゲート電極と耐圧構造部内のゲート電極との間は導電接続されない。こうすることで、耐圧構造部内のゲート電極8は、pチャネル形成層6と容量結合により電位が固定されて外側へと空乏層が延びる。このガードリングはMOSFETのオフ時にかかる大きな電圧をそれぞれ分担することにより、オフ耐圧を信頼性よく維持する機能を有する。耐圧設計の観点からは、p型島領域14の幅(基板の主面に平行な方向の幅)およびトレンチ101の数を変えることで設計耐圧を変えることが可能である。基板の最表面には放電防止用として、図示しないポリイミド膜やSi膜などを付加することが好ましい。 2, 6, 7, 8, and 9, the peripheral breakdown voltage structure according to the present invention surrounding the active portion of the element for maintaining a large off-voltage will be described. Although the description of the manufacturing method is not much different from that of FIG. 1, it is preferable that the high impurity concentration n + type source layer 5 on the outermost surface of the substrate is not present in the peripheral breakdown voltage structure according to the present invention. In order to remove the + type source layer 5, the n + type source layer 5 is dry-etched only in the peripheral breakdown voltage structure portion between the manufacturing steps of the first step described in (a) and the second step described in (b). Add a process to be removed by such processing. In this withstand voltage structure portion, as shown in FIG. 6, the p-type island region 14 formed simultaneously with the p base layer 4 in the active portion is divided into island shapes by the trench 101 in the withstand voltage structure portion, and serves as a guard ring. Will be fulfilled. This guard ring includes a p-type channel formation layer 6, a gate insulating film 7, and a gate electrode 8 in the trench 101 formed at the same time as the trench 100 in the active portion, like the trench 100 in the active portion. It has a potential different from that of the gate electrode 8, is not connected to any external electrode terminal, and is in a floating state in terms of potential. That is, at least the gate electrode in the active part and the gate electrode in the breakdown voltage structure part are not conductively connected. By doing so, the gate electrode 8 in the breakdown voltage structure portion is fixed in potential by capacitive coupling with the p-channel forming layer 6 and the depletion layer extends outward. The guard ring has a function of maintaining the off breakdown voltage with high reliability by sharing a large voltage applied when the MOSFET is turned off. From the viewpoint of withstand voltage design, the design withstand voltage can be changed by changing the width of the p-type island region 14 (width in the direction parallel to the main surface of the substrate) and the number of the trenches 101. It is preferable to add a polyimide film or Si 3 N 4 film (not shown) to the outermost surface of the substrate for preventing discharge.

ガードリング内のゲート電極8の電位的フローティング状態を安定すると共に、オフ電圧による空乏層の延びを制御する観点で、ゲート電極8の表面とp型島領域14の表面との短絡電極(図7の符号13、図8の符号15)により導電接続されることが好ましい。また、ゲート電極8の表面と空乏層のn型ストッパー領域16との間も、空乏層が延びすぎてデバイスチップの最外端の切断面にかからないように、短絡電極(図8、9の符号12)により導電接続されチャネルストッパーとすることが好ましい。図7では、耐圧構造内のゲート電極8が活性部側(内側)のp型チャネル形成層6に導電接続されている。このため、耐圧構造部内のゲート電極8と内側のp型チャネル形成層6とが同電位となるため、外側へと向かって空乏層が延びやすくなる。これはパッシベーション膜にプラス電荷が多く、空乏層が表面で延びにくい場合に有効である。図8では耐圧構造部内のゲート電極8の外側のp型チャネル形成層6に導電接続されている。このため、外側へと向かって空乏層が延びにくくなる。これはパッシベーション膜にマイナス電荷が多く、空乏層が表面で延び易い場合に有効である。 From the viewpoint of stabilizing the potential floating state of the gate electrode 8 in the guard ring and controlling the extension of the depletion layer due to the off voltage, a short-circuit electrode between the surface of the gate electrode 8 and the surface of the p-type island region 14 (FIG. 7). The reference numeral 13 in FIG. 8 and the numeral 15 in FIG. 8 are preferably conductively connected. Further, a short-circuit electrode (see FIGS. 8 and 9) is also provided between the surface of the gate electrode 8 and the n + -type stopper region 16 of the depletion layer so that the depletion layer does not extend so much as to reach the outermost cut surface of the device chip. The channel stopper is preferably conductively connected according to reference numeral 12). In FIG. 7, the gate electrode 8 in the breakdown voltage structure is conductively connected to the p-type channel forming layer 6 on the active part side (inner side). For this reason, the gate electrode 8 in the breakdown voltage structure and the inner p-type channel formation layer 6 have the same potential, so that the depletion layer tends to extend outward. This is effective when the passivation film has a lot of positive charges and the depletion layer hardly extends on the surface. In FIG. 8, it is conductively connected to the p-type channel forming layer 6 outside the gate electrode 8 in the breakdown voltage structure. For this reason, it becomes difficult for the depletion layer to extend outward. This is effective when the passivation film has a lot of negative charges and the depletion layer tends to extend on the surface.

図3では別の周辺の耐圧構造の断面構造を示した。この例では耐圧構造をメサ形状とすることで耐圧を維持するものである。すなわち、低不純物濃度のnドリフト層3よりも深いメサ領域11を形成して表面にSiO膜、Si膜、ポリイミド膜などの組み合わせからなるパッシベーション膜(図示せず)を形成することにより耐圧を維持する構造である。メサの傾斜角は基板の主面に垂直な状態から図3に示されるようなネガベベル角などから適宜選択することができる。このメサベベル構造を有する縦型MOSFETの製造プロセスでは前記図1−1〜図1−3で示した製造工程のほかに、前記(g)における工程と、その工程以降に、さらに深いメサ領域11を形成するためのエッチング工程を追加することになる。 FIG. 3 shows a cross-sectional structure of another surrounding pressure-resistant structure. In this example, the breakdown voltage is maintained by making the breakdown voltage structure a mesa shape. That is, a mesa region 11 deeper than the low impurity concentration n drift layer 3 is formed, and a passivation film (not shown) made of a combination of SiO 2 film, Si 3 N 4 film, polyimide film, etc. is formed on the surface. In this way, the breakdown voltage is maintained. The inclination angle of the mesa can be appropriately selected from a state perpendicular to the main surface of the substrate from a negative bevel angle as shown in FIG. In the manufacturing process of the vertical MOSFET having the mesa bevel structure, in addition to the manufacturing steps shown in FIGS. 1-1 to 1-3, a deeper mesa region 11 is formed in the step (g) and after that step. An etching process for forming this is added.

以上のように、本発明にかかるワイドバンドギャップ半導体縦型MOSFEは、インバータ等の電力変換装置や種々の産業用機械等の電源装置や自動車のイグナイタなどに使用されるパワー半導体装置に有用である。 As described above, the wide band gap semiconductor vertical a MOSFET T according to the present invention is useful for a power semiconductor device such as those used in power supplies and automotive igniter of machinery power conversion apparatus and for various industries such as the inverter is there.

1 ワイドバンドギャップn半導体基板
2 高不純物濃度nバッファ層
3 低不純物濃度nドリフト層
4 pベース層
5 高不純物濃度nソース層
6 p型チャネル形成層
7 ゲート絶縁膜
8 ゲート電極
9 ドレイン電極
10 ソース電極
11 メサ領域
12 短絡電極
13 短絡電極
14 p型島領域
15 短絡電極
16 ストッパー領域
100 トレンチ
101 トレンチ。
DESCRIPTION OF SYMBOLS 1 Wide band gap n + Semiconductor substrate 2 High impurity concentration n + Buffer layer 3 Low impurity concentration n Drift layer 4 p Base layer 5 High impurity concentration n + Source layer 6 p-type channel formation layer 7 Gate insulating film 8 Gate electrode 9 Drain electrode 10 Source electrode 11 Mesa region 12 Short-circuit electrode 13 Short-circuit electrode 14 P-type island region 15 Short-circuit electrode 16 Stopper region 100 Trench 101 Trench.

Claims (4)

バンドギャップが3eV以上のワイドバンドギャップ半導体を主要構成材料とし、主電流の流れる活性部と該活性部を取り巻く周辺に配設される耐圧構造部とを有し、高不純物濃度の一導電型半導体基板の一面に低不純物濃度の一導電型ドリフト層と他導電型ベース層と前記活性部内に配置される一導電型ソース層とを順に備え、前記活性部では前記一導電型ソース層表面から前記一導電型ドリフト層に達し、前記耐圧構造部では最表面の他導電型ベース層から前記一導電型ドリフト層に達する、トレンチと、該トレンチ側壁を覆う他導電型チャネル形成層と、該他導電型チャネル形成層表面を含む前記トレンチ内表面を被覆するゲート酸化膜と前記トレンチを埋めるゲート電極とを備え、前記活性部のゲート電極と前記耐圧構造部のゲート電極異なる電位であり、前記耐圧構造部内のゲート電極は電位的にフローティング状態に構成され、前記他導電型チャネル形成層が前記他導電型ベース層より低不純物濃度であり、前記耐圧構造部の最外周に空乏層のストッパー領域となる一導電型領域が設けられ、前記耐圧構造部を埋めるゲート電極のうち最外周のゲート電極が前記半導体基板の一面側で前記ストッパー領域の表面に導電接続されていることを特徴とするワイドバンドギャップ半導体縦型MOSFET。 A wide-bandgap semiconductor having a band gap of 3 eV or more as a main constituent material, an active part through which a main current flows, and a breakdown voltage structure part arranged around the active part, and a one-conductivity-type semiconductor with a high impurity concentration A one conductivity type drift layer having a low impurity concentration, another conductivity type base layer, and a one conductivity type source layer disposed in the active portion are sequentially provided on one surface of the substrate, and the active portion includes the surface of the one conductivity type source layer from the surface. A trench that reaches one conductivity type drift layer and reaches the one conductivity type drift layer from the other conductivity type base layer on the outermost surface in the breakdown voltage structure portion, another conductivity type channel formation layer that covers the trench sidewall, and the other conductivity A gate oxide film covering the inner surface of the trench including the surface of the type channel forming layer and a gate electrode filling the trench, the gate electrode of the active part and the gate of the breakdown voltage structure part Pole is different potentials, the gate electrode in the voltage withstanding structure portion is configured potentially floating state, the opposite conductivity type channel forming layer is a low impurity concentration than said other conductivity type base layer, the voltage withstanding structure portion One conductivity type region serving as a stopper region for the depletion layer is provided on the outermost periphery, and the outermost gate electrode among the gate electrodes filling the breakdown voltage structure portion is conductively connected to the surface of the stopper region on one side of the semiconductor substrate. A wide bandgap semiconductor vertical MOSFET characterized by comprising: バンドギャップが3eV以上のワイドバンドギャップ半導体を主要構成材料とし、主電流の流れる活性部と該活性部を取り巻く周辺に配設される耐圧構造部とを有し、高不純物濃度の一導電型半導体基板の一面に低不純物濃度の一導電型ドリフト層と他導電型ベース層と前記活性部内に配置される一導電型ソース層とを順に備え、前記活性部では前記一導電型ソース層表面から前記一導電型ドリフト層に達し、前記耐圧構造部では最表面の他導電型ベース層から前記一導電型ドリフト層に達する、トレンチと、該トレンチ側壁を覆う他導電型チャネル形成層と、該他導電型チャネル形成層表面を含む前記トレンチ内表面を被覆するゲート酸化膜と前記トレンチを埋めるゲート電極とを備え、前記活性部のゲート電極と前記耐圧構造部のゲート電極異なる電位であり、前記耐圧構造部を埋めるゲート電極が前記半導体基板の一面側で前記他導電型ベース領域の表面に導電接続され、前記他導電型チャネル形成層が前記他導電型ベース層より低不純物濃度であり、前記耐圧構造部の最外周に空乏層のストッパー領域となる一導電型領域が設けられ、前記耐圧構造部を埋めるゲート電極のうち最外周のゲート電極が前記半導体基板の一面側で前記ストッパー領域の表面に導電接続されていることを特徴とするワイドバンドギャップ半導体縦型MOSFET。 A wide-bandgap semiconductor having a band gap of 3 eV or more as a main constituent material, an active part through which a main current flows, and a breakdown voltage structure part arranged around the active part, and a one-conductivity-type semiconductor with a high impurity concentration A one conductivity type drift layer having a low impurity concentration, another conductivity type base layer, and a one conductivity type source layer disposed in the active portion are sequentially provided on one surface of the substrate, and the active portion includes the surface of the one conductivity type source layer from the surface. A trench that reaches one conductivity type drift layer and reaches the one conductivity type drift layer from the other conductivity type base layer on the outermost surface in the breakdown voltage structure portion, another conductivity type channel formation layer that covers the trench sidewall, and the other conductivity A gate oxide film covering the inner surface of the trench including the surface of the type channel forming layer and a gate electrode filling the trench, the gate electrode of the active part and the gate of the breakdown voltage structure part Pole is different potentials, the gate electrode to fill the pressure-resistant structure portion is the conductive connection on the one side of the semiconductor substrate on the surface of the other conductivity type base region, said other conductivity type channel forming layer is the other conductivity type base layer One conductivity type region having a lower impurity concentration and serving as a depletion layer stopper region is provided on the outermost periphery of the breakdown voltage structure, and the outermost gate electrode of the gate electrode filling the breakdown voltage structure is formed on the semiconductor substrate. A wide bandgap semiconductor vertical MOSFET characterized in that it is conductively connected to the surface of the stopper region on one side. 前記耐圧構造部を埋めるゲート電極が前記半導体基板の一面側で前記活性部側に隣接する前記他導電型ベース領域の表面に導電接続されていることを特徴とする請求項2記載のワイドバンドギャップ半導体縦型MOSFET。 3. The wide band gap according to claim 2, wherein the gate electrode filling the breakdown voltage structure portion is conductively connected to the surface of the other conductivity type base region adjacent to the active portion side on one side of the semiconductor substrate. Semiconductor vertical MOSFET. 前記耐圧構造部内のゲート電極が前記半導体基板の一面側で前記活性部とは反対側に隣接する前記他導電型ベース領域の表面に導電接続されていることを特徴とする請求項2記載のワイドバンドギャップ半導体縦型MOSFET。 The wide electrode according to claim 2, wherein the gate electrode in the breakdown voltage structure portion is conductively connected to the surface of the other conductivity type base region adjacent to the opposite side of the active portion on one side of the semiconductor substrate. Bandgap semiconductor vertical MOSFET.
JP2012177771A 2012-08-10 2012-08-10 Wide bandgap semiconductor vertical MOSFET Expired - Fee Related JP5556863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177771A JP5556863B2 (en) 2012-08-10 2012-08-10 Wide bandgap semiconductor vertical MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177771A JP5556863B2 (en) 2012-08-10 2012-08-10 Wide bandgap semiconductor vertical MOSFET

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006301371A Division JP5145694B2 (en) 2006-11-07 2006-11-07 Manufacturing method of SiC semiconductor vertical MOSFET.

Publications (2)

Publication Number Publication Date
JP2012238898A JP2012238898A (en) 2012-12-06
JP5556863B2 true JP5556863B2 (en) 2014-07-23

Family

ID=47461463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177771A Expired - Fee Related JP5556863B2 (en) 2012-08-10 2012-08-10 Wide bandgap semiconductor vertical MOSFET

Country Status (1)

Country Link
JP (1) JP5556863B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216573A (en) 2013-04-26 2014-11-17 株式会社東芝 Semiconductor device
JP2015032744A (en) * 2013-08-05 2015-02-16 株式会社東芝 Semiconductor device and method of manufacturing semiconductor device
JP6918302B2 (en) * 2016-12-20 2021-08-11 富士電機株式会社 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP7043750B2 (en) * 2017-07-14 2022-03-30 株式会社デンソー SiC- MOSFET
JP6844482B2 (en) * 2017-09-26 2021-03-17 株式会社豊田中央研究所 Nitride semiconductor device and its manufacturing method
JP6791084B2 (en) 2017-09-28 2020-11-25 豊田合成株式会社 Semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415340B2 (en) * 1995-09-06 2003-06-09 株式会社デンソー Silicon carbide semiconductor device
JPH09283754A (en) * 1996-04-16 1997-10-31 Toshiba Corp High withstand voltage semiconductor device
JPH1187698A (en) * 1997-09-02 1999-03-30 Kansai Electric Power Co Inc:The Semiconductor device having high breakdown strength and power converter employing the same
JPH11307785A (en) * 1998-04-21 1999-11-05 Toshiba Corp Power semiconductor device
JP4825424B2 (en) * 2005-01-18 2011-11-30 株式会社東芝 Power semiconductor device

Also Published As

Publication number Publication date
JP2012238898A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP6654221B2 (en) Insulated gate silicon carbide semiconductor device and method of manufacturing the same
JP5145694B2 (en) Manufacturing method of SiC semiconductor vertical MOSFET.
JP5449094B2 (en) Semiconductor device
US9214526B2 (en) Semiconductor device
US8748977B2 (en) Semiconductor device and method for producing same
WO2013118203A1 (en) Semiconductor device and method for manufacturing same
JP6532549B2 (en) Semiconductor device
JP5556863B2 (en) Wide bandgap semiconductor vertical MOSFET
JP2014146666A (en) Semiconductor device
US9276075B2 (en) Semiconductor device having vertical MOSFET structure that utilizes a trench-type gate electrode and method of producing the same
TWI599041B (en) Metal oxide semiconductor field effect transistor power device with bottom gate and method for the same
JP5324157B2 (en) Semiconductor device and manufacturing method thereof
JP4948784B2 (en) Semiconductor device and manufacturing method thereof
JP5547022B2 (en) Semiconductor device
JP2017191817A (en) Method for manufacturing switching element
US10707342B2 (en) Transistor having at least one transistor cell with a field electrode
JP5098293B2 (en) Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof
JP2017174961A (en) Method of manufacturing switching element
JP2008172007A (en) Insulated-gate silicon carbide semiconductor device and its manufacturing method
TWI591828B (en) Semiconductor device and method of manufacturing the same
JP6368105B2 (en) Trench MOSFET semiconductor device
JP6606819B2 (en) Semiconductor device
JP2019040961A (en) Nitride semiconductor device
JP5223041B1 (en) Semiconductor device and manufacturing method thereof
JP2019040960A (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees