JP3415340B2 - Silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device

Info

Publication number
JP3415340B2
JP3415340B2 JP22948695A JP22948695A JP3415340B2 JP 3415340 B2 JP3415340 B2 JP 3415340B2 JP 22948695 A JP22948695 A JP 22948695A JP 22948695 A JP22948695 A JP 22948695A JP 3415340 B2 JP3415340 B2 JP 3415340B2
Authority
JP
Japan
Prior art keywords
silicon carbide
semiconductor layer
layer
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22948695A
Other languages
Japanese (ja)
Other versions
JPH0974192A (en
Inventor
健 宮嶋
一都 原
規仁 戸倉
弘雄 夫馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP22948695A priority Critical patent/JP3415340B2/en
Priority to KR1019960038644A priority patent/KR100199997B1/en
Priority to DE19636302A priority patent/DE19636302C2/en
Priority to FR9610880A priority patent/FR2738394B1/en
Publication of JPH0974192A publication Critical patent/JPH0974192A/en
Priority to US08/893,221 priority patent/US5976936A/en
Priority to US08/938,805 priority patent/US6020600A/en
Application granted granted Critical
Publication of JP3415340B2 publication Critical patent/JP3415340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、炭化珪素半導体
装置、例えば、絶縁ゲート型電界効果トランジスタ、と
りわけ大電力用の縦型MOSFETに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide semiconductor device, for example, an insulated gate field effect transistor, and more particularly to a vertical MOSFET for high power.

【0002】[0002]

【従来の技術】近年、電力用トランジスタとして炭化珪
素単結晶材料を使用して作製される縦型パワーMOSF
ETが提案されている。電力用トランジスタの損失を低
減するためにはオン抵抗の低減が必要であり、効果的に
オン抵抗低減が可能な素子として図9に示す溝ゲート型
パワーMOSFET(例えば、特開平4−239778
号公報)が提案されている。図9における溝ゲート型パ
ワーMOSFETは、n型炭化珪素半導体基板21上に
n型エピタキシャル層22が形成され、さらに、n型エ
ピタキシャル層22上にp型エピタキシャル層23が形
成され、さらに、p型エピタキシャル層23の所定領域
にn型ソース領域24が形成されている。又、n型ソー
ス領域24とp型エピタキシャル層23を貫通してn型
エピタキシャル層22に達する凹所25が形成され、凹
所25内にはゲート絶縁膜26を介してゲート電極27
が形成されている。ゲート電極27の上面には絶縁膜2
8が形成され、絶縁膜28上を含むn型ソース領域24
上にはソース電極膜29が形成され、n型炭化珪素半導
体基板21の表面にはドレイン電極膜30が形成されて
いる。
2. Description of the Related Art In recent years, a vertical power MOSF manufactured by using a silicon carbide single crystal material as a power transistor.
ET is proposed. In order to reduce the loss of the power transistor, it is necessary to reduce the on-resistance, and as an element capable of effectively reducing the on-resistance, the groove gate type power MOSFET shown in FIG. 9 (for example, Japanese Patent Laid-Open No. 4-239778).
Issue). In the trench gate type power MOSFET in FIG. 9, an n-type epitaxial layer 22 is formed on an n-type silicon carbide semiconductor substrate 21, a p-type epitaxial layer 23 is further formed on the n-type epitaxial layer 22, and a p-type epitaxial layer 23 is further formed. An n-type source region 24 is formed in a predetermined region of the epitaxial layer 23. Further, a recess 25 penetrating the n-type source region 24 and the p-type epitaxial layer 23 and reaching the n-type epitaxial layer 22 is formed, and a gate electrode 27 is formed in the recess 25 via a gate insulating film 26.
Are formed. The insulating film 2 is formed on the upper surface of the gate electrode 27.
8 is formed and the n-type source region 24 including on the insulating film 28 is formed.
A source electrode film 29 is formed thereon, and a drain electrode film 30 is formed on the surface of the n-type silicon carbide semiconductor substrate 21.

【0003】ここで、ソース端子〜ドレイン端子間にキ
ャリアを流すチャネルは、ゲート電極27に電圧を印加
し、ゲート電極27と、凹所25側壁部分のp型エピタ
キシャル層23とに挟まれたゲート絶縁膜26に電界を
与えることにより、ゲート絶縁膜26に接するp型エピ
タキシャル層23の導電型を反転させることで形成して
いた。
Here, in the channel through which carriers flow between the source terminal and the drain terminal, a voltage is applied to the gate electrode 27, and the gate is sandwiched between the gate electrode 27 and the p-type epitaxial layer 23 on the side wall of the recess 25. An electric field is applied to the insulating film 26 to invert the conductivity type of the p-type epitaxial layer 23 in contact with the gate insulating film 26.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図9に
示す溝ゲート型パワーMOSFETは、チャネルが形成
される領域の不純物濃度は、p型エピタキシャル層23
の不純物濃度で規定されてしまっていた。その結果、以
下に述べる不具合が発生していた。図9に示す構造のパ
ワーMOSFETの、ソース・ドレイン間耐圧を決定す
るパラメータの一つが、p型エピタキシャル層23の不
純物濃度NA とソース領域24とn型エピタキシャル層
22に挟まれた厚さaである。ソース・ドレイン間耐圧
は、p型エピタキシャル層23とn型エピタキシャル層
22のpn接合のアバランシェ条件と、p型エピタキシ
ャル層23が空乏化してパンチスルーが生じる条件で支
配される。このため、p型エピタキシャル層23の不純
物濃度NA は十分高く、厚さaも十分厚くする必要があ
る。ところが、p型エピタキシャル層23の不純物濃度
A を大きくすると、ゲート閾値電圧が高くなる問題が
生じると共に、不純物散乱の増大によりチャネル移動度
が低下し、オン抵抗が大きくなる問題があった。又、厚
さaを大きくすると、チャネル長が長くなり、オン抵抗
が大きくなる問題もあった。
However, in the trench gate type power MOSFET shown in FIG. 9, the impurity concentration of the region where the channel is formed is p type epitaxial layer 23.
It was specified by the impurity concentration of. As a result, the following problems have occurred. One of the parameters that determines the source-drain breakdown voltage of the power MOSFET having the structure shown in FIG. 9 is the impurity concentration N A of the p-type epitaxial layer 23 and the thickness a sandwiched between the source region 24 and the n-type epitaxial layer 22. Is. The source-drain breakdown voltage is governed by the avalanche condition of the pn junction between the p-type epitaxial layer 23 and the n-type epitaxial layer 22 and the condition that the p-type epitaxial layer 23 is depleted and punch-through occurs. Therefore, the impurity concentration N A of the p-type epitaxial layer 23 must be sufficiently high and the thickness a must be sufficiently thick. However, when the impurity concentration N A of the p-type epitaxial layer 23 is increased, there is a problem that the gate threshold voltage is increased, and the impurity mobility is increased, so that the channel mobility is decreased and the on-resistance is increased. Further, when the thickness a is increased, the channel length becomes longer, and there is a problem that the on-resistance increases.

【0005】このように、高耐圧で動作時の電流損失が
小さく、閾値電圧が低いパワーMOSFETを実現する
には、p型エピタキシャル層とチャネルが形成される領
域の不純物濃度は独立に制御する必要があるが、従来の
構造では困難であった。
As described above, in order to realize a power MOSFET having a high breakdown voltage, a small current loss during operation, and a low threshold voltage, the impurity concentrations of the p-type epitaxial layer and the region where the channel is formed must be controlled independently. However, it was difficult with the conventional structure.

【0006】上述の問題を解決するために、シリコン単
結晶を使用した溝ゲート型パワーMOSFETにおいて
は熱拡散法によるチャネル形成層の低濃度化が行われて
いる。しかし、炭化珪素を使用した溝ゲート型パワーM
OSFETにおいては、炭化珪素中の不純物原子の熱拡
散定数が極めて小さいために熱拡散法が使えないという
新たな問題があった。
In order to solve the above-mentioned problems, the concentration of the channel forming layer is reduced by the thermal diffusion method in the trench gate type power MOSFET using the silicon single crystal. However, the trench gate type power M using silicon carbide
In the OSFET, there is a new problem that the thermal diffusion method cannot be used because the thermal diffusion constant of impurity atoms in silicon carbide is extremely small.

【0007】そこで、この発明の目的は、高耐圧、低損
失、低閾値電圧の炭化珪素半導体装置を提供することに
ある。
Therefore, an object of the present invention is to provide a silicon carbide semiconductor device having high breakdown voltage, low loss, and low threshold voltage.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、第1導電型の低抵抗半導体層と第1導電型の高抵抗
半導体層と第2導電型の第1の半導体層とが順に積層さ
れることにより構成され、単結晶炭化珪素よりなる半導
体基板と、前記第1の半導体層内の表層部の所定領域に
形成された第1導電型の半導体領域と、前記半導体領域
と前記第1の半導体層を貫通し前記高抵抗半導体層に達
する溝と、前記溝の側面を形成する前記半導体領域と前
記第1の半導体層と前記高抵抗半導体層の表面に延設さ
炭化珪素の薄膜よりなる第2導電型の第2の半導体
層と、前記半導体領域の表面の一部と、前記第2の半導
体層の表面および前記溝内での高抵抗半導体層の表面に
延設されたゲート絶縁膜と、該ゲート絶縁膜の表面に形
成されたゲート電極層と、前記第1の半導体層の表面お
よび前記半導体領域の表面の一部のうち少なくとも前記
半導体領域の表面の一部に形成された第1の電極層と、
前記低抵抗半導体層の表面に形成された第2の電極層と
を備えた炭化珪素半導体装置をその要旨とする。
According to a first aspect of the present invention, there are provided a first conductivity type low resistance semiconductor layer, a first conductivity type high resistance semiconductor layer, and a second conductivity type first semiconductor layer. A semiconductor substrate made of single-crystal silicon carbide, which is formed by stacking in order, a first-conductivity-type semiconductor region formed in a predetermined region of a surface layer portion in the first semiconductor layer, the semiconductor region, and the semiconductor region. A groove penetrating the first semiconductor layer to reach the high resistance semiconductor layer, the semiconductor region forming a side surface of the groove, the silicon carbide extended to the surfaces of the first semiconductor layer and the high resistance semiconductor layer. A second conductive type second semiconductor layer formed of a thin film, a part of the surface of the semiconductor region, the surface of the second semiconductor layer and the surface of the high resistance semiconductor layer in the groove. Gate insulating film and a gate electrode formed on the surface of the gate insulating film When a first electrode layer formed on a part of the first surface of the semiconductor layer and said surface of at least the semiconductor region of the portion of the surface of the semiconductor region,
A gist of the present invention is a silicon carbide semiconductor device including a second electrode layer formed on the surface of the low resistance semiconductor layer.

【0009】請求項2に記載の発明は、請求項1に記載
の発明における前記第2の半導体層の結晶型が、前記第
1の半導体層の結晶型と同じである炭化珪素半導体装置
をその要旨とする。
According to a second aspect of the present invention, there is provided a silicon carbide semiconductor device in which the crystal type of the second semiconductor layer in the first aspect of the invention is the same as the crystal type of the first semiconductor layer. Use as a summary.

【0010】請求項3に記載の発明は、請求項1又は2
に記載の発明における半導体基板と第2の半導体層とが
六方晶系炭化珪素よりなる炭化珪素半導体装置をその要
旨とする。
The invention described in claim 3 is the invention according to claim 1 or 2.
The gist of the invention is a silicon carbide semiconductor device in which the semiconductor substrate and the second semiconductor layer in the invention described in (3) are made of hexagonal silicon carbide.

【0011】請求項4に記載の発明は、請求項1〜3の
いずれか1項に記載の発明での前記半導体基板における
前記半導体領域が形成される基板表面を略(0001)
カーボン面とした炭化珪素半導体装置をその要旨とす
る。
According to a fourth aspect of the present invention, the substrate surface on which the semiconductor region of the semiconductor substrate according to any one of the first to third aspects is formed is approximately (0001).
The gist is a silicon carbide semiconductor device having a carbon surface.

【0012】請求項5に記載の発明は、請求項1に記載
の発明における前記第2の半導体層の不純物濃度が、前
記第1の半導体層の不純物濃度より低く、前記第2の半
導体層の結晶型は、前記第1の半導体層の結晶型と異な
る炭化珪素半導体装置をその要旨とする。 (作用) 請求項1に記載の発明によれば、ゲート電極層(ゲート
端子)に電圧を印加してゲート絶縁膜に電界を与えるこ
とにより、第2の半導体層の導電型が反転し、第1の電
極層(ソース端子)と第2の電極層(ドレイン端子)と
の間にキャリアが流れる。つまり、第2の半導体層がチ
ャネル形成領域となる。
According to a fifth aspect of the invention, the impurity concentration of the second semiconductor layer in the first aspect of the invention is lower than the impurity concentration of the first semiconductor layer, and the second semiconductor layer has a lower impurity concentration. The gist of the crystal type is a silicon carbide semiconductor device different from the crystal type of the first semiconductor layer. (Operation) According to the invention described in claim 1, by applying a voltage to the gate electrode layer (gate terminal) and applying an electric field to the gate insulating film, the conductivity type of the second semiconductor layer is inverted, Carriers flow between the first electrode layer (source terminal) and the second electrode layer (drain terminal). That is, the second semiconductor layer serves as a channel formation region.

【0013】この際、第1の半導体層の不純物濃度と第
2の半導体層の不純物濃度とを独立に制御することで、
高耐圧、低電流損失で閾値電圧が低い炭化珪素半導体装
置が得られる。特に、チャネルを形成する第2の半導体
層の不純物濃度を低くすることで、キャリアが流れる時
の不純物散乱の影響が小さくなり、チャネル移動度を大
きくすることができる。ソース・ドレイン間耐圧は、高
抵抗半導体層、第1の半導体層の不純物濃度及びその膜
厚で主に支配されるので、第1の半導体層の不純物濃度
を上げて、第1の半導体層の膜厚を薄くすることがで
き、高耐圧性を維持しながら、チャネル長を短くするこ
とができるため、チャネル抵抗を飛躍的に低減でき、ド
レイン・ソース間のオン抵抗を低減することができる。
At this time, by controlling the impurity concentration of the first semiconductor layer and the impurity concentration of the second semiconductor layer independently,
A silicon carbide semiconductor device having a high breakdown voltage, a low current loss, and a low threshold voltage can be obtained. In particular, by lowering the impurity concentration of the second semiconductor layer forming the channel, the influence of impurity scattering when carriers flow can be reduced and the channel mobility can be increased. Since the source-drain breakdown voltage is mainly controlled by the impurity concentration of the high-resistance semiconductor layer and the first semiconductor layer and the film thickness thereof, the impurity concentration of the first semiconductor layer is increased to increase the impurity concentration of the first semiconductor layer. Since the film thickness can be reduced and the channel length can be shortened while maintaining high withstand voltage, the channel resistance can be dramatically reduced and the on-resistance between the drain and the source can be reduced.

【0014】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加え、第2の半導体層の結晶型
が、第1の半導体層の結晶型と同じであるので、本発明
の構造を容易に形成できる。
According to the invention of claim 2, claim 1
In addition to the effect of the invention described in (1), the crystal type of the second semiconductor layer is the same as the crystal type of the first semiconductor layer, so that the structure of the present invention can be easily formed.

【0015】請求項3に記載の発明によれば、請求項1
又は2に記載の発明の作用に加え、半導体基板と第2の
半導体層が六方晶系炭化珪素よりなるので、より好まし
いものとなる。
According to the invention of claim 3, claim 1
Alternatively, in addition to the effect of the invention described in 2, the semiconductor substrate and the second semiconductor layer are made of hexagonal silicon carbide, which is more preferable.

【0016】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の作用に加え、半導体
基板の表面が(0001)カーボン面であるので、高耐
圧構造を容易に形成できる。
According to the invention of claim 4, claim 1
In addition to the effect of the invention described in any one of 1 to 3, since the surface of the semiconductor substrate is the (0001) carbon surface, the high breakdown voltage structure can be easily formed.

【0017】請求項5に記載の発明によれば、請求項
記載の発明の作用に加え、第2の半導体層の不純物濃
度は、第1の半導体層の不純物濃度より低いので、チャ
ネル抵抗を小さくできる。
According to the invention of claim 5, claim 1
In addition to the effect of the invention described in (1), since the impurity concentration of the second semiconductor layer is lower than the impurity concentration of the first semiconductor layer, the channel resistance can be reduced.

【0018】[0018]

【発明の実施の形態】以下、この発明の実施の形態を図
面に従って説明する。図1に、本実施の形態におけるn
チャネルタイプの溝ゲート型パワーMOSFET(縦型
パワーMOSFET)の断面図を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows n in the present embodiment.
The sectional view of a channel type groove gate type power MOSFET (vertical type power MOSFET) is shown.

【0019】低抵抗半導体層としてのn+ 型炭化珪素半
導体基板1は、六方晶系炭化珪素が用いられている。こ
のn+ 型炭化珪素半導体基板1上に、高抵抗半導体層と
してのn- 型炭化珪素半導体層2と第1の半導体層とし
てのp型炭化珪素半導体層3が順次積層されている。
Hexagonal system silicon carbide is used for n + type silicon carbide semiconductor substrate 1 as the low resistance semiconductor layer. On this n + type silicon carbide semiconductor substrate 1, an n type silicon carbide semiconductor layer 2 as a high resistance semiconductor layer and a p type silicon carbide semiconductor layer 3 as a first semiconductor layer are sequentially laminated.

【0020】このように、n+ 型炭化珪素半導体基板1
とn- 型炭化珪素半導体層2とp型炭化珪素半導体層3
とから単結晶炭化珪素よりなる半導体基板13が構成さ
れており、その上面を略(0001)カーボン面として
いる。
As described above, the n + type silicon carbide semiconductor substrate 1
And n type silicon carbide semiconductor layer 2 and p type silicon carbide semiconductor layer 3
The semiconductor substrate 13 made of single crystal silicon carbide is constituted by and the upper surface of the semiconductor substrate 13 is a substantially (0001) carbon surface.

【0021】p型炭化珪素半導体層3内の表層部におけ
る所定領域には、半導体領域としてのn+ 型ソース領域
4が形成されている。さらに、p型炭化珪素半導体層3
内の表層部におけるn+ 型ソース領域4の外周側の所定
領域には、低抵抗p型炭化珪素領域5が形成されてい
る。
An n + type source region 4 as a semiconductor region is formed in a predetermined region in the surface layer portion of p type silicon carbide semiconductor layer 3. Furthermore, the p-type silicon carbide semiconductor layer 3
A low resistance p-type silicon carbide region 5 is formed in a predetermined region on the outer peripheral side of the n + -type source region 4 in the inner surface layer portion.

【0022】又、n+ 型ソース領域4の所定位置に溝6
が形成され、この溝6は、n+ 型ソース領域4とp型炭
化珪素半導体層3を貫通しn- 型炭化珪素半導体層2に
達している。溝6は半導体基板13の表面に垂直な側面
6aおよび半導体基板13の表面に平行な底面6bを有
する。
A groove 6 is formed at a predetermined position of the n + type source region 4.
The trench 6 penetrates the n + type source region 4 and the p type silicon carbide semiconductor layer 3 to reach the n type silicon carbide semiconductor layer 2. The groove 6 has a side surface 6 a perpendicular to the surface of the semiconductor substrate 13 and a bottom surface 6 b parallel to the surface of the semiconductor substrate 13.

【0023】溝6の側面6aにおけるn+ 型ソース領域
4とp型炭化珪素半導体層3とn-型炭化珪素半導体層
2の表面には、第2の半導体層としてのp型炭化珪素半
導体薄膜層7が延設されている。p型炭化珪素半導体薄
膜層7の結晶型は、p型炭化珪素半導体層3の結晶型と
同じであり、例えば6H−SiCとなっている。この他
にも4H−SiCであったり、3C−SiCであっても
よい。又、p型炭化珪素半導体薄膜層7の不純物濃度
は、p型炭化珪素半導体層3の不純物濃度より低くなっ
ている(1015〜1016cm-3)。
On the surface of the n + type source region 4, the p type silicon carbide semiconductor layer 3 and the n type silicon carbide semiconductor layer 2 on the side surface 6a of the groove 6, a p type silicon carbide semiconductor thin film as a second semiconductor layer is formed. Layer 7 is extended. The crystal type of the p-type silicon carbide semiconductor thin film layer 7 is the same as the crystal type of the p-type silicon carbide semiconductor layer 3, and is 6H—SiC, for example. Other than this, it may be 4H-SiC or 3C-SiC. Further, the impurity concentration of the p-type silicon carbide semiconductor thin film layer 7 is lower than the impurity concentration of the p-type silicon carbide semiconductor layer 3 (10 15 to 10 16 cm -3 ).

【0024】さらに、溝6の開口部付近でのn+ 型ソー
ス領域4の表面と溝6内でのp型炭化珪素半導体薄膜層
7の表面と溝6の底面6bには連続的にゲート絶縁膜8
が形成されている。溝6内におけるゲート絶縁膜8の内
側および半導体基板13の表面でのゲート絶縁膜8の上
にはゲート電極層9が形成されている。ゲート電極層9
は絶縁膜10にて覆われている。n+ 型ソース領域4の
表面および低抵抗p型炭化珪素領域5の表面には第1の
電極層としてのソース電極層11が形成されている。n
+ 型炭化珪素半導体基板1の表面(半導体基板13の裏
面)には、第2の電極層としてのドレイン電極層12が
形成されている。
Further, the surface of the n + type source region 4 near the opening of the groove 6, the surface of the p type silicon carbide semiconductor thin film layer 7 in the groove 6 and the bottom surface 6b of the groove 6 are continuously gate insulated. Membrane 8
Are formed. A gate electrode layer 9 is formed on the inside of the gate insulating film 8 in the groove 6 and on the gate insulating film 8 on the surface of the semiconductor substrate 13. Gate electrode layer 9
Are covered with an insulating film 10. Source electrode layer 11 as a first electrode layer is formed on the surface of n + type source region 4 and the surface of low resistance p type silicon carbide region 5. n
A drain electrode layer 12 as a second electrode layer is formed on the front surface (back surface of the semiconductor substrate 13) of the + type silicon carbide semiconductor substrate 1.

【0025】この溝ゲート型パワーMOSFETの動作
としては、ゲート電極層9に電圧を印加してゲート絶縁
膜8に電界を与えることにより、p型炭化珪素半導体薄
膜層7の導電型が反転し、ソース電極層11とドレイン
電極層12との間にキャリアが流れる。つまり、p型炭
化珪素半導体薄膜層7がチャネル形成領域となる。
As the operation of this trench gate type power MOSFET, by applying a voltage to the gate electrode layer 9 and applying an electric field to the gate insulating film 8, the conductivity type of the p-type silicon carbide semiconductor thin film layer 7 is inverted, Carriers flow between the source electrode layer 11 and the drain electrode layer 12. That is, the p-type silicon carbide semiconductor thin film layer 7 becomes the channel formation region.

【0026】ここで、p型炭化珪素半導体層3の不純物
濃度とp型炭化珪素半導体薄膜層7の不純物濃度とを独
立に制御することで、高耐圧、低電流損失で閾値電圧が
低いMOSFETとなる。特に、チャネルを形成するp
型炭化珪素半導体薄膜層7の不純物濃度を低くすること
で、キャリアが流れる時の不純物散乱の影響が小さくな
り、チャネル移動度を大きくすることができる。ソース
・ドレイン間耐圧は、n- 型炭化珪素半導体層2、p型
炭化珪素半導体層3の不純物濃度及びその膜厚で主に支
配されるので、p型炭化珪素半導体層3の不純物濃度を
上げて、p型炭化珪素半導体層3の膜厚を薄くすること
ができ、高耐圧性を維持しながら、チャネル長を短くす
ることができる。そのため、チャネル抵抗を飛躍的に低
減でき、ドレイン・ソース間のオン抵抗を低減すること
ができる。
Here, by controlling the impurity concentration of the p-type silicon carbide semiconductor layer 3 and the impurity concentration of the p-type silicon carbide semiconductor thin film layer 7 independently, a MOSFET having a high withstand voltage, a low current loss and a low threshold voltage is obtained. Become. In particular, p forming the channel
By lowering the impurity concentration of the silicon carbide semiconductor thin film layer 7, the influence of impurity scattering when carriers flow can be reduced, and the channel mobility can be increased. Since the source-drain breakdown voltage is mainly controlled by the impurity concentration of the n type silicon carbide semiconductor layer 2 and the p type silicon carbide semiconductor layer 3 and its film thickness, the impurity concentration of the p type silicon carbide semiconductor layer 3 is increased. Thus, the film thickness of p-type silicon carbide semiconductor layer 3 can be reduced, and the channel length can be shortened while maintaining high withstand voltage. Therefore, the channel resistance can be dramatically reduced, and the on-resistance between the drain and the source can be reduced.

【0027】次に、溝ゲート型パワーMOSFETの製
造工程を、図2〜図8を用いて説明する。まず、図2に
示すように、n+ 型炭化珪素半導体基板1を用意し、そ
の表面にn- 型炭化珪素半導体層2をエピタキシャル成
長し、さらにn- 型炭化珪素半導体層2上にp型炭化珪
素半導体層3をエピタキシャル成長する。このようにし
て、n+ 型炭化珪素半導体基板1とn- 型炭化珪素半導
体層2とp型炭化珪素半導体層3とからなる半導体基板
13が形成される。
Next, a manufacturing process of the trench gate type power MOSFET will be described with reference to FIGS. First, as shown in FIG. 2, an n + -type silicon carbide semiconductor substrate 1 is prepared, an n -type silicon carbide semiconductor layer 2 is epitaxially grown on the surface of the n -type silicon carbide semiconductor substrate 2, and a p-type carbon carbide semiconductor layer 2 is further formed on the n -type silicon carbide semiconductor layer 2. The silicon semiconductor layer 3 is epitaxially grown. Thus, semiconductor substrate 13 formed of n + type silicon carbide semiconductor substrate 1, n type silicon carbide semiconductor layer 2 and p type silicon carbide semiconductor layer 3 is formed.

【0028】次に、図3に示すように、p型炭化珪素半
導体層3の表層部の所定領域に、n + 型ソース領域4
を、例えば窒素のイオン注入により形成する。さらに、
p型炭化珪素半導体層3の表層部の別の所定領域に低抵
抗p型炭化珪素領域5を、例えばアルミニウムのイオン
注入により形成する。
Next, as shown in FIG.
In a predetermined region of the surface layer of the conductor layer 3, n +Mold source area 4
Are formed by, for example, ion implantation of nitrogen. further,
A low resistance is applied to another predetermined region of the surface layer portion of the p-type silicon carbide semiconductor layer 3.
The anti-p-type silicon carbide region 5 is formed by, for example, aluminum ions.
It is formed by injection.

【0029】そして、図4に示すように、n+ 型ソース
領域4及びp型炭化珪素半導体層3を共に貫通してn-
型炭化珪素半導体層2に達する溝6を形成する。さら
に、図5に示すように、溝6の側面6aにp型炭化珪素
半導体薄膜層7を形成する。つまり、溝6の内壁におけ
るn+ 型ソース領域4、p型炭化珪素半導体層3および
- 型炭化珪素半導体層2の表面に延びるp型炭化珪素
半導体薄膜層7を形成する。ここで、溝側面6aのp型
炭化珪素半導体薄膜層7の不純物濃度は、p型炭化珪素
半導体層3の不純物濃度より低く設定する。より具体的
なp型炭化珪素半導体薄膜層7の形成方法としては、C
VD法により、例えば6H−SiCの上に6H−SiC
の薄膜層7をホモエピタキシャル成長させる。
Then, as shown in FIG. 4, n -type source region 4 and p-type silicon carbide semiconductor layer 3 are penetrated together to form n − −.
Groove 6 reaching type silicon carbide semiconductor layer 2 is formed. Further, as shown in FIG. 5, p-type silicon carbide semiconductor thin film layer 7 is formed on side surface 6 a of groove 6. That is, p + type silicon carbide semiconductor thin film layer 7 extending to the surfaces of n + type source region 4, p type silicon carbide semiconductor layer 3 and n type silicon carbide semiconductor layer 2 on the inner wall of trench 6 is formed. Here, the impurity concentration of p-type silicon carbide semiconductor thin film layer 7 on groove side surface 6 a is set lower than the impurity concentration of p-type silicon carbide semiconductor layer 3. As a more specific method for forming the p-type silicon carbide semiconductor thin film layer 7, C
By the VD method, for example, 6H-SiC on 6H-SiC
The thin film layer 7 is grown by homoepitaxial growth.

【0030】引き続き、図6に示すように、半導体基板
13およびp型炭化珪素半導体薄膜層7の表面と溝6の
底面6bにゲート絶縁膜8を形成する。そして、図7に
示すように、溝6内のゲート絶縁膜8の表面および溝6
の開口部の周囲にゲート電極層9を形成する。さらに、
図8に示すように、ゲート電極層9の上面に絶縁膜10
を形成する。その後、図1に示すように、絶縁膜10上
を含むソース領域4と低抵抗p型炭化珪素領域5の上
に、ソース電極層11を形成する。又、n+ 型炭化珪素
半導体基板1の表面に、ドレイン電極層12を形成し
て、溝ゲート型パワーMOSFETを完成する。
Subsequently, as shown in FIG. 6, a gate insulating film 8 is formed on the surfaces of semiconductor substrate 13 and p-type silicon carbide semiconductor thin film layer 7 and on bottom surface 6b of trench 6. Then, as shown in FIG. 7, the surface of the gate insulating film 8 in the groove 6 and the groove 6
A gate electrode layer 9 is formed around the opening. further,
As shown in FIG. 8, the insulating film 10 is formed on the upper surface of the gate electrode layer 9.
To form. Thereafter, as shown in FIG. 1, source electrode layer 11 is formed on source region 4 including insulating film 10 and low resistance p-type silicon carbide region 5. Further, the drain electrode layer 12 is formed on the surface of the n + type silicon carbide semiconductor substrate 1 to complete the groove gate type power MOSFET.

【0031】このように本実施の形態では、溝6の側面
6aにp型炭化珪素半導体薄膜層7を配置し、このp型
炭化珪素半導体薄膜層7に対しゲート絶縁膜8を介して
ゲート電極層9を設けたので、チャネル形成領域となる
p型炭化珪素半導体薄膜層7をp型炭化珪素半導体層3
とは独立して濃度調整でき、高耐圧、低電流損失で閾値
電圧を低くできる。
As described above, in this embodiment, the p-type silicon carbide semiconductor thin film layer 7 is arranged on the side surface 6a of the groove 6, and the gate electrode is formed on the p-type silicon carbide semiconductor thin film layer 7 via the gate insulating film 8. Since the layer 9 is provided, the p-type silicon carbide semiconductor thin film layer 7 to be the channel forming region is formed as the p-type silicon carbide semiconductor layer 3
The concentration can be adjusted independently, and the threshold voltage can be lowered with high breakdown voltage and low current loss.

【0032】これまで述べた構成の他にも、例えば、n
+ 型ソース領域4と低抵抗p型炭化珪素領域5に形成さ
れるソース電極は、異なる材料でもよい。又、低抵抗p
型炭化珪素領域5は省略も可能であり、この場合ソース
電極層11はn+ 型ソース領域4とp型炭化珪素半導体
層3に接するように形成される。
In addition to the structure described above, for example, n
The source electrodes formed in the + type source region 4 and the low resistance p type silicon carbide region 5 may be made of different materials. Also, low resistance p
The type silicon carbide region 5 can be omitted. In this case, the source electrode layer 11 is formed so as to contact the n + type source region 4 and the p type silicon carbide semiconductor layer 3.

【0033】又、ソース電極層11は少なくともn+
ソース領域4の表面の一部に形成されていればよい。図
1では溝6の側面6aは半導体基板13の表面に垂直で
あるが、垂直でなくてもよい。又、溝6の底面6bは半
導体基板13の表面に平行な面であるが、平行でなくて
もよい。溝の断面形状は、V字型溝のように底面が無い
形状であっても、U字型溝のように底面が曲面で形成さ
れるものであってもよい。
Further, the source electrode layer 11 may be formed on at least a part of the surface of the n + type source region 4. Although the side surface 6a of the groove 6 is vertical to the surface of the semiconductor substrate 13 in FIG. 1, it may not be vertical. Although the bottom surface 6b of the groove 6 is a surface parallel to the surface of the semiconductor substrate 13, it does not have to be parallel. The cross-sectional shape of the groove may be a V-shaped groove having no bottom surface or a U-shaped groove having a curved bottom surface.

【0034】本実施の形態ではp型炭化珪素半導体薄膜
層7とp型炭化珪素半導体層3の結晶型は同じであると
したが、結晶型は異なっていてもよい。この場合、キャ
リアの流れる方向に、より移動度の高い結晶型を用いる
ことで、よりチャネル抵抗を低減することができる。
Although the p-type silicon carbide semiconductor thin film layer 7 and the p-type silicon carbide semiconductor layer 3 have the same crystal type in the present embodiment, they may have different crystal types. In this case, the channel resistance can be further reduced by using a crystal type having a higher mobility in the carrier flow direction.

【0035】さらに、上述した例では、nチャネル縦型
MOSFETに適用した場合について説明したが、図1
においてp型とn型を入れ替えた、pチャネル縦型MO
SFETにおいても、同じ効果が得られる。さらに、本
発明の主旨を逸脱しない範囲での変形も含むことは言う
までもない。
Further, in the above-mentioned example, the case where the present invention is applied to the n-channel vertical type MOSFET is explained.
P-channel vertical MO with the p-type and n-type swapped in
The same effect can be obtained in the SFET. Further, it goes without saying that modifications are included without departing from the spirit of the present invention.

【0036】尚、本発明における(0001)カーボン
面とは、結晶学的にみて対称な面である(0001バ
ー)カーボン面も含むものである。
The (0001) carbon surface in the present invention includes a (0001 bar) carbon surface which is a crystallographically symmetrical surface.

【0037】[0037]

【発明の効果】以上詳述したようにこの発明によれば、
チャネルが形成される領域の不純物濃度を任意の値にし
て高耐圧、低損失、低閾値電圧な装置とすることができ
る優れた効果を発揮する。
As described above in detail, according to the present invention,
An excellent effect can be obtained in which the impurity concentration of the region where the channel is formed can be set to an arbitrary value to obtain a device having high breakdown voltage, low loss, and low threshold voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施の形態を説明するためのnチャネル溝型
SiC・MOSFETの断面構造模式図。
FIG. 1 is a schematic cross-sectional structure diagram of an n-channel groove type SiC MOSFET for explaining an embodiment.

【図2】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 2 is a cross-sectional view for explaining a manufacturing process of an n-channel groove type SiC MOSFET.

【図3】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 3 is a cross-sectional view for explaining a manufacturing process of an n-channel groove type SiC MOSFET.

【図4】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 4 is a sectional view for explaining a manufacturing process of the n-channel groove type SiC MOSFET.

【図5】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 5 is a cross-sectional view for explaining a manufacturing process of the n-channel groove type SiC MOSFET.

【図6】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 6 is a sectional view for explaining a manufacturing process of the n-channel groove type SiC MOSFET.

【図7】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 7 is a sectional view for explaining a manufacturing process of the n-channel groove type SiC MOSFET.

【図8】 nチャネル溝型SiC・MOSFETの製造
工程を説明するための断面図。
FIG. 8 is a cross-sectional view for explaining the manufacturing process of the n-channel groove type SiC MOSFET.

【図9】 従来の炭化珪素溝ゲート型パワーMOSFE
Tの断面構造模式図。
FIG. 9: Conventional silicon carbide trench gate type power MOSFE
The schematic diagram of the cross-sectional structure of T.

【符号の説明】[Explanation of symbols]

1…低抵抗半導体層としてのn+ 型炭化珪素半導体基
板、2…高抵抗半導体層としてのn- 型炭化珪素半導体
層、3…第1の半導体層としてのp型炭化珪素半導体
層、4…半導体領域としてのn+ 型ソース領域、6…
溝、6a…側面、6b…底面、7…第2の半導体層とし
てのp型炭化珪素半導体層、8…ゲート絶縁膜、9…ゲ
ート電極層、11…第1の電極層としてのソース電極
層、12…第2の電極層としてのドレイン電極層、13
…半導体基板
DESCRIPTION OF SYMBOLS 1 ... n <+> type | mold silicon carbide semiconductor substrate as a low resistance semiconductor layer, 2 ... n < - > type | mold silicon carbide semiconductor layer as a high resistance semiconductor layer, 3 ... p type silicon carbide semiconductor layer as a 1st semiconductor layer, 4 ... N + type source region as a semiconductor region, 6 ...
Groove, 6a ... Side surface, 6b ... Bottom surface, 7 ... P-type silicon carbide semiconductor layer as second semiconductor layer, 8 ... Gate insulating film, 9 ... Gate electrode layer, 11 ... Source electrode layer as first electrode layer , 12 ... Drain electrode layer as second electrode layer, 13
... Semiconductor substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸倉 規仁 愛知県刈谷市昭和町1丁目1番地 日本 電装 株式会社 内 (72)発明者 夫馬 弘雄 愛知県愛知郡長久手町大字長湫字横道41 番地の1株式会社 豊田中央研究所 内 (56)参考文献 特開 平7−131016(JP,A) 特開 平2−91976(JP,A) 国際公開94/013017(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/36 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Norihito Togura, 1-chome, Showa-cho, Kariya city, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor Hiroo Oma 1 41, Yokomichi, Nagakute-cho, Aichi-gun, Aichi prefecture Toyota Central Research Institute Co., Ltd. (56) Reference JP-A-7-131016 (JP, A) JP-A-2-91976 (JP, A) International Publication 94/013017 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 29/78 H01L 21/36

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型の低抵抗半導体層と第1導電
型の高抵抗半導体層と第2導電型の第1の半導体層とが
順に積層されることにより構成され、単結晶炭化珪素よ
りなる半導体基板と、 前記第1の半導体層内の表層部の所定領域に形成された
第1導電型の半導体領域と、 前記半導体領域と前記第1の半導体層を貫通し前記高抵
抗半導体層に達する溝と、 前記溝の側面を形成する前記半導体領域と前記第1の半
導体層と前記高抵抗半導体層の表面に延設され炭化珪
素の薄膜よりなる第2導電型の第2の半導体層と、 前記半導体領域の表面の一部と、前記第2の半導体層の
表面および前記溝内での高抵抗半導体層の表面に延設さ
れたゲート絶縁膜と、 該ゲート絶縁膜の表面に形成されたゲート電極層と、 前記第1の半導体層の表面および前記半導体領域の表面
の一部のうち少なくとも前記半導体領域の表面の一部に
形成された第1の電極層と、 前記低抵抗半導体層の表面に形成された第2の電極層と
を備えたことを特徴とする炭化珪素半導体装置。
1. A single-crystal silicon carbide, which is formed by sequentially laminating a low-resistance semiconductor layer of a first conductivity type, a high-resistance semiconductor layer of a first conductivity type, and a first semiconductor layer of a second conductivity type. A semiconductor substrate made of: a semiconductor region of a first conductivity type formed in a predetermined region of a surface layer portion in the first semiconductor layer; the high-resistance semiconductor layer penetrating the semiconductor region and the first semiconductor layer; a groove reaching said semiconductor region and said first semiconductor layer and the second semiconductor of the second conductivity type made of a thin film of extending silicon carbide on the surface of the high resistance semiconductor layer to form a side surface of said groove A layer, a part of the surface of the semiconductor region, a gate insulating film extending on the surface of the second semiconductor layer and the surface of the high resistance semiconductor layer in the groove, and on the surface of the gate insulating film. The formed gate electrode layer, the surface of the first semiconductor layer, and A first electrode layer formed on at least a part of the surface of the semiconductor region among a part of the surface of the semiconductor region; and a second electrode layer formed on the surface of the low resistance semiconductor layer. A silicon carbide semiconductor device characterized by the above.
【請求項2】 前記第2の半導体層の結晶型が、前記第
1の半導体層の結晶型と同じであることを特徴とする請
求項1に記載の炭化珪素半導体装置。
2. The silicon carbide semiconductor device according to claim 1, wherein the crystal type of the second semiconductor layer is the same as the crystal type of the first semiconductor layer.
【請求項3】 前記半導体基板と第2の半導体層とが六
方晶系炭化珪素よりなることを特徴とする請求項1又は
2に記載の炭化珪素半導体装置。
3. The silicon carbide semiconductor device according to claim 1, wherein the semiconductor substrate and the second semiconductor layer are made of hexagonal silicon carbide.
【請求項4】 前記半導体基板における前記半導体領域
が形成される基板表面を略(0001)カーボン面とし
たことを特徴とする請求項1〜3のいずれか1項に記載
の炭化珪素半導体装置。
4. The silicon carbide semiconductor device according to claim 1, wherein the substrate surface of the semiconductor substrate on which the semiconductor region is formed has a substantially (0001) carbon surface.
【請求項5】 前記第2の半導体層の不純物濃度は、前
記第1の半導体層の不純物濃度より低く、前記第2の半
導体層の結晶型は、前記第1の半導体層の結晶型と異な
ることを特徴とする請求項1に記載の炭化珪素半導体装
置。
5. The impurity concentration of the second semiconductor layer is lower than the impurity concentration of the first semiconductor layer, and the crystal type of the second semiconductor layer is different from the crystal type of the first semiconductor layer. The silicon carbide semiconductor device according to claim 1, wherein.
JP22948695A 1995-09-06 1995-09-06 Silicon carbide semiconductor device Expired - Lifetime JP3415340B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22948695A JP3415340B2 (en) 1995-09-06 1995-09-06 Silicon carbide semiconductor device
KR1019960038644A KR100199997B1 (en) 1995-09-06 1996-09-06 Silicon carbide semiconductor device
DE19636302A DE19636302C2 (en) 1995-09-06 1996-09-06 Silicon carbide semiconductor device and manufacturing method
FR9610880A FR2738394B1 (en) 1995-09-06 1996-09-06 SILICON CARBIDE SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD THEREOF
US08/893,221 US5976936A (en) 1995-09-06 1997-07-15 Silicon carbide semiconductor device
US08/938,805 US6020600A (en) 1995-09-06 1997-09-26 Silicon carbide semiconductor device with trench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22948695A JP3415340B2 (en) 1995-09-06 1995-09-06 Silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPH0974192A JPH0974192A (en) 1997-03-18
JP3415340B2 true JP3415340B2 (en) 2003-06-09

Family

ID=16892925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22948695A Expired - Lifetime JP3415340B2 (en) 1995-09-06 1995-09-06 Silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3415340B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9704149D0 (en) * 1997-11-13 1997-11-13 Abb Research Ltd A semiconductor device of SiC and a transistor of SiC having an insulated gate
JP5101030B2 (en) * 2006-04-10 2012-12-19 三菱電機株式会社 Trench-type MOSFET and manufacturing method thereof
JP2008021756A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Group iii nitride semiconductor device
US8772788B2 (en) 2011-05-30 2014-07-08 Panasonic Corporation Semiconductor element and method of manufacturing thereof
JP2013219161A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Semiconductor device and semiconductor device manufacturing method
JP5556863B2 (en) * 2012-08-10 2014-07-23 富士電機株式会社 Wide bandgap semiconductor vertical MOSFET

Also Published As

Publication number Publication date
JPH0974192A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US7118970B2 (en) Methods of fabricating silicon carbide devices with hybrid well regions
JP3385938B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
KR100199997B1 (en) Silicon carbide semiconductor device
US7687825B2 (en) Insulated gate bipolar conduction transistors (IBCTS) and related methods of fabrication
JP3719323B2 (en) Silicon carbide semiconductor device
US6429041B1 (en) Methods of fabricating silicon carbide inversion channel devices without the need to utilize P-type implantation
US9142663B2 (en) Silicon carbide devices having smooth channels
JP3462506B2 (en) Unit cell of silicon carbide metal insulator semiconductor field effect transistor and silicon carbide metal insulator semiconductor field effect transistor comprising the same
JP5586887B2 (en) Semiconductor device and manufacturing method thereof
US20070007537A1 (en) Semiconductor device
JP2001077363A (en) Silicon carbide semiconductor device and its manufacturing method
JP3307184B2 (en) Silicon carbide semiconductor device
JP2003309262A (en) Silicon carbide semiconductor device and its manufacturing method
JP3415340B2 (en) Silicon carbide semiconductor device
JP3496509B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3709688B2 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term