JP5550677B2 - 永久磁石バルク消磁装置 - Google Patents

永久磁石バルク消磁装置 Download PDF

Info

Publication number
JP5550677B2
JP5550677B2 JP2012121350A JP2012121350A JP5550677B2 JP 5550677 B2 JP5550677 B2 JP 5550677B2 JP 2012121350 A JP2012121350 A JP 2012121350A JP 2012121350 A JP2012121350 A JP 2012121350A JP 5550677 B2 JP5550677 B2 JP 5550677B2
Authority
JP
Japan
Prior art keywords
segments
magnet
gap
pair
magnet groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012121350A
Other languages
English (en)
Other versions
JP2012195048A (ja
Inventor
エー.シュルツ ロバート
Original Assignee
データ セキュリティ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by データ セキュリティ インコーポレイテッド filed Critical データ セキュリティ インコーポレイテッド
Publication of JP2012195048A publication Critical patent/JP2012195048A/ja
Application granted granted Critical
Publication of JP5550677B2 publication Critical patent/JP5550677B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/024Erasing
    • G11B5/0245Bulk erasing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Description

本発明は、一般に消磁装置に関し、より詳細には、磁気データ記憶デバイスの消磁を行う永久磁石消磁装置に関する。
様々な種類の消磁システムが本技術分野で知られている。典型的には、強度および方向の変化する磁場が、消磁すべき要素に印加され、対象内部の磁化を変化させ、それにより内部の任意のパターンを破壊する。消磁システムは、磁気データ記憶装置の使用の増加と共にますます重要になっている。磁気的に記憶されたデータは、使用後に長期間にわたって記憶媒体に残っている場合がある。例えば、コンピュータディスクのデータは、ディスクのセグメントに新しいデータが書き込まれるまで古いデータが変更されないので、ユーザがディスクからデータを「記憶消去(erase)」した後でさえも検索することができる。別の人がそのディスクを手にした場合、その人が、そのディスクからの情報にアクセスできる場合があるのである。
磁気データ記憶媒体のバルク消磁の技術分野では、電気消磁システムが一般に使用される。例えば、電気巻線に関連する押出し成形された「U」形状の積層鋼コアが、磁気データ記憶媒体の記憶消去に適した一構成と通常認識されている。同様に「E」形状コアを使用することもできる。そのようなコアの対は、しばしば、同じ極が対面する状態で互いに向かい合わせて構成されるが、片面のオフセット構成も本技術分野で知られている。そのような構成はいくつかの状況においては適するが、磁気データ記憶媒体記憶消去に必要な磁場を生成するために電源を必要とするという欠点を持つ。
より最近では、希土類永久磁石の発見および改良によって、永久磁石を使用したバルク媒体記憶消去に適した強度の磁場の発生が実用化されつつある。そのような永久磁石は、鋼要素と共に磁気回路の形で構成することができ、これにより、その電気的等価物と類似の作用が得られる。永久磁石システムの重量要件は、電気システムとほぼ等しい。さらに、永久磁石によって必要とされるパワー入力不要(zero power input)により、電気システムと比較して製造コストが高くてもその価値があるといえる。
永久磁石システムを使用する別の利点としては、大きな要素で製造を試みたり、あるいは単一の大きな形状を永久的に磁化したりするのではなく、個別の要素を使用することができ、その個別要素は既製の要素とすることができることである。例えば、1インチ(2.54cm)方向で磁化された総計8つの2インチ(5.08cm)×2インチ(5.08cm)×1インチ(2.54cm)ネオジム鉄ホウ素(NeFeB)ブロックを、4つのブロックのグループとして磁気的な引力によって鋼板に付け、それにより2つの2インチ(5.08cm)×8インチ(20.32cm)の極、従来の奥行き8インチ(20.32cm)の「U」形磁石を形成することができることが知られている。2つのそのような「U」形状は、1インチ(2.54cm)厚の磁気媒体の通過に適した間隙を挟んで同じ極が反発し合うように対面する形で構成することができる。そのような磁石群は、良好な均一性をもつ少なくとも6000ガウスの磁場を、その磁場を通る磁気データ記憶媒体に関する一般的な形状因子であらゆる点に印加することができる。磁気データ記憶装置記憶消去を及ぼすように記憶媒体内部に所望の変更を加えるには、記憶媒体と磁場の向きが異なる状態で、磁気記憶媒体を少なくとも2回磁場を通過させることが必要であることを理解されたい。
これらの知られている永久磁石システムの利点にもかかわらず、いくつかの欠点が存在する。例えば、磁気データ記憶媒体は、高い保磁力をもつように開発されていることから、媒体を完全に記憶消去するためにはるかに強い磁場が印加されなければならない。したがって、周知の永久磁石バルク消磁システムによって実現される6000ガウスの強度では、媒体の保磁力を考慮すると十分とはいえない。
しかし、システムを拡張することによって既知の永久磁石バルク消磁システムの強度を高めようとすれば、直ちに帰線(returns)に影響をもたらすこととなる。従来技術のそのような拡張には、磁化の向きに既製要素を積層すること、鋼板上に要素を並べて配置すること、要素を積層し、かつ配置すること、または既製要素の代わりに、より大きな特注の要素または磁石を用いることが含まれる。一般に、バルク消磁の技術分野では、最悪の場合の磁場強度が性能向上をもたらし、磁場強度の不均一性が一定の範囲で許容することができると理解されている。また、様々な従来技術の対面「U」形構成を使用してより高い保磁力をもつ磁気記憶媒体の記憶消去に十分な磁場強度を提供する試みは、少なくとも比較的多い量のNeFeBまたは他の磁性材料と、必要な磁気回路を完成させるのに必要な厚い鋼構成要素とを必要とすることが知られている。そのようなシステムは、間隙にわたって、許容できない程の磁場強度不均一性をもたらす。特に、NeFeB要素を使用する従来技術の拡張による帰線の減少は、NeFeB要素相互の、かつNeFeB要素から鋼板内への磁束漏れによって生じ、そこには、記憶消去を行うために媒体を配置することができない。
さらに、任意のそのような拡張は、より大きな体積、大きな重量、およびより大きな費用をもたらす。従来技術の永久磁石システムの組立てでは、様々な要素および部材の間に、磁気引力と磁気斥力の両方の領域が生じることが良く知られている。例えば、磁石は、異なる極が対面する形で積層されたとき、鋼板に、かつ互いに引き付けられる。逆に、同じ磁性方向を有する状態で互いに隣接して磁石を配置すると、同じ極を間隙を挟んで互いに対面させて配置する場合と同様に、斥力が生じる。そのような力に対処するために、フレームワーク部材を追加しなければならない。従来デバイスでは、厚い鋼板が、磁気回路の必要な構成要素として、かつフレームワーク部材の1つとして二重の役割を果たしており、しかし他の部材は通常、非磁性材料にして、望ましくない磁気回路経路または不必要な磁場フリンジ効果(fringing effect)を回避しなければならない。特に、従来デバイスは、異なる極間の引力に対処する部材を必要とし、これは極度の圧縮力を受け、かつこの部材は磁性をもつことができない。
上述した必要性は、特に図面に関連付けて検討して以下の詳細な説明で述べられる永久磁石バルク消磁装置の提供によって、少なくとも部分的に満たされる。
図中の要素は、簡略かつ明瞭となるように例示されており、寸法通りに描かれているとは限らないことを当業者は理解されよう。例えば、図中の要素のいくつかの寸法および/相対位置を、他の要素に対して誇張し、本発明の様々な実施形態の理解を深める助けをする場合がある。また、商業的に実現可能な実施形態で有用または必要である一般的な、しかし良く理解されている要素は、本発明のこれらの様々な実施形態の図を不明瞭にしないように、しばしば示されていない。また、本明細書で使用する用語および表現は、特定の意味が本明細書で別段に記載される場合を除き、対応するそれぞれの調査および研究分野に関するそのような用語および表現と同じ通常の意味を有することを理解されたい。
本発明の特徴を実施する永久磁石バルク消磁装置の斜視図である。 矢印によって示される磁化の向きを有する正方形断面永久磁石要素のハルバッハ配列の側面図である。 好ましい永久磁石要素の斜視図である。 図2の配列による磁石群対によって生成される磁場のモデルの側面図である。 図4のaによる磁石群対の間の間隙に沿った磁束密度を示すグラフである。 図4のbによる磁石群対の間の間隙に沿った磁束密度を示すグラフである。 本発明の特徴を実施する代替永久磁石バルク消磁装置の斜視図である。 従来技術永久磁石バルク消磁装置の斜視図である。 本発明の特徴を実施する代替永久磁石バルク消磁装置の側面図である。 永久磁石バルク消磁装置の様々な実施形態と共に使用するフレーム構造の斜視図である。 図9のフレーム構造の側面図である。 本発明の特徴を実施する代替永久磁石バルク消磁装置の側面図である。 図11に示される磁石群対によって生成される磁場のモデルの側面図である。 本発明の特徴を実施する代替永久磁石バルク消磁装置の上面図である。
図1を参照すると、磁気記憶媒体12を記憶消去するための永久磁石バルク消磁装置10が例示されている。装置10は、間隙18を画定するように配置された1対の磁石群14および16を含み、この間隙18を通って、磁気記憶媒体12が、磁石群14および16の各セグメント21〜25および26〜30を横切って矢印20によって示される方向に通過する。この方向20に移動することによって、磁気データ記憶媒体12は、磁石群14および16によって生成される磁場を通過し、それにより媒体12上のデータの記憶消去が促進される。磁気データ記憶媒体12は、磁気テープ、コンピュータディスク、ハードドライブなどを含めた任意の媒体とすることができることに留意されたい。
セグメント21〜25および26〜30は、各磁石群14および16の内部で隣接して配列されており、各後続のセグメントの磁化の向きが、前のセグメントに対して約90度回転している。より具体的には、連続するセグメントをわたる磁化の向きは、その磁化の向きが磁石群内部で5セグメント毎にのみ繰り返されるように、同じ方向に回転する。この磁化配列は、ハルバッハ配列(Halbach array)として一般に知られている。従来のハルバッハ配列の変形形態において、間隙18にほぼ垂直な磁化の向きを有する磁石群14のセグメント22および24が2列の永久磁石を有し、間隙18にほぼ平行な磁化の向きを有するセグメント21、23、および25が1列の永久磁石を有する。
クラウスハルバッハによる従来のハルバッハ配列は、図2に2次元で従来の形で例示されているように、隣接する各正方形での磁化の向きがその隣の正方形に対して90度回転するように磁化された隣接する正方形31〜35の直線状の並びを含み、回転方向は要素から要素へ一定である。矢印が、S磁極からN磁極までを向く磁化の向きを表す。しかし、この決まりは、所与の実施形態で統一して用いられる限り、性能に影響を及ぼすことなく逆にすることもできる。ハルバッハ配列構成は、強い磁性面36を形成する。寸法、形状、および磁化のわずかな不完全性を無視すると、側面38は、ほぼ自己遮蔽しており、非磁性である。そのような直線配列(array)は、無限の並びとして例示することができ、図2に示される正方形要素構成は、典型的には、配列の磁性面36で、配列の方向に沿って実質的に正弦曲線の磁場強度を生じる。したがって、図1の磁石群14および16は、各群の磁性面が間隙18に面した状態で配置される。
好ましくは、各セグメント21〜30は、少なくとも1列で配置された複数の永久磁石を含み、セグメント内の各永久磁石が、列の長さに実質的に垂直な同じ方向を向く磁化の向きを有するようになっている。図3に例示される好ましい永久磁石要素40は、ブロックの厚さ方向の磁化の向き(図中に矢印によって示されている)を有する2インチ(5.08cm)正方形×1インチ(2.54cm)厚のブロックなど簡単に入手できるNeFeBブロックである。そのような磁化は、ブロックの1つの2インチ(5.08cm)正方形面にN磁極を生成し、反対側の2インチ(5.08cm)正方形面にS磁極を生成する。端部でのフリンジ効果を無視すると、各好ましい永久磁石が、磁化された方向で2インチ(5.08cm)幅の磁場を発生する。追加の好ましい永久磁石を列に配置すると、4インチ(10.16cm)、6インチ(15.24cm)、さらにそれ以上の幅広の磁場が提供される。従来のデバイスの場合、フリンジ効果に対処するには1つの追加の隣接磁石で十分である。
3次元では、正方形の断面を有するように示されているそのような要素またはセグメントが、正方形プレート、立方体、またはロッドとなる場合があることを理解されたい。同様に、他の永久磁石材料を使用することもできる。例えば、SmCoブロックは、NeFeBと同様のアスペクト特性(aspect characteristics)を有し、NeFeBの代わりとすることができる。また、特定の要素サイズは必要ない。例えば、磁石群14または16内の様々なセグメント21〜25または26〜30が、異なるサイズおよび/または形状を有することができる。別法として、各セグメントを、セグメントの最長寸法に実質的に垂直な向きの磁化を有する一体化永久磁石にすることもできる。また、複雑な設備が、単一の大きなブロックを、異なる形で磁化されたいくつかのブロックセグメントを有する1部片磁石群として磁化することができる。
さらに、個別のブロックから本発明を組み立てることにより、表面粗さ、サイズおよび形状の公差、およびNeFeB材料のめっきの一般的な実施による磁場の不完全性を、許容することができる程度の小さなものにすることができることを理解されたい。同様に、永久磁石要素40またはセグメント21〜25もしくは26〜30の間にシムなど薄い非磁性要素を導入することで、ある程度許容できる磁場の不完全性をもたらすこともできる。同様に、永久磁石要素40またはセグメント21〜25もしくは26〜30の間にシムとして導入される比較的薄く、軟磁性の強磁性材料は、磁場をほとんど乱さない。
図4のaおよび4bは、磁石群が間隙18を挟んで反発し合うように配置された2つの実施形態の磁束ベクトルをモデル化した図である。客観的な比較のために、本明細書で開示されるすべてのモデルが、10000ガウスの残留磁束密度(Br)を使用する。NeFeBグレードは、13000ガウスを超えるBrで利用可能であることを当業者は理解されよう。図4のaは、正方形セグメント断面を有する図2に例示される従来のハルバッハ配列を使用する実施形態に関する磁束を表す。図4のbは、図1に例示される好ましい実施形態の非従来的なハルバッハ配列に関する磁束をモデル化した図である。どちらの実施形態でも、磁束は間隙18内部に集中し、間隙18の外側に最小限の磁束が存在する。
図5aは、図4のaの磁石群対の内部磁場から導出される空間波形を例示する。図5aの波形が「表示された(windowed)」正弦曲線を近似していることを見ることができる。図5bは、図4の好ましい実施形態のモデルの内部磁場から導出される空間波形を例示する。図5bの波形が、図5aの波形と比較して特徴的な三角形状の特性を有することを見ることができる。
図5bで見られる基本波よりも上の高調波成分は、粒子ビーム加速器構成要素などいくつかのハルバッハ適用例で有害となる場合がある。しかし、ピーク強度は、磁気媒体を記憶消去する技術分野では最も重要であり、図5aおよびbで与えられる数値解析の高調波成分は、好ましい実施形態の非従来的なハルバッハ配列では、従来のハルバッハ配列実施形態と比較して4%強い磁場、ほぼ10000ガウスのピーク磁場を示す。対照的に、図7に例示されるような従来技術の磁気回路は、この強度の約半分しか発生せず、追加の永久磁石を追加することによる図7に示される従来技術磁気回路の拡張は、本発明の実施形態の磁場強度を実現できず、かつ同等の量のNeFeBを使用する。例えば、図7の従来永久磁石消磁装置の2つの寸法のいずれかでNeFeB材料を倍増すると、図4のaおよび4bの実施形態の約半分から、その強度の約70%まで磁気強度が増大する。従来技術消磁装置の両方の寸法でNeFeBを倍増すると、非従来的なハルバッハ実施形態よりも多くの材料を使用し、しかし磁場強度は数パーセント小さい。
またはこれに代えて、5個よりも多い、または少ないセグメントのハルバッハ状配列を利用することができる。例えば、磁性面が反発し合うように対面している3セグメント(図6に例示される)または5セグメント(図1に例示される)群の鏡映対は、従来技術の永久磁石対面「U」形構成(図7に例示される)と類似した磁場を生成し、しかし各実施形態では、磁場の均一性の度合いがそれぞれ改善されている。図6の3セグメント構成により、図7の従来の永久磁石構成の磁場強度がほぼ倍増することをシミュレーションが示している。7セグメント構成は、従来の構成の強度を倍増するだけでなく、媒体経路20に沿って、等しい強度であり反対向きの2つの磁場を生成する。
図6に例示されるそのような代替の実施形態において、通常は完全なハルバッハ配列として認識されないが、磁気データ記憶媒体を記憶消去するのに依然として効果的である構成で、3つのセグメント64、65、および66を磁石群62内部に配置することができる。図6の磁石群60および62はそれぞれ、磁気データ記憶媒体12が通過する間隙18に向かって面する磁性面を有する。磁石群62のセグメント64〜66は、磁石群60のセグメント67〜69から間隙18を挟んで整列され、セグメント64〜66の磁化の向きがセグメント67〜69の磁化の向きを鏡映するようになっており、これを反発し合う配置と呼ぶ。
図6の代替の実施形態は、好ましい永久磁石を使用して構成された場合、図1の実施形態と比較して材料費および重量を28%削減する。また、図6の代替の実施形態は、単位間隙幅当たりの磁場強度がより小さく、間隙にわたる均一性がわずかに劣るが、そのような実施形態は、例えば、より狭い間隙18と共に使用することができ、将来の、さらに縮小された型の磁気記憶媒体で、より高い磁場を実現する。
様々な実施形態の磁場強度および均一性の利点に加えて、従来の永久磁石デバイスと比較すると、鋼要素およびフレーム材料の必要性がはるかに少ない。従来の永久磁石デバイスと対照的に、任意の支持部材または磁気回路要素に鋼は必要ない。また、様々な実施形態の小さな磁束漏れのそのような遮蔽は、航空機または他の移動体の適用例におけるコンパス干渉(compass interference)に対するものなどいくつかの適用例にのみ必要とされる。典型的には、磁石要素寸法および磁化の不完全性によって生じるわずかな磁束漏れに対して遮蔽するには薄い鋼でも十分である。遮蔽が因子ではない適用例では、別法として、より良い強度対重量特性を有する非磁性材料をフレーム構成のために使用することができる。さらに、通常、様々な実施形態の磁石群間の斥力または引力は、従来の消磁装置と比較して低減される。したがって、必要とされるフレーム支持体がより低費用となる。
代替の実施形態において、消磁装置10の全体サイズを操作することができる。例えば、大量の超小型ハードディスクドライブの記憶消去に伴うデータ処理操作は、本発明の極小化された形態から利益を得ることができる。一例として、現在、各入院患者にパーソナルデジタルアシスタント(PDA)を配布することが実現可能である。また、各PDAは、安価な5mm厚の着脱可能な4Gバイトディスクドライブを接続する装置を備える場合がある。PDAは、簡便に、病院内のどこへでも(MRI撮像装置のような場所を除く)患者に随伴して、ドライブ上のすべての診断および治療情報を捕捉することができる。しかし、法律により医療記録を保護しなければならない。したがって、本発明の物理的により小さな実施形態を使用することによって、そのような小さなドライブを、使用後に消磁装置10を通過させることによって記憶消去することができる。好適な永久磁石以外でも既製品として入手可能な多様なNeFeBブロックを使用して、本発明の構成に関し多くの可能性を提起することができる。
また、セグメント間で90度未満の磁化角度を有するハルバッハ配列が知られている。そのような小さな角度の磁化を有する複数の薄板磁石セグメントの使用は、いくつかの適用例で若干のさらなる最適化が可能となる。そのような手法は、セグメント間の追加の接触面でのいくらかの損失と引き換えに、磁場プロフィル(profile)の高調波成分を改良する。
さらに別の実施形態において、図8に例示される鏡映永久磁石群80および82の対は、様々な角度で互いにオフセットすることができ、間隙18をわたる方向で磁場成分を生成する。オフセットを変えることによって、間隙18内部で多様な磁場方向が生成される。本発明のオフセットの実施形態は、ハードディスクドライブでの垂直記録など様々な指向性の消去特性に対処することができる。
さらなる別の実施形態において、磁場強度と媒体厚さ限度との兼ね合いを図るために間隙調節機能を導入することができる。間隙幅を調節する目的で、かつ群をオフセットする目的で磁石の群を操作するためのフレーム構造が知られており、そのようなフレーム構造90の一例が図9および10に示されている。下側プレート92が、下側磁石群16を支持する。上側プレート94が、上側磁石群14を支持する。ピラー96が、任意の従来方法によって下側プレート92に堅く取り付けられる。ピラー96は、上側磁石群14と下側磁石群16の間の太い直径の中間セクション98と、上側プレート94によって画定されたアパーチャ(図示せず)を通してすべりばめされたより小さな直径の上部100と、より小さな直径の上部100に固定して取り付けられた太い直径の頂部102とを含む。ピラー96の太い直径の中間セクション98および頂部102が、間隙18の調節性の限界を画定する。ロッド104が、下側プレート92内部で回転でき、かつプレート92を引っ張ることができるように、知られている様式で下側プレート92に取り付けられる。ロッド104の少なくとも上部106が、調節性の範囲にわたってねじ山を有し、これが、上側プレート94によって画定されるねじ穴(図示せず)と噛み合う。
クランク108と下側小歯車110が、互いに堅く取り付けられ、かつ上側プレート94に取り付けられ回転可能である。下側平歯車112と縦長の上側小歯車114も、互いに堅く取り付けられ、かつ上側プレート94に取り付けられ回転可能である。上側平歯車116は、部分的にねじ切りされたロッド104に堅く取り付けられる。クランク108の回転により、下側小歯車110が下側平歯車112を回転させ、これが縦長の上側小歯車114を回転させ、それにより上側平歯車116およびロッド104が回転する。ロッド104のねじ切り部分106は、上側プレート94に対して、プレートを選択的に昇降させるように作用し、それにより、様々な厚さを有する様々な磁気記憶媒体が通過するように磁石群14と16の間の間隙18に作用する。
図9および10に示される間隙調節の形態は、例示的なものであり、限定的なものではない。本発明の他の実施形態に関して、オフセット形態、引力形態、および媒体経路に対してある角度で設定された複数の群対など、同様の調節装置を提供することができる。間隙調節装置を用いて、または用いずに、媒体経路に沿って本発明の様々な形態を互いに、かつ従来技術と組み合わせることができる。
同様に、多くの従来技術適用例を様々な実施形態と共に使用して、完全な記憶消去を達成するのに必要な変化する磁場への磁気記憶媒体の十分な露出を行うことができる。上述したように、磁気記憶媒体の記憶消去を試みる際、単に単一の磁場方向を通る単純な直線媒体経路としても、媒体または磁場の回転と組み合わせられた磁場を通る2回のパスなど、さらなる媒体磁場変化が必要であると通常、認識されている。そのような操作は、操作者が行うことができ、あるいは当技術分野で知られている機構を使用して行うことができる。また、様々な機構が、磁気媒体経路にラスター走査のような運動を提供して、より小さな磁場ボリュームへの媒体ボリュームの完全な磁気露出を達成することができる。
またはこれに代えて、永久磁石群の2つ以上の対が、媒体経路20に沿って方向を変える磁場を提供することができる。一実施形態において、磁石群の1対は、通常は間隙18に平行な方向に磁場を生成する図1の消磁装置のように、磁気側面が反発し合う状態で間隙を挟んで鏡映になっており、別の対は、通常は間隙18にわたって反対方向に2つの磁場を生成する図11の消磁装置のように、磁気側面が引き付け合うように配置された要素を有する。図11に、好ましい磁石要素とは異なる磁化の向きを有する基本永久磁石要素を使用して引き付け合うように配置された1対の磁石群118および120を例示する。図1および図6の実施形態と同様に、図11に例示される構造は、セグメントを追加または除去すること、あるいは代替の永久磁石要素を用いた群の対を形成することを含めたいくつかの方法で変更することができる。
図12は、図11に例示される引き付け合う1対の群118および120に関する磁束ベクトルをモデル化しており、間隙18を横切って延びる強い磁束を示している。群118および120は、ここでも、間隙18の外側ではほぼ非磁性であり、自己遮蔽している。5セグメント群118と120の対が間隙18内で反対向きの2つの磁場を生成することを見ることができる。各磁場ピークの強度は10000ガウスに近く、これは、反発し合うように配置された群対と同様に、従来の磁気回路で実現可能な結果を超える大幅な進歩である。磁性記憶媒体12が、反発し合うように配置された磁石群対を通過する前または後に、引き付け合うように配置された磁石群対を通過すると、いくつかの種類の磁性記憶媒体の記憶消去に必要な変化する磁場への露出が可能となる。
図13に例示される別の実施形態において、それぞれの奥行きが磁性記憶媒体12のサイズの中間寸法の約1.4倍である、反発し合う磁性面を有する磁石群122および124の2つの対が、媒体経路20に沿って提供され、その経路に対して45度であり、かつ互いに対して90度の磁場方向をもつように向けられて、磁石群を通して1回のパスで磁気記憶媒体を記憶消去するのに十分な「1パス」構成を形成する。そのような配置は、経路全体にわたる磁場の実効幅を、図1または図6のような実施形態で実現される幅の約70%まで低減する。それらの実施形態と異なり、図13の実施形態は、最長寸法が運動方向20に位置合わせされた状態で、図示される向きで媒体12を単一パスで処理するだけでよい。磁場方向は、2対の群122と124を通る経路20に沿って90度変化する。ただ1対の群を有する実施形態は、通常2回のパスを必要とし、媒体12の最長寸法が媒体移動の方向20に垂直な状態で、図1および図6に示される向きでの1回のパスを含む。媒体配置限界126は、フリンジ効果が磁場の強度を弱める群122と124の対の端部に明確に位置することを理解することができる。
この実施形態はさらに、クロスギャップ磁場(cross−gap magnetic field)を追加するように変更することができ、1回のパスで、媒体を回転せずに水平および垂直ハードディスクドライブ媒体を記憶消去する「汎用(universal)」構成を形成する。例えば、図13の構成に、図11のような引き付け合う磁性面を有する配列対のクロスギャップ磁場方向を追加して、1回のパスで、媒体を回転せずに水平および垂直ハードディスクドライブ媒体を記憶消去する「汎用」構成を形成することができる。そのようなマルチギャップの実施形態のすべての要素がハルバッハ状配列である必要はないことに留意されたい。
上述した実施形態に関して、本発明の精神および範囲から逸脱することなく様々な修正、変更、および組合せをなすことができ、そのような修正、変更、および組合せは本発明の概念の範囲内にあるものと考えられていることを当業者は理解できよう。

Claims (7)

  1. 少なくとも2対の磁石群であって、
    前記磁石群の各々は、少なくとも3つのセグメントを含み、
    前記セグメントの各々は、前記セグメントの最長寸法にほぼ垂直な向きに磁化され、
    前記磁石群の各々は、各後続のセグメントの前記磁化の向きが前のセグメントに対して約90度回転された状態で前記セグメントが隣接して配列されるように構成される磁石群と、
    各群によって生成される磁場が少なくとも部分的に前記間隙内に存在するように磁石群の各対によって定められ、通過する磁気記憶媒体が少なくとも部分的には記憶消去されるようなサイズである間隙であって、
    前記少なくとも2対の磁石群の少なくとも1対は、第1の磁石群の前記セグメントが、第2の磁石群の前記セグメントに対して90度で配列され、両方の磁石群の前記セグメントが、磁石群の各対によって定められた各間隙を通る磁気記憶媒体経路に対して45度の角度となるように構成されている間隙と
    を備え、
    前記少なくとも2対の磁石群の少なくとも1対は、前記少なくとも2対の磁石群の少なくとも1対のセグメントが前記間隙を挟んで整列し、前記セグメントの各々が、前記間隙を直接挟む前記セグメントの前記磁化の向きを鏡映するように配列され、
    前記少なくとも3つのセグメントの少なくとも1つは、前記セグメント内の各永久磁石が同じ方向を向くよう磁化されるように、少なくとも1列で構成された複数の永久磁石を含み、
    前記永久磁石の少なくとも1つは、正方形の形状の断面と、前記正方形の一辺の長さの半分の高さとを含み、磁化の向きは前記永久磁石の前記高さの方向であることを特徴とする磁性記憶媒体を記憶消去する装置。
  2. 前記磁気記憶媒体経路上に配置された追加の前記磁石群の少なくとも1対をさらに備え、
    前記追加の少なくとも1対の前記磁石群の各々は、少なくとも3つのセグメントを含み、
    前記追加の少なくとも1対の前記磁石群の前記セグメントの各々は、前記セグメントの最長寸法にほぼ垂直な向きに磁化され、
    前記追加の少なくとも1対の前記磁石群の各々は、各後続のセグメントの前記磁化の向きが前のセグメントに対して約90度回転された状態で前記セグメントが隣接して配列されるように構成され、
    前記追加の前記磁石群の少なくとも1対は、引き付け合うように配置されている
    ことを特徴とする請求項1に記載の装置。
  3. さらに、磁気記憶媒体が少なくとも部分的には記憶消去されるように、前記間隙とともに磁気記憶媒体が通過することができる、前記磁石群を構成中に固定するフレーム構造を備えたことを特徴とする請求項1に記載の装置。
  4. 前記フレーム構造は、調節可能であることを特徴とする請求項3に記載の装置。
  5. 前記連続するセグメントの各々は、第1の幅と第2の幅とを交互に繰り返すことを特徴とする請求項1に記載の装置。
  6. 前記第1の幅は、第2の幅のほぼ半分であることを特徴とする請求項5に記載の装置。
  7. 各群によって生成される磁場と相互作用することによって、通過する磁気記憶媒体が少なくとも部分的には記憶消去されるように磁石群の少なくとも1対で定められる間隙を通って、磁気記憶媒体を通過させるステップ
    を備え、
    前記磁石群の各々は、少なくとも3つのセグメントを含み、前記セグメントの各々は、前記セグメントの最長寸法にほぼ垂直な向きに磁化され、
    前記磁石群の少なくとも1つは、各後続のセグメントの前記磁化の向きが前のセグメントに対して約90度回転された状態で前記セグメントが隣接して配列されるように構成され、
    前記連続するセグメントの各々は、前記磁気記憶媒体の媒体移動の方向についての第1の幅と第2の幅とを交互に繰り返し、
    前記セグメントの少なくとも1つに関する前記磁化の向きは、前記間隙にほぼ垂直またはほぼ平行であり、
    前記磁石群の各対は、同数のセグメントを含み、
    前記磁石群の各対は、前記磁石群の各々からのセグメントが前記間隙を挟んで整列し、前記セグメントの各々が、前記間隙を直接挟む前記セグメントの前記磁化の向きを鏡映するように配列され、
    前記少なくとも3つのセグメントの少なくとも1つは、前記セグメント内の各永久磁石が同じ方向を向くよう磁化されるように、少なくとも1列で構成された複数の永久磁石を含み、
    前記永久磁石の少なくとも1つは、正方形の形状の断面と、前記正方形の一辺の長さの半分の高さとを含み、磁化の向きは前記永久磁石の前記高さの方向であることを特徴とする磁気記憶媒体を記憶消去する方法。
JP2012121350A 2004-07-23 2012-05-28 永久磁石バルク消磁装置 Active JP5550677B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/897,882 US20060018075A1 (en) 2004-07-23 2004-07-23 Permanent magnet bulk degausser
US10/897,882 2004-07-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005213205A Division JP5042474B2 (ja) 2004-07-23 2005-07-22 永久磁石バルク消磁装置

Publications (2)

Publication Number Publication Date
JP2012195048A JP2012195048A (ja) 2012-10-11
JP5550677B2 true JP5550677B2 (ja) 2014-07-16

Family

ID=35149389

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005213205A Active JP5042474B2 (ja) 2004-07-23 2005-07-22 永久磁石バルク消磁装置
JP2012121350A Active JP5550677B2 (ja) 2004-07-23 2012-05-28 永久磁石バルク消磁装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2005213205A Active JP5042474B2 (ja) 2004-07-23 2005-07-22 永久磁石バルク消磁装置

Country Status (5)

Country Link
US (2) US20060018075A1 (ja)
EP (1) EP1619667B1 (ja)
JP (2) JP5042474B2 (ja)
AT (1) ATE496367T1 (ja)
DE (1) DE602005025963D1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026535A (ja) * 2005-07-15 2007-02-01 Hitachi Global Storage Technologies Netherlands Bv データ消去装置及びデータ消去方法
US7626800B2 (en) * 2006-04-21 2009-12-01 Hitachi Global Storage Technologies Netherlands B.V. Bulk erase tool for erasing perpendicularly recorded media
US7548406B2 (en) * 2006-04-21 2009-06-16 Hitachi Global Storage Technologies Netherlands B.V. Method for utilizing a bulk erase tool to erase perpendicularly recorded media
US7701656B2 (en) * 2006-07-14 2010-04-20 Data Security, Inc. Method and apparatus for permanent magnet erasure of magnetic storage media
US7715166B2 (en) * 2006-07-14 2010-05-11 Data Security, Inc. Method and reciprocating apparatus for permanent magnet erasure of magnetic storage media
US7800471B2 (en) * 2008-04-04 2010-09-21 Cedar Ridge Research, Llc Field emission system and method
US20090284890A1 (en) * 2008-05-16 2009-11-19 Thiel Leroy D Mechanism and Method for Permanent Magnet Degaussing
US8134435B2 (en) * 2008-09-29 2012-03-13 Rockwell Automation Technologies, Inc. Flux mitigation
US8014096B2 (en) * 2009-03-13 2011-09-06 Hitachi Global Storage Technologies, Netherlands B.V. Combined bulk thermal-assister and bulk eraser
CN202631746U (zh) 2009-06-30 2012-12-26 艾斯拜克特磁铁技术有限公司 磁共振装置中带有紧固/削弱系统的笼
US8379363B1 (en) 2010-03-26 2013-02-19 Western Digital Technologies, Inc. Bulk erase tool to erase a perpendicular media recording disk of a disk drive
US10076266B2 (en) 2010-07-07 2018-09-18 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US11278461B2 (en) 2010-07-07 2022-03-22 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US8339724B2 (en) 2010-11-02 2012-12-25 HGST Netherlands B.V. Induction of magnetic bias in a magnetic recording disk
CZ304444B6 (cs) * 2013-03-27 2014-05-07 Ăšstav struktury a mechaniky hornin AV ÄŚR, v.v.i. Způsob vytváření lineárních protilehlých sestav permanentních magnetů a zařízení k provádění tohoto způsobu
CN104343885B (zh) * 2013-08-09 2016-08-24 上海微电子装备有限公司 高精密磁悬浮主动减震设备
US10224135B2 (en) 2016-08-08 2019-03-05 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11287497B2 (en) 2016-08-08 2022-03-29 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US10847294B2 (en) * 2017-07-10 2020-11-24 Aspect Imaging Ltd. System for generating a magnetic field
US10242699B1 (en) * 2018-05-23 2019-03-26 Phiston Technologies, Inc. Single pulse degaussing device with rotary actuated chamber access doors
US10932027B2 (en) 2019-03-03 2021-02-23 Bose Corporation Wearable audio device with docking or parking magnet having different magnetic flux on opposing sides of the magnet
US11067644B2 (en) 2019-03-14 2021-07-20 Bose Corporation Wearable audio device with nulling magnet
US11076214B2 (en) * 2019-03-21 2021-07-27 Bose Corporation Wearable audio device
US11061081B2 (en) 2019-03-21 2021-07-13 Bose Corporation Wearable audio device
US11272282B2 (en) 2019-05-30 2022-03-08 Bose Corporation Wearable audio device
US10657345B1 (en) 2019-07-02 2020-05-19 Phiston Technologies, Inc. Media destruction verification apparatus
CN111627645B (zh) * 2020-06-01 2021-09-07 北京卫星环境工程研究所 利用Halbach永磁阵列减小铁磁性材料磁性的方法

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2481392A (en) * 1945-03-02 1949-09-06 Armour Res Found Means for bulk demagnetization
CH290942A (de) * 1950-10-16 1953-05-31 Treuunternehmen Promundo Einrichtung zum Löschen von Aufzeichnungen auf magnetischen Tonträgern mit einer Mehrzahl unmittelbar nebeneinanderliegender Tonspuren.
US2962560A (en) * 1955-05-09 1960-11-29 Kenneth H Folse Method of demagnetizing a magnetic record
NL241715A (ja) * 1958-07-30
US3078396A (en) * 1959-04-30 1963-02-19 Walker O S Co Inc Demagnetizing apparatus
US3143689A (en) * 1960-08-15 1964-08-04 John R Hall Magnetic recording tape erasure apparatus
GB1020522A (en) * 1963-10-15 1966-02-16 Amos Of Exeter Ltd Bulk-tape eraser
US3588623A (en) * 1968-08-07 1971-06-28 Iit Res Inst Bulk demagnetizer system and method
US3711750A (en) * 1969-07-02 1973-01-16 Huffman And Baker And Grosslig Dynamic anhysteretic demagnetization apparatus having pole faces perpendicular to the rotational axis
DE2108259A1 (de) 1971-02-20 1972-08-31 Sued Atlas Werke Gmbh Magnettonbandgerat, insbesondere Kassettenmagnettonbandgerat
US3872347A (en) * 1972-04-14 1975-03-18 Tokyo Shibaura Electric Co Degaussing device for colour cathode ray tubes
JPS4929121A (ja) * 1972-07-07 1974-03-15
US3938011A (en) * 1973-08-20 1976-02-10 Littwin Arthur K Tape degausser
US3879663A (en) * 1973-10-09 1975-04-22 Rca Corp Delta modulator utilizing a duty cycle circuit
US3879754A (en) * 1973-11-29 1975-04-22 Honeywell Inc Magnetic field producing apparatus
US3895270A (en) * 1974-04-29 1975-07-15 Western Electric Co Method of and apparatus for demagnetizing a magnetic material
US4146956A (en) * 1976-04-09 1979-04-03 Tokyo Shibaura Electric Co., Ltd. Method for manufacturing a multipolar erasing head
GB1522548A (en) * 1976-05-28 1978-08-23 Amos Of Exeter Ltd Bulk tape eraser
JPS5645060Y2 (ja) * 1976-09-01 1981-10-21
JPS543517A (en) * 1977-06-09 1979-01-11 Sony Corp Erasing head
US4187521A (en) * 1978-05-04 1980-02-05 Basf Aktiengesellschaft DC erase head
JPS56167308A (en) * 1980-05-28 1981-12-23 Nippon Soken Inc Magnetic eraser for vehicle
JPS5773914A (en) * 1980-10-27 1982-05-08 Kanetsuu Kogyo Kk Power source device for demagnetization
US4346426A (en) * 1981-01-07 1982-08-24 Fluxcom, Inc. Magnetic tape de-gausser and method of erasing magnetic recording tape
US4423460A (en) * 1982-01-04 1983-12-27 Ldj Electronics, Inc. Bulk tape eraser with rotating magnetic field
US4462055A (en) * 1982-01-04 1984-07-24 Ldj Electronics, Inc. Bulk tape erasing system
US4467389A (en) * 1982-03-26 1984-08-21 Christie Electric Corp. Magnetic tape degausser and method of erasing magnetic recording tape
US4551782A (en) * 1983-09-09 1985-11-05 Rfl Industries, Inc. Method and apparatus for degaussing magnetic storage media
US4471403A (en) * 1983-10-04 1984-09-11 The United States Of America As Represented By The United States Department Of Energy Biasing and fast degaussing circuit for magnetic materials
JPS60129909A (ja) 1983-12-16 1985-07-11 F T Giken Kk 磁性体の磁気消磁器およびその磁気消磁方法
US4617603A (en) * 1985-02-27 1986-10-14 Ixi Laboratories, Inc. Degaussing system for bulk demagnetization of previously magnetized materials
US4829397A (en) * 1985-02-28 1989-05-09 Odesskoe Spetsialnoe Konstruktorskoe Bjuro Spetsialnykh Stankov Apparatus for demagnetizing parts
US4639821A (en) * 1985-07-10 1987-01-27 Electro-Matic Products Co. Degausser/demagnetizer
US4751608A (en) * 1986-10-14 1988-06-14 Data Security, Inc. Bulk degausser
US4897759A (en) * 1986-11-19 1990-01-30 Garner Industries, Inc. Method and apparatus for erasing information from magnetic material
US4847727A (en) * 1986-12-15 1989-07-11 Raymond Engineering Inc. Magnetic memory disc purge erase apparatus
US4730230A (en) * 1987-03-31 1988-03-08 Dowty Rfl Industries, Inc. Apparatus and method for degaussing magnetic storage media
US5270899A (en) * 1988-11-14 1993-12-14 Sanix Corporation Erasing apparatus
US4862128A (en) * 1989-04-27 1989-08-29 The United States Of America As Represented By The Secretary Of The Army Field adjustable transverse flux sources
US5132860A (en) * 1989-10-13 1992-07-21 Von Stein Paul W Magnetic media erasure system
DE9003286U1 (ja) * 1990-03-21 1990-05-23 Agfa-Gevaert Ag, 5090 Leverkusen, De
US5466574A (en) * 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
JPH05258896A (ja) * 1992-03-11 1993-10-08 Kobe Steel Ltd ウィグラー磁石
US5204801A (en) * 1992-04-17 1993-04-20 Garner Industries, Inc. Degaussing technique
US5416664A (en) * 1992-04-17 1995-05-16 Garner Industries, Inc. Degaussing technique
US5420742A (en) * 1993-07-30 1995-05-30 Minnesota Mining And Manufacturing Degausser for tape with plural recorded segments
US5631618A (en) * 1994-09-30 1997-05-20 Massachusetts Institute Of Technology Magnetic arrays
US5723917A (en) * 1994-11-30 1998-03-03 Anorad Corporation Flat linear motor
US5721665A (en) * 1995-08-18 1998-02-24 Data Security, Inc. Modulated magnet field bulk degaussing system
JPH09114941A (ja) * 1995-10-18 1997-05-02 Star Micronics Co Ltd 磁気表示消去装置
US5666413A (en) * 1995-10-25 1997-09-09 Kempf; Christopher J. Scrambler of information stored on magnetic memory media
US5670727A (en) * 1996-05-14 1997-09-23 Xiao; Xiaoda Stringed instrument practice bow guide
WO1998049674A1 (fr) * 1997-04-30 1998-11-05 International Business Machines Corporation Procede d'effacement pour disque, et effaceur
US5886609A (en) * 1997-10-22 1999-03-23 Dexter Magnetic Technologies, Inc. Single dipole permanent magnet structure with linear gradient magnetic field intensity
US5969933A (en) * 1998-03-25 1999-10-19 Data Security, Inc. Transient magnet field degaussing system
US6316849B1 (en) * 2000-02-22 2001-11-13 Paul Konkola Methods and apparatus involving selectively tailored electromagnetic fields
JP2001312802A (ja) * 2000-04-26 2001-11-09 Internatl Business Mach Corp <Ibm> ディスク装置およびデータ消去方法
JP2001331904A (ja) * 2000-05-16 2001-11-30 Internatl Business Mach Corp <Ibm> データ消去装置
CN1229580C (zh) * 2000-12-18 2005-11-30 新日本制铁株式会社 强力螺栓连接结构及其螺母固定方法、以及扭剪形强力螺栓及使用其的连接方法
US6731491B2 (en) * 2001-06-15 2004-05-04 Data Security, Inc. Bulk degausser with fixed arrays of magnet poles
US6664880B2 (en) * 2001-06-29 2003-12-16 The Regents Of The University Of California Inductrack magnet configuration
JP2003347121A (ja) * 2002-05-28 2003-12-05 Yaskawa Electric Corp 周期磁界発生磁気回路の製造方法および組立治具
US6714398B2 (en) * 2002-06-07 2004-03-30 Data Security, Inc. Bulk degausser with fixed arrays of magnetic poles configured for thick and small form factor, high coercivity media
JP2004110908A (ja) * 2002-09-17 2004-04-08 Fujitsu Ltd データ消去装置及びそのキャリィケース
JP4064885B2 (ja) * 2003-08-20 2008-03-19 富士通株式会社 データ消去装置

Also Published As

Publication number Publication date
EP1619667A2 (en) 2006-01-25
ATE496367T1 (de) 2011-02-15
EP1619667A3 (en) 2007-05-02
JP2012195048A (ja) 2012-10-11
US20080180203A1 (en) 2008-07-31
US7593210B2 (en) 2009-09-22
JP5042474B2 (ja) 2012-10-03
JP2006040517A (ja) 2006-02-09
EP1619667B1 (en) 2011-01-19
US20060018075A1 (en) 2006-01-26
DE602005025963D1 (de) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5550677B2 (ja) 永久磁石バルク消磁装置
JP2006040517A5 (ja)
US6714398B2 (en) Bulk degausser with fixed arrays of magnetic poles configured for thick and small form factor, high coercivity media
JP2008156735A5 (ja)
JP2767659B2 (ja) 磁場発生装置
US6731491B2 (en) Bulk degausser with fixed arrays of magnet poles
CA2110288A1 (en) Highly efficient yoked permanent magnet
JP2014516236A (ja) リニアモータにおいて永久磁石の保磁力を局所的に向上させる方法
JPH0568941B2 (ja)
Nong et al. Tunable magnetic anisotropy in nanostructured permanent magnet: A micromagnetic study
JPH0423411A (ja) Mri用磁界発生装置
US5317340A (en) Method and device for erasing and writing on magnetic recording media suitable for direct viewing
Choi et al. Halbach magnetic circuit for voice coil motor in hard disk drives
JP3494902B2 (ja) Vcm磁気回路
US10529362B2 (en) Magnetic structure for erasing media having high magnetic coercivity
JP2003092213A (ja) 磁界形成装置
David et al. Micromagnetic study of iron nanowire arrays
Isogami et al. Fabrication of Multipole Magnets with Enhanced Flux Density Using Anisotropic Bond Magnets for Miniature Optical Pickup Devices
Hu et al. Magnetic field analysis of a new 3-axis optical pickup actuator based on ANSYS
JPH0918184A (ja) 磁気シールドルーム
JPS631647B2 (ja)
TWI588823B (zh) Dynamic low magnetic field demagnetization method and degaussing system
Lee et al. A comparative analysis of voice coil motors with multisegmented and conventional magnet arrays for rotating data storage devices
JP2000184679A (ja) Vcm磁気回路
JP2002230712A (ja) 磁気転写ヘッド、および、磁気転写方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5550677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250