JP5548534B2 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
JP5548534B2
JP5548534B2 JP2010142569A JP2010142569A JP5548534B2 JP 5548534 B2 JP5548534 B2 JP 5548534B2 JP 2010142569 A JP2010142569 A JP 2010142569A JP 2010142569 A JP2010142569 A JP 2010142569A JP 5548534 B2 JP5548534 B2 JP 5548534B2
Authority
JP
Japan
Prior art keywords
gas
fuel
burner
reformer
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010142569A
Other languages
English (en)
Other versions
JP2012009206A (ja
Inventor
要次郎 梅田
務 祖父江
尚優 杉本
立樹 渡會
英樹 吉田
雄広 勢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Rinnai Corp
Original Assignee
Tokyo Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Rinnai Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2010142569A priority Critical patent/JP5548534B2/ja
Publication of JP2012009206A publication Critical patent/JP2012009206A/ja
Application granted granted Critical
Publication of JP5548534B2 publication Critical patent/JP5548534B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物を利用する燃料電池によって発電する装置に関する。
特許文献1には、固体酸化物を利用する燃料電池を用いた発電装置の例が開示されている。ただし特許文献1はまだ公開されていない。特許文献1の発電装置は、改質器と、燃料電池セルと、バーナを備える。改質器は、燃料ガスと水蒸気の混合ガスを改質ガスに改質する。燃料電池セルは、改質ガスを有酸素ガスと反応させて発電する。バーナは、燃料ガスを燃焼し、その燃焼熱によって改質器を加熱する。特許文献1の発電装置は、燃料電池セルが作動温度に到達する前に、改質器を作動温度に到達させることに成功している。
特願2009−115299号
特許文献1の発電装置を、以下の(a)〜(f)の順に従って動作させる場合がある。
(a)燃料電池セルに有酸素ガスを供給するとともに、バーナに燃料ガス及び有酸素ガスを供給して燃料ガスを燃焼させる。バーナの燃焼熱によって改質器が加熱される。燃料電池セルに供給される有酸素ガスは、バーナの燃焼熱で予熱された上で供給され、燃料電池セルを加熱する。改質器は、燃料電池セルよりも早く温度上昇する。
(b)改質器が好適な作動温度に達する前であって、所定の温度に達した場合、改質器に水を供給し、改質器内で加熱して水蒸気を発生させる。
(c)改質器の過加熱を防止するために、バーナに供給する燃料ガス及び有酸素ガスの供給量を減少させる。それと同時に、後述するオフガスへの点火を行い易くするために、燃料電池セルに供給する有酸素ガスの供給量を減少させる。
(d)改質器が好適な作動温度に達した場合、改質器にさらに燃料ガスを供給する。改質器において、供給された燃料ガスと改質器内で発生した水蒸気との混合ガスを改質ガスに改質させる。
(e)作動温度に達した燃料電池セルに改質ガスを供給して発電を行うとともに、燃料電池セルの先端で、発電に利用されなかった余剰の改質ガス(オフガス)に点火して燃焼させる。オフガスの燃焼熱は改質器や燃料電池セルの加熱に利用される。
(f)発電及びオフガス燃焼の促進のため、燃料電池セルに供給する有酸素ガスの供給量を再び増加させる。
しかしながら、上記の(c)において、燃料電池セルに供給する有酸素ガスの供給量と、バーナに供給する有酸素ガスの供給量を同時に減少させると、燃料電池セルを収容する収容室内が急激に減圧してしまうことが分かってきた。そのため、さらに同時にバーナに供給する燃料ガスの供給量を減少させる指示を行ったとしても、上記の収容室内の急激な減圧によって、燃料ガスの供給路にも負圧が生じ、一時的に燃料ガスが指示値より大幅に多く供給されてしまう場合があることも分かってきた。その結果、バーナに供給される燃料ガスの量が、バーナに供給される有酸素ガスの量と比べて多くなり過ぎ、バーナが失火してしまう場合があることが分かってきた。本明細書では、バーナの失火を防止できる発電装置を実現するための技術を開示する。
本明細書では、固体酸化物形の燃料電池を用いる発電装置を開示する。発電装置は、改質器と、燃料電池セルと、燃焼部と、バーナと、収容室と、制御装置を備える。改質器は、燃料ガスと水蒸気の混合ガスを改質ガスに改質する。燃料電池セルは、固体酸化物形の燃料電池セルであって、改質ガスを有酸素ガスと反応させて発電する。燃焼部は、燃料電池セルからのオフガスを燃焼し、その燃焼熱によって改質器を加熱する。バーナは、燃料ガスを燃焼し、その燃焼熱によって改質器を加熱する。収容室は、少なくとも、燃料電池セルと、燃焼部を収容する。バーナの燃焼排気通路は、収容室内と連通している。
制御装置は、発電装置の起動時に、少なくとも、
(1)燃料電池セルに有酸素ガスを供給する処理手順と、
(2)バーナに燃料ガス及び有酸素ガスを供給して燃料ガスを燃焼させ、その燃焼熱によって改質器を加熱する処理手順と、
(3a)上記の(1)及び(2)の処理手順の後に、バーナに供給する燃料ガス及び有酸素ガスの供給量を減少させる処理手順と、
(3b)上記の(1)及び(2)の処理手順の後に、燃料電池セルに供給する有酸素ガスの供給量を減少させる処理手順を実行し、
上記の(3a)と(3b)の処理手順を異なるタイミングで実行することを特徴とする。
本発明者らの鋭意研究の結果、燃料電池セルに供給する有酸素ガスの供給量の減少と、バーナに供給する燃料ガス及び有酸素ガスの供給量の減少が同時に行われない場合には、それらが同時に行われる場合に比べて、収容室内の急激な減圧が抑制されることが判明した。その場合、バーナに燃料ガスが指示値より大幅に多く供給される事態が起こりにくくなることも判明した。上記の発電装置は、この知見に基づいて創作されている。
上記の発電装置では、制御装置は、バーナに供給する燃料ガス及び有酸素ガスの供給量を減少させる処理手順と、燃料電池セルに供給する有酸素ガスの供給量を減少させる処理手順を異なるタイミングで実行する。即ち、収容室内の減圧の原因となる2つの処理手順を同時に実行しない。この構成を備えるために、上記の発電装置では、収容室内の急激な減圧が抑制され、バーナに燃料ガスが指示値より大幅に多く供給される事態が起こりにくくなる。従って、バーナの失火を防止することができる。
さらに、上記の(3b)の処理手順は、燃料電池セルに供給する有酸素ガスの供給量を段階的に減少させる処理手順であることが好ましい。この構成を備えるため、収容室内の減圧を段階的に行うことができる。収容室内の急激な減圧がさらに抑制される。従って、バーナの失火をより確実に防止することができる。
制御装置は、上記の(3a)の処理手順の実行後であって、バーナに供給する燃料ガス及び有酸素ガスの供給量が所定量まで減少した後に、上記の(3b)の処理手順を実行してもよい。この場合、バーナに供給する燃料ガス及び有酸素ガスの供給量の減少を先行して行うことにより、改質器の過加熱を早い段階で防止することができる。また、燃料電池セルに供給する有酸素ガスの供給量の減少に伴って収容室内が減圧する場合においても、バーナに供給する燃料ガスの供給量は既に所定量まで減少済みであるため、バーナに多くの燃料ガスが供給される事態が起こりにくくなる。従って、バーナの失火を防止することができる。
制御装置は、上記の(3b)の処理手順の実行後であって、燃料電池セルに供給する有酸素ガスの供給量が所定量まで減少した後に、上記の(3a)の処理手順を実行してもよい。この場合、燃料電池セルに供給する有酸素ガスの供給量を先行して所定量まで減少させることにより、オフガスへの点火を早い段階で行うことができる。早い段階から、オフガス燃焼熱を改質器の連続加熱に利用することができる。
第1実施例の発電装置を示す正面断面図。 第1実施例の発電装置を示す側面断面図。 第1実施例の発電装置の起動時の動作を示すフローチャート。 第1実施例における、バーナに対する燃料ガスと空気の供給量及びカソード空気の供給量を示すグラフ。 第2実施例における、バーナに対する燃料ガスと空気の供給量及びカソード空気の供給量を示すグラフ。
以下に説明する実施例の主要な特徴を列記する。
(形態1) バーナは燃料ガスを表面燃焼させる形態の燃焼バーナ、例えば耐熱セラミックプレートを備える赤外線バーナとする。
(形態2) バーナは、改質器と燃料電池セルの双方が好適な作動温度に到達した場合に停止する。
(形態3) 発電装置は、排ガス通路内を通過する排ガスと、カソード空気通路内を通過するカソード空気との間で熱交換を行う熱交換器を備える。
(第1実施例)
第1実施例について説明する。図1は本実施例に係る発電装置の正面断面を模式的に示す図であり、図2は発電装置の側面断面を模式的に示す図である。図1及び図2に示すように、発電装置2は、6面がすべて断熱材で形成された箱状の本体ケーシング4を備える。本体ケーシング4内には、内側から順に、複数のセルスタック24等を収容する収容室10と、収容室10内で発生した排ガスを外部に排出するための排ガス通路40と、発電に用いられる有酸素ガス(空気)を通過させるカソード空気通路50が設けられている。また、図2に示すように、本体ケーシング4の周壁の一部にはバーナ64が設けられている。また、本体ケーシング4の外部には、制御装置100が備えられている。
前記収容室10は、内側ケーシング18と2枚の邪魔板20の内側に形成される空間である。内側ケーシング18は、上方を開放した箱状部材である。邪魔板20の上端は本体ケーシング4の内側上面に取り付けられ、下端は内側ケーシング18の内側に差し込まれている。邪魔板20の上端付近には、排ガス通過孔22が開口され、収容室10内で発生する高温の排ガスを、収容室10から前記排ガス通路40に送り出し可能としている。
収容室10内には、複数のセルスタック24、改質器26、改質ガス供給管28、改質ガス室30、導入管32、マニホールド34が収容される。各セルスタック24は、複数の燃料電池セル25を棒状に積層したものである。セルスタック24は、図示を省略するが、支持基板の周面が燃料極と固体電解質層と酸素極で覆われており、複数の燃料電池セル25で構成されている。セルスタック24は、隣接する燃料電池セル25の酸素極と燃料極とが、インターコネクタと集電部材を介して電気的に接続されることにより、燃料電池セル25が多数本直列に接続されて形成されている。
燃料電池セル25の燃料極の内部には、図示を省略するが、セルスタック24が延びる方向(図1の上下方向)に貫通する複数の改質ガス通路が並列に形成されている。燃料電池セル25は、この改質ガス通路に後述する改質ガスが供給されることにより、供給された改質ガスを周囲の有酸素ガス(空気)と反応させて発電する。なお、本実施例では、改質ガスが水素と一酸化炭素からなり、有酸素ガスとしては空気が用いられる。以下では、燃料電池セル25に供給される空気のことをカソード空気と呼ぶ。発電反応によって水蒸気と二酸化炭素からなる排ガスが生じる。この発電反応は発熱を伴うため、発生する排ガスは高温となる。
燃料電池セル25において、燃料極は多孔質であり、ニッケル(Ni)を一成分とするニッケル/YSZサーメット(混合焼結体)からなる。固体電解質層は緻密質であり、ジルコニア(ZrO2)にイットリア(Y2O3)を加えた混合物からなる。酸素極は多孔質であり、ペロブスカイト型酸化物であるLSM(La1−xSrxMnO3)からなる。インターコネクタは導電性セラミックからなる。
各燃料電池セル25の上端部では、改質ガス通路が開放されており、発電のために消費されなかった余剰の改質ガス、いわゆるオフガスが放出される。以下では、発電のために消費されることなく各燃料電池セル25の上端部から放出される改質ガスを広く「オフガス」と呼ぶ。各セルスタック24の上端近傍には、図示しないスパーク電極が配設されている。スパーク電極が火花放電することによって、オフガスに点火し、オフガスを燃焼させることができる。以下では、各セルスタック24の上端部を、オフガス燃焼部27と呼び換える場合がある。
各セルスタック24は、図1、図2に示すように、収容室10内の下部に設けられたマニホールド34上に立設されている。本実施例では、図1に示すように、セルスタック24を3列に配置しているが、セルスタック24の配置数は3列に限るものではなく、これより多くても少なくても良い。
マニホールド34は、内部に図示しない改質ガス流路を備え、かつ、上面に、マニホールド34内部を流れる改質ガスを前記燃料電池セル25の改質ガス通路内に供給するための細孔が複数開口されている。なお、本実施例では、マニホールド34の下方には導入管32を介して改質ガス室30が設けられている。このため、改質器26から改質ガス供給管28を通じて供給される改質ガスは、改質ガス室30、導入管32を介してマニホールド34に供給される。改質器26からの改質ガスを、改質ガス室30と導入管32を介してマニホールド34に供給することにより、各燃料電池セル25に均等に改質ガスを供給しやすくなる。
改質器26は、燃料ガスを水蒸気改質して、燃料電池セル25における発電反応に使用される改質ガスを生成するものである。この改質器26は、セルスタック24の上端部(オフガス燃焼部27)の上方に配置されており、前記セルスタック24の先端部で燃焼されるオフガスの燃焼熱を改質に利用できるようにしてある。
改質器26には、外部から燃料ガスを供給するための燃料ガス供給管46と、水蒸気の元となる水(純水)を供給するための水供給管48が備えられている。燃料ガス供給管46には、改質器26への燃料ガスの供給量を調整するための調整弁46aが備えられる。また、水供給管48には、改質器26への水の供給量を調整するための調整弁48aが備えられる。改質器26内には図示しない気化機構が備えられている。気化機構は、供給された水を加熱して水蒸気を発生させる。なお、本実施例では、燃料ガスには例えばメタンを主成分とするガスが使用される。このようなガスとしては例えば都市ガスが挙げられる。
改質器26は、金属製の扁平な箱型のケーシングと、その内部で蛇行する経路が形成されており、その経路内に改質触媒が充填されている。改質器26内の気化機構で発生した水蒸気と、外部から供給された燃料ガスとの混合ガスは、改質器26内を通過する間に、改質触媒によって水素と一酸化炭素からなる改質ガスに改質される。この改質反応は吸熱を伴うため、改質器26は好適な温度に加熱されている必要がある。本実施例のようにメタンを主成分とする燃料ガスの好適な改質温度は400℃以上(より好ましくは600℃以上)である。改質器26は、400℃以上になるように加熱されていることが好ましい。改質器26で改質された改質ガスは、改質ガス供給管28を通って改質ガス室30に送り込まれ、改質ガス室30、導入管32、マニホールド34を通過して各燃料電池セル25の改質ガス通路内へと送り込まれる。
排ガス通路40は、収容室10の外側に設けられている。排ガス通路40は、上記燃料電池セル25での発電反応及びオフガスの燃焼によって発生した高温の排ガスを通過させるための通路である。この排ガス通路40は、図1に示すように、内側ケーシング18と外側ケーシング51との間に設けられる空間であって、収容室10の底面及び一対の側面を覆うようにして設けられている。
外側ケーシング51は上方が開放した箱状部材である。図1に示すように、外側ケーシング51の側壁の上端は内側に折り曲げられ、更に底面に向かって折り曲げられ、内側壁51a、外側壁51b、上端縁51cを形成している。内側壁51aは、内側ケーシング18内に差し込まれて備えられている。
内側壁51aの上端付近には排ガス通過孔52が開口され、上記邪魔板20の排ガス通過孔22とダクト54で連通されている。従って、収容室10内で発生した排ガスは、邪魔板20の排ガス通過孔22からダクト54及び排ガス通過孔52を通って排ガス通路40内に供給される。外側壁51bには熱交換用の複数枚のフィン56が備えられている。各フィン56は、半分が排ガス通路40内に突出するように備えられ、他の半分がカソード空気通路50内に突出するように備えられている。底面51dには、外部と連通した排ガス排出管58が設けられ、排ガス通路40を通過してきた排ガスを外部に排出する。従って、燃料電池セル25での発電反応及びオフガスの燃焼によって発生した高温の排ガスは、改質器26を加熱した後、邪魔板20の排ガス通過孔22からダクト54を通って排ガス通路40の上部に流入する。排ガス通路40の上部から流入した排ガスは、フィン56で熱交換を行いながら排ガス通路40内を下方に向けて流れる。改質器26の加熱及びフィン56による熱交換によって排ガスの温度は下げられる。フィン56での熱交換を終えた排ガスは、排ガス通路40の底面51dの排ガス排出管58から排出される。
カソード空気通路50は、上記の排ガス通路40の外側に設けられている。カソード空気通路50は、燃料電池セル25での発電反応及びオフガスの燃焼に用いられるカソード空気を通過させるための通路である。カソード空気通路50は、図1に示すように、外側ケーシング51の外側壁51b、上端縁51c、底面51dと本体ケーシング4の内側との間、及び、外側ケーシング51の内側壁51aと邪魔板20との間に設けられる空間である。上述のように、カソード空気通路50内には、外側壁51bに備えられた複数枚のフィン56の半分が突出している。本体ケーシング4の底面には、外部と連通したカソード空気供給管60が設けられ、カソード空気を外部からカソード空気通路50内に供給可能としている。カソード空気供給管60には、カソード空気の供給量を調整する調整弁60aが備えられる。カソード空気通路50内に供給されたカソード空気は、フィン56で熱交換を行いながらカソード空気通路50内を上方に向けて流れる。その熱交換によってカソード空気は加熱される。熱交換を終えたカソード空気は、外側ケーシング51の上端縁51cと本体ケーシング4の内側との間、及び、外側ケーシング51の内側壁51aと邪魔板20との間の空間を通り、収容室10内へ供給される。収容室10内に供給されるカソード空気は、燃料電池セル25での発電反応や、オフガスの燃焼に利用される。また、収容室10内に供給されるカソード空気は、上記の熱交換によって高温となっているため、燃料電池セル25の加熱にも利用される。
バーナ64は、本体ケーシング4の改質器26の側方部分に形成された貫通孔部66内に設けられ、改質器26を出口側から加熱できるようにしてある。ここに言う出口側とは、改質ガス供給管28側のことである。本実施例のバーナ64は、燃料ガスを表面燃焼させる形態の燃焼バーナである。このような燃焼バーナとしては、例えば耐熱セラミックプレートを備える赤外線バーナがある。本体ケーシング4の貫通孔部66には、バーナ64に燃焼用空気を供給する燃焼用空気供給管68と、バーナ64に燃料ガスを供給するガス供給管70が備えられている。燃焼用空気供給管68には、バーナ64に供給する燃焼用空気の供給量を調整する調整弁68aが備えられる。ガス供給管70には、バーナ64に供給する燃料ガスの供給量を調整する調整弁70aが備えられる。なお、バーナ64に供給される燃料ガスは、改質器26に供給される燃料ガスと同じガスである。
制御装置100は、本体ケーシング4に設けられた上記の各部品と電気的に接続されており、それらの動作を制御する。
次に、図3を参照して発電装置2の起動時の動作について説明する。図3を参照して発電装置2の起動時の動作を示すフローチャートである。発電装置2を起動させると、以下に説明する処理が順に実行される。
発電装置2を起動させると、制御装置100は、調整弁60aを開いて、燃料電池セル25へのカソード空気の供給を開始する(S2)。具体的には、調整弁60aが開かれることによって、カソード空気供給管60を通してカソード空気通路50内にカソード空気が供給される。カソード空気通路50内に供給された空気は、カソード空気通路50を通って収容室10内の燃料電池セルに供給される。
次いで、制御装置100は、バーナ64を作動させる(S4)。具体的には、制御装置100は、調整弁68aと調整弁70aを開いてバーナ燃焼用の燃料ガス及び空気をバーナ64に供給するとともに、供給した燃焼ガスに点火して燃焼を開始させる。バーナ64によって燃料ガスの燃焼が開始されると、燃焼によって生じた燃焼排ガスが改質器26に当てられ、改質器26が加熱される。このとき、改質器26の単位時間当たりの温度上昇幅は、燃料電池セル25の単位時間当たりの温度上昇幅より大きくなる。改質器26の温度は燃料電池セル25の温度より早く上昇する。
バーナ64の燃焼によって生じた排ガスは、改質器26を加熱した後、S2で燃料電池セル25に供給されたカソード空気と混合されて、邪魔板20の排ガス通過孔22からダクト54を通って排ガス通路40の上部に流入する。排ガス通路40の上部から流入した排ガスは、フィン56で熱交換を行いながら排ガス通路40内を下方に向けて流れる。改質器26の加熱及びフィン56による熱交換によって排ガスの温度は下げられる。フィン56での熱交換を終えた排ガスは、排ガス通路40の底面の排ガス排出管58から排出される。
一方、S2でカソード空気供給管60からカソード空気通路50内に供給されたカソード空気は、フィン56で熱交換を行いながらカソード空気通路50内を上方に向けて流れる。このフィン56による熱交換によってカソード空気は加熱される。加熱されたカソード空気は収容室10内へ供給され、燃料電池セル25の加熱に利用される。
次いで、制御装置100は、改質器26が所定の温度に達したか否かを監視する(S6)。ここに言う所定の温度は、改質器の好適な作動温度には満たない程度の温度(本実施例では約100℃)を言う。S6でYESの場合、制御装置100は、調整弁48aを開き、改質器26内に水を供給する(S8)。改質器26内に供給された水は、内部の気化機構で加熱されて水蒸気になる。
次いで、制御装置100は、調整弁68aと調整弁70aの開度を小さくして、バーナ64に供給する燃料ガスと空気の供給量を所定量(例えば6〜7割程度の量)まで減少させる(S10)。図4に示すように、本実施例では、制御装置100は、バーナ燃焼用の燃料ガスの供給量が2.0L/min程度から1.3L/min程度まで減少させ、空気の供給量を30L/min程度から20L/min程度まで減少させる。なお、図4は、発電装置2の起動時の動作に伴うバーナ64に対する燃料ガスと空気の供給量及びカソード空気の供給量を示すグラフである。これによって、バーナ64の単位時間当たりの加熱量が小さくなり、改質器26の過加熱が防止される。
次いで、制御装置100は、調整弁60aの開度を小さくして、図4に示すように、カソード空気の供給量を所定量(例えば3割程度の量)まで減少させる(S12)。図4に示すように、本実施例では、制御装置100は、数秒間でカソード空気の供給量が100L/min程度から30L/min程度まで減少するように調整弁60aの開度を小さくする。これによって、後述するオフガスへの点火が行い易くなる。上記のS10において、既にバーナ64に供給する燃料ガスと空気の供給量を所定量まで減少させているため、S12でカソード空気の供給量を減少させたことによって収容室10内が減圧することで燃料ガス及び空気の供給量の若干の増加が見られるものの、その減圧の影響でバーナ64に指示値を大幅に上回る燃料ガスが供給されてしまう事態は起こりにくい(図4参照)。そのため、バーナ64の失火を防止することができる。
次いで、制御装置100は、改質器26が好適な作動温度(400℃以上)に達したか否かを監視する(S14)。S14でYESの場合、制御装置100は、調整弁46aを開き、改質器26に燃料ガスを供給する(S16)。改質器26内では、S16で供給された燃料ガスと、S8で生成された水蒸気との混合ガスの改質反応が行われ、一酸化炭素と水素を主成分とする好適な改質ガスが生成される(S18)。S18で生成される改質ガスは、改質ガス供給管28、改質ガス室30、導入管32、マニホールド34を経て各燃料電池セル25の改質ガス通路内に供給される。なお、この時点では燃料電池セル25は未だ作動温度である600℃に達していないため、発電反応を十分に行えない。従って、この時点で改質ガス通路内に供給される改質ガスは、発電に利用されることなくオフガスとして各燃料電池セル25の上端から放出される。なお、改質ガス通路内に入り込んでいた空気は改質ガスによって追い出されるため、燃料電池セル25の温度がある程度上がっても、周囲の酸素によって燃料極が酸化することはない。
次いで、制御装置100は、各燃料電池セル25の上端(オフガス燃焼部27)近傍のスパーク電極を作動させてオフガスに点火し、オフガスを燃焼させる(S20)。なお、S12でカソード空気の供給量を減少させたことにより、収容室10内のカソード空気の流れは緩やかとなっているため、S20におけるオフガスへの点火は容易に行われる。オフガスの燃焼が開始されると、制御装置100は、調整弁60aの開度を再び大きくして、燃料電池セル25に供給されるカソード空気の供給量を所定量まで増加させる(S22)。カソード空気の供給量が所定量まで増加することによって、オフガスの燃焼が促進される。オフガスの燃焼熱は、バーナ64の燃焼熱とともに、改質器26の加熱に利用される。また、バーナ64の燃焼とオフガスの燃焼によって生じる高温の排ガスは、燃料電池セル25に供給されるカソード空気と熱交換される。その熱交換によって高温となったカソード空気が燃料電池セル25に供給されることによって燃料電池セル25が加熱される。
次いで、各燃料電池セル25の温度が好適な作動温度(約600℃以上)に達すると(S24)、各燃料電池セル25は、改質ガス通路内に供給されている改質ガスを周囲のカソード空気と反応させて発電反応を行う(S26)。発電反応によって水蒸気と二酸化炭素からなる高温の排ガスが生じる。また、発電のために消費されなかったオフガスは、引き続き各オフガス燃焼部27で燃焼される。発電反応及びオフガスの燃焼によって生じた高温の排ガスは、改質器26の加熱に利用される。また、高温の排ガスは、燃料電池セル25に供給されるカソード空気と熱交換される。熱交換によって高温となったカソード空気が燃料電池セル25に供給されることによって燃料電池セル25も加熱され続ける。S24により、改質器26と燃料電池セル25の双方が好適な作動温度を下回ることなく運転されることとなる。その結果、発電装置2は熱自立する。
制御装置100は、改質器26と燃料電池セル25の双方が好適な作動温度を下回ることなく運転される場合に、バーナ64の燃焼を停止させる(S28)。S28を終了すると、起動に伴う発電装置2の一連の動作は終了する。以後、発電装置2は、熱自立した状態で連続運転される。
以上、本実施例の発電装置について説明した。本実施例では、図3のS10、S12に示すように、制御装置100は、バーナ64に供給する燃料ガス及び空気の供給量を減少させる処理(S10)と、燃料電池セル25に供給させるカソード空気の供給量を減少させる処理(S12)を同時に実行しない。即ち、収容室10内の減圧の原因となる2つの処理手順が異なるタイミングで実行される。そのため、本実施例の発電装置2では、収容室10内の急激な減圧が抑制され、バーナ64に燃料ガスが指示値より大幅に多く供給される事態が起こりにくくなる。従って、バーナ64の失火を防止することができる。本実施例では、制御装置100は、バーナ64に供給する燃料ガス及び有酸素ガスの供給量が所定量まで減少した後で、燃料電池セル25に供給させるカソード空気の供給量を減少させる処理を実行する。バーナ64に供給する燃料ガス及び空気の供給量の減少を先行して行うことにより、改質器26の過加熱を早い段階で防止することができる。
(第2実施例)
図5に示すように、カソード空気の供給量を所定の指示値まで減少させる場合、カソード空気の供給量を段階的に減少させてもよい。図5に示すように、本実施例では、制御装置100は、調整弁60aの開度を、約10秒毎に、3回に分けて、所定の指示値に対応する開度になるように小さくする。この構成によると、カソード空気の供給量の減少に伴う収容室10内の減圧を段階的に行うことができる。収容室10内の急激な減圧を抑制することができるため、バーナ64に燃料ガスが指示値より大幅に多く供給される事態がより起こりにくくなる。バーナ64の失火をより確実に防止することができる。
(その他の実施例)
上記の各実施例では、制御装置100は、バーナ64に供給する燃料ガス及び空気の供給量を減少させる処理(図3のS10)の実行後に、カソード空気の供給量を所定の指示値まで減少させる処理を実行(図3のS12)する。これに代えて、制御装置100は、カソード空気の供給量を所定の指示値まで減少させる処理(S12)を実行し、カソード空気の供給量が所定の指示値まで減少した後に、バーナ64に供給する燃料ガス及び空気の供給量を減少させる処理(S10)を行ってもよい。この場合、カソード空気の供給量を先行して所定量まで減少させることにより、オフガスの点火を早い段階で行うことができる。早い段階から、オフガス燃焼熱を改質器26の連続加熱に利用することができるようになる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は、複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2 発電装置
4 本体ケーシング
10 収容室
24 セルスタック
25 燃料電池セル
26 改質器
27 オフガス燃焼部
40 排ガス通路
46 燃料ガス供給管
46a 調整弁
48 水供給管
48a 調整弁
50 カソード空気通路
58 排ガス排出管
60 カソード空気供給管
60a 調整弁
64 バーナ
68 燃焼用空気供給管
68a 調整弁
70 ガス供給管
70a 調整弁

Claims (4)

  1. 固体酸化物形の燃料電池を用いる発電装置であり、
    燃料ガスと水蒸気の混合ガスを改質ガスに改質する改質器と、
    改質ガスを有酸素ガスと反応させて発電する固体酸化物形の燃料電池セルと、
    燃料電池セルからのオフガスを燃焼し、その燃焼熱によって改質器を加熱する燃焼部と、
    燃料ガスを燃焼し、その燃焼熱によって改質器を加熱するバーナと、
    少なくとも、燃料電池セルと、燃焼部を収容する収容室と、
    制御装置を備え、
    前記バーナの燃焼排気通路は、前記収容室内と連通しており、
    前記制御装置は、前記発電装置の起動時に、少なくとも、
    (1)バーナに燃料ガス及び有酸素ガスを供給して燃料ガスを燃焼させ、その燃焼熱によって改質器を加熱する処理手順と、
    (2)燃料電池セルに有酸素ガスを供給する処理手順と、
    (3a)前記(1)及び(2)の処理手順の後に、バーナに供給する燃料ガス及び有酸素ガスの供給量を減少させる処理手順と、
    (3b)前記(1)及び(2)の処理手順の後に、燃料電池セルに供給する有酸素ガスの供給量を減少させる処理手順を実行し、
    前記(3a)と(3b)の処理手順を異なるタイミングで実行することを特徴とする発電装置。
  2. 前記(3b)の処理手順は、燃料電池セルに供給する有酸素ガスの供給量を段階的に減少させる処理手順であることを特徴とする請求項1の発電装置。
  3. 前記制御装置が、前記(3a)の処理手順の実行後であって、バーナに供給する燃料ガス及び有酸素ガスの供給量が所定量まで減少した後に、前記(3b)の処理手順を実行することを特徴とする請求項1又は2の発電装置。
  4. 前記制御装置が、前記(3b)の処理手順の実行後であって、燃料電池セルに供給する有酸素ガスの供給量が所定量まで減少した後に、前記(3a)の処理手順を実行することを特徴とする請求項1又は2の発電装置。
JP2010142569A 2010-06-23 2010-06-23 発電装置 Expired - Fee Related JP5548534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142569A JP5548534B2 (ja) 2010-06-23 2010-06-23 発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142569A JP5548534B2 (ja) 2010-06-23 2010-06-23 発電装置

Publications (2)

Publication Number Publication Date
JP2012009206A JP2012009206A (ja) 2012-01-12
JP5548534B2 true JP5548534B2 (ja) 2014-07-16

Family

ID=45539537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142569A Expired - Fee Related JP5548534B2 (ja) 2010-06-23 2010-06-23 発電装置

Country Status (1)

Country Link
JP (1) JP5548534B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552380B2 (ja) * 2010-06-23 2014-07-16 リンナイ株式会社 発電装置
JP5995183B2 (ja) * 2012-02-17 2016-09-21 Toto株式会社 燃料電池装置
KR102209710B1 (ko) * 2017-09-28 2021-01-29 주식회사 경동나비엔 이중 구조의 연료전지 박스 및 이를 이용한 연료전지 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135268A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 燃料電池装置の起動方法
JP2008243597A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 燃料電池装置
JP5328119B2 (ja) * 2007-07-27 2013-10-30 京セラ株式会社 燃料電池装置
JP2010267394A (ja) * 2009-05-12 2010-11-25 Rinnai Corp 発電装置

Also Published As

Publication number Publication date
JP2012009206A (ja) 2012-01-12

Similar Documents

Publication Publication Date Title
JP2004319420A (ja) 燃料電池及びその運転方法
JP2007128717A (ja) 燃料電池の運転方法
JP2006269419A (ja) 固体酸化物形燃料電池および運転方法
JP5327491B1 (ja) 固体酸化物型燃料電池
JP6066580B2 (ja) 燃料電池システム
JP5519357B2 (ja) 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP4492882B2 (ja) 二重バーナーを備えた水素生成装置及び駆動方法
JP4745618B2 (ja) 燃料電池構造体の運転方法
JP4906249B2 (ja) 燃料電池用改質器
JP5548534B2 (ja) 発電装置
JP5994980B2 (ja) 固体酸化物型燃料電池
JP2004119299A (ja) 燃料電池システム
JP5653834B2 (ja) 燃料電池システム
JP5248194B2 (ja) 固体酸化物形燃料電池およびその起動方法
JP2007080761A (ja) 燃料電池およびその起動方法
JP2010267394A (ja) 発電装置
JP6734048B2 (ja) 燃料電池カートリッジ及び燃料電池モジュール並びに燃料電池カートリッジの制御装置及び制御方法
US20080160364A1 (en) Solid oxide fuel cell module
JP2014022232A (ja) 固体酸化物型燃料電池
JP6239229B2 (ja) 燃料電池システムおよび燃料電池運転方法
JP5675490B2 (ja) 燃料電池モジュール
JP2008303099A (ja) 燃料電池の改質器
JP2007018966A (ja) 燃料電池
JP2009104846A (ja) 燃料電池モジュール、それを備える燃料電池、及び燃料電池の運転方法
JP5552380B2 (ja) 発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees