JP5526631B2 - 位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法 - Google Patents

位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法 Download PDF

Info

Publication number
JP5526631B2
JP5526631B2 JP2009163448A JP2009163448A JP5526631B2 JP 5526631 B2 JP5526631 B2 JP 5526631B2 JP 2009163448 A JP2009163448 A JP 2009163448A JP 2009163448 A JP2009163448 A JP 2009163448A JP 5526631 B2 JP5526631 B2 JP 5526631B2
Authority
JP
Japan
Prior art keywords
halftone
layer
pattern
phase shift
shift mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009163448A
Other languages
English (en)
Other versions
JP2011017952A (ja
Inventor
和章 山本
智史 戸澤
尚己 阪本
充弘 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009163448A priority Critical patent/JP5526631B2/ja
Publication of JP2011017952A publication Critical patent/JP2011017952A/ja
Application granted granted Critical
Publication of JP5526631B2 publication Critical patent/JP5526631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、LSI、超LSI等の高密度集積回路の製造に用いられる位相シフトフォトマスクの修正方法に係り、特に、微細なパターンを高精度に形成する際に使用されるハーフトーン位相シフト層を有する位相シフトフォトマスクの修正方法および修正された位相シフトフォトマスク、並びに位相シフトマスクの製造方法に関する。
IC、LSI、超LSI等の半導体集積回路は、シリコンウェーハ等の被加工基板上にレジストを塗布し、ステッパー等により所望のパターンを露光した後、現像、エッチング、ドーピング、CVD等を行う、いわゆるリソグラフィー工程を繰り返すことにより製造されている。
半導体集積回路素子の微細化に伴い、リソグラフィ工程での露光波長の短波長化とともに、位相シフトフォトマスク(以後、位相シフトマスクという。)を用いた位相シフト露光法が広く使われている。位相シフトマスクには位相シフターが設けられており、ウェーハへの転写露光時に、位相シフターを通り位相が変わった光と、位相シフターを通らずに位相が変わっていない光との干渉を利用して、解像力を向上させることができる。位相シフトマスクを用いた露光法は、同じ投影露光装置を使用しても、マスクを従来のフォトマスク(バイナリマスク)から位相シフトマスクに代えることにより、フォトマスクからウェーハに転写されるデバイスパターンの解像度を上げることができると共に、焦点深度を深くすることができるという大きな特徴を有する。
このような位相シフトマスク中の一つとして、ハーフトーン型位相シフトマスク(ハーフトーンマスクともいう。)が提案されている。このハーフトーン型位相シフトマスクは、透明基板上に露光光に対して半透明な領域と透明な領域とを少なくとも有し、この半透明な領域と透明な領域とを通過する光の位相差が実質的に180°になる構成のマスクであり、半導体素子のホール、ドット、スペース、ライン等において解像力が上がり、焦点深度が広がることが示されている。このとき、半透明膜の膜厚をdとし、露光波長をλ、その露光波長での半透明膜の屈折率をnとすると、d=λ/〔2(n−1)〕の関係を満たすとき、最も効果がある。
図3は、ハーフトーン型位相シフトマスクにおける従来の製造工程の一例を示した工程断面模式図である。図3(1)はブランクスと呼ばれるハーフトーン型位相シフトマスクの原材料を表しており、11は透明基板(本発明では、ガラス基板とも称する。)、21はハーフトーン層、31はクロム等からなる遮光層、41は第1のレジスト層である。図3(2)は第1の製版工程における露光工程で、加工すべきパターン情報に従って第1のレジスト層41に電子ビームあるいはレーザービーム51を選択的に照射し、必要に応じてプリベークを実施して露光部43を形成する。図3(3)は現像工程で、露光部分43のみを選択除去して第1のレジストパターン42を形成したフォトマスク基板を得る(以後、マスク製造工程中のフォトマスク基板をマスク基板という。)。
図3(4)は遮光層31のエッチング工程で、現像により露出した遮光層31をエッチングにより除去する。一般的には塩素を主成分とするプラズマ61を照射し、ドライエッチングの手法により遮光層31を選択除去する。図3(5)は遮光層31を選択除去後のマスク基板の状態を表しており、この段階では所定のパターン情報に従い遮光層のパターン(遮光パターン32)が形成されている。図3(6)はハーフトーン層21のエッチング工程で、第1のレジストパターン42をマスクとして、ハーフトーン層21を選択除去する。図3(7)はハーフトーン層のエッチング完了後のマスク基板を表しており、ハーフトーンパターン22が形成されている。図3(8)は第1のレジストパターン42の剥膜工程で、レジストパターンを剥離した状態を表している。この段階でハーフトーン層21をパターニングしてハーフトーンパターン22とする工程は完了である。
続いて第2の製版工程に入る。第2の製版工程は、ハーフトーンパターン上の不要な遮光パターンを除去し、ハーフトーンパターンを露出させる工程である。図3(9)は第2のレジスト層の塗布工程で、改めて第2のレジスト層81をパターン形成面側の全面にコーティングする。一般的にはポジレジストが用いられる。図3(10)は第2の描画工程で、遮光層が不要となる領域に選択的に電子ビームあるいはレーザービーム91を照射し、露光部83を形成する。図3(11)は第2のレジスト層の現像工程で、露光されたレジストを現像により除去する。図3(12)は遮光パターン32のエッチング工程で、露出した不要な遮光パターンを選択除去する。ウェットエッチングを用いる場合、ドライエッチングを用いる場合、両者を併用する場合などがある。図3(13)は第2のレジストパターン82の剥膜工程で、レジストパターン82を剥離した状態である。マスク基板の周辺部などの必要な箇所には遮光パターン32が残される。この工程で、マスク製造工程は完了する。
マスク基板は、この後必要に応じて洗浄工程に入り、図3(14)の検査工程に入り、所定通りのパターンが正常に形成されているかを検査する。ここでの検査手法は、設計されたパターンデータと実パターンを直接比較検証するDieToDatabase(ダイ−データベース)検査と、隣接するチップの実パターン同士を比較照合して検証するDieToDie(ダイ−ダイ)検査に大別される。求められるスペックや面付けの有無により、いずれかの手法を用いて検査する。検査されたマスク基板は図3(15)の工程で選別され、良品は出荷に向けた後続の検査に移行する。不良判定されたものは、不良のモードを解析し、修正が可能と判断されたものは図3(16)に示す修正工程に入る。
図3は従来工程の1例であり、もとより全てのハーフトーン型位相シフトマスクが図3に限定された製造工程を通るわけではなく、例えば図4に示した製造工程も多く採用されている。図4において、図3と同じ箇所を示す場合には、同じ符号を用いている。図3と図4の工程の違いは、図3の工程が、図3(6)の工程で、第1のレジストパターン42をマスクとしてハーフトーン層21をエッチングするのに対し、図4の工程では、図4(6)に示すように、先に第1のレジストパターン42を剥膜し、遮光パターン32のみをマスクとしてハーフトーン層21をエッチングすることが特徴である。
図4の工程を用いる場合は、ハーフトーン層21のエッチング時に遮光パターン32にダメージを与えるガスは使用できないため、遮光パターン32がクロムを主成分とする場合、塩素系のガスプラズマは用いられない。この場合一般的には、まず遮光パターン32を塩素ガス系でエッチングし、レジストパターン42剥離後のハーフトーン層21エッチングには6フッ化硫黄ガスが用いられる。いずれの工程も用途に応じて量産プロセスで用いられている。
次に、図2に、代表的なフォトマスクの欠陥と、欠陥の生成工程の一例、ならびに従来の欠陥修正方法を示す。一般的な流れは図3で示した工程と全く同様である。図2において、図3と同じ箇所を示す場合には、同じ符号を用いている。フォトマスクとしての品質上の大きな問題点の一つは、図2(13)に示すマスクとしての最終形態において、本来あってはならない領域に不要なハーフトーン層が残ってしまう欠陥24であり、この不要な余剰欠陥は、通称「黒欠陥」と呼ばれている。黒欠陥は、マスクを用いたウェーハ露光時に、その欠陥像をウェーハ上に転写形成してしまう。該黒欠陥の発生工程は多様であるが、例えば、図2(5)の工程に例示するように、遮光層が除去されたマスク基板に異物71が付着してしまい、ハーフトーン層のエッチングを阻害してしまい最終段階まで残ってしまう場合である。あるいは、どこかの段階で異物自体は取れてしまってはいるのだが、エッチングを阻害されたことで残ってしまうハーフトーン層の残留物も同様に黒欠陥として表れる。
上記の黒欠陥の修正方法にはいろいろ提案されている手法があるが、近年のパターンの高精度・狭ピッチ化に伴い、その適用には困難を極めることが多く、化学的な部分エッチングや、レーザー加工による部分除去では精度が伴わず、後述するように、正常に欠陥部分を修正できたかどうかを判定するリソグラフィシミュレーション顕微鏡検査工程において、目標とするスペック値を外れてしまい、不良品として処置されるケースが少なくない。そのような修正方法の中でも最も精度良く修正できる技術として、原子間力顕微鏡の原理を用いながら、ダイヤモンド針の先端で欠陥部分を削り取る修正方法が開発され、黒欠陥の修正に用いられている(例えば、特許文献1参照)。即ち、図2(15)の工程に示したように、ハーフトーン層の欠陥24部分をダイヤモンド針101で物理的に削り取り、図2(16)で示した修正済みマスク基板を得る工程が開発され、フォトマスクの修正技術は飛躍的に向上した。
特開平6−148870号公報
前述の物理的な研削修正手法を用いることで、フォトマスクの修正精度が飛躍的に向上したことは間違いないが、近年のフォトマスクの高精度化にはもはや追随できていないのが実状であり、更なる修正精度の向上が要求されている。
図2(16)で示した修正済みマスク基板は物理的には欠陥が除去され、一見すると良品であるように見えるが、フォトマスクに要求される高度に光学的な機能を完全に回復するに至っていない。そのため、後工程の光学的なリソグラフィシミュレーション顕微鏡検査工程で良品として合格判定されない結果を引き起こしている。
すなわち、図2(16)で示した欠陥修正済みマスク基板は、研削修正したことによる欠陥修正痕25を必ず有しており、この欠陥修正痕25がフォトマスクとしての光学特性を阻害する大きな因子となっている。この欠陥修正痕25は、欠陥を物理的に削り取る際に、完全に削り取ることができなかった残留ハーフトーン膜であったり、あるいは削り過ぎてしまったためにガラス基板11自体にダメージを与えてしまった欠陥痕のことを指している。いずれも透過光の強度を落としてしまうために、非修正部分とのコントラスト差を是正し切ることができず、欠陥修正後に続く光学的なリソグラフィシミュレーション顕微鏡検査で結局不良判定されてしまうという結果を招いていた。
ここで光学的なリソグラフィシミュレーション顕微鏡検査について説明する。半導体集積回路素子の微細化に伴い、リソグラフィ工程においては、バイナリマスクや位相シフトマスクのマスク上の外観欠陥や位相欠陥などの欠陥がウェーハ上に転写された場合に、許諾できる欠陥か否かの検証が重要となる。実際の露光装置で露光する前に、このマスク欠陥の転写性、あるいは欠陥修正後の転写性を検証するために、光学シミュレーションを行ってフォトマスクの欠陥転写特性を評価する検査方法が行われている。評価装置としてはリソグラフィシミュレーション顕微鏡が用いられており、例えば、エアリアルイメージ測定システム(Aerial Image Measurement System:カールツァイス社製、以後、AIMS(登録商標)と称する)などが知られている。
リソグラフィシミュレーション顕微鏡として代表的なAIMSを例にして説明する。図6は、マスク製造時におけるリソグラフィシミュレーション顕微鏡AIMSの使われ方を示す一例としての工程図である。図7は、フォトマスクの欠陥転写特性評価方法に用いるAIMSの光学系の概略説明図であり、AIMSは半導体用露光装置と同じ波長の光源を持ち、露光装置と等価の照明光学系を持つシミュレーション顕微鏡である。図7に示すように、照明光学系の瞳フィルタ171を通過した照明光でフォトマスク172を照明し、投影光学系を介して焦点面に設けたCCDカメラ174で転写画像を取得する。マスクパターンとしての転写特性の評価は、予め無欠陥パターン部にて製品として可(OK)となる所定の閾値を算出しておき、欠陥部あるいは欠陥部修正後のパターン部の転写画像を取得し、CD(Critical Dimension;微小寸法)値や光強度を測定し、OKか不可(NG)かの合否判定を行っている。OKならばこの欠陥修正工程は終了し、マスクは良品とされ、NGの場合には不良品として再度修正が行われ、修正不可の場合には不良品となる。
図2では説明を判りやすくするために、周囲のパターンから離れて独立している孤立欠陥について説明したが、実際に発生する欠陥は、図5(1)に示すように、ハーフトーンパターン22のエッヂにかかる状態で生成される欠陥(エッヂ欠陥という)24が多い。エッヂ欠陥の場合には、その修正に要求されるスキルは多大なものがあり、原子間力顕微鏡の原理を用いた物理的な研削修正手法により単に欠陥を削り取るだけではなく、本来パターンが持っているべきエッヂ形状を忠実に再現しなければ、シミュレーション顕微鏡検査で合格判定されるに至らない結果となる。しかしながら、ドライエッチングプロセスで化学反応的に形成された無欠陥部のハーフトーンパターンのエッヂと、物理的切削によって修正を加えた修正部のハーフトーンパターンのエッヂとでは、おのずから形状が異なり、実際には図5(2)に示すような修正痕25が、欠陥があった跡として、ハーフトーンパターン22のエッヂや、ガラス基板11との境界に発生するという問題がある。
そのため、現在、この修正痕25の影響を極力小さくするために、原始的な方法ではあるが、欠陥部を少し削っては検査、また少し削っては検査と、回分式に修正、検査を繰り返し、所定の性能が得られるまで修正を繰り返す修正方法が主流となっている。しかしその分、欠陥修正のスループットを致命的に落としたり、あるいはその他の外観品質に影響を与えるなど、様々な問題を生じている。またそのように回分修正をしていても毎回の修正精度を一定に維持することは難しく、あるタイミングで過剰修正により救済不能状況を招き、その結果として修正効率を下げてしまうという問題がある。
さらに狭ピッチ化が進むに至り、針先そのものをパターン間に挿入すること自体が困難な事態に陥ることがあり、針先が無欠陥パターンに接触してしまい、致命欠陥となる事例も報告されている。これを回避するために、先端をよりを細くしたダイヤモンド針の適用や、先端形状を故意に非対称としたダイヤモンド針を用いて特定方向の欠陥のみ順次削って行く手法が取られたりしているが、根本解決には至っておらず、修正時間をより拡大してしまうという問題がある。
そこで、本発明は、上記の問題点に鑑みてなされたものである。すなわち、本発明の目的は、ハーフトーン型位相シフトマスクの黒欠陥修正において、スループットを低下させずに、ガラス基板や他のハーフトーンパターンに損傷を与えず、修正痕を残さずに、微細パターンの修正を精度良く行うことができる位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法を提供することである。
上記の課題を解決するために、本発明の請求項1に記載の発明に係る位相シフトマスクの修正方法は、透明基板上のハーフトーン層上に設けた遮光層を介してレジスト層を形成し、該レジスト層にパターン描画を行い、現像してレジストパターンを形成し、該レジストパターンをマスクとして露出した遮光層をエッチングして遮光パターンを形成し、さらに該レジストパターンおよび/または遮光パターンをマスクとして前記ハーフトーン層をエッチングしてハーフトーンパターンを形成してハーフトーン型位相シフトマスクを製造する工程において、前記ハーフトーン層に生じた位相シフトマスクの黒欠陥を修正する位相シフトマスクの修正方法であって、前記ハーフトーン層をエッチングしてハーフトーンパターンを形成する工程のエッチング途中で、前記エッチングを一旦中断してハーフエッチング状態とし、前記ハーフエッチング状態で前記ハーフトーン層の黒欠陥の検査および修正をし、次に、前記黒欠陥を修正した部分の残りのハーフトーン層、および、前記ハーフエッチング状態のハーフトーン層を前記透明基板面までエッチングしてハーフトーンパターンを形成することを特徴とするものである。
請求項2に記載の発明に係る位相シフトマスクの修正方法は、請求項1に記載の発明に係る位相シフトマスクの修正方法において、前記ハーフエッチング状態での黒欠陥の検査が、透過光による検査であることを特徴とするものである。
請求項3に記載の発明に係る位相シフトマスクの修正方法は、請求項1または請求項2に記載の発明に係る位相シフトマスクの修正方法において、前記ハーフエッチング状態での黒欠陥の修正が、原子間力顕微鏡の探針を用いた研削による修正であることを特徴とするものである。
請求項4に記載の発明に係る位相シフトマスクの修正方法は、請求項1から請求項3までのいずれか1項に記載の位相シフトマスクの修正方法において、前記ハーフエッチング状態における前記ハーフトーン層の残膜厚が10nm以上であり、前記ハーフトーン層の初期膜厚の95%以下の範囲であることを特徴とするものである。
請求項5に記載の発明に係る位相シフトマスクは、請求項1から請求項4までのいずれか1項に記載の発明に係る位相シフトマスクの修正方法により黒欠陥が修正された位相シフトマスクであって、リソグラフィシミュレーション顕微鏡による検査で、前記黒欠陥の修正箇所が、非修正箇所と光学的に同等であることを特徴とするものである。
また、請求項6に記載の発明に係る位相シフトマスクの製造方法は、透明基板上のハーフトーン層上に設けた遮光層を介してレジスト層を形成し、該レジスト層にパターン描画を行い、現像してレジストパターンを形成し、該レジストパターンをマスクとして露出した遮光層をエッチングして遮光パターンを形成し、さらに該レジストパターンおよび/または遮光パターンをマスクとして前記ハーフトーン層をエッチングしてハーフトーンパターンを形成してハーフトーン型位相シフトマスクを製造する方法において、前記ハーフトーン層をエッチングしてハーフトーンパターンを形成する工程のエッチング途中で、前記エッチングを一旦中断してハーフエッチング状態とし、前記ハーフエッチング状態で前記ハーフトーン層の黒欠陥の検査および修正をし、次に、前記黒欠陥を修正した部分の残りのハーフトーン層、および、前記ハーフエッチング状態のハーフトーン層を前記透明基板面までエッチングしてハーフトーンパターンを形成することを特徴とするものである。
(作用)
本発明においては、ハーフエッチング状態のハーフトーン層に存在する黒欠陥を修正するため、例え欠陥部を削り過ぎたとしても、ガラスダメージに至ることは皆無であり、ガラスダメージを気にすることなく修正が可能になる。しかも、修正後に残りのハーフトーン層を除去する工程が入るため、従来のようにハーフトーン層のパターンの物理的に完全なエッヂ状態を形成する必要はなく、また、欠陥修正の深さ方向も従来の方法よりも浅くてよいために、従来方法に比べてより微細なハーフトーンパターンの修正を精度良く実施することが可能となる。
以上の説明から明らかなように、本発明の位相シフトマスクの修正方法によると、ハーフエッチング状態で欠陥を修正するため、ガラスダメージを気にすることなく修正が可能になる。また修正によりハーフトーン層についた修正痕も、修正後に続く第2段目のハーフトーン層のエッチング工程で除去することができる。さらにエッヂの欠陥修正なども完全に削り出す必要はなく、表層の修正を実施すれば、後続のエッチング工程が自然なパターン形状を形成してくれ、またハーフエッチング状態での修正は比較的浅い修正で済むため、今後益々狭ピッチ化が進んだとしても、隣接する他のパターンに影響を与えることなく、欠陥部分だけを修正することがより容易になる。
さらに、係る発明を用いて修正を施した本発明の位相シフトマスクは、従来の修正方法により修正された位相シフトマスクに比べて、修正部の光学特性の変異に対するリスクが低く、ウェーハ転写時の露光強度やフォーカスの影響をより緩和できる高品質なフォトマスクが提供できる。
本発明の欠陥修正方法を含むハーフトーン型位相シフトマスクの製造方法を示す工程断面模式図である。 従来の欠陥修正方法を含むハーフトーン型位相シフトマスクの製造方法を示す工程断面模式図である。 従来のハーフトーン型位相シフトマスクの製造方法を示す工程断面模式図である。 従来のハーフトーン型位相シフトマスクの製造方法の他の例を示す工程断面模式図である。 ハーフトーンパターンのエッヂ欠陥の修正と修正痕の発生を説明する断面模式図である。 マスク製造時におけるリソグラフィシミュレーション顕微鏡AIMSの使われ方を示す一例としての工程図である。 フォトマスクのパターンの欠陥転写特性評価方法に用いるAIMSの光学系の概略説明図である。
以下、本発明の位相シフトマスクの修正方法および位相シフトマスク、並びに位相シフトマスクの製造方法について詳細に説明する。
(位相シフトマスクの修正方法、並びに位相シフトマスクの製造方法
図1は、本発明の位相シフトマスクの修正方法を含むハーフトーン型位相シフトマスクの製造方法を示す工程断面模式図であり、概略は図3および図4の工程フローと同じである。図1において、図3と同じ箇所を示す場合には、同じ符号を用いている。図1(6)〜図1(13)の工程が本発明の修正方法を特徴づける工程である。
図1(1)はブランクス、図1(2)は露光工程、図1(3)は現像工程、図1(4)は遮光層のエッチング工程、図1(5)は遮光層エッチング後の状態、図1(6)はハーフトーン層のエッチング工程である。上記のブランクスに使用する材料は従来と変える必要は全くなく、ArF光源用のハーフトーン膜、あるいはKrF用のハーフトーン膜のいずれにも適用できる。近年は遮光層の膜厚を多様に変化させたブランクスが出ているが、本発明は特殊な材料を使用する必要はなく、後述するように、従来の材料を用いて実現できることが特徴の一つである。
図1(1)〜図(5)は、上記の従来の欠陥修正方法を含むハーフトーン型位相シフトマスクの製造方法を示す図2(1)〜図2(5)や従来のハーフトーン型位相シフトマスクの製造方法を示す図3(1)〜図3(5)と同じ工程であるので、説明は省略する。
図1(6)はハーフトーン層21のドライエッチング工程であり、ドライエッチング条件は上記の図2(6)や図3(6)と同じであるが、本発明の修正方法では、ハーフトーン層21のエッチングを途中で中断するものである。
図1(7)は、本発明を特徴づける工程であり、ハーフトーン層21のエッチングを途中で中断してハーフトーン層をハーフエッチング状態23とした後、第1のレジストパターン42を剥離し、洗浄乾燥し、図1(8)に示すように、ハーフエッチング状態のマスク基板とすることにある。さらに、図1(9)に示すように、このハーフエッチング状態のマスク基板を外観検査し、図1(10)に示すように、検出した黒欠陥を修正することを特徴としている。即ち、図1(10)に示すように、ハーフトーン層がハーフエッチング状態のまま、欠陥や欠陥の元となる付着異物71などを削り取って修正する工程を有することが本発明の特徴である。
これに対し、一般的な従来の外観検査工程は、図3(13)あるいは図4(13)の工程で示したように、完全に不要なハーフトーン層を除去してハーフトーンパターン22を形成し、ガラス基板面を露出した後に検査を行う。検査の方法としては、例えばケーエルエーテンコール社製KLAシリーズあるいはSLFシリーズを使用して検査機を用いて、実際のフォトマスクを透過像で捉え、リファレンスとして設計パターンデータそのものの加工画像と比較したり、あるいは隣接する同一チップの同一箇所の透過像と比較して欠陥検査を行うものである。
ここで、遮光層と通常のハーフトーン層からなるパターン画像を有するハーフトーンマスクの欠陥検査は簡単ではない。なぜならば、通常、検査波長365nmのUV光源を用いて検査するために、図2(13)、同(14)に示す従来の方法での検査では、ハーフトーン膜を透過する検査光の強度が弱まり、非欠陥部のハーフトーンパターン22とハーフトーン膜の黒欠陥部24とのコントラストが悪くなり、欠陥部と非欠陥部との2値化が困難となるためである。これを回避するために反射光で検査する反射検査などが提唱されてはいるが、本来はこの段階では必要としないパターン上の異物や欠陥からの反射信号の問題や、実際に透過光で使用するフォトマスクに対して反射光で検査することの物理的な乖離などの点から、必ずしも効果的に取り入れられている状況ではない。
これに比べて、図1(8)、同(9)に示す本発明の修正方法に係わる検査では、ハーフトーン層がハーフエッチングされているために、ハーフエッチング状態のハーフトーン層23を透過する光の強度が従来のハーフトーン層の場合よりも急激に高まり、透過光検査が可能となり、欠陥部と非欠陥部とのコントラストの高い画像を得ることを実現していることが特徴である。なお、検査工程として、図1(5)の工程での検査では、図2(13)と同様な理由で、非欠陥部のハーフトーンパターンとハーフトーン膜の黒欠陥部とのコントラストが悪く、欠陥検査は困難である。さらに、図1(5)の工程では、潜在的な欠陥が未だ顕在化していない場合もある。したがって、本発明の修正方法に係わる検査では、図1(8)、同(9)に示すように、ハーフトーン層23がハーフエッチングされた状態で黒欠陥71の検査をするものである。
上記の黒欠陥を検査する検査機としては、例えば、通常のハーフトーンマスク検査で用いているケーエルエーテンコール社製のSLF87機で問題なく検査することできる。もちろん、本発明はこれらの検査機に限定されることなく、広く使用されている他の外観検査機においても容易に適用できることは言うまでもない。
上記のハーフトーン層21のエッチングは、従来公知の方法が用いられ、例えばモリブデンシリサイド化合物よりなるハーフトーン層の場合には、CF4 、CHF3 、C2 6などのガス、あるいはこれらの混合ガス、あるいはこれらのガスに酸素を混合したガスをエツチングガスとして用いることによりドライエッチングを行うことができる。
本発明において、ハーフトーン層21のハーフエッチング後の残膜厚は、必ずしも厳密にハーフトーン層の初期膜厚の1/2の値を意味するわけではない。ハーフエッチング後の残膜厚は、欠陥修正時にガラス基板に損傷を与えないだけのハーフトン層を残した厚みであればよく、10nm以上の残膜厚が好ましい。残膜厚が10nm未満となると、欠陥修正時にガラス基板に損傷を与えるおそれが生じるからである。一方、ハーフエッチング後の残膜厚は、ハーフトーン層の初期膜厚の95%以下の残膜厚が好ましい。ハーフトーン層は材料、露光光源などにより適切な膜厚が異なるが、ハーフエッチング後の残膜厚が初期膜厚の95%を超えると、外観検査装置による透過検査あるいは反射検査において、正常部と欠陥部とのコントラストの確保が困難となるからである。したがって、本発明では、ハーフエッチング状態におけるハーフトーン層21のエッチング後の残膜厚が10nm以上であり、ハーフトーン層の初期膜厚の95%以下の範囲を好ましい値としている。例えば、ArFエキシマレーザ用にモリブデンシリサイド化合物を用いて透過率6%とした場合には、ハーフトーン層21は、通常、68nmの膜厚で用いられるので、ハーフエッチング後の残膜厚は、10nm〜64nmの範囲から選択するのが好ましい。
次に、上記のハーフエッチング状態で検出したハーフトーン層の黒欠陥の修正を行う。本発明において、黒欠陥の修正方法としては、例えば、電子ビームマスク修正装置による電子ビームを用いたガスアシスト・エッチング方法などの従来より用いられている各種の方法が適用できるが、最も効率よく高精度で修正できる方法として、上記のように、原子間力顕微鏡の原理を用いながら、ダイヤモンド針の先端で欠陥部分を削り取る修正方法が好ましい。
図1(10)は、ハーフエッチング状態で検出したハーフトーン層の黒欠陥の修正工程であるが、この工程において、本発明では特殊な装置を必要とせず、従来のフォトマスクの製造工程に使用している原子間力顕微鏡の原理を用いた修正装置をそのまま用いることができる。例えば、代表的な修正装置として、RAVE社製のRAVEnm650などがある。修正箇所の確認は、修正装置に備えられたSEMで行う。修正原理は欠陥を直接ダイヤモンド針で削り取る方法で、微細な針先制御を実現するために、カンチレバーの先端にダイヤモンド針を取り付け、原子間力顕微鏡の原理を用いてカンチレバーを制御することで実現している。
具体的にはレーザー光をカンチレバーに照射し、その反射光を検出器CCDで検出する。この状態でステージを動作すると針先が原子間力の影響でマスク表面の形状に沿った形で上下する。カンチレバーに反射したレーザー光は、カンチレバーがZ方向に上下する動きに追随して反射する経路が変わり、検出器での集光位置の変化として捉えられる。この集光位置の位置ズレ量をカンチレバーのZ方向の高さ方向(深さ方向)の距離に換算し、針先の挿入深さをピエゾ制御する。表面形状を観察して欠陥の形状を捉え、次に欠陥そのものをダイヤモンド針で削り取るのが本発明の修正方法である。
本発明は、この修正方式をハーフエッチング状態のハーフトーン層を形成したマスク基板に対して実施することを特徴としている。従来のフォトマスク修正では、前述のように、ハーフトーンパターンやガラス基板面に与える修正痕の影響が出るために、削り取る欠陥に合わせて針の侵入位置、針の深さ方向を微妙に変えたり、その修正には多大なスキルが要求されていた。
これに対し、本発明に係わる修正工程では従来の方法と同様深さ方向の制御が難しいことに変わりはないが、従来の方法と決定的に異なるのは、本発明の方法は下地にまだハーフトーン層23が存在していることであり、図1(11)に示すように、仮に黒欠陥を削り過ぎて下地にダメージを与えて修正痕25が生じるような状況であったとしても、それはハーフトーン層23上に修正痕25が出来るだけであって、ガラス基板11までは影響してこない。
次に、図1(12)に示すように、ハーフエッチング状態の残りのハーフトーン層23をドライエッチングし、ガラス基板11面まで完全にエッチングしてハーフトーンパターン22を形成する(図1(13))。上記のように、図1(11)に示されたハーフトーン層23についた修正痕25も、続く図1(12)で示すハーフトーン層23の第2段目のエッチング工程で除去され、図1(13)に示すように、ハーフトーン層がパターン化されたマスク基板が形成される。図1(13)に示すマスク基板は、欠陥修正箇所の痕跡をとどめず、非修正のマスク基板と同様の均一なガラス基板層が残る結果となる。
次に、ハーフトーンパターン22上の不要な箇所の遮光パターン32を除去するために、修正を終えたマスク基板に第2のレジスト層81を形成し(図1(14))、電子ビームまたはレーザービーム91でパターン描画し(図1(15))、現像して第2のレジストパターン82を形成し、不要な箇所の遮光パターン32を露出する(図1(16))。
次に、露出している不要な遮光パターン32を上記の図1(4)と同様の条件によりドライエッチングして、不要な箇所の遮光パターン32を除去し(図1(17))、次いで第2のレジストパターン82を剥離して、図1(18)に示すように、欠陥部が修正されたマスク基板を得る。
本発明では、ハーフトーン層についた修正痕は、後続のハーフトーン層の第2段目のエッチングで除去され、その影響をガラス基板上に見出すことはできない。もちろん後工程の光学的なリソグラフィシミュレーション顕微鏡での検査でも、非修正箇所との光学的差異を見つけ出すことができず、あたかも最初から欠陥がなかった様な品質で修正できる工程を実現することができる。
(ブランクス構成材料)
次に、本発明の位相シフトフォトマスクの修正方法に用いられる図1(1)に示すブランクスを構成する材料について説明する。前述のように、本発明の修正方法は、従来の材料を用いて実現できることが特徴の一つである。
(透明基板)
本発明の修正方法において用いられるブランクスにおいて、透明基板11としては、露光光を高透過率で透過する光学研磨された合成石英ガラス、蛍石、フッ化カルシウムなどを用いることができるが、通常、多用されており品質が安定し、短波長の露光光透過率の高い合成石英ガラスがより好ましい。
(ハーフトーン層)
本発明の修正方法において用いられるブランクスにおいて、ハーフトーン層21としては、材料として特に限定されるわけではないが、所望のハーフトーン特性が得やすく、フッ素系ガスによりドライエッチングできる化合物を主成分とし、遮光膜31とのエッチング選択比が大きい薄膜が好ましい。例えば、モリブデンシリサイド化合物を主成分とするハーフトーン層21として、モリブデンシリサイド酸化膜(MoSiO)、モリブデンシリサイド窒化膜(MoSiN)、モリブデンシリサイド酸化窒化膜(MoSiON)などの薄膜、クロム系材料である酸化クロム膜(CrO)、窒化クロム膜(CrN)、酸化窒化クロム膜(CrON)などの薄膜、が挙げられる。が挙げられる。
ハーフトーン層21の膜厚は、例えば、モリブデンシリサイド化合物を用いた場合には、60nm〜100nm程度の範囲の膜厚で用いられ、より好ましくは、露光光がKrFエキシマレーザの場合には、80nm〜90nm程度の範囲の膜厚、ArFエキシマレーザの場合には、70nm程度の膜厚が用いられる。
ハーフトーン層21の形成は、従来公知の方法が適用でき、例えばモリブデンシリサイド酸化膜(MoSiO)の場合は、モリブデンとシリコンとの混合ターゲット(Mo:Si=1:2mol%)を用い、アルゴンと酸素との混合ガス雰囲気で、反応性スパッタリング法により形成することができる。
(遮光層)
通常、半導体ウェーハへの投影露光においては、マスク外周部が多重露光されるので、マスク外周部に遮光領域を設けたフォトマスクが使用される。したがって、本発明においても、外周部などの所望する領域のハーフトーン膜上に、遮光層を設けて遮光領域とするものである。遮光層は、図4に示すように、ハーフトン層をエッチングするときのマスクとしての機能も有するものである。遮光層31としては、露光光を遮光し、酸素含有塩素系ガスでドライエッチング可能で、かつフッ素系ガスでは遮光層にはほとんどダメージを与えない材料を主成分とするものが好ましい。上記の遮光層31としては、具体的にはクロム膜(Cr)などの金属薄膜、あるいはクロム膜と酸化クロム膜や窒化クロム膜などとの2層以上の薄膜などが挙げられる。
遮光層31は、上記の材料から選ばれた単層膜もしくは2層以上の薄膜として形成され、その膜厚は、数10nm〜200nm程度の範囲の膜厚で用いられるが、微細パターンを形成するには膜厚は小さい方が好ましく、遮光性を高くするには膜厚は大きい方が好ましい。ウェーハへのマスクパターン転写時に露光光の多重反射を低減し、ウェーハ転写画像の解像力を向上させるために、2層以上の薄膜からなる遮光層の場合には、最表面層を低反射膜とするのがより好ましい。
遮光層31の形成は、従来公知の方法が適用でき、例えばクロム膜(Cr)の場合は、クロムターゲットを用い、スパッタリング法により形成することができる。
(レジスト層)
本発明の修正方法において用いられるブランクスにおいて、レジスト層41としては、露光工程で用いる露光機にしたがって、電子ビーム用レジストあるいはレーザービーム用レジストを遮光層31上にスピン塗布などの方法により塗布し、乾燥し、レジスト層41を形成する。レジスト層41は、ポジ型レジスト、ネガ型レジストのいずれも用いられる。レジスト層41は、数10nm〜数100nm程度の範囲の膜厚で用いられるが、微細パターンを形成するには膜厚は小さい方が好ましく、エッチング耐性を上げピンホールなどの欠陥を生じないようにするには膜厚は大きい方が好ましい。
(本発明の位相シフトマスク)
上記の本発明の位相シフトマスクの修正方法により黒欠陥を修正した本発明の位相シフトマスクは、前述の光学的なリソグラフィシミュレーション顕微鏡による検査において、黒欠陥の修正箇所が、非修正箇所と光学的に同等である結果を示すものである。
(実施例1)
光学研磨した6インチ角、0.25インチ厚の透明な合成石英ガラス基板を洗浄し、その一主面上にハーフトーン層としてモリブデンシリサイド化合物を主成分とし、かつ、酸素を含む層を以下の条件で形成した。ここで膜厚は、ArFエキシマレーザ(193nm)用で透過率6%、透明基板の透明領域との位相差を180度とするため68nmとした。
<ハーフトーン層のスパッタリング条件>
成膜装置: プレーナ型DCマグネトロンスパッタリング装置
ターゲット: モリブデン:シリコン=1:4(原子比)
ガス及び流量: アルゴンガス50sccm+酸素ガス50sccm
次いで、上記のハーフトーン層上に、クロムよりなる遮光層を下記条件にて、厚さ50nmに積層して形成し、マスクブランクスとした。
<遮光層のスパッタリング条件>
成膜装置: プレーナ型DCマグネトロンスパッタリング装置
ターゲット: 金属クロム
ガス及び流量: アルゴンガス50sccm
次に、上記のマスクブランクス上に電子線レジストを、厚さ300nmに塗布して第1のレジスト層とし、プリベーク後、電子線描画装置にてパターン露光し、現像し、所望形状の第1のレジストパターンを形成した。
次に、上記の第1のレジストパターンをマスクとして露出しているクロム遮光層を下記条件でドライエッチングしクロム遮光パターンを形成した。
<クロム遮光層のエッチング条件>
エッチングガスCl2+O2ガス(2:3)
圧力 10mTorr
ICPパワー(高密度プラズマ発生) 500W
バイアスパワー(引き出しパワー) 25W
次に、上記の第1のレジストパターンと遮光パターンをマスクとして、ドライエッチング装置により露出しているハーフトーン層であるモリブデンシリサイドを、下記条件により第1段目のドライエッチングを行った。ハーフトーン層を35nmの深さまでエッチングした途中でエッチングを一旦中断し、ハーフトーン層を残膜厚33nmのハーフエッチング状態とした後、第1のレジストパターンを剥離し、洗浄乾燥し、ハーフエッチング状態のマスク基板を形成した。
<ハーフトーン層のエッチング条件>
エツチングガス CF4
ガス圧力 10mTorr
ICPパワー(高密度プラズマ発生) 950W
バイアスパワー(引き出しパワー) 50W
次に、上記のハーフエッチング状態にあるハーフトーン層を有するマスク基板の欠陥の有無を、検査機としてケーエルエーテンコール社製のSLF87機を用いて透過光により検査した。その結果、ハーフトーンパターンにかかる黒欠陥(エッヂ欠陥)が検出された。本外観検査工程では、非欠陥部のハーフトーン層がハーフエッチング状態にあるため、欠陥部と非欠陥部のコントラスト比が大きくなり、高い検出感度で欠陥部を検出することができた。
次に、上記のマスク基板を修正装置RAVEnm650(REVE製)に設置し、SEM画像で上記の黒欠陥部を確認しながら、ダイヤモンド針で欠陥そのものを削り取った。黒欠陥を削り取る工程において、若干削り過ぎて下地のハーフトーン層にもダメージを与えて修正痕を生じたが、パターン部分へは損傷を与えず、またガラス基板へは全く影響を与えなかった。
次に、修正を完了した上記のマスク基板のハーフトーン層を再びドライエッチング装置によりエッチングした。第2段目のハーフトーン層のエッチング条件は、上記の第1段目のエッチング条件と同じである。このとき、ハーフトーン層についたダメージも、ハーフトーン層の2段目のエッチング工程で除去され、修正箇所には非修正箇所と同様の均一なガラス基板層が残った。本実施例では、ハーフトーン層についた修正痕は、2段目のハーフトーン層のエッチングで除去され、その影響をガラス基板上に見出すことはできなかった。また、エッヂ欠陥は完全に除去されており、欠陥の痕が認められないハーフトーンパターンが形成された。
次に、ハーフトーンパターン上の不要な遮光パターンを除去するために、第2のレジスト層を塗布し、レーザービームでパターン露光し、現像して、不要な遮光パターンを露出した。上記の第2のレジストパターンをマスクとして、ドライエッチング装置により第2のレジストパターンから露出しているクロム遮光パターンを、上記のクロム遮光層と同じ条件により選択的にドライエッチングして除去し、ハーフトーンパターンを露出させた後、第2のレジストパターンを酸素プラズマで剥離し、欠陥を修正した位相シフトマスクを得た。
上記の欠陥を修正した位相シフトマスクをリソグラフィシミュレーション顕微鏡AIMS(カールツァイス社製)を用いて検査を行なったが、欠陥修正箇所と非修正箇所との光学的差異を見つけ出すことはできず、あたかも最初から欠陥がなかった様な品質であり、本位相シフトマスクは良品と判定された。
(比較例1)
実施例1と同様のブランクスを用い、実施例1と同じパターンで第1のレジストパターンを形成し、クロム遮光層、ハーフトーン層の順に石英基板ガラス表面までドライエッチングし、次に、第2のレジストパターンを形成して不要なクロム遮光パターンを露出し、ドライエッチングして不要なクロム遮光パターンを除去した後、第2のレジストパターンを剥離して周辺部に遮光パターンを有するハーフトーンパターンを設けたマスク基板を得た。
次に、上記のマスク基板を実施例1と同様に、SLF87機(ケーエルエーテンコール社製)を用いて欠陥検査したところ、ハーフトーンパターン間に孤立した黒欠陥を見出した。この黒欠陥を上記の修正装置RAVEnm650(REVE製)で修正し、欠陥部を削り取って除去した。
しかし、上記の欠陥修正したマスク基板を、リソグラフィシミュレーション顕微鏡AIMS(カールツァイス社製)を用いて検査を行なったところ、修正箇所に残された修正痕のために、欠陥修正箇所と非修正箇所とに光学的な差が生じてしまい、本比較例1によるマスク基板は不良品と判定された。
11 透明基板(ガラス基板)
21 ハーフトーン層
22 ハーフトーンパターン
23 ハーフエッチング状態のハーフトーン層
24 ハーフトーン層の欠陥
25 修正痕
31 遮光層
32 遮光パターン
41 第1のレジスト層
42 第1のレジストパターン
43 第1のレジスト層の描画された部分
51 電子ビームまたはレーザービーム
61 遮光層のプラズマエッチング
62 ハーフトーン層のプラズマエッチング
63 第2段目のハーフトーン層のプラズマエッチング
71 黒欠陥
81 第2のレジスト層
82 第2のレジストパターン
83 第2のレジスト層の描画された部分
91 電子ビームまたはレーザービーム
101 ダイヤモンド針
171 瞳フィルタ
172 マスク
173 NAアパーチャ
174 CCDカメラ

Claims (6)

  1. 透明基板上のハーフトーン層上に設けた遮光層を介してレジスト層を形成し、該レジスト層にパターン描画を行い、現像してレジストパターンを形成し、該レジストパターンをマスクとして露出した遮光層をエッチングして遮光パターンを形成し、さらに該レジストパターンおよび/または遮光パターンをマスクとして前記ハーフトーン層をエッチングしてハーフトーンパターンを形成してハーフトーン型位相シフトマスクを製造する工程において、前記ハーフトーン層に生じた位相シフトマスクの黒欠陥を修正する位相シフトマスクの修正方法であって、
    前記ハーフトーン層をエッチングしてハーフトーンパターンを形成する工程のエッチング途中で、前記エッチングを一旦中断してハーフエッチング状態とし、前記ハーフエッチング状態で前記ハーフトーン層の黒欠陥の検査および修正をし、次に、前記黒欠陥を修正した部分の残りのハーフトーン層、および、前記ハーフエッチング状態のハーフトーン層を前記透明基板面までエッチングしてハーフトーンパターンを形成することを特徴とする位相シフトマスクの修正方法。
  2. 前記ハーフエッチング状態での黒欠陥の検査が、透過光による検査であることを特徴とする請求項1に記載の位相シフトマスクの修正方法。
  3. 前記ハーフエッチング状態での黒欠陥の修正が、原子間力顕微鏡の探針を用いた研削による修正であることを特徴とする請求項1または請求項2に記載の位相シフトマスクの修正方法。
  4. 前記ハーフエッチング状態における前記ハーフトーン層の残膜厚が10nm以上であり、前記ハーフトーン層の初期膜厚の95%以下の範囲であることを特徴とする請求項1から請求項3までのいずれか1項に記載の位相シフトマスクの修正方法。
  5. 請求項1から請求項4までのいずれか1項に記載の位相シフトマスクの修正方法により黒欠陥が修正された位相シフトマスクであって、
    リソグラフィシミュレーション顕微鏡による検査で、前記黒欠陥の修正箇所が、非修正箇所と光学的に同等であることを特徴とする黒欠陥が修正された位相シフトマスク。
  6. 透明基板上のハーフトーン層上に設けた遮光層を介してレジスト層を形成し、該レジスト層にパターン描画を行い、現像してレジストパターンを形成し、該レジストパターンをマスクとして露出した遮光層をエッチングして遮光パターンを形成し、さらに該レジストパターンおよび/または遮光パターンをマスクとして前記ハーフトーン層をエッチングしてハーフトーンパターンを形成してハーフトーン型位相シフトマスクを製造する方法において、
    前記ハーフトーン層をエッチングしてハーフトーンパターンを形成する工程のエッチング途中で、前記エッチングを一旦中断してハーフエッチング状態とし、前記ハーフエッチング状態で前記ハーフトーン層の黒欠陥の検査および修正をし、次に、前記黒欠陥を修正した部分の残りのハーフトーン層、および、前記ハーフエッチング状態のハーフトーン層を前記透明基板面までエッチングしてハーフトーンパターンを形成することを特徴とする位相シフトマスクの製造方法。
JP2009163448A 2009-07-10 2009-07-10 位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法 Active JP5526631B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163448A JP5526631B2 (ja) 2009-07-10 2009-07-10 位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163448A JP5526631B2 (ja) 2009-07-10 2009-07-10 位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法

Publications (2)

Publication Number Publication Date
JP2011017952A JP2011017952A (ja) 2011-01-27
JP5526631B2 true JP5526631B2 (ja) 2014-06-18

Family

ID=43595774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163448A Active JP5526631B2 (ja) 2009-07-10 2009-07-10 位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法

Country Status (1)

Country Link
JP (1) JP5526631B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174243A (ja) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd フォトマスクの欠陥修正方法、フォトマスクの製造方法及びフォトマスク
JP5630592B1 (ja) * 2013-06-17 2014-11-26 大日本印刷株式会社 フォトマスクの製造方法
JP6364813B2 (ja) * 2014-02-27 2018-08-01 大日本印刷株式会社 フォトマスクの製造方法
JP2015219324A (ja) * 2014-05-15 2015-12-07 大日本印刷株式会社 フォトマスクの欠陥検査方法
JP6547535B2 (ja) * 2015-09-14 2019-07-24 大日本印刷株式会社 フォトマスクの転写特性評価方法と転写特性評価システムおよびフォトマスクの製造方法
CN111830779A (zh) * 2020-08-27 2020-10-27 泉芯集成电路制造(济南)有限公司 相位移光罩残留缺陷处理方法、系统和相位移光罩

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015646B2 (ja) * 1993-12-27 2000-03-06 株式会社東芝 位相シフトマスクの欠陥修正方法及び欠陥修正装置
JP3630929B2 (ja) * 1997-07-18 2005-03-23 Hoya株式会社 ハーフトーン型位相シフトマスクの製造方法
JP3626453B2 (ja) * 2001-12-27 2005-03-09 株式会社東芝 フォトマスクの修正方法及び修正装置
JP5003094B2 (ja) * 2006-10-20 2012-08-15 凸版印刷株式会社 ハーフトーン型位相シフトマスクの製造方法

Also Published As

Publication number Publication date
JP2011017952A (ja) 2011-01-27

Similar Documents

Publication Publication Date Title
KR100968697B1 (ko) 그레이 톤 마스크 블랭크 및 그레이 톤 마스크의 제조방법
US7788629B2 (en) Systems configured to perform a non-contact method for determining a property of a specimen
WO2010092901A1 (ja) フォトマスク、フォトマスクの製造方法及び修正方法
JP5526631B2 (ja) 位相シフトマスクの修正方法および修正された位相シフトマスク、並びに位相シフトマスクの製造方法
US20060051681A1 (en) Method of repairing a photomask having an internal etch stop layer
JP2011197375A (ja) 反射型マスクの製造方法および該製造に用いられる反射型マスクブランク
US6277526B1 (en) Method for repairing MoSi attenuated phase shift masks
KR20070082572A (ko) 패턴 형성 방법 및 위상 시프트 마스크 제조 방법
US11953448B2 (en) Method for defect inspection
US6103430A (en) Method for repairing bump and divot defects in a phase shifting mask
KR100762245B1 (ko) 포토마스크의 패턴 결함 수정 방법
JP5104832B2 (ja) フォトマスクの修正方法および修正されたフォトマスク
JP4419464B2 (ja) ハーフトーン型位相シフトマスクの製造方法
JP5003094B2 (ja) ハーフトーン型位相シフトマスクの製造方法
JP2003121988A (ja) ハーフトーン型位相シフトマスクの欠陥修正方法
US7914951B2 (en) Method of correcting pattern critical dimension of photomask
JPH0934099A (ja) 位相シフトマスク及びその製造方法
JP5630592B1 (ja) フォトマスクの製造方法
JP2003121989A (ja) ハーフトーン型位相シフトマスクの修正方法
US7422828B1 (en) Mask CD measurement monitor outside of the pellicle area
JP2005189491A (ja) 転写もしくは光強度シミュレーションを用いたフォトマスクの欠陥修正方法
JPH06148870A (ja) 位相シフト層を有するフォトマスクの修正方法
JP7154572B2 (ja) マスクブランク、転写用マスク、及び半導体デバイスの製造方法
JP2003195472A (ja) 位相シフトマスクの欠陥修正方法、位相シフトマスク及び露光方法
KR20080090794A (ko) 포토마스크의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150