JP5485816B2 - 不揮発性半導体メモリ - Google Patents

不揮発性半導体メモリ Download PDF

Info

Publication number
JP5485816B2
JP5485816B2 JP2010146129A JP2010146129A JP5485816B2 JP 5485816 B2 JP5485816 B2 JP 5485816B2 JP 2010146129 A JP2010146129 A JP 2010146129A JP 2010146129 A JP2010146129 A JP 2010146129A JP 5485816 B2 JP5485816 B2 JP 5485816B2
Authority
JP
Japan
Prior art keywords
current
charge
data
memory cell
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010146129A
Other languages
English (en)
Other versions
JP2012009117A (ja
Inventor
克晃 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2010146129A priority Critical patent/JP5485816B2/ja
Priority to US13/161,243 priority patent/US8649220B2/en
Publication of JP2012009117A publication Critical patent/JP2012009117A/ja
Priority to US14/146,385 priority patent/US9245635B2/en
Application granted granted Critical
Publication of JP5485816B2 publication Critical patent/JP5485816B2/ja
Priority to US14/963,770 priority patent/US9484106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)

Description

本発明は、電気的にデータを消去及び書込み可能な不揮発性半導体メモリに関する。
1つのメモリセルに2つの電荷蓄積部を有し、各電化蓄積部に2値(“0”、“1”)を記憶することにより、1つのメモリセル当たりにおいて2ビットの記憶容量を有する不揮発性半導体メモリが従来から知られている。このようなメモリセルは、例えば、n型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)構造を有し、ドレイン側及びソース側に互いに離間して形成された2つの電荷蓄積部を有する。電荷蓄積部に電荷が蓄積された状態を例えばデータ“0”に対応させ、電荷が蓄積されていない状態を例えばデータ“1”に対応させることにより、各電荷蓄積部に1ビット、1メモリ当たり2ビットのデータを記憶させることが可能になる。かかるメモリセルへのデータ書込み、読出し、及び消去は、例えば以下のような方法によって行なわれる。
ドレイン側の電荷蓄積部にデータ“0”を書込む場合には、ドレイン端子及びゲート端子に正電圧を印加し、ソース端子を接地電圧とする。これにより、ドレイン側の電荷蓄積部にホットエレクトロンが注入され、当該ホットエレクトロンが保持されてデータ“0”が書込まれる。
ドレイン側の電荷蓄積部に記憶されたデータの読出しを行う場合には、ソース端子及びゲート端子に正電圧を印加し、ドレイン端子を接地電圧とする。この時、ドレイン側の電荷蓄積部に電荷が蓄積されていない場合(すなわち、当該電荷蓄積部がデータ“1”を記憶している場合)には、比較的に大きな読出し電流が得られる。一方、ドレイン側の電荷蓄積部に電荷が蓄積されている場合(すなわち、当該電荷蓄積部がデータ“0”を記憶している場合)には、蓄積された電荷の影響によって読出し電流はデータ“1”が記憶された状態と比較して小さくなる。このように、電荷蓄積部内の電荷の有無により、読出し電流の大きさに差異が生じるため、読出し電流の大小を判定することによってデータ読出しを行うことが可能になる。
ドレイン側の電荷蓄積部に記憶されたデータの消去を行う場合には、ドレイン端子に正電圧を印加し、ゲート端子に接地電圧又は負電圧を印加し、ソース端子をオープン状態とする。これにより、ドレイン領域近傍で発生したホットホールが電荷蓄積部に注入され、電荷蓄積部に蓄積されている電荷が中和されることによってデータの消去がなされる。
近年における不揮発性半導体メモリは、複数のMOSFETと、各MOSFETのソース及びドレインのそれぞれに接続された複数のビット線と、各MOSFETのゲートに接続され且つ当該複数のビット線と直交するように設けられた複数のワード線と、から構成されたメモリアレイを有している。しかしながら、このような不揮発性半導体メモリにおいては複数のMOSFETが配置されているため、書込み効率が低下する問題があった。また、非選択のビット線に接続されたMOSFETにもワード線を介して書込み電圧がMOSFETに印加されるため、当該電圧印加による高電界によって閾値電圧の変動(ワードディスターブ)が生じてしまう問題があった。かかる問題を解決することができる不揮発性半導体メモリの具体例が、例えば特許文献1に開示されている。
更に、近年においては、1つのメモリセル(MOSFET)に2つの電荷蓄積部を有し、各電荷蓄積部に4値のデータ(“00”、“01”、“10”、“11”)を記憶することにより、1つのメモリセル当たり4ビットの記憶容量を有する不揮発性半導体メモリの開発が進められている。ここで、“00”を記憶する場合には注入電荷量が最大であり、“01”を記憶する場合には注入電荷量が比較的多目であり(2番目に多い)、“10”を記憶する場合には注入電荷量が比較的少な目であり(3番目に多い)、“11”を記憶する場合には注入電荷がゼロである。各電荷蓄積部への4値(すなわち、2ビット)のデータ記憶は、各電荷蓄積部に蓄積させる電荷の電荷量を制御し、蓄積電荷量を4値のデータの各々に対応させることにより行う。なお、データの読出し原理は、上述した2ビットメモリセルの場合と同様であり、読出し電流の値を読取ることで4値のデータの判別を行う。
しかしながら、メモリセルを構成するMOSFETの各々の特性は異なるため、各MOSFETにおいて所定の電荷量を蓄積するための所要時間(すなわち、書込み速度)が異なっている。このため、メモリセルを構成する複数のMOSFETの各々に異なる4値のデータを同時に書込む場合には、電荷の注入と、データの読出しと、当該読出しデータから算出される電荷量と蓄積すべき電荷量の比較と、を繰り返し行い、算出される電荷量が蓄積すべき電荷量以上になったMOSFETのみについて電荷の注入を停止する必要があった。具体的に、“00”、“01”、“10”を記憶する予定のMOSFETのそれぞれに対して、所定時間だけ電荷を注入し、その後にデータの読出しを行う。ここで、所定時間とは、例えばMOSFETが有する電荷量が“10”を記憶する場合の注入電荷量に到達するまでの平均時間とほぼ等しい時間である。かかる電荷注入とデータ読出しを繰り返し行い、“10”を記憶する予定のMOSFETあり、且つ、“10”を記憶する場合の注入電荷量を有するMOSFETに対しては電荷注入を停止する。上述した電荷の注入及びデータ読出しを繰り返し行い、予定された注入電荷量を有する状態のMOSFETに対して電荷の注入を停止することにより、全てのMOSFETが所定の注入電荷量を有し、不揮発性半導体メモリへデータ書込みが完了する。
特開2008−27522号公報
上述したような電荷の注入及びデータの読出しを繰り返す場合において、電荷の注入を停止するMOSFETが現れると、電荷の注入の停止前後における不揮発性半導体メモリの負荷が変動し、不揮発性半導体メモリ及び各MOSFETに流れる電流量も変動してしまう。また、各MOSFETが所定の注入電荷量を有する状態に達するまでの時間は予想することが困難であることや、書込まれるデータも不揮発性半導体メモリの使用状態に応じて異なるため、上述した電流量の変動を予め予測することは困難である。
上述したような電流量の変動が生じてしまうと、電荷が過剰に注入され、記憶される予定のデータに対応した注入電荷量よりも多い電荷量が注入されるMOSFETが生じてしまう可能性がある。すなわち、上述した不揮発性半導体メモリの負荷が変動にともなって不揮発性半導体メモリに通常よりも過大な電流が流れてしまい、“10”に対応した電荷量が注入されるはずのMOSFETに、“01”又は“00”に対応した電荷量が注入されるという問題が生じてしまう。
本発明は、以上の如き事情に鑑みてなされたものであり、データ書込み時における電流量の変化を抑制し、メモリセルへのデータ書込みを高精度に行うことができる不揮発性半導体メモリを提供する。
上述した課題を解決するために、本発明の不揮発性半導体メモリは、複数のメモリセルと、前記複数のメモリセルに接続されたワード線と、前記ワード線と交差し且つ前記複数のメモリセルの各々に接続されたビット線と、を含み、前記ビット線から少なくとも2つを選択し、選択された前記ビット線に接続された前記メモリセルに対して、電源供給ラインから同時に電流を供給してデータを書込む不揮発性半導体メモリであって、前記複数のメモリセルの各々に蓄積された電荷量を測定する電荷量測定部と、前記ビット線の各々に接続された電流路切替回路と、を有し、前記選択されたビット線に接続された前記電流路切替回路は、前記電荷量測定部による前記電荷量の測定値に応じて、前記メモリセル又は所定端子のいずれかに対して選択的に前記電源供給ラインから電流を供給することを特徴とする。
本発明の不揮発性半導体メモリによれば、同時にデータが書込まれるメモリセルのそれぞれに対して電流路切替回路が接続されているため、すでに書込み終了しているメモリセルに対して接続された電流路切替回路においても、書込み時と同一又はそれ以下の量の電流がバイパス回路を介して接地電位に流れるため、不揮発性半導体メモリの負荷が変動することがなくなり、不揮発性半導体メモリ及び書込み中のメモリセルに流れる電流量も変動することがなくなる。従って、本実施例の不揮発性半導体メモリは、データ書込み時における電流量の変化を抑制し、各メモリセルへのデータ書込みを高精度に行うことができる。
本発明の実施例に係る不揮発性半導体メモリの概略構成図である。 本発明の実施例に係る不揮発性半導体メモリの電流路切替回路の概略構成図である。 本発明の実施例に係る不揮発性半導体メモリの電流路切替回路に駆動信号を供給する制御回路の概略構成図である。 本発明の実施例に係る不揮発性半導体メモリを構成するメモリセルの断面構造図である。 本発明の実施例に係る不揮発性半導体メモリを構成するメモリセルに蓄積された電荷量の変化を表した図である。
以下、本発明の実施例について添付図面を参照しつつ詳細に説明する。
先ず、図1乃至3を参照しつつ本実施例に係る不揮発性半導体メモリの構造について説明する。図1は、本実施例に係る不揮発性半導体メモリの概略構成図である。図2は、本実施例に係る不揮発性半導体メモリの電流路切替回路の概略構成図である。図3は、本実施例に係る不揮発性半導体メモリの制御回路の概略構成図である。
図1に示されているように、不揮発性半導体メモリ10は、外部電源端子Tと、外部電源端子Tに共通の電源供給ラインVLを介してそれぞれが接続された複数の電流路切替回路11−1、11−2、・・・、11−Pと、電流路切替回路11−1、11−2、・・・、11−Pのそれぞれに接続された第1スイッチ素子群12と、第1スイッチ素子群12に駆動信号を供給する第1カラムデコーダ13と、第1スイッチ素子群12に接続されたメモリアレイ20と、メモリアレイ20に駆動信号を供給するロウデコーダ14と、メモリアレイ20に接続された第2スイッチ素子群15及び第3スイッチ素子群16と、第2スイッチ素子群15に駆動信号を供給する第2カラムデコーダ17と、第3スイッチ素子群16に駆動信号を供給する第3カラムデコーダ18と、第3スイッチ素子群16に接続された複数のセンスアンプ19−1、19−2、・・・、19−Pと、センスアンプ19−1、19−2、・・・、19−Pのそれぞれに接続された制御回路40と、から構成されている。
メモリアレイ20には、P本の第1副ビット線BL1−1、BL2−1、・・・、BLP−1と、P本の第2副ビット線BL1−2、BL2−2、・・・、BLP−2と、
第1副ビット線BL1−1、BL2−1、・・・、BLP−1及び第2副ビット線BL1−2、BL2−2、・・・、BLP−2と直交するように配置されたQ本のワード線WL−1、・・・WL−Qが設けられている。
ここで、第1副ビット線BL1−1、BL2−1、・・・、BLP−1及び第2副ビット線BL1−2、BL2−2、・・・、BLP−2が列方向、ワード線WL−1、・・・WL−Qが行方向に設けられていると定義する。以下、いずれかの第1副ビット線BL1−1、BL2−1、・・・、BLP−1を指定しない場合には単に第1副ビット線BL、いずれかの第2副ビット線BL1−2、BL2−2、・・・、BLP−2を指定しない場合には単に第2ビット線BL、いずれかのワード線WL−1、・・・WL−Qを指定しない場合には単にワード線WLとも称する。
また、第1副ビット線BL及び第2副ビット線BLにより、1対の主ビット線BLが形成されている。より具体的には、第1副ビット線BL1−1と第2副ビット線BL1−2によって主ビット線BL−1、第1副ビット線BL2−1と第2副ビット線BL2−2によって主ビット線BL−2、第1副ビット線BLP−1と第2副ビット線BLP−2によって主ビット線BL−Pが形成されている。すなわち、メモリアレイ20には、P対のビット線が設けられている。そして、主ビット線BL−1、・・・、BL−Pのそれぞれは、電流切替回路11−1、・・・、11−Pと、センスアンプ19−1、・・・、19−Pとを接続している。具体的には、主ビット線BL−1が電流切替回路11−1とセンスアンプ19−1とを接続し、主ビット線BL−2が電流切替回路11−2とセンスアンプ19−2とを接続し、主ビット線BL−Pが電流切替回路11−Pとセンスアンプ19−Pとを接続している。以下、いずれかの主ビット線BL−1、・・・、BL−Pを選択しない場合には、単に主ビット線BLとも称する。
第1副ビット線BLと、第2副ビット線BLと、ワード線WLとの各交差部には、n型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)構造を有する(P×Q)個のメモリセル30(1−1)、・・・、30(1−P)、30(2−1)、・・・、30(2−P)、30(Q−1)、・・・、30(Q−P)が配置されている。以下、いずれかのメモリセルを指定しない場合においては、単にメモリセル30とも称する。例えば、メモリアレイ20は、16本(P=8)の第1副ビット線BL、16本(P=8)の第2副ビット線BL、8本(Q=8)のワード線WL、128個(P×Q=128)のメモリセル30から構成されている。各数量は、不揮発性半導体メモリ10のメモリ容量、同時にデータを書込むメモリセル30の数量によって適宜調整される。
各メモリセル30のゲートはワード線WL−1、・・・WL−Qに、各メモリセル30のソース及びドレインはそれぞれ第1副ビット線BL及び第2副ビット線BLに接続されている。図1において、各メモリセル30の左側をドレインとし、右側をソースとすると、メモリセル30(1−1)のゲートはワード線WL−1に接続され、ドレインは第1副ビット線BL1−1に接続され、ソースは第2副ビット線BL1−2に接続されている。なお、上述した主ビット線BLを構成する第1及び第2副ビット線BL間に書き込み電圧が供給されることにより、各メモリセル30のドレイン−ソース間に当該書込み電圧が供給される。また、各メモリセル30は、ドレイン側及びソース側のそれぞれに電荷蓄積部を有している。
ロウデコーダ14は、制御回路40から供給される制御信号に基づいてワード線WL−1、・・・WL−Qのいずれかを選択し、選択した1つのワード線にゲート信号を供給する。本実施例の不揮発性半導体メモリ10による書込み処理においては、各メモリセル30のゲート端子には、記憶データの値にかかわらず共通のゲート信号が供給される。
第1スイッチ素子群12は、n型のMOSFET構造を有するP個のドレインセレクタ12a−1、12a−2、・・・、12a−Pと、P個のソースセレクタ12b−1、12b−2、・・・、12b−Pとから構成されている。以下、いずれかのドレインセレクタ12a−1、・・・、12a−Pを指定しない場合には単にドレインセレクタ12aとも称し、いずれかのソースセレクタ12b−1、・・・、12b−Pを指定しない場合には単にソースセレクタ12bとも称する。ドレインセレクタ12a及びソースセレクタ12bのそれぞれは、第1及び第2副ビット線BLを介してメモリセル30のドレイン及びソースに接続されている。より具体的には、ドレインセレクタ12a−1のドレインは第1副ビット線BL1−1を介してメモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のそれぞれのドレインに接続され、ソースセレクタ12b−1のドレインは第2副ビット線BL1−2を介してメモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のそれぞれのソースに接続されている。また、ドレインセレクタ12a及びソースセレクタ12bのそれぞれは、接続点T1−1、T1−2、・・・、T1−P及び主ビット線BL−1、・・・BL−Pを介して電流路切替回路11−1、11−2、・・・11−Pに接続されている。より具体的には、ドレインセレクタ12a−1のソース及びソースセレクタ12b−1のソースは、接続点T1−1及び主ビット線BL−1介して電流路切替回路11−1に接続されている。更に、ドレインセレクタ12a−1、・・・、12a−Pは共通のゲート信号供給ラインGL1によって第1カラムデコーダ13に接続され、ソースセレクタ12b−1、・・・、12b−Pも共通のゲート信号供給ラインGL2によって第1カラムデコーダ13に接続されている。
第1カラムデコーダ13は、制御回路40から供給される制御信号に基づいてゲート信号供給ラインGL1又はゲート信号供給ラインGL2のいずれかを選択し、選択した1つのゲート信号供給ラインにゲート信号を供給する。選択した1つのゲート信号供給ラインにゲート信号が供給されることにより、外部電源端子Tから電流路切替回路11−1、・・・、11−Pを介して流れる電流が、第1副ビット線BL又は第2副ビット線BLを経由してメモリセル30のドレイン又はソースのいずれかに流れ込む。より具体的には、ゲート信号供給ラインGL1が選択されると、ドレインセレクタ12a−1、・・・、12a−Pがオン状態に移行し、第1副ビット線BL1−1、BL2−1、・・・、BLP−1を介してメモリセル30のドレインに当該電流が流れ込む(すなわち、所定の電圧が印加される)。
本実施例の不揮発性半導体メモリ10は、上述したような第1スイッチ素子群12及びメモリアレイ20を有しているため、1本のワード線WLに接続されたP個のメモリセル30のそれぞれ対して同時に異なるデータを記憶させることが可能になる。
第2スイッチ素子群15は、n型のMOSFET構造を有するP個のドレインセレクタ15a−1、・・・、15a−Pと、P個のソースセレクタ15b−1、・・・、15b−Pとから構成される。以下、いずれかのドレインセレクタ15a−1、・・・、15a−Pを指定しない場合には単にドレインセレクタ15aとも称し、いずれかのソースセレクタ15b−1、・・・、15b−Pを指定しない場合には単にソースセレクタ15bとも称する。ドレインセレクタ15a及びソースセレクタ15bのそれぞれは、第1及び第2副ビット線BLを介してメモリセル30のドレイン及びソースに接続されている。より具体的には、ドレインセレクタ15a−1のソースは第1副ビット線BL1−1を介してメモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のそれぞれのドレインに接続され、ソースセレクタ15b−1のソースは第2副ビット線BL1−2を介してメモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のそれぞれのソースに接続されている。また、ドレインセレクタ15a及びソースセレクタ15bのそれぞれは、接地電位に接続されている。より具体的には、ドレインセレクタ15a及びソースセレクタ15bのそれぞれのソースは、共通のグランドラインLGNDを介して接地電位に接続されている。更に、ドレインセレクタ15a−1、・・・、15a−Pは共通のゲート信号供給ラインGL3によって第2カラムデコーダ17に接続され、ソースセレクタ15b−1、・・・、15b−Pも共通のゲート信号供給ラインGL4によって第2カラムデコーダ17に接続されている。
第3スイッチ素子群16は、n型のMOSFET構造を有するP個のドレインセレクタ16a−1、・・・、16a−Pと、P個のソースセレクタ16b−1、・・・、16b−Pとから構成される。以下、いずれかのドレインセレクタ16a−1、・・・、16a−Pを指定しない場合には単にドレインセレクタ16aとも称し、いずれかのソースセレクタ16b−1、・・・、16b−Pを指定しない場合には単にソースセレクタ16bとも称する。ドレインセレクタ16a及びソースセレクタ16bのそれぞれは、第1及び第2副ビット線BLを介してメモリセル30のドレイン及びソースに接続されている。より具体的には、ドレインセレクタ16a−1のソースは第1副ビット線BL1−1を介してメモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のそれぞれのドレインに接続され、ソースセレクタ16b−1のソースは第2副ビット線BL1−2を介してメモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のそれぞれのソースに接続されている。また、ドレインセレクタ16a及びソースセレクタ16bのそれぞれは、主ビット線BL−1、・・・、BL−Pを介してセンスアンプ19−1、19−2、・・・、19−Pに接続されている。以下、いずれかのセンスアンプ19−1、19−2、・・・、19−Pを指定しない場合は、単にセンスアンプ19とも称する。より具体的には、ドレインセレクタ16a−1及びソースセレクタ16b−1が主ビット線BL−1を介してセンスアンプ19−1に接続され、ドレインセレクタ16a−2及びソースセレクタ16b−2が主ビット線BL−2を介してセンスアンプ19−2に接続され、ドレインセレクタ16a−P及びソースセレクタ16b−Pが主ビット線BL−Pを介してセンスアンプ19−Pに接続されている。すなわち、1対の副ビット線(すなわち、1本の主ビット線BL)に対して1つのセンスアンプが接続されている。更に、ドレインセレクタ16a−1、・・・、16a−Pは共通のゲート信号供給ラインGL5によって第3カラムデコーダ18に接続され、ソースセレクタ16b−1、・・・、16b−Pも共通のゲート信号供給ラインGL6によって第3カラムデコーダ18に接続されている。
第2カラムデコーダ17は、制御回路40から供給される制御信号に基づいてゲート信号供給ラインGL3又はゲート信号供給ラインGL4のいずれかを選択し、選択した1つのゲート信号供給ラインにゲート信号を供給する。同様に、第3カラムデコーダ18も、制御回路40から供給される制御信号に基づいてゲート信号供給ラインGL5又はゲート信号供給ラインGL6のいずれかを選択し、選択した1つのゲート信号供給ラインにゲート信号を供給する。ここで、制御回路40は、第2スイッチ素子群15のドレインセレクタ15aと、第3スイッチ素子群16のソースセレクタ16bと、を同時にオン状態に移行させる、又は第2スイッチ素子群15のソースセレクタ15bと、第3スイッチ素子群16のドレインセレクタ16aと、を同時にオン状態に移行させるように第2カラムデコーダ17及び第3カラムデコーダ18に当該制御信号を供給する。すなわち、ドレインセレクタ15a、16aが同時にオン状態に移行し、又はソースセレクタ15b、16bが同時にオン状態に移行することはない。例えば、ドレインセレクタ15a及びソースセレクタ16bがオン状態に移行した場合には、メモリセル30のソース側(右側)に蓄積された電荷に応じて、センスアンプ19に電流が流れ、ソースセレクタ15b及びドレインセレクタ16aがオン状態に移行した場合には、メモリセル30のドレイン側(左側)に蓄積された電荷に応じて、センスアンプ19に電流が流れる。なお、上述したような第2カラムデコーダ17及び第3カラムデコーダ18が第2スイッチ素子群15及び第3スイッチ素子群16にゲート信号を供給することによって、メモリセル30に記憶されたデータが読み出される。
センスアンプ19のそれぞれは、ドレインセレクタ16a及びソースセレクタ16bのドレインに接続されている。また、センスアンプ19のそれぞれは、制御回路40にも接続されている。第2カラムデコーダ17及び第3カラムデコーダ18がゲート信号を供給することによって、メモリセル30に蓄積された電荷量に応じた電流がセンスアンプ19に供給されると、センスアンプ19は当該供給された電流の量に応じてメモリセル30に蓄積された電荷量を測定する。そして、センスアンプ19の各々は、電荷量の測定結果(測定値)を示すデータ信号を制御回路40に供給する。すなわち、センスアンプ19は、電荷量測定部として機能する。
制御回路40は、第1カラムデコーダ13、ロウデコーダ14、第2カラムデコーダ17、第3カラムデコーダ18及びセンスアンプ19に接続されている。制御回路40は、第1カラムデコーダ13、ロウデコーダ14、第2カラムデコーダ17及び第3カラムデコーダ18に制御信号を供給し、各装置を制御する。具体的には、制御回路40は、不揮発性半導体メモリ10に記憶すべきデータが外部より入力されると、データの書き込みプログラムを実行する。この時、制御回路40はデータを書込むメモリセル30及びデータを書込む電荷蓄積部を選択し、当該選択結果に応じた制御信号を第1カラムデコーダ13、ロウデコーダ14及び第2カラムデコーダ17に供給する。また、データの読出しを行う場合に、制御回路40は、データを読み出すメモリセル30及びデータを読み出す電荷蓄積部を選択し、当該選択結果に応じた制御信号をロウデコーダ14、第2カラムデコーダ17及び第3カラムデコーダ18に供給する。
電流路切替回路11−1、11−2・・・11−Pのそれぞれの構成は同一であるため、図2を参照しつつ電流路切替回路11−1について詳細に説明する。電流路切替回路11−1は、p型のMOSFET構造を有するスイッチ素子M1と、n型のMOSFET構造を有するスイッチ素子M2及び電流量調整素子M3からなるバイパス回路21と、から構成されている。スイッチ素子M1は、電源供給ラインVLと接続点T1−1との間に設けられ、電源供給ラインVLからメモリセル30への電流供給を開始又は停止する機能を有する。より具体的には、スイッチ素子M1のドレインが電源供給ラインVLと、ソースが接続点T1−1と接続されている。スイッチ素子M2は、電源供給ラインVLと電流量調整素子M3との間に設けられ、電源供給ラインVLから電流量調整素子M3への電流供給を開始又は停止する機能がある。より具体的には、スイッチ素子M2のソースが電源供給ラインVLと、ドレインが電流量調整素子M3のソースと接続されている。電流量調整素子M3は接地電位に接続され、接地電位に流れる電流を調整する機能がある。より具体的には、電流量調整素子M3のドレインが接地電位に接続されている。
スイッチ素子M1及びM2のそれぞれは、信号入力端子Tに接続されている。また、信号入力端子Tには、制御回路40が接続されている。このような構成により、制御回路40から信号入力端子Tを経て供給されるゲート信号に応じて、スイッチ素子M1又はスイッチ素子M2のいずれか一方がオン状態になり、他方がオフ状態になる。電流量調整素子M3のゲートは信号供給端子Tに接続されている。また、信号入力端子Tには、制御回路40が接続されている。このような構成により、制御回路40から信号入力端子Tを経て供給されるゲート信号に応じて、電流量調整素子M3がオン状態又はオフ状態になる。また、電流量調整素子M3は、供給されるゲート電圧に応じてバイパス回路21に流れる電流量を調整することができる。
ここで、電流量調整素子M3に供給するゲート電圧を調整することにより、バイパス回路21に流れる電流量をメモリセル30にデータを書込む際に流れる電流量と等しくすることが望ましい。このようにすることにより、実際にデータを書込んでいない場合においても、書込みの際と同じ電流を消費することができる。しかしながら、メモリセル30のそれぞれの電気的特性は異なるため、バイパス回路21に流れる電流量をメモリセル30にデータを書込む際に流れる電流量と等しくすることは容易に行えない。従って、バイパス回路21に流れる電流量をメモリセル30にデータを書込む際に流れる平均的な電流量から算出される最大電流量よりも小さくすることが好ましい。バイパス回路21に流れる電流量を当該最大電流量よりも大きくすると、不揮発性半導体メモリ10全体の消費電流量が不必要に増加してしまうからである。上述した観点から、電流量調整素子M3のゲートに供給されるゲート電圧は、例えば約1V〜2Vである。
電流路切替回路11−1は、上述したような構成を有しているため、外部電源端子Tからメモリセル30に向けて電流を流し、又は外部電源端子Tから接地電位に向けて電流を流すことができる。
上述したように、電流路切替回路11−1、11−2・・・11−Pのそれぞれの構成は同一であるが、制御回路40から信号入力端子T及び信号供給端子Tに供給されるゲート信号は、電流路切替回路11−1、11−2・・・11−Pごとに異なる。
なお、電流量調整素子M3は接地電位以外の他の所定端子等に接続されもよく、かかる場合には、外部電源端子Tから所定端子に向けて電流が流れる。
次に、図3を参照しつつ電流路切替回路11−1の信号供給端子T、Tのそれぞれに供給されるゲート信号について説明する。
上述したように、電流路切替回路11−1の信号供給端子T、Tのそれぞれは、制御回路40に接続されている。制御回路40は、レジスタ群41、演算回路42、プログラム回路43、及びANDゲート回路44、45を有している。
レジスタ群41は複数のレジスタから構成され、各レジスタにはメモリセル30のそれぞれに記憶されるデータが記憶されている。例えば、レジスタ群41はメモリセル30と同一の数量のレジスタから構成される。レジスタ群41は、各メモリセル30の識別データ(メモリセルの識別番号)のそれぞれを各メモリセル30に記憶されるべきデータとともに演算回路42に供給する。具体的には、メモリセル30(1−1)、30(2−1)、・・・、30(Q−1)のいずれかの識別データ及び当該記憶されるべきデータを供給する。例えば、ワード線WL−1が選択されてデータの読み出しがなされた場合は、メモリセル30(1−1)の識別データ及びメモリセル30(1−1)に記憶されるべきデータが演算回路42に供給される。
演算回路42にはレジスタ群41及びセンスアンプ19−1が接続されている。そして、演算回路42には、レジスタ群41から記憶されるデータが供給され、センスアンプ19−1から読出されたデータが供給される。また、演算回路42は、センスアンプ19−1と、レジスタ群41から供給されるデータとを比較し、センスアンプ19−1から供給されるデータとレジスタ群41から供給されるデータとが一致するか否かを判定する。例えば、ワード線WL−1が選択されてデータの読み出しがなされた場合は、レジスタに記憶されたメモリセル30(1−1)に記憶させるべきデータと、実際にメモリセル30(1−1)に記憶されているデータとが比較される。演算回路42は、ANDゲート回路44の入力端子に、当該判定結果の信号を供給する。例えば、一致する場合は“0”、一致しない場合は“1”を供給する。
プログラム回路43は、ANDゲート回路44の入力端子に接続され、現時点において書込みプログラムが起動しているか否かの信号をANDゲート回路44に供給する。例えば、現時点において書込みプログラムが起動している場合は“1”、起動していない場合は“0”を供給する。また、プログラム回路43は電流路切替回路11−1の信号供給端子Tに接続され、プログラムが起動している場合には、約1V〜2Vのゲート信号を供給する。これにともない、電流量調整素子M3がオン状態に移行する。
ANDゲート回路44の入力端子には、演算回路42及びプログラム回路43が接続されている。ANDゲート回路44は、センスアンプ19−1から供給されるデータとレジスタ群41から供給されるデータが一致していないと判断した信号(すなわち、“1”)を演算回路42から受信し、且つ、プログラムが起動している旨の信号(すなわち、“1”)をプログラム回路43から受信した場合に、ANDゲート回路45に対して、レジスタ群41からANDゲート回路45に供給される信号を有効にする信号を供給する。例えば、レジスタ群41からANDゲート回路45に供給される信号を有効にする信号を“1”、レジスタ群41からANDゲート回路45に供給される信号を無効とする信号を“0”とする。
ANDゲート回路45の入力端子には、レジスタ群41及びANDゲート回路44の出力端子が接続されている。ANDゲート回路45は、レジスタ群41からANDゲート回路45に供給される信号を有効にする信号(すなわち、“1”)が、ANDゲート回路44から供給される場合にのみ、レジスタ群41に記憶されたデータ信号を電流路切替回路11−1の信号供給端子Tに供給する。
制御回路40は、電流路切替回路11−1、11−2、・・・、11−Pのそれぞれに対応するようにANDゲート回路44及びANDゲート回路45を複数有している。従って、制御回路40は、上述したような電流路切替回路11−1の信号供給端子T、Tのそれぞれにゲート信号の供給し、それと同時に、他の電流路切替回路11−2、・・・、11−Pの信号供給端子T、Tに対してもゲート信号の供給を行うことができる。また、制御回路40は、電流路切替回路11−1、・・・、11−Pのそれぞれに個別のゲート信号を供給し、電流路切替回路ごとにメモリセル30又は接地電位のいずれかに電流が流れるように調整することができる。
上述したような電流路切替回路11−1、・・・、11−Pの構成及び電流路切替回路11−1、・・・、11−Pに供給されるゲート信号によって、スイッチ素子M1がオン状態であり且つスイッチ素子M2がオフ状態の電流路切替回路からはメモリセル30に向けた電流が供給されるため、メモリセル30に電荷が蓄積される。一方、スイッチ素子M1がオフ状態であり且つスイッチ素子M2がオン状態の電流路切替回路からはメモリセル30に向けた電流が供給されず、メモリセル30に電荷が蓄積されることもなく、バイパス回路21を介して接地電位に一定量の電流が流れる。上述したように、一定量の電流とは、メモリセル30にデータを書込みする際にメモリセル30に向けて流れる電流と同一又はそれ以下の量の電流である。
本実施例においては、同時にデータが書込まれるメモリセル30のそれぞれに対して電流路切替回路11−1、・・・、11−Pが接続されているため、すでに書込み終了している(所定の電荷量を有している)メモリセル30に対して接続された電流路切替回路においても、書込み時と同一又はそれ以下の量の電流がバイパス回路を介して接地電位に流れるため、不揮発性半導体メモリ10の負荷が変動することがなくなり、不揮発性半導体メモリ10及び書込み中のメモリセル30に流れる電流量も変動することがなくなる。従って、本実施例の不揮発性半導体メモリ10は、データ書込み時における電流量の変化を抑制し、各メモリセル30へのデータ書込みを高精度に行うことができる。
次に、図4を参照しつつ不揮発性半導体メモリ10を構成するメモリセル30の構造、及びメモリセル30へのデータの書込み、読出し、消去の原理について説明する。図4はメモリセル30の断面構造図である。
図4に示されているように、メモリセル30は、p型のシリコン基板51の上面にSiOからなるゲート酸化膜52を介してポリシリコンからなるゲート電極53が形成された構造を有している。シリコン基板51の表面上のゲート電極53を挟む位置に、n型不純物を高濃度に含有するソース領域54及びドレイン領域55が形成されている。ゲート電極53直下のシリコン基板51の表面領域は、n型のMOSFETの動作時において電流路が形成されるチャンネル領域60である。チャンネル領域60とソース領域54との間、及びチャンネル領域60とドレイン領域55との間にはソース領域54及びドレイン領域55に隣接して比較的不純物濃度の低いn型のエクステンション領域56、57が形成される。このエクステンション領域56、57は、後述の第1及び第2電荷蓄積部に効率よく電荷を注入するために設けられるものである。
ソース側のエクステンション領域56の上部には第1電荷蓄積部58が設けられ、ドレイン側のエクステンション領域57の上部には第2電荷蓄積部59が設けられている。第1及び第2電荷蓄積部58、59は、シリコン酸化膜61、シリコン窒化膜62、シリコン酸化膜63からなるONO積層絶縁膜により構成される。第1及び第2電荷蓄積部58、59はそれぞれエクステンション領域56、57からゲート電極53の側壁に亘って延在している。これにより、電荷の蓄積及び保持を確実に行うことができる。また、第1及び第2電荷蓄積部58、59は、互いに離間して形成されているので、各電荷蓄積部に対して別個独立に電荷を蓄積保持できるようになっている。
次に、かかる構造のメモリセル30へのデータの書込み、読出し、消去の原理について説明する。なお、以下の説明においては、ドレイン側の第2電荷蓄積部59に対してデータの書込み、読出し、消去を行う場合を例に説明する。
先ず、第2電荷蓄積部59にデータを書き込む場合、ゲート電極53に正電圧(例えば、+5V)を印加し、ドレイン領域55に書込み電圧である正電圧(例えば、+5V)を印加し、ソース領域54及びシリコン基板51を接地電位(0V)にする。これにより、ドレイン側のエクステンション領域57に電界が集中し、エクステンション領域57内部で衝突電離によるホットエレクトロンが発生する。ホットエレクトロンの一部は、エクステンション領域57と第2電荷蓄積部59を構成するシリコン酸化膜61との間に生じているエネルギー障壁を越えてシリコン窒化膜62に注入され、保持される。第2電荷蓄積部59に注入する電荷量を記憶データに対応させることにより、第2電荷蓄積部59に4値(“00”、“01”、“10”、“11”)のデータを書き込むことができる。ここで、データ“00”を記憶させる場合に注入する注入電荷量(C00)を最大とし、データ“01”を記憶させる場合に注入する注入電荷量(C01)をC01<C00とし、データ“10”を記憶させる場合に注入する注入電荷量(C10)をC10<C01とし、データ“11”を記憶させる場合に注入する注入電荷量(C11)をC11=0とする。例えば、データ“11”からデータ“10”にデータを書き換えるために必要な注入電荷量(C10−C11)と、データ“10”からデータ“01”にデータを書き換えるために必要な注入電荷量(C01−C10)と、データ“01”からデータ“00”にデータを書き換えるために必要な注入電荷量(C00−C01)と、を等しくすることができる。すなわち、C00=3C10、C10=2C10が成立するように注入電荷量を設定することができる。
次に、第2電荷蓄積部59に記憶されたデータを読み出す場合には、ゲート電極53に正電圧(例えば、+2V)を印加し、ソース領域54に読出し電圧である正電圧(例えば、+1.8V)を印加し、ドレイン領域55及びシリコン基板51を接地電位(0V)にする。これにより、ソース領域54からドレイン領域55に向けて読み出し電流が流れる。読出し電流の大きさは第2電荷蓄積部59に保持されている電荷量に応じて変化する。すなわち、第2電荷蓄積部59に保持されている電荷量が多いほど読み出し電流は低くなる。従って、この読み出し電流の大きさを測定することにより、第2電荷蓄積部59に記憶されたデータ(すなわち、電荷の蓄積量)の判別が可能となる。
次に、第2電荷蓄積部59に記憶されたデータを消去する場合にはドレイン領域55に正電圧(例えば、+5V)を印加し、ゲート電極53に0V又は負電圧(例えば、−5V)を印加し、ソース領域54及びシリコン基板51を接地電位(0V)にする。これにより、ドレイン領域55の周辺で発生したホットホールが第2電荷蓄積部59に注入される。その結果、第2電荷蓄積部59に保持された電荷(電子)が中和され、データの消去を行うことができる。
なお、ソース側の第1電荷蓄積部58に対してデータの書き込み、読み出し、消去を行う場合にはソース側に印加すべき電圧とドレイン側に印加すべき電圧を入れ替えことによりこれを行うことができる。
次に、本実施例の不揮発性半導体メモリ10の動作を図1乃至図3及び図5を参照しつつ説明する。図5は、各メモリセル30に蓄積された電荷量の変化を表した図である。なお、以下の動作説明においては、ワード線WL−1を選択し、メモリセル30(1−1)、30(1−2)にデータ“00”を記憶させ、メモリセル30(1−3)、30(1−4)にデータ“01”を記憶させ、メモリセル30(1−5)、30(1−6)にデータ“10”を記憶させ、メモリセル30(1−7)、・・・、30(1−P)にデータ“11”を記憶させる場合が想定されている。すなわち、メモリセル30(1−7)、・・・、30(1−P)には、電荷が注入されることはない。また、以下の動作説明においては、電荷が注入される(すなわち、データが書込まれる)電荷蓄積部は、各メモリセル30のドレイン側(図2においてメモリセルの左側)に位置している。
本実施例においては、各メモリセル30に複数回にわたって電荷を注入することで、各メモリセル30の電荷量を記憶させるべきデータに応じた電荷量に調整する。また、各回の電荷の注入が終了すると、一旦、データを読出し、各メモリセル30に蓄積された電荷量が、所定の量に到達しているかを判定する。具体的は、以下のように書込みがなされる。
先ず、書込みプログラムが起動することによって、電流路切替回路11−1、・・・、11−Pのそれぞれの信号供給端子Tに、電流量調整素子M3をオン状態に移行するためのゲート信号が供給される。これと同時に、電荷が注入されるメモリセル30(1−1)、・・・30(1−6)に対応するように接続された電流路切替回路11−1、・・・、11−6の端子T1には、スイッチ素子M1をオン状態に移行させ、スイッチ素子M2をオフ状態に移行させるゲート信号が供給される。このような電流路切替回路11−1、・・・、11−6の駆動により、電流路切替回路11−1、・・・、11−6においては、接続点T1−1、・・・、T1−6に向かって所定の電流が流れる。一方、電荷が注入されないメモリセル30(1−7)、・・・、30(1−P)に接続された電流路切替回路11−7、・・・、11−Pの端子T1には、スイッチ素子M1をオフ状態に移行させ、スイッチ素子M2をオン状態に移行させるゲート信号が供給される。このような電流路切替回路11−7、・・・、11−Pの駆動により、電流路切替回路11−7、・・・、11−Pにおいては、バイパス回路21を介して接地電位に所定の電流が流れる。この際、各バイパス回路21には、メモリセル30(1−7)、・・・、30(1−P)に書込みを行う際に流れる電流の量と同一又はそれ以下の量の電流が流れる。
次に、制御回路40から第1カラムデコーダ13に対して、ゲート信号供給ラインGL1を選択させる制御信号が供給され、第1カラムデコーダ13からドレインセレクタ12a−1、・・・、12a−Pのゲートにゲート信号が供給される。これと同時に、制御回路40からロウデコーダ15に対して、ワード線WL−1を選択させる制御信号が供給され、ロウデコーダ15からメモリセル30(1−1)、・・・、30(1−P)のゲートに電圧値が+5Vのゲート信号が供給される。これらと同時に、制御回路40から第2カラムデコーダ17に対して、ゲート信号供給ラインGL4を選択させる制御信号が供給され、第2カラムデコーダ17からソースセレクタ15b−1、・・・、15b−Pのゲートにゲート信号が供給される。これにより、メモリセル30(1−1)、・・・30(1−6)への1回目のデータの書込みが開始される。
次に、所定の時間が経過すると、制御回路40から第1カラムデコーダ13に対して、ゲート信号供給ラインGL1の選択を解除させる制御信号が供給され、ドレインセレクタ12a−1、・・・、12a−Pのゲートへのゲート信号の供給が停止される。これと同時に制御回路40から第3カラムデコーダ18に対して、ゲート信号供給ラインGL5を選択させる制御信号が供給され、第3カラムデコーダ18からドレインセレクタ16a−1、・・・、16a−Pのゲートにゲート信号が供給される。これらと同時に、制御回路40からロウデコーダ15に対して、ゲート電圧値を+2Vに変更する制御信号が供給され、ロウデコーダ15からメモリセル30(1−1)、・・・、30(1−P)のゲートに電圧値が+2Vのゲート信号が供給される。これにより、メモリセル30(1−1)、・・・30(1−P)に対してデータの読出しが開始される。読出されたデータのそれぞれは、センスアンプ19−1、・・・、19−Pに供給される。センスアンプ19−1、・・・、19−Pにおいては、供給されたデータに応じた電荷量の算出がなされる。
ここで、所定の時間とは、メモリセル30が有する電荷量がデータ“10”を記憶する場合に必要な電荷量に到達するまでの平均時間である。しかしながら、メモリセル30の書込み速度は、それぞれの特性によって異なっている。本実施例においては、図5からわかるように、メモリセル30(1−1)、30(1−3)、30(1−5)は平均的な書込み速度を有しているため、上述した所定時間が経過すると、メモリセル30(1−1)、30(1−3)、30(1−5)に蓄積された電荷量は、データ“10”を記憶する場合に必要な電荷量と同一になっている。一方、メモリセル30(1−2)は、平均的な書込み速度の約75%の速度を有しているため、上述した所定時間が経過しても、メモリセル30(1−2)に蓄積される電荷量は、データ“10”を記憶する場合に必要な電荷量の約75%に留まる。また、メモリセル30(1−4)、30(1−6)は、平均的な書込み速度の約50%の速度を有しているため、上述した所定時間が経過しても、メモリセル30(1−4)、30(1−6)に蓄積される電荷量は、データ“10”を記憶する場合に必要な電荷量の約50%に留まる。
1回目の電荷注入及びデータ読出しが完了すると、メモリセル30(1−5)には、所定の電荷量(すなわち、データ“10”に対応した電荷量)が蓄積されているため、メモリセル30(1−5)へのデータの書込みは終了する。
次に、再度(2回目)、書込みプログラムが起動することによって、電流路切替回路11−1、・・・、11−Pのそれぞれの信号供給端子Tに、電流量調整素子M3をオン状態に移行するためのゲート信号が供給される。更に、メモリセル30(1−1)、・・・、30(1−4)、30(1−6)においては、1回目のデータ書込みと同様に、データの書込みが開始される。
ここで、メモリセル30(1−5)の電荷量は、所定の電荷量(すなわち、データ“10”に対応した電荷量)に到達しているため、演算回路42において、両電荷量が一致していると判断され、一致している旨の信号(すなわち、“0”)がANDゲート回路44に供給される。かかる信号供給がなされると、メモリセル30(1−5)に対して接続された電流路切替回路11−5の信号供給端子Tには、スイッチ素子M1をオフ状態に移行させ、スイッチ素子M2をオン状態に移行させるゲート信号が供給される。このような電流路切替回路11−5の駆動により、電流路切替回路11−5においては、バイパス回路21を介して接地電位に所定の電流が流れる。
なお、メモリセル30(1−7)、・・・、30(1−P)につても電荷を注入しないため、電流路切替回路11−7、・・・、11−Pの各信号供給端子Tにも、スイッチ素子M1をオフ状態に移行させ、スイッチ素子M2をオン状態に移行させるゲート信号が供給される。この際、電流路切替回路11−5、11−7、・・・、11−Pのそれぞれのバイパス回路21には、メモリセル30(1−5)、30(11−7)・・・、30(1−P)に書込みを行う際に流れる電流の量と同一又はそれ以下の量の電流が流れる。
次に、上述した所定時間の経過後に、メモリセル30(1−1)、・・・、30(1−P)において、上述したデータの読出し方法を用いて、2度目のデータ読出しがなされる。2回目の電荷注入及びデータ読出しが完了すると、メモリセル30(1−3)、30(1―6)には、所定の電荷量が蓄積されているため、メモリセル30(1−3)、30(1―6)へのデータの書込みは終了する。
次に、再度(3回目)、書込みプログラムが起動することによって、電流路切替回路11−1、・・・、11−Pのそれぞれの信号供給端子Tに、電流量調整素子M3をオン状態に移行するためのゲート信号が供給される。更に、メモリセル30(1−1)、30(1−2)、30(1−4)においては、1回目のデータ書込みと同様に、データの書込みが開始される。ここで、メモリセル30(1―3)、30(1−5)、・・・、30(1−P)につては電荷を注入しないため、電流路切替回路11―3、11−5、・・・、11−Pの各信号供給端子Tには、スイッチ素子M1をオフ状態に移行させ、スイッチ素子M2をオン状態に移行させるゲート信号が供給される。この際、電流路切替回路11−3、11−5、11−7、・・・、11−Pのそれぞれのバイパス回路21には、メモリセル30(1−3)、30(1−5)、30(11−7)・・・、30(1−P)に書込みを行う際に流れる電流の量と同一又はそれ以下の量の電流が流れる。
次に、上述した所定時間の経過後に、メモリセル30(1−1)、・・・、30(1−P)において、上述したデータの読出し方法を用いて、3度目のデータ読出しがなされる。3回目の電荷注入及びデータ読出しが完了すると、メモリセル30(1−1)には、所定の電荷量が蓄積されているため、メモリセル30(1−1)へのデータの書込みは終了する。
次に、再度(4回目)、書込みプログラムが起動することによって、電流路切替回路11−1、・・・、11−Pのそれぞれの信号供給端子Tに、電流量調整素子M3をオン状態に移行するためのゲート信号が供給される。更に、メモリセル30(1−2)、30(1−4)においては、1回目のデータ書込みと同様に、データの書込みが開始される。ここで、メモリセル30(1―1)、30(1―3)、30(1−5)、・・・、30(1−P)については電荷を注入しないため、電流路切替回路11―1、11―3、11−5、・・・、11−Pの各信号供給端子Tには、スイッチ素子M1をオフ状態に移行させ、スイッチ素子M2をオン状態に移行させるゲート信号が供給される。この際、電流路切替回路11−1、11−3、11−5、・・・、11−Pのそれぞれのバイパス回路21には、メモリセル30(1−1)、30(1−3)、30(1−5)、・・・、30(1−P)に書込みを行う際に流れる電流の量と同一又はそれ以下の量の電流が流れる。
次に、上述した所定時間の経過後に、メモリセル30(1−1)、・・・、30(1−P)において、上述したデータの読出し方法を用いて、4度目のデータ読出しがなされる。4回目の電荷注入及びデータ読出しが完了すると、メモリセル30(1−2)、30(1−4)には、所定の電荷量が蓄積されているため、メモリセル30(1−1)、・・・、30(1−P)へのデータの書込みは終了する。すなわち、不揮発性半導体メモリ10へのデータの書込みが終了する。
上述したような書込み、読出し、電荷量判定の動作を繰り返し、電荷を注入する必要がなくなったメモリセル30に対して接続された電流路切替回路のスイッチ素子M1をオフ状態にし、且つスイッチ素子M2及び電流量調整素子M3をオン状態にすることより、電荷を注入する必要がなくなったメモリセル30に対して接続された電流路切替回路においても、電荷注入時と同一又はそれ以下の量の電流を流すことが可能になる。不揮発性半導体メモリ10に対して上述したような書込み動作を行うことで、メモリセル30ごとに異なるタイミングで電荷注入が不要になったとしても、不揮発性半導体メモリ10の負荷が変動することがなくなり、不揮発性半導体メモリ10及び書き込み中の各メモリセル30に流れる電流量も変動することがない。従って、本実施例の不揮発性半導体メモリ10は、データ書込み時における電流量の変化を抑制し、各メモリセル30へのデータ書込みを高精度に行うことができる。
なお、上述した実施例の不揮発性半導体メモリ10においては、メモリセル30のそれぞれが2つの電荷蓄積部を有する場合を前提としていたが、各メモリセルが1つの電荷蓄積部を有する場合でも、本発明を適用することができる。具体的な配線構造としては、メモリセル30の電荷蓄積部を備える部分にビット線を接続し、電荷蓄積部を備えない部分を接地電位に接続すればよい。すなわち、各メモリセルに対して1本のビット線が接続され、当該1本のビット線に電流切替回路が接続されることになる。
また、上述した実施例の不揮発性半導体メモリ10は、同一行方向の全てのメモリセル30(すなわち、同一のワード線WLに接続された全てのメモリセル30)に対して同時にデータを書込むような構成を有していたが、例えば、メモリセル30(1−1)、30(1−3)、・・・、30(1−(P−1))に
対して同時にデータを書込み、これとは別のタイミングでメモリセル30(1−2)、30(1−4)、・・・、30(1−P)に対して同時にデータを書込むような構成を有してもよい。かかる場合には、不揮発性半導体メモリ10は、メモリセル30(1−1)及びメモリセル30(1−2)が共通の電流切替回路に接続され、メモリセル30(1−3)及びメモリセル30(1−4)が共通の電流切替回路に接続され、メモリセル30(1−(P−1))及びメモリセル30(1−P)が共通の電流切替回路に接続されるような構成を有することができる。すなわち、同時にデータが書込まれることがないメモリセル同士を共通の電流切替回路に接続し、電流切替回路の数量を減ずることが可能になる。
10 不揮発性半導体メモリ
11−1、・・・、11−P 電流路切替回路
12 第1スイッチ素子群
13 第1カラムデコーダ
14 ロウデコーダ
15 第2スイッチ素子群
16 第3スイッチ素子群
17 第2カラムデコーダ
18 第3カラムデコーダ
19−1、・・・、19−P センスアンプ
20 メモリアレイ
21 バイパス回路
30 メモリセル
40 制御回路
BL1、BL2、・・・、BLp 主ビット線
BL1−1、BL2−1、・・・、BLp−1 第1副ビット線
BL1−2、BL2−2、・・・、BLp−2 第2副ビット線

Claims (9)

  1. 複数のメモリセルと、前記複数のメモリセルに接続されたワード線と、前記ワード線と交差し且つ前記複数のメモリセルの各々に接続されたビット線と、を含み、前記ビット線から少なくとも2つを選択し、選択された前記ビット線に接続された前記メモリセルに対して、電源供給ラインから同時に電流を供給してデータを書込む不揮発性半導体メモリであって、
    前記複数のメモリセルの各々に蓄積された電荷量を測定する電荷量測定部と、
    前記ビット線の各々に接続された電流路切替回路と、を有し、
    前記選択されたビット線に接続された前記電流路切替回路は、前記電荷量測定部による前記電荷量の測定値に応じて、前記メモリセル又は所定端子のいずれかに対して選択的に前記電源供給ラインから電流を供給することを特徴とする不揮発性半導体メモリ。
  2. 前記選択されたビット線に接続された前記電流路切替回路は、前記メモリセルに電流を供給するスイッチ回路と、前記所定端子への電流値を前記メモリセルへの電流値以下に調整する調整回路と、を有することを特徴とする請求項1に記載の不揮発性半導体メモリ。
  3. 前記電荷量測定部による前記電荷量の測定値に応じて前記スイッチ回路又は前記調整回路のいずれか一方を駆動させる制御信号を前記電流路切替回路に供給する制御回路、を更に有することを特徴とする請求項2に記載の不揮発性半導体メモリ。
  4. 前記調整回路は、前記電源供給ラインに接続されたスイッチ素子と、前記スイッチ素子と前記所定端子との間に接続された電流量調整素子と、からなることを特徴とする請求項2又は3に記載の不揮発性半導体メモリ。
  5. 前記電流量調整素子はMOSFET構造を有するトランジスタから構成され、前記制御回路から供給される駆動電圧に応じて前記所定端子への供給電流の電流値を調整することを特徴とする請求項4に記載の不揮発性半導体メモリ。
  6. 前記駆動電圧は、前記複数のメモリセルの電気的な特性に基づいて決定されることを特徴とする請求項5に記載の不揮発性半導体メモリ。
  7. 前記メモリセルは第1電荷蓄積部及び第2電荷蓄積部を有し、前記ビット線は第1電荷蓄積部に接続された第1副ビット線と第2電荷蓄積部に接続された第2副ビット線とからなる1対の主ビット線であり、前記第1副ビット線又は前記第2副ビット線のいずれか一方を選択するカラムデコーダを備えることを特徴とする請求項1乃至のいずれか1に記載の不揮発性半導体メモリ。
  8. 前記電流路切替回路は、前記電荷量測定部による前記電荷量の測定値が所定の値に達したときに、前記所定端子に電流を供給することを特徴とする請求項1に記載の不揮発性半導体メモリ。
  9. 前記所定端子の電位は接地電位であり、
    前記電流路切替回路は、前記電荷量測定部による前記電荷量の測定値が所定の値に達したときに、前記接地電位に向けて電流を供給することを特徴とする請求項1に記載の不揮発性半導体メモリ。
JP2010146129A 2010-06-28 2010-06-28 不揮発性半導体メモリ Active JP5485816B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010146129A JP5485816B2 (ja) 2010-06-28 2010-06-28 不揮発性半導体メモリ
US13/161,243 US8649220B2 (en) 2010-06-28 2011-06-15 Nonvolatile semiconductor memory
US14/146,385 US9245635B2 (en) 2010-06-28 2014-01-02 Nonvolatile semiconductor memory
US14/963,770 US9484106B2 (en) 2010-06-28 2015-12-09 Nonvolatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146129A JP5485816B2 (ja) 2010-06-28 2010-06-28 不揮発性半導体メモリ

Publications (2)

Publication Number Publication Date
JP2012009117A JP2012009117A (ja) 2012-01-12
JP5485816B2 true JP5485816B2 (ja) 2014-05-07

Family

ID=45352447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146129A Active JP5485816B2 (ja) 2010-06-28 2010-06-28 不揮発性半導体メモリ

Country Status (2)

Country Link
US (3) US8649220B2 (ja)
JP (1) JP5485816B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219170B2 (ja) * 2011-09-21 2013-06-26 株式会社フローディア 不揮発性半導体記憶装置
KR102075673B1 (ko) * 2012-08-29 2020-02-10 에스케이하이닉스 주식회사 반도체 메모리 장치
KR102015906B1 (ko) 2012-11-12 2019-08-29 삼성전자주식회사 불휘발성 메모리 장치를 포함하는 메모리 시스템 및 그것의 읽기 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440518A (en) * 1991-06-12 1995-08-08 Hazani; Emanuel Non-volatile memory circuits, architecture and methods
US5784327A (en) * 1991-06-12 1998-07-21 Hazani; Emanuel Memory cell array selection circuits
JP3252306B2 (ja) * 1993-08-10 2002-02-04 株式会社日立製作所 半導体不揮発性記憶装置
US5687114A (en) * 1995-10-06 1997-11-11 Agate Semiconductor, Inc. Integrated circuit for storage and retrieval of multiple digital bits per nonvolatile memory cell
JP4899241B2 (ja) * 1999-12-06 2012-03-21 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法
US6377507B1 (en) * 2001-04-06 2002-04-23 Integrated Memory Technologies, Inc. Non-volatile memory device having high speed page mode operation
KR100519793B1 (ko) * 2003-01-06 2005-10-10 삼성전자주식회사 플래쉬 메모리 장치 및 이 장치의 프로그램 방법
JP4737437B2 (ja) * 2004-03-05 2011-08-03 日本電気株式会社 トグル型磁気ランダムアクセスメモリ
KR100725373B1 (ko) * 2006-01-20 2007-06-07 삼성전자주식회사 플래쉬 메모리 장치
US20070189067A1 (en) * 2006-02-15 2007-08-16 Francis Goodwin Dynamic memory
JP2008027522A (ja) 2006-07-21 2008-02-07 Renesas Technology Corp 半導体装置
US8116117B2 (en) * 2006-11-29 2012-02-14 Samsung Electronics Co., Ltd. Method of driving multi-level variable resistive memory device and multi-level variable resistive memory device
JP5250254B2 (ja) * 2007-12-26 2013-07-31 三星電子株式会社 不揮発性半導体メモリ装置
JP5166894B2 (ja) * 2008-01-30 2013-03-21 セイコーインスツル株式会社 半導体記憶装置
TW200943298A (en) * 2008-04-11 2009-10-16 Nat Univ Tsing Hua Nonvolatile analog memory

Also Published As

Publication number Publication date
US20110317490A1 (en) 2011-12-29
US8649220B2 (en) 2014-02-11
US20160093389A1 (en) 2016-03-31
JP2012009117A (ja) 2012-01-12
US9484106B2 (en) 2016-11-01
US9245635B2 (en) 2016-01-26
US20140146617A1 (en) 2014-05-29

Similar Documents

Publication Publication Date Title
US10672487B2 (en) Semiconductor memory device
US8787087B2 (en) Semiconductor memory device controlling operation timing of the sense circuit
TWI464738B (zh) Nonvolatile semiconductor memory device
KR100554308B1 (ko) 반도체 메모리장치 및 데이터기록방법
US8879331B2 (en) Shared bit line string architecture
JP4628114B2 (ja) 不揮発性半導体記憶装置
US9136006B2 (en) Method and device for reducing coupling noise during read operation
JP5300773B2 (ja) 不揮発性半導体記憶装置
JP2004054966A (ja) 不揮発性半導体メモリ及びその動作方法
JP2014175020A (ja) 半導体記憶装置
KR100858044B1 (ko) 가상 접지형 비휘발성 반도체 기억장치
JP2014010875A (ja) 半導体記憶装置
US20220392508A1 (en) Memory device based on ferroelectric capacitor
US20120243328A1 (en) Nonvolatile semiconductor memory device and data erase method of the same
JP5485816B2 (ja) 不揮発性半導体メモリ
JP2007035179A (ja) 不揮発性半導体記憶装置
JP2007200512A (ja) 半導体記憶装置
JP5754761B2 (ja) 不揮発性半導体メモリおよび不揮発性半導体メモリのデータ書込み方法
KR101248942B1 (ko) 비휘발성 메모리 장치
KR20140026141A (ko) 반도체 메모리 장치 및 이의 동작 방법
WO2015182100A1 (ja) 半導体記憶装置
KR20020096876A (ko) 반도체 기억장치
JP2014164786A (ja) 不揮発性半導体記憶装置
JP2019179799A (ja) 半導体記憶装置
JP2012142042A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140220

R150 Certificate of patent or registration of utility model

Ref document number: 5485816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150