JP5477853B2 - X-ray inspection equipment using line sensor camera - Google Patents

X-ray inspection equipment using line sensor camera

Info

Publication number
JP5477853B2
JP5477853B2 JP2010008689A JP2010008689A JP5477853B2 JP 5477853 B2 JP5477853 B2 JP 5477853B2 JP 2010008689 A JP2010008689 A JP 2010008689A JP 2010008689 A JP2010008689 A JP 2010008689A JP 5477853 B2 JP5477853 B2 JP 5477853B2
Authority
JP
Japan
Prior art keywords
ray
inspection
speed
transport
line sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010008689A
Other languages
Japanese (ja)
Other versions
JP2011149701A (en
Inventor
秀一 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHONAI CREATE INDUSTRIAL CO., LTD.
Original Assignee
SHONAI CREATE INDUSTRIAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHONAI CREATE INDUSTRIAL CO., LTD. filed Critical SHONAI CREATE INDUSTRIAL CO., LTD.
Priority to JP2010008689A priority Critical patent/JP5477853B2/en
Publication of JP2011149701A publication Critical patent/JP2011149701A/en
Application granted granted Critical
Publication of JP5477853B2 publication Critical patent/JP5477853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、ラインセンサーカメラを用いたX線検査装置に関し、特に、搬送される被検査物の内部部位の寸法を高精度で測定することが可能なX線測定装置、及び、その寸法測定機能を少なくとも有するX線検査装置に関する。   The present invention relates to an X-ray inspection apparatus using a line sensor camera, and in particular, an X-ray measurement apparatus capable of measuring the dimensions of an internal part of an object to be conveyed with high accuracy, and its dimension measurement function. The present invention relates to an X-ray inspection apparatus having at least

近年、各種電池・基板・特殊シート材・半導体部品・MEMS(Micro-Electro-Mechanical Systems)など様々な分野で精密化・微細化、高集積化が進んでいる。一方で社会的要求である安全への対応や品質保証への対応として、X線を用いた非破壊内部検査の必要性が高まっている。このような検査では高い分解能が要求されるが、X線自体がノイズの大きい電磁波である上に被検査物を透過して被透過物の情報を含んだX線をセンサで受像するため、一般的には感度が悪い画像になる。   In recent years, various types of batteries, substrates, special sheet materials, semiconductor parts, MEMS (Micro-Electro-Mechanical Systems), etc. have been refined, miniaturized, and highly integrated. On the other hand, the need for nondestructive internal inspection using X-rays is increasing as a response to social demands for safety and quality assurance. Such inspection requires high resolution, but the X-ray itself is a noisy electromagnetic wave and passes through the inspection object to receive X-rays containing information on the transmission object. The result is an image with poor sensitivity.

このような不具合を回避するために、X線カメラユニット(イメージインテンシファイア+CCDカメラ)で撮像する際に、正確に位置決めして完全停止状態で数枚〜数十枚の画像を取得し(以降「多重露光」と呼ぶ)、重ね合わせ画像処理として平均化処理等を行うことでノイズを減らし、感度・鮮鋭度の高い画像にして検査に用いているのが現状である。しかし、位置決め機構は高価である。   In order to avoid such problems, when taking an image with an X-ray camera unit (image intensifier + CCD camera), several to several tens of images are acquired in a completely stopped state (hereinafter referred to as “completely stopped”). Currently called “multiple exposure”), noise is reduced by performing an averaging process or the like as a superimposed image process, and an image with high sensitivity and sharpness is used for inspection. However, the positioning mechanism is expensive.

上記のようなX線カメラユニットの代わりにX線ラインセンサーカメラを用いて撮像する際には、被検査物を停止させる必要性は無いが(例えば特許文献1参照)、多重露光させるためには必要回数だけ撮像工程を繰り返す必要があり、一式のX線発生器+X線ラインセンサーカメラで複数回の撮像を行う場合は著しく検査時間が増加し、複数式のX線発生器+X線ラインセンサーカメラで対応した場合は装置サイズ及び費用が著しく増加する。そのため、X線ラインセンサーカメラを用いたシステムでは、多重露光は行えず、故に取得画像は一般的に感度不足による低輝度画像となることが懸念され、精密な検査には不向きである。   When imaging using an X-ray line sensor camera instead of the X-ray camera unit as described above, there is no need to stop the inspection object (see, for example, Patent Document 1). It is necessary to repeat the imaging process as many times as necessary. When imaging multiple times with a set of X-ray generator + X-ray line sensor camera, the inspection time increases significantly, and multiple X-ray generator + X-ray line sensor camera. If this is the case, the equipment size and cost will increase significantly. For this reason, in a system using an X-ray line sensor camera, multiple exposure cannot be performed. Therefore, there is a concern that the acquired image generally becomes a low-brightness image due to insufficient sensitivity, which is not suitable for precise inspection.

これらのX線カメラユニットやX線ラインセンサーカメラの問題点を解決したものとしては、被検査物を流した状態で直接多重露光を可能にしたカメラ(以降「X線用TDI(Time Delay Integration)カメラ」と呼ぶ)がある。   As a solution to the problems of these X-ray camera units and X-ray line sensor cameras, a camera that enables direct multiple exposure with the inspection object flowing (hereinafter referred to as “TDI (Time Delay Integration) for X-rays) Called "camera").

X線用TDIカメラの例としては、透過情報を撮像したい幅にX線を感知できるCCD素子を並べ、進行方向には任意の列の素子を配置し、一定速度で移動する被検査物の移動方向・速度とCCDの電荷転送方向・速度を合わせて撮像することで、移動する被検査物を繰り返し露光して取得した像を一列ずつシフトながら重ね合わせるX線カメラユニットで行う多重露光と同様の結果を得ることができ、その結果、ノイズを減らし、感度・鮮鋭度の高い画像にして検査に用いることができる方式のカメラがある(例えば非特許文献1参照)。   As an example of an X-ray TDI camera, CCD elements capable of sensing X-rays are arranged in a width where transmission information is desired to be imaged, and an arbitrary column of elements is arranged in the traveling direction, so that the object to be inspected moves at a constant speed. Similar to the multiple exposure performed by the X-ray camera unit that superimposes the images acquired by repeatedly exposing the moving inspection object by shifting one row at a time by capturing the direction and speed together with the charge transfer direction and speed of the CCD. As a result, there is a camera of a system that can reduce noise and use an image with high sensitivity and sharpness for inspection (see, for example, Non-Patent Document 1).

特開2000−292371号公報JP 2000-292371 A 浜松ホトニクス株式会社、“X線関連製品”、[online]、[平成22年1月8日検索]、X線TDIカメラ、インターネット〈URL:http://jp.hamamatsu.com/products/x-ray/5101/c10650/index_ja.html〉Hamamatsu Photonics Co., Ltd., “X-ray related products”, [online], [Search January 8, 2010], X-ray TDI camera, Internet <URL: http://jp.hamamatsu.com/products/x- ray / 5101 / c10650 / index_en.html>

上述したように、非破壊内部検査用のカメラとしてX線用TDIカメラを利用することで、X線カメラユニットや一般的なX線ラインセンサーカメラを用いたときの前述の問題点を解決することできる。   As described above, by using an X-ray TDI camera as a non-destructive internal inspection camera, the above-mentioned problems when using an X-ray camera unit or a general X-ray line sensor camera are solved. it can.

しかし、X線用TDIカメラは、被検査物の移動方向・速度とCCDの電荷転送方向・速度を合わせて撮像する必要があり、そのためには、撮像時の被検査物移動には高い等速性と直進性が必要とされるが、平ベルトによるコンベア搬送は、駆動ロールと平ベルト間の摩擦により動力を伝達するため、モータ自身を等速性等の高いものを使用しても被検査物移動の等速性に信頼性が低く、また駆動ロールと平ベルト間の摩擦を得るため常に平ベルトに張力を加えているため、中・長期間の運転により必ず伸びが発生し蛇行が発生することから直進性も信頼性が低い、という問題がある。   However, it is necessary for the TDI camera for X-rays to take an image in accordance with the moving direction / velocity of the inspection object and the charge transfer direction / speed of the CCD. However, since the conveyor transport using a flat belt transmits power by friction between the drive roll and the flat belt, the motor itself can be inspected even if it uses a high constant speed motor. The constant speed of moving objects is low and the tension is always applied to the flat belt to obtain friction between the drive roll and the flat belt. Therefore, there is a problem that straightness is also unreliable.

機械的なガイドを用いれば直進性を確保できる場合もあるが、製品へのスクラッチの発生が懸念され、また厚みの小さな被検査物には適応できない。そもそもLM(Linear Motion)ガイド等の直進ガイドとボールネジ等の動力伝達を用いた被検査物搬送系により、平ベルトによるコンベア搬送の問題点は改善されるが、高価であるとともに、エンドレス構造ではなく1軸上の往復運動のため繰り返し検査複数回を行う場合等は検査時間が増加し、機械構成にも制約が大きい。   If a mechanical guide is used, it may be possible to ensure straightness, but there is a concern about the generation of scratches on the product, and it cannot be applied to an inspection object with a small thickness. In the first place, the problem of conveyor transport using a flat belt is improved by the inspection object transport system using a linear guide such as an LM (Linear Motion) guide and power transmission such as a ball screw, but it is expensive and not an endless structure. When repetitive inspection is performed multiple times due to reciprocation on one axis, the inspection time increases, and the machine configuration is greatly limited.

コンベア搬送用に使用されるベルトには、蛇行の原因となる伸びに強い金属または強化繊維性の芯線を埋め込んだ歯付ベルトがある。さらに歯付きベルトの動力伝達方法は、駆動軸に連結されたベルトの歯形状にあった形状のプーリとの噛み合いにより得られるもので、平ベルトの摩擦による動力伝達に比べモータの等速性能を失う事が無い。しかし、この芯線や歯形状がX線を透過しない又は透過し難いため、X線検査機の被検査物搬送に使用することはできない。   As a belt used for conveyor conveyance, there is a toothed belt in which a metal or a reinforced fiber core wire that is strong against elongation causing meandering is embedded. Furthermore, the power transmission method of the toothed belt is obtained by meshing with a pulley having a shape that matches the tooth shape of the belt connected to the drive shaft, and the constant speed performance of the motor is improved compared to the power transmission by friction of the flat belt. There is no loss. However, since the core wire and the tooth shape do not transmit X-rays or hardly transmit X-rays, they cannot be used for conveying an inspection object in an X-ray inspection machine.

本発明は上述のような事情から成されたものであり、本発明の主要な目的は、高価な位置決め機構や複数式の検査機器(X線発生器+X線ラインセンサーカメラ)を用いることなく、被検査物を停止させずに感度・鮮鋭度の高い画像を取得することができると共に、搬送される被検査物の内部部位の寸法を高精度で測定することが可能なX線検査装置を提供することにある。また、本発明の更なる目的は、被検査物移動の等速性及び直進性の信頼性が高く、且つ運転や長期間の運転を行っても検査精度を維持することが可能なX線検査装置を提供することにある。   The present invention has been made in the circumstances as described above, and the main object of the present invention is to use an expensive positioning mechanism and a plurality of inspection devices (X-ray generator + X-ray line sensor camera), Provided is an X-ray inspection apparatus capable of acquiring an image with high sensitivity and sharpness without stopping the inspection object and measuring the dimensions of the internal part of the object to be conveyed with high accuracy. There is to do. A further object of the present invention is to provide an X-ray inspection that is highly reliable in terms of the constant speed and straightness of movement of the inspected object and that can maintain the inspection accuracy even after operation or long-term operation. To provide an apparatus.

本発明は、搬送される被検査物を対象として、X線を用いて前記被検査物の内部を検査するX線検査装置に関するものであり、本発明の上記目的は
記被検査物に対してX線を発生するX線発生手段と、X線を感知できるCCD素子を前記被検査物の進行方向と直交する方向に1ライン配列すると共に前記進行方向に2列以上配列し、該進行方向に配列された各列のCCD素子により前記搬送される被検査物を繰り返し露光して取得した像を一列ずつシフトながら重ね合せて前記被検査物のX線透過像を出力するラインセンサーカメラを有する撮像手段と、前記被検査物を前記進行方向に搬送すると共に、前記撮像手段が前記1ライン単位で前記各列のCCD素子の電荷を転送して読み出す際の電荷転送速度に合わせた搬送速度で前記被検査物を搬送する搬送手段と、前記撮像手段から出力される前記X線透過像に基づいて前記被検査物の内部を含む所定の検査対象部位の寸法を測定する寸法測定手段と、を備え、更に、前記搬送手段がベルトコンベア式の搬送装置であって、該搬送装置は、前記被検査物の搬送速度の変動防止手段及び前記被検査物の蛇行防止手段を兼ねる速度変動/蛇行防止手段が、前記X線透過像の撮像に影響の無い位置に設けられていることによって達成される。
The present invention relates to an X-ray inspection apparatus for inspecting the inside of the inspection object using an X-ray with respect to the inspection object to be conveyed .
Two rows in the traveling direction as well as 1-line sequence and the X-ray generating means for generating X-rays to the front Symbol inspection object, a CCD element capable of sensing the X-rays in a direction perpendicular to the traveling direction of the object to be inspected An X-ray transmission image of the object to be inspected is superimposed by shifting the images obtained by repeatedly exposing the object to be inspected by the CCD elements arranged in the traveling direction and shifting the image one by one. An image pickup means having a line sensor camera for outputting, and a charge transfer when the image pickup means conveys and reads out the charges of the CCD elements in each column in the unit of one line while transporting the inspection object in the traveling direction. Measures the dimensions of a predetermined inspection object part including the inside of the inspection object based on the X-ray transmission image output from the imaging means and the conveyance means that conveys the inspection object at a conveyance speed that matches the speed Do With a law measuring means, and further, the conveying means is a conveyor device for a belt conveyor type, the conveying device, the meandering preventive means preventing variation means and the inspection of the transport speed of the object to be inspected The speed fluctuation / meandering preventing means also serving is achieved by being provided at a position that does not affect the imaging of the X-ray transmission image .

さらに、本発明の上記目的は、
前記寸法測定手段により測定された前記検査対象部位の寸法測定値と前記検査対象部位に対応して設定されている閾値との比較に基づいて前記被検査物の品質を判定する品質判定手段を備えること、
前記寸法測定手段は、平面的に重なった部品の各部位を含む前記被検査物の構成部品内部の各部位、及び部位と部位との間のギャップを測定対象として、前記検査対象部位の寸法を測定すること、
前記寸法測定手段は、薄板材の厚み及びシート材のコーティング層の厚みを含む前記被検査物の平行平面部位の厚みを測定対象として、前記被検査物を構成する材料のX線透過性の違いによる前記X線透過像の取込画像の輝度変化から前記平行平面部位の厚みムラを測定する機能を有すること、
前記撮像手段側の前記電荷転送速度と前記搬送手段側の前記搬送速度とを同期させる同期制御手段を備えること、
前記撮像手段が、外部コンピュータから参照可能な前記電荷転送速度のパラメータを有する撮像カメラであって、前記同期制御手段は、前記撮像カメラから得た前記パラメータに基づいて前記電荷転送速度を求め、その前記電荷転送速度に前記搬送速度が一致するように、前記搬送手段の搬送速度を制御すること、
前記撮像手段が、外部コンピュータからの指令によって設定変更可能な前記電荷転送速度のパラメータを有する撮像カメラであって、前記同期制御手段は、前記搬送速度に前記電荷転送速度が一致するように、前記撮像カメラ側に指令して前記電荷転送速度を制御すること、
前記被検査物の搬送速度をリアルタイムに検出する搬送速度検出手段を備え、前記同期制御手段は、前記搬送速度と前記電荷転送速度との同期制御を前記搬送手段の稼動中に実行可能に構成されていること
記速度変動/蛇行防止手段は、歯付きベルト部が前記X線透過像の撮像に影響の無い位置に搬送ベルト本体と一体的に設けられた搬送ベルトと、前記歯付きベルト部の歯に噛合する歯が外周に形成された歯付きプーリと、を含んで構成されること、
前記速度変動/蛇行防止手段は、噛み合い穴又は送り穴ピンを有するスチールベルト部が前記X線透過像の撮像に影響の無い位置に搬送ベルト本体と一体的に設けられた搬送ベルトと、前記スチールベルト部の噛み合い穴又は送り穴ピンに係合する送り穴ピン又は噛み合い穴を有するプーリと、を含んで構成されること、
前記ベルトコンベア式の搬送装置の搬送ベルト本体は、X線透過性が良好で且つその性能が均一な合成ゴム又は合成樹脂で形成されていること
よってそれぞれ一層効果的に達成される。
Furthermore, the above object of the present invention is to
Quality determining means for determining the quality of the object to be inspected based on a comparison between a dimension measurement value of the inspection target part measured by the dimension measuring means and a threshold value set corresponding to the inspection target part. about,
The dimension measuring means measures the dimension of the inspection target part by measuring each part inside the component part of the inspection object including each part of the parts overlapped in a plane and a gap between the parts. Measuring,
The dimension measuring means uses a thickness of a parallel plate portion of the inspection object including a thickness of a thin plate material and a thickness of a coating layer of the sheet material as a measurement object, and a difference in X-ray permeability of materials constituting the inspection object Having a function of measuring thickness unevenness of the parallel plane part from a luminance change of the captured image of the X-ray transmission image by
Synchronization control means for synchronizing the charge transfer speed on the imaging means side and the transport speed on the transport means side;
The imaging means is an imaging camera having the charge transfer rate parameter that can be referred from an external computer, and the synchronization control means obtains the charge transfer rate based on the parameter obtained from the imaging camera, and Controlling the transport speed of the transport means so that the transport speed matches the charge transfer speed;
The imaging means is an imaging camera having the charge transfer speed parameter that can be set and changed by a command from an external computer, and the synchronization control means is configured so that the charge transfer speed matches the transport speed. Commanding the imaging camera to control the charge transfer rate;
Conveying speed detecting means for detecting the conveying speed of the inspection object in real time is provided, and the synchronization control means is configured to be able to execute synchronous control between the conveying speed and the charge transfer speed while the conveying means is in operation. to have it,
Before SL speed variation / meandering preventive means has a conveyor belt toothed belt portion is provided integrally with the conveyor belt body to free positions affect the imaging of the X-ray transmission image, the teeth of the toothed belt portion A toothed pulley having meshed teeth formed on the outer periphery,
The speed fluctuation / meandering preventing means includes a conveyance belt in which a steel belt portion having a meshing hole or a feed hole pin is provided integrally with a conveyance belt body at a position where the imaging of the X-ray transmission image is not affected, and the steel A pulley having a feed hole pin or a mesh hole that engages with the mesh hole or the feed hole pin of the belt portion,
The conveyor belt main body of the conveyor device of the belt conveyor type is formed of a synthetic rubber or a synthetic resin having good X-ray permeability and uniform performance ,
It is achieved more effectively to thus respectively.

本発明によれば、被検査物を停止・位置決めすること無くノイズを減らし、感度・鮮鋭度の高い画像を取得でできるX線検査装置を機械的制約が少なく安価に提供することが可能となる。また、搬送される被検査物の内部部位の寸法を高精度で測定することが可能になる。さらに、速度変動/蛇行防止手段を備えた構成とすることで、被検査物移動の等速性及び直進性の信頼性が高く、且つ運転や長期間の運転を行っても検査精度を維持することが可能になる。   According to the present invention, it is possible to provide an X-ray inspection apparatus that can reduce noise without stopping / positioning an object to be inspected and can acquire an image with high sensitivity and sharpness with less mechanical restrictions and at low cost. . Moreover, it becomes possible to measure the dimension of the internal part of the to-be-inspected object with high accuracy. Furthermore, by adopting a configuration equipped with speed fluctuation / meandering prevention means, the reliability of the constant speed and straightness of the movement of the inspected object is high, and the inspection accuracy is maintained even if the operation or long-term operation is performed. It becomes possible.

本発明に係るX線検査装置の全体構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the whole structure of the X-ray inspection apparatus which concerns on this invention. 本発明に係るX線用TDIカメラの動作原理を説明するための模式図である。It is a schematic diagram for demonstrating the operation principle of the TDI camera for X-rays concerning this invention. 本発明に係る搬送装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the conveying apparatus which concerns on this invention. 本発明に係る搬送ベルトの実例を示す図面代用写真である。It is a drawing substitute photograph which shows the actual example of the conveyance belt which concerns on this invention. 本発明に係る歯付きベルト部の他の構成例を示す第1の模式図である。It is a 1st schematic diagram which shows the other structural example of the toothed belt part which concerns on this invention. 本発明に係る歯付きベルト部の他の構成例を示す第2の模式図である。It is a 2nd schematic diagram which shows the other structural example of the toothed belt part which concerns on this invention. 本発明に係る歯付きベルト部の他の構成例を示す第3の模式図である。It is a 3rd schematic diagram which shows the other structural example of the toothed belt part which concerns on this invention. 本発明に係る搬送装置の他の構成例を示す模式図である。It is a schematic diagram which shows the other structural example of the conveying apparatus which concerns on this invention.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、説明は以下の順序で行う。
(1.X線検査装置の全体構成)
(2.X線検査装置の各部の構成)
(3.搬送装置の構成の具体例)
(4.歯付き搬送ベルトの具体例)
(5.歯付きベルト部の他の構成例)
(6.搬送装置の他の構成例)
(7.同期制御手段の他の制御例)
本発明に係るX線検査装置は、X線を用いて被検査物を透視することで被検査物を検査する装置であり、特に、搬送される電子・電気・機械部品製品等を対象として、それらの部品製品の内部を含む所定部位の寸法を高精度に測定するX線測定装置として好適に適用される。先ず、本発明に係るX線検査装置の全体構成について説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The description will be given in the following order.
(1. Overall configuration of X-ray inspection apparatus)
(2. Configuration of each part of X-ray inspection apparatus)
(3. Specific example of the configuration of the transport device)
(4. Specific examples of toothed conveyor belts)
(5. Other configuration examples of the toothed belt portion)
(6. Other configuration examples of the transport device)
(7. Other examples of synchronization control means)
The X-ray inspection apparatus according to the present invention is an apparatus for inspecting an inspection object by seeing through the inspection object using X-rays, and particularly for electronic / electrical / mechanical parts products to be conveyed, The present invention is suitably applied as an X-ray measuring apparatus that measures the dimensions of a predetermined part including the inside of these component products with high accuracy. First, the overall configuration of the X-ray inspection apparatus according to the present invention will be described.

(1.X線検査装置の全体構成)
図1は、本発明に係るX線検査装置の全体構成の一例を示す概略構成図である。全体構成を説明する前に、検査方式と検査対象について概説する。
(1. Overall configuration of X-ray inspection apparatus)
FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of an X-ray inspection apparatus according to the present invention. Before explaining the overall configuration, an outline of the inspection method and inspection object will be given.

本実施の形態では、連続運転をしている搬送装置4の搬送面を挟んで一方にX線発生器2を他方にX線用TDIカメラ3を配置し、被検査物Wの検知センサ1(1a,1b)からのトリガー信号で被検査物Wの撮像タイミングを得た後、X線による透過画像をX線用TDIカメラ3によって取得し、画像処理部5において被検査物Wの検査を行う形態としている。尚、カメラにて常時画像取込を行いながら画像処理部にて取込画像の輝度変化を監視し、必要な部分のみを記録することで被検査物Wの検知センサ1(1a,1b)からのトリガー信号を用いた撮像方法の代用とすることが出来る。   In the present embodiment, the X-ray generator 2 is arranged on one side and the TDI camera 3 for X-rays is arranged on the other side across the conveyance surface of the conveyance device 4 that is operating continuously, and the detection sensor 1 ( After obtaining the imaging timing of the inspection object W by the trigger signal from 1a, 1b), a transmission image by X-ray is acquired by the TDI camera 3 for X-ray, and the inspection object W is inspected by the image processing unit 5. It is in form. The image processing unit monitors the change in luminance of the captured image while constantly capturing the image with the camera, and records only the necessary part from the detection sensor 1 (1a, 1b) of the inspection object W. It is possible to substitute for an imaging method using the trigger signal.

被検査物Wは、各種電池,基板,特殊シート材,半導体部品,MEMSなど、電子・電気・機械部品製品であり、X線検査装置では、被検査物Wの種類に応じて所定の検査を実行する。ここで言う所定の検査とは、上記のような部品製品の内部状態、特に内部の所定部位の寸法測定を含む検査である。具体的な検査については後述する。   The inspection object W is an electronic / electrical / mechanical component product such as various batteries, substrates, special sheet materials, semiconductor parts, MEMS, etc. In the X-ray inspection apparatus, a predetermined inspection is performed according to the type of the inspection object W. Run. The predetermined inspection referred to here is an inspection including the above-described internal state of the component product, in particular, measurement of the dimensions of a predetermined portion inside. Specific inspection will be described later.

次に、図1に示されるX線検査装置の全体構成について説明する。   Next, the overall configuration of the X-ray inspection apparatus shown in FIG. 1 will be described.

図1において、X線検査装置は、検査領域に向けて搬送されて来る被検査物Wを検知する被検査物検知センサ1と、被検査物Wに対してX線Lを照射するX線発生手段としてのX線発生器2と、被検査物Wを透過したX線により被検査物Wの透過画像を撮像する撮像手段としてのX線用TDIカメラ3と、搬送ベルト4aの搬送面上に載置された被検査物Wを図1中のX方向に一定速度で搬送する搬送手段としての搬送装置4と、被検査物WのX線透過画像を処理して所定の検査を実行する検査手段(後述の寸法測定手段及び品質判定手段を含む検査手段)としての画像処理部5と、後述の電荷転送速度と搬送速度との同期制御を含む各機器の動作制御,検査結果の記録や表示制御などを行う制御手段としての制御部6と、表示手段及び操作手段としての表示・操作部7と、搬送装置4を駆動する搬送駆動部8と、を備えている。   In FIG. 1, an X-ray inspection apparatus includes an inspection object detection sensor 1 that detects an inspection object W that is conveyed toward an inspection area, and X-ray generation that irradiates the inspection object W with X-rays L. An X-ray generator 2 as a means, an X-ray TDI camera 3 as an imaging means for picking up a transmission image of the inspection object W by X-rays transmitted through the inspection object W, and a conveyance surface of the conveyance belt 4a A transport device 4 serving as transport means for transporting the placed inspection object W in the X direction in FIG. 1 at a constant speed, and an inspection for performing a predetermined inspection by processing an X-ray transmission image of the inspection object W Image processing unit 5 as means (inspection means including dimension measurement means and quality determination means described later), operation control of each device including synchronous control of charge transfer speed and transport speed described later, recording and display of inspection results Control unit 6 as control means for performing control, display means and operation A display and operation unit 7 as stages, a, a conveyance drive section 8 for driving the conveying device 4.

なお、図1の例では、搬送装置4の搬送面に対して、X線用TDIカメラ3を上方、X線発生器2を下方に配置した構成を例としているが、X線発生器2を上方、X線用TDIカメラ3を下方に配置した構成としても良い。また、図1の例では、X線発生器2とX線用TDIカメラ3の配置は、X線発生器2の発生部とX線用TDIカメラ3の撮像部とを結ぶ線(図1中のX線を示す仮想線L)が、搬送装置4の搬送面に対して垂直になるように配置した構成を例としているが、搬送装置4の搬送面と図1中の仮想線Lとの成す角度は90度に限るものではなく、仮想線Lが搬送路の上流側又は下流側に傾斜した角度となるようにX線発生器2とX線用TDIカメラ3とを配置した構成とし、被検査物Wに対して傾斜した角度でX線を発生しそのX線透過像を撮像する形態としても良い。また、図1の例では、環状の搬送ベルト4aの内側空間部にX線発生器2を配置した例を示しているが、図1中のX線発生器2(又はX線用TDIカメラ3)を環状の搬送ベルト4aの外側に配置した構成とし、2枚の搬送ベルト4aを貫通してX線を発生してそのX線透過像を撮像する形態としても良い。   In the example of FIG. 1, the X-ray TDI camera 3 is disposed above and the X-ray generator 2 is disposed below the transport surface of the transport device 4. A configuration may be adopted in which the X-ray TDI camera 3 is arranged below and above. In the example of FIG. 1, the arrangement of the X-ray generator 2 and the X-ray TDI camera 3 is a line connecting the generation unit of the X-ray generator 2 and the imaging unit of the X-ray TDI camera 3 (in FIG. 1). In this example, the virtual line L) indicating the X-ray is arranged so as to be perpendicular to the transport surface of the transport device 4, but the transport surface of the transport device 4 and the virtual line L in FIG. The angle formed is not limited to 90 degrees, and the X-ray generator 2 and the X-ray TDI camera 3 are arranged so that the imaginary line L is inclined at the upstream side or the downstream side of the transport path, A configuration may be adopted in which X-rays are generated at an angle inclined with respect to the inspection object W and an X-ray transmission image is captured. 1 shows an example in which the X-ray generator 2 is arranged in the inner space of the annular conveying belt 4a, the X-ray generator 2 (or the X-ray TDI camera 3 in FIG. 1) is shown. ) May be arranged outside the annular conveyor belt 4a, and X-rays may be generated through the two conveyor belts 4a to capture the X-ray transmission image.

(2.X線検査装置の各部の構成)
次に、X線検査装置の各部の構成およびその動作例について個別に説明する。なお、既に説明した機能等については省略若しくは簡略化して説明する。
(2. Configuration of each part of X-ray inspection apparatus)
Next, the configuration of each part of the X-ray inspection apparatus and an example of its operation will be described individually. Note that the functions and the like already described will be omitted or simplified.

<被検査物検知センサ1>
被検査物検知センサ1は、例えば、搬送路の上流側に搬送ベルト4aの搬送面を挟んで対向配置される投受光センサ1a,1bから構成され、被検査物Wを検知した時点で検知信号を出力する。
<Inspection object detection sensor 1>
The inspection object detection sensor 1 is composed of, for example, light projecting / receiving sensors 1a and 1b arranged opposite to each other with the conveyance surface of the conveyance belt 4a on the upstream side of the conveyance path, and a detection signal when the inspection object W is detected. Is output.

<X線発生器2>
X線発生器2は、電子銃,対物レンズ,X線発生用ターゲット等か構成され、搬送装置4の搬送面を挟んでX線用TDIカメラ3と対向して配置されたX線発生部から被検査物Wに対してX線を照射する。
<X-ray generator 2>
The X-ray generator 2 is composed of an electron gun, an objective lens, an X-ray generation target, and the like. From the X-ray generation unit disposed opposite to the X-ray TDI camera 3 with the transport surface of the transport device 4 interposed therebetween. The object W is irradiated with X-rays.

<X線用TDIカメラ3>
X線用TDIカメラ3は、背景技術で説明した多重露光の機能を有するラインセンサーカメラであり、図1中のX方向に一定速度で搬送される被検査物Wの同一部位(搬送方向と直交するラインの撮像部位)を、搬送方向に配列されたn列(n≧2)のセンサによってn回繰り返し露光することで、高速性と高感度を両立させたカメラである。
<X-ray TDI camera 3>
The TDI camera 3 for X-rays is a line sensor camera having the multiple exposure function described in the background art, and is the same part of the inspection object W that is transported at a constant speed in the X direction in FIG. This is a camera that achieves both high speed and high sensitivity by repeatedly exposing the imaging part of the line to be performed) n times by sensors in n rows (n ≧ 2) arranged in the transport direction.

本実施の形態では、X線用TDIカメラ3としては、X線を感知できるCCD素子を被検査物Wの進行方向Xと直交する方向に1ライン配列すると共に、進行方向Xに2列以上(例えば128列)配列し、その各列のCCD素子により搬送される被検査物Wを繰り返し露光して取得した像を一列ずつシフトながら重ね合せて被検査物WのX線透過像を出力する構成のラインセンサーカメラを備えている。   In the present embodiment, as the X-ray TDI camera 3, CCD elements capable of detecting X-rays are arranged in one line in a direction orthogonal to the traveling direction X of the object W and two or more rows in the traveling direction X ( A configuration in which X-ray transmission images of the inspection object W are output by superimposing images obtained by repeatedly exposing the inspection object W conveyed by the CCD elements in each column and shifting the images one by one. The line sensor camera is equipped.

ここで、X線用TDIカメラ3の動作原理について、図2の模式図を用いて説明する。   Here, the operation principle of the X-ray TDI camera 3 will be described with reference to the schematic diagram of FIG.

X線用TDIカメラ3に搭載されているTDIセンサ(3a)は、図2に示すように、被検査物の進行方向(図中の矢印方向)と直交する方向にCCD素子が配列された1ラインのCCD素子群3a(1)が、被検査物の進行方向にn列(図2の例では説明の便宜上5列)配列されて構成される。TDIセンサ(3a)は、CCDの電荷の読み出し時に1ライン単位で転送を行う。この電荷転送タイミングとCCD面に入射している像が移動するタイミングを合わせれば、被検査物の搬送方向に配列したCCDの配列数nだけ露光することができる。この方式をTDI(Time Delay Integration)と言い、図2中のタイミングt1〜tnで同一部位がn回露光されることによって、図2中に示すように輝度が増加し、搬送される被検査物のX線透過像Gを高感度で撮像することができる。   As shown in FIG. 2, the TDI sensor (3a) mounted on the X-ray TDI camera 3 has CCD elements arranged in a direction orthogonal to the traveling direction of the inspection object (the arrow direction in the figure). The line CCD element group 3a (1) is configured to be arranged in n rows (5 rows for convenience of explanation in the example of FIG. 2) in the traveling direction of the inspection object. The TDI sensor (3a) performs transfer in units of one line when reading the charge of the CCD. If the charge transfer timing is matched with the timing at which the image incident on the CCD surface moves, exposure can be performed for the number n of CCDs arranged in the direction of conveyance of the inspection object. This method is called TDI (Time Delay Integration), and the same part is exposed n times at timings t1 to tn in FIG. 2, whereby the luminance increases as shown in FIG. X-ray transmission image G can be captured with high sensitivity.

本発明に係るX線検査装置は、TDIセンサ(3a)の1ラインのCCD素子群3a(1)と直交する方向(図2中の矢印方向)に被検査物を搬送すると共に、X線用TDIカメラ3が1ライン単位で各列のCCD素子の電荷を転送して読み出す際の電荷転送速度に合わせた搬送速度で被検査物Wを搬送する形態とすることで、TDIセンサ(3a)の電荷転送タイミングと、TDIセンサ(3a)CCD面に入射している像が移動するタイミングとを一致させるようにしている。   The X-ray inspection apparatus according to the present invention conveys an inspection object in a direction (arrow direction in FIG. 2) orthogonal to the one-line CCD element group 3a (1) of the TDI sensor (3a) and for X-ray use. The TDI camera 3 transports the inspection object W at a transport speed that matches the charge transfer speed when transferring and reading out the charges of the CCD elements in each column in units of one line, so that the TDI sensor (3a) The charge transfer timing coincides with the timing at which the image incident on the CCD surface of the TDI sensor (3a) moves.

<搬送装置4>
搬送装置4は、図1の例では、図1中の矢印X方向に被検査物Wを搬送するベルトコンベア式の搬送装置である。X線用TDIカメラ3は前述のような動作をするため、X線用TDIカメラ3による撮像時の被検査物Wの移動には高い等速性と直進性が必要とされる。本実施の形態では、搬送装置4は、被検査物Wの搬送速度の変動防止手段及び被検査物Wの蛇行防止手段を兼ねる手段として、例えば、被検査物Wが載置される搬送面の裏側で且つX線透過像の撮像に影響の無い位置に歯付きベルト部が搬送ベルト本体と一体的に設けられた搬送ベルト4aと、その搬送ベルト4aの歯付きベルト部の歯に噛合する歯が外周に形成された歯付きプーリ4bと、を備えている。
<Transport device 4>
In the example of FIG. 1, the transport device 4 is a belt conveyor type transport device that transports the inspection object W in the direction of arrow X in FIG. 1. Since the X-ray TDI camera 3 operates as described above, high movement speed and straightness are required for the movement of the inspection object W during imaging by the X-ray TDI camera 3. In the present embodiment, the transport device 4 serves as a means for preventing fluctuations in the transport speed of the inspection object W and a meandering prevention means for the inspection object W, for example, on the transport surface on which the inspection object W is placed. Conveying belt 4a in which a toothed belt portion is provided integrally with the conveying belt main body at a position on the back side and not affecting the X-ray transmission image, and teeth meshing with the teeth of the toothed belt portion of the conveying belt 4a Has a toothed pulley 4b formed on the outer periphery.

<画像処理部5>
画像処理部5は、画像処理ボード、画像処理ソフトウェア、入出力ボード等を搭載したPC等のコンピュータで構成される。
<Image processing unit 5>
The image processing unit 5 includes a computer such as a PC on which an image processing board, image processing software, an input / output board, and the like are mounted.

画像処理部5の構成要素である検査手段は、X線用TDIカメラ3から出力されるX線透過像の画像データ(本例では1ライン4608画素の高解像度を有する画像データ)に基づいて被検査物Wの内部を含む所定の検査対象部位の寸法を測定する寸法測定手段と、寸法測定手段により測定された検査対象部位の寸法測定値と検査対象部位に対応して設定されている閾値との比較に基づいて被検査物Wの品質を判定する品質判定手段と、を備えている。   The inspection means that is a component of the image processing unit 5 is based on image data of an X-ray transmission image output from the X-ray TDI camera 3 (in this example, image data having a high resolution of 4608 pixels per line). Dimension measuring means for measuring dimensions of a predetermined inspection target part including the inside of the inspection object W, a dimension measurement value of the inspection target part measured by the dimension measuring means, and a threshold value set corresponding to the inspection target part Quality judging means for judging the quality of the inspected object W based on the comparison.

検査手段は、例えば、被検査物Wが二次電池であれば、内部の局部ショート防止を目的として、正極板と負極板のギャップやタブと管のギャップ量を寸法測定手段によって測定し、閾値に対してOK(良品),NG(不良品)の判定を品質判定手段によって行う。その検査結果(寸法の測定結果や品質結果を示す情報)は、例えば、当該被検査物WのX線透過画像とともに記憶手段に記憶されると共に、制御部6を介して外部コンピュータに送出される。そして、例えば、搬送装置に結合される下流側の搬送路に設けられている分岐路の制御手段(或いは、不良品排除手段として動作するロボット)によって不良品として排除される。   For example, if the inspected object W is a secondary battery, the inspection means measures the gap between the positive electrode plate and the negative electrode plate and the gap between the tab and the tube by the dimension measuring means for the purpose of preventing internal short circuit. On the other hand, OK (good product) and NG (defective product) are judged by the quality judgment means. The inspection result (information indicating the dimension measurement result and the quality result) is stored in the storage unit together with the X-ray transmission image of the inspection object W, for example, and sent to the external computer via the control unit 6. . Then, for example, it is rejected as a defective product by a branch path control means (or a robot that operates as a defective product elimination means) provided in the downstream transport path coupled to the transport device.

検査手段は、その他、例えば、被検査物Wが基板であれば、平面的に重なった部品や構成部品内部の各部寸法の測定が可能である。また、被検査物Wを構成する材料のX線透過性の違いによる取込画像での輝度変化を利用すれば薄板材の厚みムラやシート材へのコーティングムラ等を測定し、判定することが可能である。例えば、検査手段は、被検査物Wの平行平面部位(薄板材、シート材のコーティング層等)の厚みが測定対象として設定されている場合は、上記取込画像の輝度変化から検査対象部位(平行平面部位)の厚みムラを寸法測定手段によって測定し、閾値に対してOK(良品),NG(不良品)の判定を品質判定手段によって行う。また、寸法測定に基づく所定部位の形状検査、集積回路の断線や短絡,傷,異物の付着等の検査も可能である。   In addition, for example, if the inspected object W is a substrate, the inspecting means can measure dimensions of parts in a planarly overlapped part or component. In addition, if the luminance change in the captured image due to the difference in the X-ray transmission of the material constituting the object to be inspected W is used, the thickness unevenness of the thin plate material or the coating unevenness on the sheet material can be measured and determined. Is possible. For example, when the thickness of a parallel flat portion (a thin plate material, a coating layer of a sheet material, etc.) of the inspection object W is set as a measurement target, the inspection means determines the inspection target portion (from the luminance change of the captured image ( The thickness unevenness of the parallel plane part) is measured by the dimension measuring means, and OK (non-defective product) or NG (defective product) is determined by the quality determining means with respect to the threshold value. In addition, it is possible to inspect the shape of a predetermined part based on dimension measurement, inspection of disconnection or short circuit of the integrated circuit, scratches, adhesion of foreign matters, and the like.

<制御部6>
制御部6はPC等のコンピュータで構成される。なお、制御部6と上記画像処理部5は、一つのコンピュータで構成する形態としても良い。
<Control unit 6>
The control unit 6 is configured by a computer such as a PC. The control unit 6 and the image processing unit 5 may be configured by a single computer.

本発明に係るX線検査装置は、X線用TDIカメラ3のCCDの電荷転送速度を搬送速度として、被検査物Wを上記CCDの電荷転送方向(=図1中のX方向)に一定速度で搬送する構成としている。本実施の形態では、制御部6は、X線用TDIカメラ3側の動作と搬送装置4の動作とを同期させる制御手段、詳しくは、X線用TDIカメラ3が1ライン単位で各列のCCD素子の電荷を転送して読み出す際の電荷転送速度と、搬送装置4側の搬送速度とが一致するように、搬送駆動部8の駆動制御によって搬送装置4の搬送速度を制御する同期制御手段を備えている。   The X-ray inspection apparatus according to the present invention uses the charge transfer speed of the CCD of the TDI camera 3 for X-rays as the transport speed, and moves the inspection object W at a constant speed in the charge transfer direction of the CCD (= X direction in FIG. 1). It is set as the structure conveyed by. In the present embodiment, the control unit 6 is a control unit that synchronizes the operation on the X-ray TDI camera 3 side and the operation of the transfer device 4, more specifically, the X-ray TDI camera 3 is arranged in each line in units of one line. Synchronous control means for controlling the transport speed of the transport device 4 by drive control of the transport drive unit 8 so that the charge transfer speed when transferring and reading the charge of the CCD element coincides with the transport speed on the transport device 4 side. It has.

ここで、制御部6の同期制御手段について具体例を示して説明する。   Here, a specific example of the synchronization control means of the control unit 6 will be described.

本発明に係るX線用TDIカメラ3は、CCDの電荷転送速度の制御パラメータ(以下「速度パラメータ」と呼ぶ)を備えている。その速度パラメータは外部コンピュータから参照可能なパラメータであり、例えば、CCDの電荷を次の画素に送るための一定周波数(ラインレート)の設定値、或いは、CCDの電荷転送速度の設定値を含んでいる。   The X-ray TDI camera 3 according to the present invention includes a charge transfer speed control parameter (hereinafter referred to as “speed parameter”) of the CCD. The speed parameter is a parameter that can be referred from an external computer, and includes, for example, a set value of a constant frequency (line rate) for sending the charge of the CCD to the next pixel or a set value of the charge transfer speed of the CCD. Yes.

制御部6の同期制御手段は、X線用TDIカメラ3から得た速度パラメータに基づいてCCDの電荷転送速度を求め、その電荷転送速度に搬送装置4の搬送速度が一致するように、搬送駆動部8の駆動制御によって搬送装置4の搬送速度を制御する。   The synchronization control means of the control unit 6 obtains the charge transfer speed of the CCD based on the speed parameter obtained from the X-ray TDI camera 3, and carries the conveyance so that the conveyance speed of the conveyance device 4 matches the charge transfer speed. The conveyance speed of the conveyance device 4 is controlled by the drive control of the unit 8.

詳しくは、制御部6の同期制御手段は、例えば速度パラメータの読出コマンドをX線用TDIカメラ3に送出することにより、X線用TDIカメラ3側の記憶部から速度パラメータを取得し、取得した速度パラメータに基づいてX線用TDIカメラ3側の電荷転送速度を求める。そして、求めた電荷転送速度と搬送装置4の搬送速度とが一致するように、搬送速度の制御指令を搬送駆動部8に送出することにより、X線用TDIカメラ3側の電荷転送速度と搬送装置4による被検査物Wの搬送速度とを同期させる。この同期制御は、例えば搬送装置4の運転開始時に、初期設定処理として一回だけ実行する形態としても良く、連続運転中に適時に実行する形態としても良い。   Specifically, the synchronization control means of the control unit 6 acquires and acquires the speed parameter from the storage unit on the X-ray TDI camera 3 side, for example, by sending a speed parameter read command to the X-ray TDI camera 3. Based on the speed parameter, the charge transfer speed on the X-ray TDI camera 3 side is obtained. Then, by sending a transport speed control command to the transport driving unit 8 so that the obtained charge transfer speed and the transport speed of the transport device 4 coincide with each other, the charge transfer speed on the X-ray TDI camera 3 side and the transport speed are transferred. The conveyance speed of the inspection object W by the apparatus 4 is synchronized. This synchronous control may be executed only once as an initial setting process at the start of operation of the transport device 4, for example, or may be executed at an appropriate time during continuous operation.

搬送装置4の搬送速度(又は上記速度パラメータ)は、被検査物の搬送方向が可変した場合に、CCDの電荷転送方向と一致するように補正する必要が生じるが、本実施の形態では、被検査物Wの搬送速度の変動防止手段及び被検査物Wの蛇行防止手段を兼ねる手段を有する搬送装置4を備えることで、搬送面の直進性を確保するようにしているので、被検査物Wの移動方向の変動に伴う搬送速度の変更制御(又は上記速度パラメータの変更制御)は不要である。   The transport speed (or the speed parameter) of the transport device 4 needs to be corrected so as to coincide with the charge transfer direction of the CCD when the transport direction of the inspection object is changed. Since the conveyance device 4 having both the means for preventing the fluctuation of the conveyance speed of the inspection object W and the means for preventing the meandering of the inspection object W is provided, the straightness of the conveyance surface is ensured. No change control of the conveyance speed (or the change control of the speed parameter) accompanying the change in the moving direction is required.

<表示・操作部7>
表示・操作部7は、モニターと所定の操作装置(表示灯・ハードスイッチ等またはPCに接続されるキーボード,マウス等の操作手段)、或いは、操作部と表示部双方の機能を備えた装置(タッチパネルを有する表示・操作装置等)で構成され、表示・操作部7からの操作によって、各デバイスの状態や値を表示、変更、操作することを可能としている。また、表示部には、X線透過画像等の検査結果が表示される。
<Display / Operation Unit 7>
The display / operation unit 7 is a monitor and a predetermined operation device (indicator / hard switch etc. or an operation means such as a keyboard or mouse connected to a PC) or a device having both functions of an operation unit and a display unit ( The display / operation device or the like having a touch panel) can display, change, and operate the state and value of each device by the operation from the display / operation unit 7. In addition, inspection results such as an X-ray transmission image are displayed on the display unit.

<搬送駆動部8>
搬送駆動部8は、制御部6からの指令に従って搬送装置4を駆動する装置であり、例えば駆動モータとそのモータ回転軸に掛け回されたベルト等の動力伝達手段から構成され、その動力伝達手段を介して搬送装置4の歯付きプーリ4b(駆動プーリ)を回動させる。
<Conveyance drive unit 8>
The conveyance drive unit 8 is a device that drives the conveyance device 4 in accordance with a command from the control unit 6, and includes, for example, a power transmission unit such as a drive motor and a belt wound around the motor rotation shaft, and the power transmission unit The toothed pulley 4b (drive pulley) of the transport device 4 is rotated via

(3.搬送装置の構成の具体例)
次に、搬送装置4の構成について具体例を示して説明する。
(3. Specific example of the configuration of the transport device)
Next, the configuration of the transport device 4 will be described with a specific example.

図3は、本発明に係る搬送装置4の構成の一例を示す模式図であり、図3(A)は平面図、図3(B)は側面図、図3(C)は図3(A)を矢印X方向から見た正面図である。   3A and 3B are schematic views showing an example of the configuration of the transport device 4 according to the present invention. FIG. 3A is a plan view, FIG. 3B is a side view, and FIG. 3C is FIG. It is the front view which looked at from the arrow X direction.

搬送装置4は、速度変動/蛇行防止手段として、搬送ベルト4aの歯付きベルト部4a1がX線透過像の撮像に影響の無い位置(図3(A)中の撮像領域Aの範囲外)に搬送ベルト本体と一体的に設けられた搬送ベルト4aと、歯付きベルト部4a1の歯に噛合する歯が外周に形成された歯付きプーリ4bと、を含んで構成される。   The conveying device 4 serves as a speed fluctuation / meandering preventing means at a position where the toothed belt portion 4a1 of the conveying belt 4a does not affect the imaging of the X-ray transmission image (outside the imaging area A in FIG. 3A). It includes a conveyance belt 4a provided integrally with the conveyance belt main body, and a toothed pulley 4b formed on the outer periphery with teeth meshing with the teeth of the toothed belt portion 4a1.

本実施の形態においては、歯付きベルト部4a1は、図3(B)に示すように、搬送ベルト4aが形成する無限軌道の搬送面の裏側に形成されており、且つ、搬送ベルト4aの幅方向(搬送方向と直交する方向)の両端側に形成されている。一方、搬送ベルト4aの内歯に噛合する歯付きプーリ4bは、搬送ベルト4aの幅方向(搬送方向と直交する方向)の両端に一対配置する共に、搬送ベルト4aの長手方向(搬送方向)の両端に一対配置する構成としている。   In the present embodiment, the toothed belt portion 4a1 is formed on the back side of the transport surface of the endless track formed by the transport belt 4a as shown in FIG. 3B, and the width of the transport belt 4a. It is formed on both ends of the direction (direction orthogonal to the transport direction). On the other hand, a pair of toothed pulleys 4b meshing with the inner teeth of the conveyor belt 4a are disposed at both ends in the width direction of the conveyor belt 4a (a direction orthogonal to the conveyor direction) and in the longitudinal direction of the conveyor belt 4a (the conveyor direction). A pair is arranged at both ends.

このような構成とすることにより、搬送面の直進性を確保すると共に、中・長期間の運転に伴う搬送ベルト4aの伸びに起因する蛇行現象の発生を防止するようにしている。なお、生産ラインから流れ来る被検査物を連続的に全品リアルタイムに検査するシステムの場合は、搬送装置4は、例えば、生産ライン状の上流側のコンベアと下流側のコンベアとの間にジョイントコンベアとして配置される。   By adopting such a configuration, the straightness of the transport surface is ensured, and the occurrence of meandering phenomenon due to the elongation of the transport belt 4a due to the medium / long-term operation is prevented. In the case of a system that continuously inspects inspected objects flowing from the production line in real time, the transport device 4 is, for example, a joint conveyor between the upstream conveyor and the downstream conveyor of the production line. Arranged as.

(4.歯付き搬送ベルトの具体例)
ここで、歯付き搬送ベルト4aについて具体例を示して説明する。
(4. Specific examples of toothed conveyor belts)
Here, a specific example is demonstrated and demonstrated about the toothed conveyance belt 4a.

図4は、本発明に係る搬送ベルト4aの実例を示す図面代用写真である。図4に示される搬送ベルト4aの本体は、X線透過性が良好でその性能が均一な部材から成るベルト(エンドレル品またはジョイント品)であり、歯付きベルト部4a1は、X線画像撮像に影響の無い位置へライニングまたは接着または機械的締結によって、搬送ベルト4a本体と一体的に形成される。   FIG. 4 is a drawing-substituting photograph showing an actual example of the conveying belt 4a according to the present invention. The main body of the conveyor belt 4a shown in FIG. 4 is a belt (endrel product or joint product) made of a member having good X-ray permeability and uniform performance, and the toothed belt portion 4a1 is used for X-ray imaging. It is formed integrally with the main body of the conveyor belt 4a by lining, bonding or mechanical fastening to a position where there is no influence.

搬送ベルト4a本体(撮像部)の材質は、ポリウレタン又はシリコン等の合成ゴム、或いは、ポリエステルや塩化ビニール等の合成樹脂とするのが好ましく、歯付きベルト部(駆動伝達部)4a1の材質は、ゴム材(ポリウレタン等の合成ゴム)とし、歯付きベルト部の芯線は、アラミド繊維、スチール、ステンレス、グラスファイバー等のワイヤー材のいずれかとするのが好ましい。   The material of the conveyor belt 4a main body (imaging part) is preferably a synthetic rubber such as polyurethane or silicone, or a synthetic resin such as polyester or vinyl chloride. The material of the toothed belt part (drive transmission part) 4a1 is A rubber material (synthetic rubber such as polyurethane) is used, and the core wire of the toothed belt portion is preferably one of wire materials such as aramid fiber, steel, stainless steel, and glass fiber.

なお、本実施形態では、歯付きベルト部4a1は、搬送面の両側に層設した形態としているが、搬送ベルト本体の幅方向の少なくとも片側に設ける形態としても良い。また、駆動プーリと従動プーリの両方を歯付きプーリ4bとした形態としているが、駆動プーリ側だけを歯付きプーリ4bとする形態としても良い。   In the present embodiment, the toothed belt portion 4a1 is layered on both sides of the transport surface, but may be formed on at least one side in the width direction of the transport belt body. Moreover, although both the driving pulley and the driven pulley are configured as toothed pulleys 4b, only the driving pulley side may be configured as a toothed pulley 4b.

(5.歯付きベルト部の他の構成例)
図4の例では、歯付きベルト部は、搬送路の幅方向(搬送方向と直交する方向)に、直線状の歯を一列ずつ平行に設けた場合を例としているが、噛合部分の構成は図4の例に限るものではない。
(5. Other configuration examples of the toothed belt portion)
In the example of FIG. 4, the toothed belt portion is an example in which straight teeth are provided in parallel in the width direction of the conveyance path (direction orthogonal to the conveyance direction), but the configuration of the meshing portion is It is not restricted to the example of FIG.

例えば、図5(A)〜(C)の側面図,正面図,及び平面図に示すように、搬送路の幅方向に対して傾斜し角度の歯を設けた「斜めタイプ」の歯付きベルト部4a1としても良く、図6(A)〜(C)に示すように、搬送路の幅方向に対して歯を複数列設けた「多列タイプ」の歯付きベルト部4a1としても良い。更に、歯の形状は、平面から見て矩形状に限るものではなく、図7(A)〜(C)に示すように、一部の形状が異なる「異型タイタイプ」の歯付きベルト部4a1とするなど、ベルト部とプーリとが噛合するものであれば良い。   For example, as shown in the side view, front view, and plan view of FIGS. 5A to 5C, an “oblique type” toothed belt that is inclined with respect to the width direction of the conveyance path and provided with teeth of an angle. As shown in FIGS. 6A to 6C, a “multi-row type” toothed belt portion 4a1 in which a plurality of teeth are provided in the width direction of the conveyance path may be used. Furthermore, the shape of the teeth is not limited to a rectangular shape as viewed from above, but as shown in FIGS. 7A to 7C, “atypical tie type” toothed belt portions 4 a 1 having different shapes. It is sufficient if the belt portion and the pulley mesh with each other.

(6.搬送装置の他の構成例)
図8は、図3に例示した搬送装置4の他の構成例を示す模式図であり、図8(A)は平面図、図8(B)は側面図、図8(C)は図8(A)を矢印X方向から見た正面図である。搬送装置4’の駆動伝達としては、図3に例示した搬送装置4の歯付きベルト部4a1と歯付きプーリ4bの代替として、図8に示すように、噛み合い穴(又は送り穴ピン)を有するスチールベルト部4a1’がX線透過像の撮像に影響の無い位置(図8(A)中の撮像領域Aの範囲外)に搬送ベルト本体と一体的に設けられた搬送ベルト4a’と、スチールベルト部4a1’の噛み合い穴(又は送り穴ピン)に係合する送り穴ピン(又は噛み合い穴)を有するプーリ4b’を利用することも可能である。噛み合い穴と送り穴ピンの形状及び配列は、図8の例に限るものではなく、搬送装置4と同様に斜めタイプ,多列タイプ,異型タイプとしても良い。
(6. Other configuration examples of the transport device)
FIG. 8 is a schematic diagram illustrating another configuration example of the transfer device 4 illustrated in FIG. 3. FIG. 8A is a plan view, FIG. 8B is a side view, and FIG. It is the front view which looked at (A) from the arrow X direction. As a drive transmission of the conveying device 4 ′, as shown in FIG. 8, an engagement hole (or a feed hole pin) is provided as an alternative to the toothed belt portion 4a1 and the toothed pulley 4b of the conveying device 4 illustrated in FIG. A conveying belt 4a ′ provided integrally with the conveying belt main body at a position where the steel belt portion 4a1 ′ does not affect the imaging of the X-ray transmission image (outside the range of the imaging region A in FIG. 8A); It is also possible to use a pulley 4b ′ having a feed hole pin (or a mesh hole) that engages with a mesh hole (or a feed hole pin) of the belt portion 4a1 ′. The shape and arrangement of the meshing holes and the feed hole pins are not limited to the example shown in FIG. 8, and may be an oblique type, a multi-row type, or a different type as with the transport device 4.

また、上述した実施の形態では、ベルトコンベア式の搬送装置を搬送手段として用いた場合を例として説明したが、ベルトコンベア式の搬送装置の代わりに、被検査物を把持する把持手段と、その把持手段の移動又は本体の移動によって被検査物を搬送する移動手段と、を有する「搬送ロボット」を備えた構成としても良い。   Further, in the above-described embodiment, the case where the belt conveyor type conveying device is used as the conveying means has been described as an example, but instead of the belt conveyor type conveying device, the grasping means for grasping the inspection object, It may be configured to include a “conveying robot” having a moving unit that conveys the object to be inspected by moving the gripping unit or the main body.

(7.同期制御手段の他の制御例)
上述した実施の形態では、X線用TDIカメラの電荷転送速度と被検査物の搬送速度との同期制御は、X線用TDIカメラ側の電荷転送速度を得て、その電荷転送速度と一致するように、搬送装置側の速度を制御する場合を例として説明したが、外部コンピュータからの指令によって設定変更可能な速度パラメータを有するX線用TDIカメラの場合、搬送装置側の速度と一致するように、X線用TDIカメラ側の電荷転送速度を制御する形態としても良い。
(7. Other examples of synchronization control means)
In the above-described embodiment, the synchronous control of the charge transfer speed of the X-ray TDI camera and the transport speed of the inspection object obtains the charge transfer speed on the X-ray TDI camera side and matches the charge transfer speed. As described above, the case where the speed on the transport apparatus side is controlled has been described as an example. However, in the case of an X-ray TDI camera having a speed parameter that can be changed by a command from an external computer, it matches the speed on the transport apparatus side. In addition, the charge transfer speed on the X-ray TDI camera side may be controlled.

その形態の場合、制御部の同期制御手段は、搬送装置の搬送速度と電荷転送速度とが一致するように、搬送装置の搬送速度に対応する電荷転送速度の速度パラメータの設定指令を生成し、その設定指令をX線用TDIカメラに送出することにより、X線用TDIカメラの電荷転送速度を被検査物の搬送速度に同期させる。   In the case of that form, the synchronization control means of the control unit generates a setting command for the speed parameter of the charge transfer speed corresponding to the transport speed of the transport apparatus so that the transport speed of the transport apparatus matches the charge transfer speed, By sending the setting command to the X-ray TDI camera, the charge transfer speed of the X-ray TDI camera is synchronized with the conveyance speed of the inspection object.

その際、搬送装置の搬送速度は、制御部の記憶手段に予め設定しておく形態としても良いが、搬送ベルトによる被検査物の搬送速度をリアルタイムに検出する搬送速度検出手段(例えば、駆動プーリ若しくは駆動用モータの回転に応じた検出パルスを出力するロータリエンコーダ)を備え、その搬送速度検出手段の検出信号に基づいて搬送速度を求めるようにしても良い。後者の場合は、搬送速度と電荷転送速度との同期制御を、連続運転中に定期的に実行する形態、或いは、被検査物の検知センサからのトリガー信号に基づいて実行する形態(被検査物が検査エリアへ進入する前に実行する形態)、或いは、搬送速度の履歴情報を基に搬送速度の変動を検出した時点で適時実行する形態とすることが可能である。この形態(搬送速度検出手段を備えて搬送手段の稼動中に同期制御を行う形態)は、搬送装置側の速度を制御する形態にも適用可能である。   At that time, the conveyance speed of the conveyance device may be set in advance in the storage means of the control unit, but the conveyance speed detection means (for example, a drive pulley) that detects the conveyance speed of the object to be inspected by the conveyance belt in real time. Alternatively, a rotary encoder that outputs a detection pulse corresponding to the rotation of the drive motor may be provided, and the conveyance speed may be obtained based on the detection signal of the conveyance speed detection means. In the latter case, the synchronous control of the conveyance speed and the charge transfer speed is periodically executed during continuous operation, or is executed based on the trigger signal from the detection sensor of the inspection object (inspection object). Can be executed at the time when a change in the conveyance speed is detected based on the history information of the conveyance speed. This mode (a mode in which the transport speed detection unit is provided and the synchronization control is performed during the operation of the transport unit) is also applicable to a mode in which the speed on the transport device side is controlled.

1(1a、1b) 被検査物検知センサ(投受光センサ)
2 X線発生器
3 X線用TDIカメラ
4 搬送装置
4a,4a’ 搬送ベルト
4a1,4a1’ 歯付きベルト部
4b,4b’ 歯付きプーリ
5 画像処理部
6 制御部
7 表示・操作部
8 搬送駆動部
W 被検査物(電子・電気・機械部品製品)
L X線
X 搬送方向
G X線透過像
A 撮像領域
1 (1a, 1b) Inspection object detection sensor (light emitting / receiving sensor)
2 X-ray generator 3 X-ray TDI camera 4 Conveying device 4a, 4a 'Conveying belt 4a1, 4a1' Toothed belt 4b, 4b 'Toothed pulley 5 Image processing unit 6 Control unit 7 Display / operating unit 8 Conveyance drive Part W Inspection object (electronic / electrical / mechanical parts product)
L X-ray X Transport direction G X-ray transmission image A Imaging region

Claims (11)

搬送される被検査物を対象として、X線を用いて前記被検査物の内部を検査するX線検査装置であって、
前記被検査物に対してX線を発生するX線発生手段と、
X線を感知できるCCD素子を前記被検査物の進行方向と直交する方向に1ライン配列すると共に前記進行方向に2列以上配列し、該進行方向に配列された各列のCCD素子により前記搬送される被検査物を繰り返し露光して取得した像を一列ずつシフトながら重ね合せて前記被検査物のX線透過像を出力するラインセンサーカメラを有する撮像手段と、
前記被検査物を前記進行方向に搬送すると共に、前記撮像手段が前記1ライン単位で前記各列のCCD素子の電荷を転送して読み出す際の電荷転送速度に合わせた搬送速度で前記被検査物を搬送する搬送手段と、
前記撮像手段から出力される前記X線透過像に基づいて前記被検査物の内部を含む所定の検査対象部位の寸法を測定する寸法測定手段と、
を備え、更に、
前記搬送手段がベルトコンベア式の搬送装置であって、該搬送装置は、前記被検査物の搬送速度の変動防止手段及び前記被検査物の蛇行防止手段を兼ねる速度変動/蛇行防止手段が、前記X線透過像の撮像に影響の無い位置に設けられていることを特徴とする、ラインセンサーカメラを用いたX線検査装置。
An X-ray inspection apparatus that inspects the inside of the inspection object using an X-ray for the inspection object to be conveyed,
X-ray generation means for generating X-rays on the inspection object;
One line of CCD elements capable of detecting X-rays is arranged in a direction perpendicular to the traveling direction of the object to be inspected, and two or more rows are arranged in the traveling direction, and the CCD elements in each row arranged in the traveling direction convey the CCD elements. Imaging means having a line sensor camera that outputs an X-ray transmission image of the inspection object by superimposing the images acquired by repeatedly exposing the inspection object to be shifted one row at a time;
The object to be inspected is transported in the traveling direction, and the object to be inspected is transported at a transport speed in accordance with a charge transfer speed when the imaging unit transfers and reads out the charges of the CCD elements in each column in units of one line. Conveying means for conveying
Dimension measuring means for measuring a dimension of a predetermined inspection target part including the inside of the inspection object based on the X-ray transmission image output from the imaging means;
In addition,
The transport means is a belt conveyor type transport device, and the transport device is a speed fluctuation / meander prevention means that also serves as a transport speed fluctuation preventing means for the inspection object and a meander prevention means for the inspection object. An X-ray inspection apparatus using a line sensor camera, wherein the X-ray inspection apparatus is provided at a position that does not affect the acquisition of an X-ray transmission image .
前記寸法測定手段により測定された前記検査対象部位の寸法測定値と前記検査対象部位に対応して設定されている閾値との比較に基づいて前記被検査物の品質を判定する品質判定手段を備えたことを特徴とする請求項1に記載のラインセンサーカメラを用いたX線検査装置。   Quality judging means for judging the quality of the object to be inspected based on a comparison between a dimension measurement value of the inspection target part measured by the dimension measuring means and a threshold value set corresponding to the inspection target part. An X-ray inspection apparatus using the line sensor camera according to claim 1. 前記寸法測定手段は、平面的に重なった部品の各部位を含む前記被検査物の構成部品内部の各部位、及び部位と部位との間のギャップを測定対象として、前記検査対象部位の寸法を測定することを特徴とする請求項1又は2に記載のラインセンサーカメラを用いたX線検査装置。   The dimension measuring means measures the dimension of the inspection target part by measuring each part inside the component part of the inspection object including each part of the parts overlapped in a plane and a gap between the parts. An X-ray inspection apparatus using the line sensor camera according to claim 1, wherein the X-ray inspection apparatus uses the line sensor camera. 前記寸法測定手段は、薄板材の厚み及びシート材のコーティング層の厚みを含む前記被検査物の平行平面部位の厚みを測定対象として、前記被検査物を構成する材料のX線透過性の違いによる前記X線透過像の取込画像の輝度変化から前記平行平面部位の厚みムラを測定する機能を有することを特徴とする請求項1乃至3のいずれかに記載のラインセンサーカメラを用いたX線検査装置。   The dimension measuring means uses a thickness of a parallel plate portion of the inspection object including a thickness of a thin plate material and a thickness of a coating layer of the sheet material as a measurement object, and a difference in X-ray permeability of materials constituting the inspection object 4. The X sensor using the line sensor camera according to claim 1, which has a function of measuring thickness unevenness of the parallel plane part from a change in luminance of the captured image of the X-ray transmission image due to X. Line inspection device. 前記撮像手段側の前記電荷転送速度と前記搬送手段側の前記搬送速度とを同期させる同期制御手段を備えたことを特徴とする請求項1または乃至4のいずれかに記載のラインセンサーカメラを用いたX線検査装置。   5. The line sensor camera according to claim 1, further comprising synchronization control means for synchronizing the charge transfer speed on the imaging means side and the transport speed on the transport means side. X-ray inspection equipment. 前記撮像手段が、外部コンピュータから参照可能な前記電荷転送速度のパラメータを有する撮像カメラであって、前記同期制御手段は、前記撮像カメラから得た前記パラメータに基づいて前記電荷転送速度を求め、その前記電荷転送速度に前記搬送速度が一致するように、前記搬送手段の搬送速度を制御することを特徴とする請求項5に記載のラインセンサーカメラを用いたX線検査装置。   The imaging means is an imaging camera having the charge transfer rate parameter that can be referred from an external computer, and the synchronization control means obtains the charge transfer rate based on the parameter obtained from the imaging camera, and 6. The X-ray inspection apparatus using a line sensor camera according to claim 5, wherein the transport speed of the transport means is controlled so that the transport speed matches the charge transfer speed. 前記撮像手段が、外部コンピュータからの指令によって設定変更可能な前記電荷転送速度のパラメータを有する撮像カメラであって、前記同期制御手段は、前記搬送速度に前記電荷転送速度が一致するように、前記撮像カメラ側に指令して前記電荷転送速度を制御することを特徴とする請求項5に記載のラインセンサーカメラを用いたX線検査装置。   The imaging means is an imaging camera having the charge transfer speed parameter that can be set and changed by a command from an external computer, and the synchronization control means is configured so that the charge transfer speed matches the transport speed. The X-ray inspection apparatus using a line sensor camera according to claim 5, wherein the charge transfer speed is controlled by instructing the imaging camera side. 前記被検査物の搬送速度をリアルタイムに検出する搬送速度検出手段を備え、前記同期制御手段は、前記搬送速度と前記電荷転送速度との同期制御を前記搬送手段の稼動中に実行可能に構成されていることを特徴とする請求項5乃至7のいずれかに記載のラインセンサーカメラを用いたX線検査装置。   Conveying speed detecting means for detecting the conveying speed of the inspection object in real time is provided, and the synchronization control means is configured to be able to execute synchronous control between the conveying speed and the charge transfer speed while the conveying means is in operation. An X-ray inspection apparatus using the line sensor camera according to any one of claims 5 to 7. 前記速度変動/蛇行防止手段は、歯付きベルト部が前記X線透過像の撮像に影響の無い位置に搬送ベルト本体と一体的に設けられた搬送ベルトと、前記歯付きベルト部の歯に噛合する歯が外周に形成された歯付きプーリと、を含んで構成されることを特徴とする請求項1乃至8のいずれかに記載のラインセンサーカメラを用いたX線検査装置。 The speed fluctuation / meandering preventing means meshes with the conveyor belt integrally provided with the conveyor belt main body at a position where the toothed belt portion does not affect the imaging of the X-ray transmission image, and the teeth of the toothed belt portion. An X-ray inspection apparatus using a line sensor camera according to any one of claims 1 to 8, wherein the toothed pulley includes a toothed pulley formed on an outer periphery. 前記速度変動/蛇行防止手段は、噛み合い穴又は送り穴ピンを有するスチールベルト部が前記X線透過像の撮像に影響の無い位置に搬送ベルト本体と一体的に設けられた搬送ベルトと、前記スチールベルト部の噛み合い穴又は送り穴ピンに係合する送り穴ピン又は噛み合い穴を有するプーリと、を含んで構成されることを特徴とする請求項1乃至8のいずれかに記載のラインセンサーカメラを用いたX線検査装置。 The speed fluctuation / meandering preventing means includes a conveyance belt in which a steel belt portion having a meshing hole or a feed hole pin is provided integrally with a conveyance belt body at a position where the imaging of the X-ray transmission image is not affected, and the steel The line sensor camera according to any one of claims 1 to 8, further comprising a pulley having a feed hole pin or a mesh hole that engages with the mesh hole or the feed hole pin of the belt portion. X-ray inspection device used. 前記ベルトコンベア式の搬送装置の搬送ベルト本体は、X線透過性が良好で且つその性能が均一な合成ゴム又は合成樹脂で形成されていることを特徴とする請求項1乃至10のいずれかに記載のラインセンサーカメラを用いたX線検査装置。 Conveying the belt body of the belt conveyor type transport apparatus in any one of claims 1 to 10, characterized in that the X-ray permeability good and its performance are formed in a uniform synthetic rubber or synthetic resin X-ray inspection apparatus using the described line sensor camera.
JP2010008689A 2010-01-19 2010-01-19 X-ray inspection equipment using line sensor camera Expired - Fee Related JP5477853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008689A JP5477853B2 (en) 2010-01-19 2010-01-19 X-ray inspection equipment using line sensor camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008689A JP5477853B2 (en) 2010-01-19 2010-01-19 X-ray inspection equipment using line sensor camera

Publications (2)

Publication Number Publication Date
JP2011149701A JP2011149701A (en) 2011-08-04
JP5477853B2 true JP5477853B2 (en) 2014-04-23

Family

ID=44536841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008689A Expired - Fee Related JP5477853B2 (en) 2010-01-19 2010-01-19 X-ray inspection equipment using line sensor camera

Country Status (1)

Country Link
JP (1) JP5477853B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555048B2 (en) * 2010-05-21 2014-07-23 アンリツ産機システム株式会社 X-ray inspection equipment
JP2013122404A (en) * 2011-12-09 2013-06-20 Yamaha Motor Co Ltd X-ray examination device
US9506876B2 (en) 2012-02-06 2016-11-29 Hitachi High-Technologies Corporation X-ray inspection device, inspection method, and X-ray detector
JP6238541B2 (en) * 2013-03-27 2017-11-29 東レエンジニアリング株式会社 High speed imaging method and high speed imaging apparatus
KR101941478B1 (en) 2014-01-07 2019-01-24 한화에어로스페이스 주식회사 Line scan apparatus, and method applied to the same
KR102022471B1 (en) 2014-09-19 2019-09-18 한화정밀기계 주식회사 Apparatus for inspection of substrate
JP6506629B2 (en) * 2015-01-30 2019-04-24 松定プレシジョン株式会社 X-ray receiving apparatus and X-ray inspection apparatus provided with the same
JP6512980B2 (en) * 2015-07-29 2019-05-15 株式会社日立ハイテクサイエンス X-ray transmission inspection apparatus and X-ray transmission inspection method
JP6618311B2 (en) * 2015-09-28 2019-12-11 株式会社ダイセル Nanodiamond-containing plating film and nanodiamond-containing plating
KR101750183B1 (en) * 2015-12-30 2017-06-22 최성국 Inspection device for camera module of mobile terminal using bldc motor and method for inspecting thereof
JP2019056634A (en) * 2017-09-21 2019-04-11 松定プレシジョン株式会社 X-ray inspection device
US11143599B2 (en) 2018-12-03 2021-10-12 Mistras Group, Inc. Systems and methods for inspecting pipelines using a pipeline inspection robot
US10783623B2 (en) 2018-12-03 2020-09-22 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
JP7136718B2 (en) * 2019-02-21 2022-09-13 アンリツ株式会社 Article inspection device
CN109900227A (en) * 2019-04-15 2019-06-18 广东正业科技股份有限公司 A kind of X-ray check device
KR102182693B1 (en) * 2019-10-16 2020-11-24 김철균 Metal detector
KR102254939B1 (en) * 2020-04-16 2021-05-21 김철균 Metal detector
US20230366836A1 (en) * 2020-09-10 2023-11-16 Beamsense Co., Ltd. X-ray radioscope
KR102543045B1 (en) * 2020-09-30 2023-07-10 주식회사 아이언맨 The head for metal detector
CN113916912B (en) * 2021-10-18 2023-06-13 南昌工程学院 Lithium battery pack fault detection equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319610A (en) * 1991-04-18 1992-11-10 Fujitsu Ltd Inspecting apparatus of flip chip
JPH0534131A (en) * 1991-08-05 1993-02-09 Fujitsu Ltd Method and apparatus for processing image
JP2001227932A (en) * 1999-11-30 2001-08-24 Minoru Ito Mask inspection apparatus
JP3955559B2 (en) * 2003-09-30 2007-08-08 アンリツ産機システム株式会社 X-ray inspection equipment
JP2008165064A (en) * 2006-12-28 2008-07-17 Ricoh Co Ltd Device and method for measuring length of developing gap
KR20100110323A (en) * 2007-12-06 2010-10-12 어플라이드 머티어리얼스, 인코포레이티드 Methods and apparatus for measuring deposited ink in pixel wells on a substrate using a line scan camera
JP5237646B2 (en) * 2008-01-24 2013-07-17 アンリツ産機システム株式会社 Production line mass inspection system

Also Published As

Publication number Publication date
JP2011149701A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5477853B2 (en) X-ray inspection equipment using line sensor camera
KR102522383B1 (en) Method for producing optical display panel and system for producing optical display panel
KR101151982B1 (en) Work processing device or inspecting method of acf attachment status or display substrate module assembling line
KR20160078211A (en) Transmission Type Defect Detecting Device and Defect Detecting Method
JP5502132B2 (en) Inspection device
JP2009080088A (en) Substrate appearance inspection apparatus
KR102246301B1 (en) Appearance inspection apparatus
CN110376207A (en) A kind of ultra-wide slab surface defect on-line detecting system image-pickup method
TW201003064A (en) Defect inspection method and defect inspection apparatus
JP4907428B2 (en) Surface inspection system and diagnostic method for inspection performance of surface inspection system
JP2009076633A (en) Substrate-treating equipment, surface-mounting equipment, printing machine, inspection machine and application machine
JP5690088B2 (en) Defect inspection apparatus, defect inspection system, and defect inspection method
JP2009236633A (en) X-ray foreign matter inspection device
KR102173943B1 (en) Apparatus for inspecting roll-to-roll film and method of inspecting roll-to-roll film
JP2007333732A (en) Surface inspection system, and diagnositc method of inspection capacity of the surface inspection system
TW200931008A (en) Pattern inspection device
JP4828234B2 (en) Inspection device for inspection object
JP2010044004A (en) Apparatus, method and program for detecting transmitted light, and method of manufacturing sheet material
KR101850336B1 (en) System of rotational vision inspection and method of the same
JP2015017837A (en) Three-dimensional shape measurement device
KR20140012250A (en) Apparatus and method for measuring the defect of glass substrate
JP2020106295A (en) Sheet defect inspection device
JP3974015B2 (en) Item inspection system
JP6117580B2 (en) Inspection equipment
KR101265753B1 (en) X-ray detector and X-ray inspecting apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5477853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees