JP2020106295A - Sheet defect inspection device - Google Patents

Sheet defect inspection device Download PDF

Info

Publication number
JP2020106295A
JP2020106295A JP2018242781A JP2018242781A JP2020106295A JP 2020106295 A JP2020106295 A JP 2020106295A JP 2018242781 A JP2018242781 A JP 2018242781A JP 2018242781 A JP2018242781 A JP 2018242781A JP 2020106295 A JP2020106295 A JP 2020106295A
Authority
JP
Japan
Prior art keywords
sheet
defect
imaging
image
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018242781A
Other languages
Japanese (ja)
Other versions
JP7151469B2 (en
Inventor
恭也 竹本
Kyoya Takemoto
恭也 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018242781A priority Critical patent/JP7151469B2/en
Publication of JP2020106295A publication Critical patent/JP2020106295A/en
Application granted granted Critical
Publication of JP7151469B2 publication Critical patent/JP7151469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To detect an anisotropic defect (for example, a film flaw and a flux flaw of a nonwoven fabric) which can be imaged only in specific optical conditions depending on a shape and an occurrence position of the defect.SOLUTION: A sheet defect inspection device comprises: illumination means for irradiating a sheet with illumination light; imaging means for imaging light generated when the illumination light irradiated from the illumination means is reflected or transmitted on the sheet; movable means connected to one or more of an imaging device provided in the imaging means and an irradiation device provided in the illumination means, and for switching a relative positional relation between the irradiation device and the imaging device with respect to the sheet, with the imaging region subjected to imaging by the imaging means maintained to be the same; image processing means for processing the image data imaged by the imaging means on the basis of each of a plurality of positional relations switched by the movable means and obtaining luminance feature amount data indicating feature amounts on luminance corresponding to a plurality of respective image data; and defect determination means for determining whether the imaging region includes a defect from the luminance feature amounts.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂製フィルムや短繊維の集合からなる不織布等のシート状物等の外観欠陥を光学的手法で自動的に検査する方法に関する。 The present invention relates to a method for automatically inspecting an appearance defect of a sheet-like material such as a non-woven fabric made of a resin film or a collection of short fibers by an optical method.

ディスプレイ・磁気記録材料等に用いられるフィルムや、フィルタ・電極用基材等に用いられる不織布などのシート状製品では、最終製品の性能・特性を保証するための品質要求の一つとして、シート表面に存在する欠陥や異物の管理が挙げられる。これらは適用される最終製品の高性能化・精密化に伴いより高精度な管理を求められており、現在では数〜数十ミクロンの微小な欠陥・異物の検出が必要となっている。 For sheet-shaped products such as films used for displays and magnetic recording materials, and non-woven fabrics used for substrates for filters and electrodes, one of the quality requirements to guarantee the performance and characteristics of the final product is the sheet surface. The management of defects and foreign substances existing in the. These are required to be managed with higher precision as the final products to which they are applied have higher performance and precision, and at present, it is necessary to detect minute defects and foreign substances of several to several tens of microns.

シート状製品の製造ラインにおいては、上記のような品質維持・向上および生産工程管理のために、シート表面に存在する欠陥や異物の検査が行われおり、各工程で欠陥や異物が発生していないかを確認して製品品質を維持・向上することは重要である。
このような状況のもとで、次のようなシート状製品の製造工程中における微細な欠陥の検査技術が知られている。
In order to maintain and improve the quality and control the production process as described above, sheet-like product manufacturing lines are inspected for defects and foreign substances on the sheet surface, and defects and foreign substances are generated in each process. It is important to check if there is any and maintain and improve product quality.
Under these circumstances, the following inspection technology for fine defects in the sheet-like product manufacturing process is known.

例えば、特許文献1では、連続的に走行するシート状物の外観欠陥を光学的手法で自動的に検査し、特徴が異なる複数種類の欠陥を定量的かつ精度よく検出する技術が開示されている。 For example, Patent Document 1 discloses a technique for automatically inspecting appearance defects of a continuously running sheet-like object by an optical method and quantitatively and accurately detecting a plurality of types of defects having different characteristics. ..

通常のシート状製品の欠陥検査には、特許文献1のように、欠陥部を含む被検査物に光を照射する照明と、照射した光を受けた被検査物が反射または透過する光を受光する撮像装置を、被検査物に対し固定配置して、欠陥部における光の反射または透過の特性の変化を検知することで欠陥の有無を判定する光学的手法が用いられる。 For defect inspection of a normal sheet-shaped product, as in Patent Document 1, illumination for irradiating an object to be inspected including a defect with light and light received by the object to be inspected for receiving or irradiating light are received. An optical method for determining the presence or absence of a defect by arranging the image pickup device to be fixed to the inspection object and detecting a change in the characteristics of light reflection or transmission in the defect portion is used.

しかしながら、フィルムや不織布などのシート状製品の欠陥の中には、欠陥の形状に対し特定の光学条件でしか可視化できないものが存在する。例えば、樹脂製のフィルムにおける線状の凹凸を持つキズや、不織布における凝集した短繊維がその繊維配向を一方向に揃えて束状となりシート表面に露出している欠陥(以降、便宜的に束欠陥と称する)などは、欠陥部から反射または透過する光の指向性が欠陥に対する光の照射方向によって大きく異なる(異方性がある)ため、欠陥の形状に対して特定の方向から光を照射して特定の方向から反射または透過光を撮像する光学条件でしか欠陥検出が可能な(正常部と欠陥部とでコントラストが得られる)画像が取得できない。 However, among the defects of sheet-shaped products such as films and nonwoven fabrics, there are defects that can be visualized only under specific optical conditions with respect to the shape of the defects. For example, a flaw having linear irregularities in a resin film or a defect in which agglomerated short fibers in a non-woven fabric form a bundle by aligning the fiber orientation in one direction and are exposed on the sheet surface (hereinafter, for convenience, For example, because the directivity of the light reflected or transmitted from the defect greatly differs depending on the irradiation direction of the light (there is anisotropy), the defect shape is irradiated with light from a specific direction. Then, an image capable of defect detection (a contrast can be obtained between a normal portion and a defective portion) can be obtained only under an optical condition in which reflected or transmitted light is imaged from a specific direction.

このような光の反射・透過光の指向性が欠陥に対する照明光の入射方向によって異なる欠陥(以降、便宜的に異方性欠陥と称する)の検査技術として、いくつかの技術が開示されている。 Several techniques have been disclosed as inspection techniques for such defects (hereinafter referred to as anisotropic defects for convenience) in which the directivity of such reflected/transmitted light differs depending on the incident direction of illumination light with respect to the defect. ..

例えば、特許文献2には、試料に光を供給する照明光学系と、第1の仰角で配置される第1の検出光学系と、上記第1の仰角よりも高い第2の仰角で配置される第2の検出光学系と、を複数個備え、指向性欠陥によって散乱した光を効率よく捕捉する技術が開示されている。 For example, in Patent Document 2, an illumination optical system that supplies light to a sample, a first detection optical system that is arranged at a first elevation angle, and a second elevation angle that is higher than the first elevation angle are arranged. A plurality of second detection optical systems are provided to efficiently capture the light scattered by the directional defect.

また、特許文献3には、被検査試料表面に集束したレーザビームを照射し、該被検査試料表面で発生する散乱光を多方向で集光し、集光された該散乱光を光電変換して該被検査試料表面に存在する欠陥を検査する装置において、多方向で検出した検出信号を加算処理して微小欠陥を検出するとともに、多方向で検出した検出信号を個別処理して異方性欠陥を検出する技術が開示されている。 In Patent Document 3, the surface of the sample to be inspected is irradiated with a focused laser beam, scattered light generated on the surface of the sample to be inspected is condensed in multiple directions, and the condensed scattered light is photoelectrically converted. In the device for inspecting defects existing on the surface of the sample to be inspected, the detection signals detected in multiple directions are added to detect minute defects, and the detection signals detected in multiple directions are individually processed to obtain anisotropy. Techniques for detecting defects are disclosed.

また、特許文献4には、物体に対して異方性の照明と等方性の照明とを行って複数の画像を撮像し、異方性の照明で得られた第1画像と、等方性の照明で得られた第2画像から検査画像を生成し、当該検査画像に基づいて物体の検査のための処理を行うことで、多様な欠陥の検査ができる検査装置が開示されている。 In addition, in Patent Document 4, anisotropic illumination and isotropic illumination are performed on an object to capture a plurality of images, and a first image obtained by anisotropic illumination and an isotropic image are obtained. There is disclosed an inspection apparatus capable of inspecting various defects by generating an inspection image from a second image obtained by sexual illumination and performing processing for inspecting an object based on the inspection image.

また、特許文献5には、検査対象面の検査区域に対して、検査対象面の方向を固定した上で、異なる方向から照射した光の反射光を受光して表面画像を撮影し、照光方向に応じた画素情報から欠陥を検出する技術が開示されている。 Further, in Patent Document 5, with respect to the inspection area of the inspection target surface, the direction of the inspection target surface is fixed, and the reflected light of the light emitted from different directions is received to capture the surface image, and the illumination direction is determined. There is disclosed a technique of detecting a defect from pixel information according to the above.

また、特許文献6には、画像センサ、照明光源、ならびに画像センサ、照明光源、および機械部品を互いに対して移動させるための手段を含む機器を用いて、機械部品を非破壊的に検査する自動的方法が開示されている。 Further, Patent Document 6 discloses an automatic non-destructive inspection of a mechanical part using an apparatus including an image sensor, an illumination light source, and a means for moving the image sensor, the illumination light source, and the mechanical part with respect to each other. Method is disclosed.

特許第6183875号公報Japanese Patent No. 6183875 特開2017−133830号公報JP, 2017-133830, A 特許第4394707号公報Japanese Patent No. 4394707 特開2017−67633号公報JP, 2017-67633, A 特開2013−7589号公報JP, 2013-7589, A 特表2012−514193号公報Special table 2012-514193 gazette

異方性欠陥を可視化するためには、1つの検査領域に対してあらゆる方向から光を照射し、かつあらゆる方向から撮像をするような多数の光学条件での撮像を行い、光学条件の異なる複数の取得画像から欠陥の有無を判定する必要があり、特許文献1に記載のような照射装置や撮像装置が固定配置されている検査技術では、上記のような異方性欠陥を見逃す可能性がある。 In order to visualize anisotropic defects, one inspection area is irradiated with light from all directions, and imaging is performed under many optical conditions such as imaging from all directions. It is necessary to determine the presence/absence of a defect from the acquired image, and in the inspection technique in which the irradiation device and the image pickup device are fixedly arranged as described in Patent Document 1, it is possible to miss the anisotropic defect as described above. is there.

特許文献2、3に記載の技術では、複数の条件で検出光学系を固定配置し、多方向で検出した散乱光の検出信号を加算して微小欠陥の検出を行うとともに、各検出信号を個別に処理することによって、異方性欠陥の見逃しを回避することが可能となる。しかしながら、照明光の照射方向は一方向であり、複数の角度条件で設置した検出光学系も固定配置であるため、光学条件には一定の制限が生じてしまい、異方性欠陥の発生方向と照明・検出光学系の位置関係によっては、正常部と欠陥部とでコントラストが得られる画像を取得できない場合がある。 In the techniques described in Patent Documents 2 and 3, the detection optical system is fixedly arranged under a plurality of conditions, detection signals of scattered light detected in multiple directions are added to detect a micro defect, and each detection signal is individually detected. It is possible to avoid overlooking the anisotropic defect by performing the processing. However, the irradiation direction of the illumination light is one direction, and the detection optical system installed under a plurality of angle conditions is also a fixed arrangement, so a certain limitation occurs in the optical conditions, and the anisotropic defect generation direction Depending on the positional relationship between the illumination/detection optical system, it may not be possible to obtain an image in which a contrast is obtained between the normal portion and the defective portion.

特許文献4、5に記載の技術によれば、1台の照明装置の発光点を制御し、1つの検査領域に対する光の照射方向を切り替えて得られる複数の撮像画像について、照射方向に応じた画像の情報から欠陥を検出することが可能である。しかしながら、撮像方向は被検査物に対して固定であり、前述の公知技術と同様に、光学条件には一定の制限が生じてしまうので、異方性欠陥の発生方向と照明・撮像装置の位置関係によっては、正常部と欠陥部とでコントラストが得られる画像を取得できない場合がある。 According to the techniques described in Patent Documents 4 and 5, a plurality of captured images obtained by controlling the light emitting point of one lighting device and switching the irradiation direction of light with respect to one inspection region are determined according to the irradiation direction. It is possible to detect a defect from image information. However, the imaging direction is fixed with respect to the object to be inspected, and similar to the above-described known technique, a certain limit is imposed on the optical condition. Therefore, the anisotropic defect generation direction and the position of the illumination/imaging device Depending on the relationship, it may not be possible to acquire an image in which a contrast is obtained between the normal portion and the defective portion.

特許文献6に記載の技術によれば、3次元計測手段によって得られた被検査物の形状に基づき、画像センサ、照明光源、および被検査物を互いに対して移動させて、被検査物の表面形状の変化に追従して画像を取得するための動作経路を決定することができるが、異方性欠陥の検出に対して光学条件を変化させて欠陥検出に最適な画像を得るものではない。 According to the technique described in Patent Document 6, the image sensor, the illumination light source, and the object to be inspected are moved relative to each other based on the shape of the object to be inspected obtained by the three-dimensional measuring means, and the surface of the object to be inspected is moved. Although it is possible to determine the operation path for acquiring an image by following the change in shape, it is not possible to obtain the optimum image for defect detection by changing the optical conditions for detecting anisotropic defects.

そこで、本発明は、シート状製品の欠陥検査において、従来技術では検出が困難であった異方性欠陥も検出可能とするために、被検査物の検査領域に対する照射装置および撮像装置の相対的な位置関係を切り替えながら多数の光学条件で撮像を行い、光学条件の異なる複数の撮像画像から画像処理を利用して、検査領域に欠陥が含まれるか否かを自動検査できる検査装置を提供する。 Therefore, in the present invention, in the defect inspection of a sheet-shaped product, in order to detect an anisotropic defect that was difficult to detect by the conventional technique, the irradiation device and the image pickup device are relative to the inspection area of the inspection object. Provide an inspection apparatus that can automatically inspect whether or not a defect is included in an inspection area by performing image pickup under a large number of optical conditions while switching between different positional relationships and using image processing from a plurality of captured images with different optical conditions. ..

上記目的を達成するため、本発明のシート欠陥検査装置は、
シートに照明光を照射する照明手段と、上記照明手段から照射された照明光が上記シートで反射または透過した光を撮像する撮像手段と、
上記シート、上記撮像手段に備えられた撮像装置、および上記照明手段に備えられた照射装置のいずれか1つ以上に接続され、上記撮像手段で撮像する領域は同じままで、上記シートに対する上記照射装置および上記撮像装置の相対的な位置関係を切り替える可動手段と、
上記可動手段により切り替えられた複数の上記位置関係のそれぞれで上記撮像手段により撮像された画像データを処理して、複数の画像データのそれぞれに対応した輝度に関する特徴量である輝度特徴量データを得る画像処理手段と、
上記輝度特徴量データから、上記撮像領域に欠陥が含まれるか否かを判別する欠陥判定手段と、を備えている。
In order to achieve the above object, the sheet defect inspection apparatus of the present invention,
Illumination means for irradiating the sheet with illumination light, and imaging means for imaging the light reflected or transmitted by the illumination light emitted from the illumination means on the sheet,
The irradiation of the sheet is performed by being connected to at least one of the sheet, the image pickup device provided in the image pickup means, and the irradiation device provided in the illumination means, and the area taken by the image pickup means remains the same. Movable means for switching the relative positional relationship between the device and the imaging device;
The image data captured by the image capturing unit is processed in each of the plurality of positional relationships switched by the movable unit, and the brightness feature amount data that is the feature amount regarding the brightness corresponding to each of the plurality of image data is obtained. Image processing means,
Defect determining means for determining whether or not a defect is included in the imaging region based on the brightness feature amount data.

なお、ここで記載している「輝度」とは画像上の画素階調値のことであり、明細書や請求項において特に断りのない限り同様の意味合いで「輝度」と記載する。 Note that “brightness” described here is a pixel gradation value on an image, and is described as “brightness” in the same meaning in the specification and claims unless otherwise specified.

本発明のシート欠陥検査装置は、下記の(1)から(8)のいずれかの構成を有すると好適である。
(1)上記撮像領域が、別のシート欠陥検査装置によって得られた上記シート上に存在する欠陥の座標データを参照して決定される。
(2)上記可動手段が、上記各位置関係で停止せずに動作を続ける。
(3)上記可動手段が、上記撮像領域から上記シートの表面に垂直な方向に延びる回転軸を中心として、上記撮像手段と上記照明手段とを同じ回転方向に同じ回転角度だけ回転させる。
(4)上記(3)に加えて、上記照明手段の照射方向と上記回転軸とのなす角度(鋭角)である入射角度と、上記撮像手段の撮像方向と上記回転軸とのなす角度(鋭角)である撮像角度とが等しい。
(5)上記可動手段が、4軸以上の自由度を有した垂直多関節ロボットである。
(6)上記欠陥判定手段が、複数の上記輝度特徴量データL1・・・Ln(nは3以上の整数)の中に以下の条件(イ)および条件(ロ)を満たす輝度特徴量Lkが存在する場合に、その輝度特徴量Lkに対応する画像データIkに欠陥が含まれると判定する。
条件(イ):上記輝度特徴量データL1・・・Lnの中に、輝度特徴量Lkとの大きさの差(絶対値)が所定の閾値よりも大きい他の輝度特徴量データが存在する。
条件(ロ):条件(イ)を満たす他の輝度特徴量データの数が所定の数よりも多い。
(7)上記可動手段が、上記複数の画像データのいずれかに欠陥が含まれていた場合に、その欠陥が含まれる画像データを撮像した時の上記位置関係を基準として、新たな複数の位置関係で動作をする。
(8)上記可動手段が、上記複数の画像データのいずれにも欠陥が含まれていない場合に、上記複数の位置関係とは異なる新たな複数の位置関係で動作をする。
The sheet defect inspection apparatus of the present invention preferably has any one of the following configurations (1) to (8).
(1) The imaging area is determined with reference to coordinate data of defects existing on the sheet obtained by another sheet defect inspection apparatus.
(2) The movable means continues to operate without stopping at each of the positional relationships.
(3) The movable means rotates the imaging means and the illuminating means in the same rotation direction by the same rotation angle about a rotation axis extending from the imaging area in a direction perpendicular to the surface of the sheet.
(4) In addition to (3) above, an incident angle that is an angle (acute angle) formed by the irradiation direction of the illumination means and the rotation axis, and an angle formed by the imaging direction of the image pickup means and the rotation axis (acute angle). ) Is equal to the imaging angle.
(5) The movable means is a vertical articulated robot having four or more degrees of freedom.
(6) The defect determining means determines the brightness feature amount Lk satisfying the following condition (a) and condition (b) in the plurality of brightness feature amount data L1... Ln (n is an integer of 3 or more). If it exists, it is determined that the image data Ik corresponding to the luminance feature amount Lk includes a defect.
Condition (a): In the luminance feature amount data L1... Ln, there is another luminance feature amount data whose difference (absolute value) with the luminance feature amount Lk is larger than a predetermined threshold value.
Condition (b): The number of other brightness feature amount data satisfying the condition (b) is larger than the predetermined number.
(7) When the movable means includes a defect in any of the plurality of image data, a plurality of new positions are set with reference to the positional relationship when the image data including the defect is captured. Work in a relationship.
(8) When none of the plurality of image data includes a defect, the movable means operates in a plurality of new positional relationships different from the plurality of positional relationships.

本発明のシート欠陥検査装置は、検査対象であるシートが透明あるいは半透明物であり、線状の凹または凸が一定長さでシート表面に露出した欠陥が存在するか否かを検査する場合に好適である。 In the sheet defect inspection apparatus of the present invention, when the sheet to be inspected is a transparent or semi-transparent material and inspects whether or not there is a defect in which linear concaves or convexes are exposed on the surface of the sheet with a constant length. Suitable for

また、本発明のシート欠陥検査装置は、検査対象であるシートが短繊維から構成された不織布、または短繊維と樹脂から構成された不織布であり、凝集した短繊維がその繊維配向を一方向に揃えて束状となりシート表面に露出している欠陥が存在するか否かを検査する場合にも好適である。 Further, the sheet defect inspection apparatus of the present invention, the sheet to be inspected is a non-woven fabric composed of short fibers, or a non-woven fabric composed of short fibers and resin, the aggregated short fibers unidirectionally its fiber orientation. It is also suitable for inspecting whether or not there are defects that are aligned in a bundle and exposed on the sheet surface.

本発明のシート欠陥検査装置によれば、撮像装置および照射装置のいずれか1つ以上に接続された可動部によって、検査対象であるシートに対する照射装置および撮像装置の相対的な位置関係を切り替えながらシートに照明光を照射し、シートで反射または透過した光を撮像することで得られる複数の画像データを処理して、各画像データに対応した輝度に関する特徴量データをもとに撮像領域に欠陥が含まれるか否かを判別することで、異方性欠陥を含むシート状製品の表面に露出した欠陥の検査を精度よく行うことが可能となる。これにより、シート状製品の品質や生産工程の管理実現や欠陥品見逃しを防止できるという効果が得られる。 According to the sheet defect inspection apparatus of the present invention, the movable portion connected to at least one of the imaging device and the irradiation device switches the relative positional relationship between the irradiation device and the imaging device with respect to the sheet to be inspected. A plurality of image data obtained by illuminating the sheet with illumination light and capturing the light reflected or transmitted by the sheet is processed, and defects are detected in the imaging area based on the feature amount data related to the brightness corresponding to each image data. By determining whether or not is included, it is possible to accurately inspect defects exposed on the surface of the sheet-shaped product including anisotropic defects. As a result, it is possible to achieve the effect of realizing control of the quality of the sheet-shaped product and the production process and preventing missing of defective products.

図1は、本発明のシート欠陥検査装置の一例を示す概略図である。FIG. 1 is a schematic view showing an example of the sheet defect inspection apparatus of the present invention. 図2は、本発明のシート欠陥検査装置の可動部の動作経路の一例を示す概略図である。FIG. 2 is a schematic view showing an example of the operation path of the movable part of the sheet defect inspection apparatus of the present invention. 図3は、本発明のシート欠陥検査装置の可動部の動作経路パラメータの一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of operation path parameters of the movable part of the sheet defect inspection apparatus of the present invention. 図4は、本発明のシート欠陥検査装置の画像処理フローの一例を示す図である。FIG. 4 is a diagram showing an example of an image processing flow of the sheet defect inspection apparatus of the present invention.

本発明の好ましい実施の形態について、以下のとおり図面を参照しながら説明する。
図1は、本発明の実施形態にかかるシート欠陥検査装置の一例を模式的に示した概略図である。本発明のシート欠陥検査装置1は、被検査物であるシート2に照明光3aを照射する照明装置3と、シート2からの反射光・散乱光・透過光2aを撮像する撮像装置4と、撮像装置4が撮像した撮像画像を画像処理して得られる画像の輝度特徴量データからシート2に欠陥(図示しない)が存在するか否かを判定する画像処理装置5と、照明装置3および撮像装置4のそれぞれに接続される可動部6(6’、6’’)と、可動部6の動作制御を行う可動制御部6aと、で構成されている。
A preferred embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram schematically showing an example of a sheet defect inspection apparatus according to an embodiment of the present invention. A sheet defect inspection apparatus 1 according to the present invention includes an illumination device 3 that irradiates a sheet 2 that is an inspection object with illumination light 3a, and an imaging device 4 that images reflected light, scattered light, and transmitted light 2a from the sheet 2. An image processing device 5 that determines whether or not a defect (not shown) is present in the sheet 2 from the brightness feature amount data of the image obtained by performing image processing on the captured image captured by the imaging device 4, the illumination device 3, and the imaging It comprises a movable part 6 (6′, 6″) connected to each of the devices 4 and a movable control part 6a for controlling the operation of the movable part 6.

一般的に、製品上の欠陥として扱われるキズや異物・繊維の束欠陥(図示しない)がシート2の表面に存在している場合、その欠陥部に照明光3aを照射すると、欠陥からの反射光・散乱光・透過光2aは、シート2の表面に欠陥が存在しない場合の反射光・散乱光・透過光2aとは異なる挙動となる。具体的には、欠陥が存在する領域と欠陥が存在しない領域とでは、反射光・散乱光・透過光2aの強度や指向性(拡散具合)、反射方向等が異なり、これら反射光・散乱光・透過光2aの変化を撮像装置4で撮像し画像化することでシート2に欠陥が存在するか否かを検査することができる。ここで、照明装置3や撮像装置4は必ずしもシート2に対して片側だけに配置する必要はない。例えば、照明装置3と撮像装置4とをシート2を挟んで対向するように配置することで、シート2を透過してきた光を撮像可能となり、シート2に存在するピンホール欠陥なども検出可能となる。また、使用する照明装置3や撮像装置4はそれぞれ1台ずつとは限らない。例えば、シート2の表裏に照明装置3を設置することで、表面に存在するキズや束欠陥とピンホール欠陥を同時に検査可能となる。 In general, when a defect or a bundle defect of foreign matter/fiber (not shown) which is treated as a defect on a product exists on the surface of the sheet 2, when the defect light is irradiated with the illumination light 3a, the defect is reflected. The light/scattered light/transmitted light 2a behaves differently from the reflected light/scattered light/transmitted light 2a when there is no defect on the surface of the sheet 2. Specifically, the intensity of the reflected light/scattered light/transmitted light 2a, the directivity (degree of diffusion), the reflection direction, and the like are different between the area where the defect exists and the area where the defect does not exist. It is possible to inspect whether or not there is a defect in the sheet 2 by imaging the change in the transmitted light 2a with the imaging device 4 and imaging it. Here, the illumination device 3 and the imaging device 4 do not necessarily have to be arranged on only one side of the sheet 2. For example, by disposing the illuminating device 3 and the imaging device 4 so as to face each other with the sheet 2 interposed therebetween, it is possible to image the light that has passed through the sheet 2, and it is possible to detect pinhole defects and the like existing in the sheet 2. Become. Further, the lighting device 3 and the imaging device 4 used are not limited to one each. For example, by installing the illuminating device 3 on the front and back of the sheet 2, it becomes possible to inspect for scratches and bundle defects and pinhole defects existing on the surface at the same time.

検査対象であるシート2は、例えば、シート2の巻出し部と巻取り部を備えた搬送装置7により連続的あるいは間欠的に順次搬送され、搬送装置7のいずれかに設置される可動部6に接続された照明装置3から照明光3aが照射される。シート2からの反射光・散乱光・透過光2aは、搬送装置6のいずれかに設置される可動部6に接続されるラインセンサやエリアセンサのような撮像装置4により撮像される。このとき、ある撮像領域8における照明装置3と撮像装置4のシート2に対する相対的な位置関係Pは、可動制御部6aで制御される可動部6により決定する。この位置関係Pは可動制御部6aにて任意に設定可能であり、可動部6を制御して照明装置3と撮像装置4のそれぞれの位置を切り替えていくことで、一つの撮像領域8に対して複数の位置関係P1・・・Pnを構築できる。また、構築した位置関係P1・・・Pnでそれぞれ撮像領域8の画像データI1・・・Inを取得することにより、一つの撮像領域8に対して複数の光学条件による画像の取得が実現できる。画像処理装置5は、撮像装置4で得られた複数の画像データI1・・・Inを処理して輝度特徴量データを取得し、得られた結果からシート2の撮像領域8に欠陥が存在するか否かを判別する。 The sheet 2 to be inspected is, for example, continuously or intermittently conveyed by a conveying device 7 having a winding-out portion and a winding portion of the sheet 2, and a movable portion 6 installed in any of the conveying devices 7. The illumination light 3a is emitted from the illumination device 3 connected to. The reflected light/scattered light/transmitted light 2a from the sheet 2 is imaged by the imaging device 4 such as a line sensor or an area sensor connected to the movable portion 6 installed in any of the transport devices 6. At this time, the relative positional relationship P between the illumination device 3 and the imaging device 4 with respect to the sheet 2 in a certain imaging region 8 is determined by the movable unit 6 controlled by the movable control unit 6a. This positional relationship P can be arbitrarily set by the movable control unit 6a, and the movable unit 6 is controlled to switch the respective positions of the illumination device 3 and the imaging device 4, so that one imaging region 8 Thus, a plurality of positional relationships P1... Pn can be constructed. Further, by acquiring the image data I1... In of the imaging region 8 with the constructed positional relationships P1... Pn, respectively, it is possible to acquire an image for one imaging region 8 under a plurality of optical conditions. The image processing device 5 processes the plurality of image data I1... In obtained by the image pickup device 4 to obtain luminance feature amount data, and from the obtained result, a defect exists in the image pickup region 8 of the sheet 2. It is determined whether or not.

シート2は、必ずしも搬送状態である必要はなく、一定サイズに切り出されたシートを静止した状態で配置してもよい。またシート2を可動部6に接続し、シート2の位置や角度、照明装置3や撮像装置4との距離などを切り替えることで、撮像領域8における照明装置3と撮像装置4のシート2に対する相対的な位置関係Pを構築してもよい。シート2と可動部との接続には、例えばクリッパーや吸着ハンドなどのほかシート2のサイズに合わせた型を可動部6にジョイントする方法などが用いられる。一方、シート2が搬送装置7で連続的に搬送している場合、一つの撮像領域8に対して複数の位置関係P1・・・Pnで画像データI1・・・Inを取得するには、シート2における撮像領域8が変化しないようするため、シート2の搬送速度に追従して可動部6を制御する必要がある。この場合、可動制御部6aでは可動部6の位置関係Pにシート2自体の搬送に伴う移動量分を加算せねばならず、制御プログラムの構築が複雑になる。また、可動部の移動速度に対してシート2の搬送速度が速すぎる場合に、可動部6で位置関係P1・・・Pnを構築する以前にシート2が可動部の可動範囲を通過してしまう場合がある。そのため、シート2の搬送と停止を繰り返し行う間欠運転を適用して、搬送停止中に可動部6の可動範囲で撮像可能なシート2の検査エリア9を検査した後、シート2を次の検査エリア9aまで一定量搬送して停止するのが好適である。 The sheet 2 does not necessarily have to be in a conveyed state, and a sheet cut out to a certain size may be placed in a stationary state. Further, by connecting the seat 2 to the movable portion 6 and switching the position and angle of the seat 2 and the distance between the seat 3 and the illumination device 3 and the image pickup device 4, the illumination device 3 and the image pickup device 4 in the image pickup area 8 can be moved relative to the seat 2. The physical positional relationship P may be constructed. For connecting the sheet 2 and the movable portion, for example, a method of joining a mold matching the size of the sheet 2 to the movable portion 6 in addition to a clipper, a suction hand, or the like is used. On the other hand, when the sheet 2 is continuously conveyed by the conveying device 7, in order to acquire the image data I1...In with a plurality of positional relationships P1... In order to prevent the imaging area 8 in 2 from changing, it is necessary to control the movable portion 6 by following the conveyance speed of the sheet 2. In this case, the movable control unit 6a must add the amount of movement associated with the conveyance of the sheet 2 itself to the positional relationship P of the movable unit 6, which complicates the construction of the control program. Further, when the conveying speed of the sheet 2 is too fast with respect to the moving speed of the movable portion, the sheet 2 passes through the movable range of the movable portion before the positional relationship P1... Pn is established by the movable portion 6. There are cases. Therefore, the intermittent operation of repeatedly carrying and stopping the sheet 2 is applied to inspect the inspection area 9 of the sheet 2 that can be imaged in the movable range of the movable portion 6 while the transportation is stopped, and then the sheet 2 is moved to the next inspection area. It is preferable to carry a fixed amount to 9a and stop.

使用する照明装置3、撮像装置4はそのすべてを可動部6に接続する必要はない。例えば、撮像装置4のみを可動部6に接続し、照明装置3は照明光3aをあらゆる方向から照射できるように複数台配置する、あるいは、照明装置3の発光点を任意に制御できるようなものを用いる、などすれば、可動部6に接続した撮像装置4に位置を切り替えるだけで、一つの撮像領域8に対して複数の光学条件による画像の取得が実現できる。 It is not necessary to connect all of the illumination device 3 and the imaging device 4 used to the movable part 6. For example, one in which only the imaging device 4 is connected to the movable portion 6 and a plurality of lighting devices 3 are arranged so that the illumination light 3a can be emitted from all directions, or the light emitting point of the lighting device 3 can be arbitrarily controlled. If, for example, is used, an image can be acquired for one imaging region 8 under a plurality of optical conditions simply by switching the position to the imaging device 4 connected to the movable portion 6.

本発明における検査対象物のシート2および検出対象の欠陥の好適な例としては、(a)樹脂製フィルムなどの透明あるいは半透明物であり、線状の凹または凸が一定長さでシート表面に露出した欠陥、(b)短繊維から構成された不織布、または短繊維と樹脂から構成された不織布であり、凝集した短繊維がその繊維配向を一方向に揃えて束状となりシート表面に露出している欠陥(束欠陥)などが挙げられる。(a)、(b)に示したような欠陥は、欠陥部から反射または透過する光の指向性が欠陥に対する光の照射方向によって大きく異なる(異方性がある)。 A preferred example of the sheet 2 of the inspection object and the defect of the detection object in the present invention is (a) a transparent or semi-transparent material such as a resin film, and the linear concaves or convexes have a constant length and have a sheet surface. Defects exposed to the surface, (b) non-woven fabric composed of short fibers or non-woven fabric composed of short fibers and resin, and aggregated short fibers are aligned in one direction to form a bundle and exposed on the sheet surface Defect (bundle defect) and the like. In the defects as shown in (a) and (b), the directivity of the light reflected or transmitted from the defect portion greatly differs depending on the irradiation direction of the light to the defect (there is anisotropy).

例として樹脂製の透明フィルムに存在するキズ欠陥(線状の凸)について説明する。フィルムはその表面が平滑であるため、欠陥が存在しない正常部の場合には照射した光はフィルム表面で正反射する。この正反射光を撮像可能な位置に撮像装置を配置した状態で、キズ欠陥が存在するフィルムを撮像すると、光を照射する方向に対してキズ欠陥の線方向が直交していればキズ欠陥の凸部分で光が散乱するため、撮像装置で受光できるキズ欠陥部分からの反射光は正常部からの反射光に比べて暗くなり、暗欠陥として画像化できる。しかしながら光を照射する方向に対してキズ欠陥の線方向が平行であればキズ欠陥部分での光の散乱が少なくほぼ正反射するため、正常部分と欠陥部分とで画像上の差は見えなくなる。 As an example, a scratch defect (linear protrusion) existing in a transparent resin film will be described. Since the surface of the film is smooth, the irradiated light is specularly reflected on the surface of the film in the case of a normal portion where no defect exists. When the film having a flaw defect is imaged in a state where the image pickup device is arranged at a position where the specular reflection light can be picked up, if the line direction of the flaw defect is orthogonal to the direction of irradiating the light, Since the light is scattered at the convex portion, the reflected light from the flaw defect portion that can be received by the imaging device becomes darker than the reflected light from the normal portion, and can be imaged as a dark defect. However, if the line direction of the flaw defect is parallel to the direction of irradiating the light, the light is hardly scattered in the flaw defect portion and almost specularly reflected, so that the difference in the image between the normal portion and the defect portion cannot be seen.

このような光の反射・透過光の指向性が欠陥に対する照明光の入射方向によって異なる欠陥(以降、便宜的に異方性欠陥と称する)は、欠陥の形状に対して特定の方向から光を照射して特定の方向から反射または透過光を撮像する光学条件でしか欠陥検出が可能な画像が取得できない。この異方性欠陥を可視化するためには、1つの検査領域に対してあらゆる方向から光を照射し、かつあらゆる方向から撮像をするような多数の光学条件での撮像を行い、光学条件の異なる複数の取得画像から欠陥の有無を判定する必要がある。これに対し、本発明のように照射装置3や撮像装置4を可動部と接続し、照明装置3と撮像装置4のシート2に対する相対的な位置関係Pを切り替えて、一つの撮像領域8に対して複数の位置関係P1・・・Pnで画像データI1・・・Inを取得することにより、複数の光学条件による画像取得を実現する方法は好適である。 Such a defect (hereinafter referred to as an anisotropic defect for convenience) in which the directivity of reflected/transmitted light differs depending on the incident direction of the illumination light with respect to the defect causes light to be emitted from a specific direction with respect to the shape of the defect. An image capable of defect detection can be acquired only under the optical condition of irradiating and imaging reflected or transmitted light from a specific direction. In order to visualize this anisotropic defect, one inspection region is irradiated with light from all directions, and imaging is performed under a large number of optical conditions such that imaging is performed from all directions. It is necessary to determine the presence or absence of a defect from a plurality of acquired images. On the other hand, as in the present invention, the irradiation device 3 and the image pickup device 4 are connected to the movable part, and the relative positional relationship P between the illumination device 3 and the image pickup device 4 with respect to the sheet 2 is switched to one image pickup area 8. On the other hand, a method of realizing image acquisition under a plurality of optical conditions by acquiring image data I1... In with a plurality of positional relationships P1... Pn is preferable.

照射装置3は、シート2の欠陥部を画像上で可視化できるようにするため、シート2に照明光3aを照射する。照射装置3の種類・形態はシート2表面を照射可能であれば限定しないが、より広範囲にかつ均一に照明光3aを照射できることものが好適である。照射する照明光3aの波長についても特に限定しないが、一般的な撮像装置4のセンサの受光波長の領域が可視光である場合が多いことから、照明光3aの波長も可視光域を含んでいることが好適である。また、各撮像毎の再現性を得るために、照明光3aの照度は一定の値にしておくことが好ましい。撮像装置4は、受光素子群を備えており、シート2からの反射光・散乱光・透過光2aを受光し、シート2の撮像を行う。撮像装置4が備える受光素子群は、例えば、モノクロカメラのように単一の受光感度を有する受光素子からなるものを用いてもよいし、カラーカメラのように受光感度の異なる複数の受光素子からなるものを用いてもよい。 The irradiation device 3 irradiates the sheet 2 with the illumination light 3a so that the defective portion of the sheet 2 can be visualized on the image. The type and form of the irradiation device 3 is not limited as long as it can irradiate the surface of the sheet 2, but it is preferable that the irradiation device 3 can uniformly irradiate the illumination light 3a in a wider range. The wavelength of the illumination light 3a to be applied is not particularly limited, but the wavelength of the illumination light 3a includes the visible light region because the wavelength of the light received by the sensor of the general image pickup device 4 is often visible light. Is preferred. Further, in order to obtain reproducibility for each image pickup, it is preferable that the illuminance of the illumination light 3a has a constant value. The imaging device 4 includes a light receiving element group, receives the reflected light/scattered light/transmitted light 2a from the sheet 2, and images the sheet 2. The light receiving element group included in the imaging device 4 may be, for example, a light receiving element having a single light receiving sensitivity such as a monochrome camera, or a plurality of light receiving elements having different light receiving sensitivities such as a color camera. You may use what is.

撮像領域8は検査エリア9に含まれる撮像装置4で撮像する領域であり、検査エリア9のすべてを撮像するように撮像領域8を少しずつずらしながら、それぞれの撮像領域8で複数の位置関係P1・・・Pnで画像データを取得してもよいが、本発明に係るシート欠陥検査装置とは別のシート検査装置Bを設置している場合、このシート検査装置Bで検出した欠陥候補の位置を撮像領域8として、本発明のシート検査装置で検査することもできる。例えば上流に設置したシート検査装置Bが検出すべき欠陥部に加えて、欠陥が存在しない正常な領域も欠陥として検出(いわゆる過検出)しているような場合に、通常は人がシート検査装置Bで欠陥が存在すると判定されたシート上の領域をもう一度目視で確認し、本当に検出すべき欠陥が存在するか再判定するが、本発明のシート欠陥検査装置を用いて、シート検査装置Bで検出した欠陥候補の位置を撮像領域8としてより鮮明に画像化し詳細に検査することで、人による目視再判定をなくすことができる。 The imaging area 8 is an area to be imaged by the imaging device 4 included in the inspection area 9. While the imaging area 8 is gradually shifted so as to image the entire inspection area 9, a plurality of positional relationships P1 are set in each imaging area 8. Although the image data may be acquired by Pn, if a sheet inspection apparatus B different from the sheet defect inspection apparatus according to the present invention is installed, the position of the defect candidate detected by this sheet inspection apparatus B It is also possible to inspect with the sheet inspection apparatus of the present invention as the image pickup area 8. For example, when a sheet inspection apparatus B installed upstream detects a defect area to be detected as well as a normal area having no defect as a defect (so-called over-detection), a person normally inspects the sheet inspection apparatus. The area on the sheet determined to have a defect in B is visually checked again and it is determined again whether there is a defect to be detected. With the sheet defect inspection apparatus of the present invention, the sheet inspection apparatus B is used. By making the position of the detected defect candidate as a clearer image as the imaging region 8 and inspecting it in detail, visual re-determination by a person can be eliminated.

可動部6は、撮像領域8および撮像領域8における照明装置3と撮像装置4のシート2に対する相対的な位置関係P、すなわち撮像領域8を撮像するときの光学条件を決定する。この位置関係Pは、可動部6に接続される可動制御部6aにて任意に決定することができる。可動部6は各位置関係P1・・・PNにおいて必ずしも停止する必要はない。例えば、検査領域8の撮像を継続しながら、図2の破線で示す動作経路10に沿ってシート2に対する照明装置3と撮像装置4との位置関係P1、P2、・・・Pnを、停止を伴わず連続的に切り替えてもよい。このように可動部が位置関係Pを順次変えながら、動画的に画像を撮像することで、より多数の光学条件における撮像領域Pの画像が取得できる。 The movable unit 6 determines an image pickup area 8 and a relative positional relationship P between the illumination device 3 and the image pickup apparatus 4 in the image pickup area 8 with respect to the sheet 2, that is, an optical condition for picking up an image of the image pickup area 8. The positional relationship P can be arbitrarily determined by the movable control unit 6a connected to the movable unit 6. The movable portion 6 does not necessarily have to be stopped in each of the positional relationships P1... PN. For example, while continuing to image the inspection area 8, the positional relationship P1, P2,... Pn between the illumination device 3 and the imaging device 4 with respect to the seat 2 is stopped along the operation path 10 shown by the broken line in FIG. You may switch continuously without it. As described above, the movable portion sequentially changes the positional relationship P while capturing an image in a moving image, so that an image of the imaging region P under a larger number of optical conditions can be acquired.

撮像領域8に対しての照明装置3と撮像装置4との位置関係P1、P2、・・・Pnを構築するための可動部6の動作経路9は、そのすべてを可動制御部6aであらかじめ設定(ティーチング)しておいてもよいし、位置関係P1、P2、・・・Pnを構築するためのパラメータとして、例えば次の(A)、(B)、(C)などを検査対象のシート2の種類や品種、あるいは毎回の検査ごとに設定して動作経路9を決定してもよい(図3参照)。
(A)撮像領域8と照明装置3や撮像装置4との距離L1、L2
(B)シート2の表面に垂直な方向に延びる回転軸11を中心とする回転方向12に照明装置3と撮像装置4とを何度ずつ回転させるか。
(C)照明装置3の照射方向と回転軸11とのなす角度(鋭角)である入射角度θ1と、撮像装置4の撮像方向と回転軸11とのなす角度(鋭角)である撮像角度θ2を何度ずつ変えるか。
The operation path 9 of the movable part 6 for constructing the positional relationship P1, P2,... Pn between the illumination device 3 and the imaging device 4 with respect to the imaging region 8 is set in advance by the movable control part 6a. (Teaching), or as parameters for constructing the positional relationships P1, P2,... Pn, for example, the following (A), (B), (C), etc. are used as the inspection target sheet 2 The operation path 9 may be determined by setting the type and type of the product, or for each inspection (see FIG. 3).
(A) Distances L1 and L2 between the imaging area 8 and the lighting device 3 or the imaging device 4
(B) How many times the illumination device 3 and the imaging device 4 are rotated in the rotation direction 12 about the rotation axis 11 extending in the direction perpendicular to the surface of the sheet 2.
(C) An incident angle θ1 which is an angle (acute angle) formed by the irradiation direction of the illumination device 3 and the rotation axis 11 and an imaging angle θ2 which is an angle (acute angle) formed by the imaging direction of the image pickup apparatus 4 and the rotation axis 11 are defined. How many times will it change?

特に異方性欠点の検出に対する位置関係P1・・・Pnの決定の好ましい例としては、前述(B)の角度を照明装置3と撮像装置4とで同じ回転方向12に同じ回転角度だけ回転させながら、撮像領域8の画像を取得することであり、より好ましくは前述(B)の角度を照明装置3と撮像装置4とで同じ回転方向12に同じ回転角度だけ10〜15°ずつ変えていきながら撮像領域8の画像を取得することである。また、検査対象であるシート2の代表的な製品であるフィルムの表面キズ欠陥や不織布シートの束欠陥の検出に対する位置関係P1・・・Pnの決定の好ましい例としては、前述した異方性欠点の検出に対する位置関係P1・・・Pnの決定の好ましい例における(B)動作に加え、前述した(C)のθ1とθ2を等しくすることが好適である。 Particularly, as a preferable example of determining the positional relationship P1... Pn for detecting anisotropic defects, the angle (B) is rotated by the same rotation angle in the same rotation direction 12 in the illumination device 3 and the imaging device 4. However, the image of the imaging region 8 is acquired, and more preferably, the angle of (B) is changed in the same rotation direction 12 in the illumination device 3 and the imaging device 4 by the same rotation angle by 10 to 15°. While acquiring the image of the imaging region 8. Further, as a preferable example of determining the positional relationship P1... Pn for the detection of the surface flaw defect of the film, which is a typical product of the inspection target sheet 2, and the bundle defect of the non-woven sheet, the anisotropic defect described above In addition to the operation (B) in the preferred example of determining the positional relationship P1... Pn for the detection of (1), it is preferable to make θ1 and θ2 of (C) equal to each other.

可動部6には例えばロボットを用いることができ、直交座標型、極座標型、円筒座標型垂直多関節型など適用可能であるが、動きの自由度が高く広い可動範囲を確保できる4軸以上の垂直多関節ロボットを用いることが好適である。また、複数のロボットやアクチュエータなどを組み合わせで1つの可動部6を構成してもよい。 A robot, for example, can be used as the movable portion 6, and orthogonal coordinate type, polar coordinate type, cylindrical coordinate type vertical multi-joint type, etc. can be applied, but it has a high degree of freedom of movement and can secure a wide movable range. It is preferable to use a vertical articulated robot. Further, one movable part 6 may be configured by combining a plurality of robots and actuators.

可動部6は、定められた位置関係P1・・・Pnとなるように照明装置3や撮像装置4を動かすが、必ずしも位置関係P1・・・Pnの動作経路での撮像のみだけを行うのではない。例えば、位置関係P1・・・Pnのそれぞれで撮像した撮像領域8の画像データ群I1・・・Inの画像処理装置5での判定結果(後述)により位置関係P1・・・Pnとは異なる新たな位置関係P+を構築する動作経路を設定してもよい。この時、位置関係P1・・・Pnのそれぞれで撮像した撮像領域8の画像データ群I1・・・Inに欠陥が含まれる画像データIzが存在した場合、欠陥をより鮮明に画像化し欠陥のサイズや形状・濃度などの特徴をより正確に計測できるようにするための例として、画像データIzを撮像した位置関係Pzを新たな位置関係P+を構築するときの基準位置とするのが好適である。また、位置関係P1・・・Pnのそれぞれで撮像した撮像領域8の画像データ群I1・・・Inに欠陥が含まれていなかった場合でも、撮像領域8に本当に欠陥がないかを再チェックするなどの目的で、位置関係P1・・・Pnとは異なる新たな位置関係P++を構築して同じ撮像領域8を別の光学条件で画像を取得してもよい。 The movable unit 6 moves the illumination device 3 and the image pickup device 4 so as to have a predetermined positional relationship P1... Pn, but it is not always necessary to perform imaging only in the operation path of the positional relationship P1... Pn. Absent. For example, depending on the determination result (described later) of the image data group I1... In of the imaging region 8 captured by each of the positional relationships P1... It is also possible to set an operation path for constructing a simple positional relationship P+. At this time, when image data Iz including a defect is present in the image data group I1... In of the imaging region 8 imaged at each of the positional relationships P1... Pn, the defect is more clearly imaged and the size of the defect is increased. As an example for enabling more accurate measurement of characteristics such as shape, density, and the like, it is preferable to use the positional relationship Pz obtained by capturing the image data Iz as the reference position when constructing a new positional relationship P+. .. Further, even if the image data group I1... In of the imaging area 8 imaged with each of the positional relationships P1... Pn does not include a defect, it is rechecked whether the imaging area 8 is really defective. For the purpose of, for example, a new positional relationship P++ different from the positional relationship P1... Pn may be constructed to acquire an image of the same imaging region 8 under different optical conditions.

画像処理装置5は、撮像領域8に対して可動部6で構築した複数の位置関係P1・・・Pnのそれぞれで取得した画像データ群I1・・・Inを処理して輝度特徴量データを取得し、得られた結果からシート2の撮像領域8に欠陥が存在するか否かを判別する。画像処理装置5は、専用の画像処理ソフトウェアを備えたPC、あるいは画像処理用のハードウェアなどを用いてもよいし、代わって撮像装置4にCPUが備わり撮像と画像処理が一体化して行えるものを用いてもよい。図4に画像処理装置5で行う欠陥検出および判別の画像処理フローの一例を示す。まず、U1の輝度特徴量算出処理では複数の位置関係P1・・・Pnのそれぞれで撮像領域8を撮像し取得した画像データ群I1・・・Inの対し、画像の輝度データL1・・・Lnを算出する処理を実行する。ここで算出する輝度データLには、例えば画像の平均輝度、最大・最小輝度、輝度の標準偏差などを用いられるほか、画像データに対するフィルタ処理、膨張・収縮処理、減算処理などの組み合わせて得られる前処理画像を2値化処理した際の白画素の残留面積や個数なども用いることができる。特に後者の手法は、画像データ群I1・・・Inの各画像で画像全体の明るさにばらつきが生じるなどの場合に好適である。また、輝度データLは必ずしも1つである必要はなく、前述した画像処理などで得られるデータを複数用いてもよい。 The image processing device 5 processes the image data group I1...In acquired for each of the plurality of positional relationships P1...Pn constructed by the movable unit 6 with respect to the imaging region 8, and acquires the brightness feature amount data. Then, based on the obtained result, it is determined whether or not there is a defect in the imaging region 8 of the sheet 2. The image processing device 5 may use a PC equipped with dedicated image processing software, or hardware for image processing, or the like, instead of which the imaging device 4 has a CPU and can perform imaging and image processing integrally. May be used. FIG. 4 shows an example of an image processing flow of defect detection and determination performed by the image processing device 5. First, in the brightness feature amount calculation process of U1, for the image data group I1...In acquired by imaging the imaging region 8 at each of a plurality of positional relationships P1...Pn, the brightness data L1...Ln of the image The process of calculating is executed. For the brightness data L calculated here, for example, the average brightness of the image, the maximum/minimum brightness, the standard deviation of the brightness, and the like are used, and the brightness data L is obtained by combining filter processing, expansion/contraction processing, subtraction processing, and the like on the image data. The residual area and the number of white pixels when the preprocessed image is binarized can also be used. In particular, the latter method is suitable when the brightness of the entire image varies among the images in the image data group I1... In. Further, the brightness data L does not necessarily have to be one, and a plurality of data obtained by the above-described image processing may be used.

撮像領域8に欠陥が含まれており、取得した画像データ群I1・・・Inのいずれか1つ以上で欠陥が写っている場合、画像データ群I1・・・Inで輝度変化は大きくなる。一方、撮像領域8に欠陥が含まれておらず、取得した画像データ群I1・・・Inのいずれにも欠陥が写っていない場合、画像データ群I1・・・Inで輝度変化は少ない。 When a defect is included in the imaging region 8 and a defect appears in any one or more of the acquired image data groups I1...In, the luminance change is large in the image data group I1...In. On the other hand, when the imaging area 8 does not include any defect and no defect is shown in any of the acquired image data groups I1...In, the luminance change is small in the image data group I1...In.

これらを判断するための一例として、U2の輝度特徴量差分処理では撮像領域8を位置関係P1・・・Pnで撮像し得られた画像データ群I1・・・Inのうち注目する画像データIkの輝度データLkとLkを除くそのほかの画像データI1・・・Ik(Ikは除く)の各輝度データL1・・・Lk(Lkは除く)とでそれぞれ大きさの差(絶対値)を求め、Lkに対する差分データS1・・・Snを算出する。U3の輝度特徴量差分データ判定処理は、U2で算出した差分データS1・・・Snをあらかじめ定めた第1の閾値th1と比較し、th1より大きい差分データSを欠陥候補データとしてカウントする。U4ではS1・・・Snのうち欠陥候補データと判定された個数Gをあらかじめ定めた第2の閾値th2と比較して欠陥候補データの個数Gがth2よりも大きい場合に、画像データIkに欠陥が含まれていると判定し、シート2における画像データIkの撮像領域8に欠陥が存在していると判別する。 As an example for determining these, in the luminance feature amount difference processing of U2, the image data Ik of interest among the image data group I1... In obtained by imaging the imaging region 8 with the positional relationship P1... Pn The difference (absolute value) between the luminance data Lk and the other luminance data L1...Lk (excluding Ik) of the other image data I1...Ik (excluding Ik) excluding Lk is calculated to obtain Lk. The difference data S1... In the luminance feature amount difference data determination process of U3, the difference data S1... Sn calculated in U2 is compared with a predetermined first threshold th1, and the difference data S larger than th1 is counted as defect candidate data. In U4, the number G determined to be defect candidate data among S1... Sn is compared with a predetermined second threshold value th2, and when the number G of defect candidate data is larger than th2, a defect is found in the image data Ik. Is included, and it is determined that there is a defect in the imaging area 8 of the image data Ik on the sheet 2.

画像化された欠陥についてはその形状や面積・濃度などに関する特徴量を画像処理などで算出し、算出した特徴量に関する規格や閾値を定めてシート2の製品品質に影響する欠陥か否かを判定することもできる。その他、例えば製品品質に影響する欠陥が含まれる画像の欠陥部がラベリングした画像や欠陥部が存在しない正常画像を教師とした機械学習等を用いて判別し、シート2の製品品質に影響する欠陥か否かを判定することもできる。 For the imaged defect, the feature amount related to the shape, area, density, etc. is calculated by image processing, etc., and the standard or threshold value for the calculated feature amount is set to determine whether or not the defect affects the product quality of the sheet 2. You can also do it. In addition, for example, a defect that affects the product quality of the sheet 2 is determined by using machine learning or the like in which an image in which a defective part of an image including a defect that affects product quality is labeled or a normal image in which a defective part does not exist is used as a teacher. It is also possible to determine whether or not.

本発明は、シート状物の外観検査に、好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for appearance inspection of a sheet-shaped material.

1 シート欠陥検査装置
2 シート
3 照射装置
4 撮像装置
5 画像処理装置
6(6’、6’’) 可動部
7 搬送装置
8 撮像領域
9 検査エリア
10 動作経路
11 回転軸
12 回転方向
DESCRIPTION OF SYMBOLS 1 sheet defect inspection apparatus 2 sheet 3 irradiation apparatus 4 imaging apparatus 5 image processing apparatus 6 (6', 6'') movable part 7 transport apparatus 8 imaging area 9 inspection area 10 operation path 11 rotating shaft 12 rotating direction

Claims (11)

シートに照明光を照射する照明手段と、
前記照明手段から照射された照明光が前記シートで反射または透過した光を撮像する撮像手段と、
前記シート、前記撮像手段に備えられた撮像装置、および前記照明手段に備えられた照射装置のいずれか1つ以上に接続され、前記撮像手段で撮像する撮像領域は同じままで、前記シートに対する前記照射装置および前記撮像装置の相対的な位置関係を切り替える可動手段と、
前記可動手段により切り替えられた複数の前記位置関係のそれぞれで前記撮像手段により撮像された画像データを処理して、複数の画像データのそれぞれに対応した輝度に関する特徴量である輝度特徴量データを得る画像処理手段と、
前記輝度特徴量データから、前記撮像領域に欠陥が含まれるか否かを判別する欠陥判定手段と、を備えた、シート欠陥検査装置。
Illumination means for illuminating the sheet with illumination light,
Imaging means for imaging the light reflected or transmitted by the sheet, the illumination light emitted from the illumination means,
Any one or more of the sheet, the image pickup device provided in the image pickup unit, and the irradiation device provided in the illumination unit are connected, and the image pickup region picked up by the image pickup unit remains the same. Movable means for switching the relative positional relationship between the irradiation device and the imaging device;
The image data captured by the image capturing unit is processed in each of the plurality of positional relationships switched by the movable unit, and the brightness feature amount data that is the feature amount regarding the brightness corresponding to each of the plurality of image data is obtained. Image processing means,
A sheet defect inspection device, comprising: a defect determination unit that determines whether or not a defect is included in the imaging region based on the brightness feature amount data.
前記撮像領域が、別のシート欠陥検査装置によって得られた前記シート上に存在する欠陥の座標データを参照して決定される、請求項1のシート欠陥検査装置。 The sheet defect inspection apparatus according to claim 1, wherein the image pickup area is determined with reference to coordinate data of a defect existing on the sheet obtained by another sheet defect inspection apparatus. 前記可動手段が、前記各位置関係で停止せずに動作を続ける、請求項1または2のシート欠陥検査装置。 3. The sheet defect inspection apparatus according to claim 1, wherein the movable means continues to operate without stopping at each of the positional relationships. 前記可動手段が、前記撮像領域から前記シートの表面に垂直な方向に延びる回転軸を中心として、前記撮像手段と前記照明手段とを同じ回転方向に同じ回転角度だけ回転させる、請求項1〜3のいずれかのシート欠陥検査装置。 4. The movable means rotates the imaging means and the illuminating means in the same rotation direction by the same rotation angle about a rotation axis extending in a direction perpendicular to the surface of the sheet from the imaging area. Sheet defect inspection device of any of. 前記照明手段の照射方向と前記回転軸とのなす角度(鋭角)である入射角度と、前記撮像手段の撮像方向と前記回転軸とのなす角度(鋭角)である撮像角度とが等しい、請求項4のシート欠陥検査装置。 The incident angle that is an angle (acute angle) formed by the irradiation direction of the illumination unit and the rotation axis is equal to the imaging angle that is an angle (acute angle) formed by the imaging direction of the imaging unit and the rotation axis. 4 sheet defect inspection device. 前記可動手段が、4軸以上の自由度を有した垂直多関節ロボットである、請求項1〜5のいずれかのシート欠陥検査装置。 The sheet defect inspection apparatus according to claim 1, wherein the movable means is a vertical articulated robot having four or more degrees of freedom. 前記欠陥判定手段が、複数の前記輝度特徴量データL1・・・Ln(nは3以上の整数)の中に以下の条件(イ)および条件(ロ)を満たす輝度特徴量Lkが存在する場合に、その輝度特徴量Lkに対応する画像データIkに欠陥が含まれると判定する、請求項1〜6のいずれかのシート欠陥検査装置。
条件(イ):前記輝度特徴量データL1・・・Lnの中に、輝度特徴量Lkとの大きさの差(絶対値)が所定の閾値よりも大きい他の輝度特徴量データが存在する。
条件(ロ):条件(イ)を満たす他の輝度特徴量データの数が所定の数よりも多い。
In the case where the defect determining means has a brightness feature amount Lk satisfying the following condition (a) and condition (b) in the plurality of brightness feature amount data L1... Ln (n is an integer of 3 or more): 7. The sheet defect inspection apparatus according to claim 1, wherein the image data Ik corresponding to the luminance feature amount Lk is determined to include a defect.
Condition (a): In the brightness feature amount data L1... Ln, there is another brightness feature amount data whose difference (absolute value) in size from the brightness feature amount Lk is larger than a predetermined threshold value.
Condition (b): The number of other brightness feature amount data satisfying the condition (b) is larger than the predetermined number.
前記可動手段が、前記複数の画像データのいずれかに欠陥が含まれていた場合に、その欠陥が含まれる画像データを撮像した時の前記位置関係を基準として、新たな複数の位置関係で動作をする、請求項1〜7のいずれかのシート欠陥検査装置。 When any of the plurality of image data includes a defect, the movable unit operates in a plurality of new positional relationships based on the positional relationship when the image data including the defect is captured. The sheet defect inspection apparatus according to claim 1, wherein 前記可動手段が、前記複数の画像データのいずれにも欠陥が含まれていない場合に、前記複数の位置関係とは異なる新たな複数の位置関係で動作をする、請求項1〜8のいずれかのシート欠陥検査装置。 9. The movable unit operates according to a plurality of new positional relationships different from the plurality of positional relationships when a defect is not included in any of the plurality of image data. Sheet defect inspection device. 検査対象であるシートが透明あるいは半透明物であり、線状の凹または凸が一定長さでシート表面に露出した欠陥が存在するか否かを検査する、請求項1〜9のいずれかのシート欠陥検査装置。 The sheet to be inspected is a transparent or translucent material, and it is inspected whether or not there is a defect in which linear concaves or convexes are exposed on the surface of the sheet with a constant length, and the inspection is performed. Sheet defect inspection system. 検査対象であるシートが、短繊維から構成された不織布、または短繊維と樹脂から構成された不織布であり、凝集した短繊維がその繊維配向を一方向に揃えて束状となりシート表面に露出している欠陥が存在するか否かを検査する、請求項1〜9のいずれかのシート欠陥検査装置。 The sheet to be inspected is a non-woven fabric composed of short fibers or a non-woven fabric composed of short fibers and a resin, and the aggregated short fibers are aligned in one direction to form a bundle and exposed on the sheet surface. 10. The sheet defect inspection device according to claim 1, which inspects whether or not there is a defect.
JP2018242781A 2018-12-26 2018-12-26 Sheet defect inspection device Active JP7151469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018242781A JP7151469B2 (en) 2018-12-26 2018-12-26 Sheet defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018242781A JP7151469B2 (en) 2018-12-26 2018-12-26 Sheet defect inspection device

Publications (2)

Publication Number Publication Date
JP2020106295A true JP2020106295A (en) 2020-07-09
JP7151469B2 JP7151469B2 (en) 2022-10-12

Family

ID=71448759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242781A Active JP7151469B2 (en) 2018-12-26 2018-12-26 Sheet defect inspection device

Country Status (1)

Country Link
JP (1) JP7151469B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862069A (en) * 2020-07-28 2020-10-30 江南大学 Circular weft knitting horizontal bar defect online detection method based on gray gradient method
US11205262B2 (en) 2020-07-28 2021-12-21 Jiangnan University Online detection method of circular weft knitting stripe defects based on gray gradient method
JP7494652B2 (en) 2020-08-25 2024-06-04 株式会社プロテリアル Apparatus and method for preparing for visual inspection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502009A (en) * 1984-02-14 1986-09-11 デイフラクト リミテツド Panel surface inspection method and device
JPH04109153A (en) * 1990-08-28 1992-04-10 Mazda Motor Corp Surface defect inspecting device
JPH109838A (en) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd Processing method of image and detecting method of defect of surface of substance
JP2013007589A (en) * 2011-06-23 2013-01-10 Aisin Seiki Co Ltd Defect detection device and its method
JP2013160531A (en) * 2012-02-01 2013-08-19 Seiko Epson Corp Inspection apparatus, robot apparatus, inspection method, and inspection program
JP2013160745A (en) * 2012-02-09 2013-08-19 Toray Ind Inc Method and device for inspecting porous carbon fiber sheet-like material
JP2015114186A (en) * 2013-12-11 2015-06-22 セイコーエプソン株式会社 Visualization method of surface unevenness state, and visualization apparatus of surface unevenness state

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502009A (en) * 1984-02-14 1986-09-11 デイフラクト リミテツド Panel surface inspection method and device
JPH04109153A (en) * 1990-08-28 1992-04-10 Mazda Motor Corp Surface defect inspecting device
JPH109838A (en) * 1996-06-25 1998-01-16 Matsushita Electric Works Ltd Processing method of image and detecting method of defect of surface of substance
JP2013007589A (en) * 2011-06-23 2013-01-10 Aisin Seiki Co Ltd Defect detection device and its method
JP2013160531A (en) * 2012-02-01 2013-08-19 Seiko Epson Corp Inspection apparatus, robot apparatus, inspection method, and inspection program
JP2013160745A (en) * 2012-02-09 2013-08-19 Toray Ind Inc Method and device for inspecting porous carbon fiber sheet-like material
JP2015114186A (en) * 2013-12-11 2015-06-22 セイコーエプソン株式会社 Visualization method of surface unevenness state, and visualization apparatus of surface unevenness state

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862069A (en) * 2020-07-28 2020-10-30 江南大学 Circular weft knitting horizontal bar defect online detection method based on gray gradient method
US11205262B2 (en) 2020-07-28 2021-12-21 Jiangnan University Online detection method of circular weft knitting stripe defects based on gray gradient method
WO2022021774A1 (en) * 2020-07-28 2022-02-03 江南大学 Online detection method for circular weft knitting horizontal stripe defects based on grayscale gradient method
CN111862069B (en) * 2020-07-28 2024-05-28 江南大学 Circular weft knitting horizontal bar defect online detection method based on gray gradient method
JP7494652B2 (en) 2020-08-25 2024-06-04 株式会社プロテリアル Apparatus and method for preparing for visual inspection

Also Published As

Publication number Publication date
JP7151469B2 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US6011620A (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
JP5825278B2 (en) Defect inspection apparatus and defect inspection method
JP5031691B2 (en) Surface flaw inspection device
EP1943502B1 (en) Apparatus and methods for inspecting a composite structure for defects
JP7151469B2 (en) Sheet defect inspection device
JP2015537211A (en) Measurement of fiber orientation of carbon fiber materials and production of objects in carbon fiber composite structures
JP2012531598A (en) Apparatus and method for inspecting defects in discrete low-rigidity transparent or translucent bodies
US20170131219A1 (en) Wafer inspection apparatus and wafer inspection method
WO2015174114A1 (en) Substrate inspection device
JP4932595B2 (en) Surface flaw inspection device
US10955354B2 (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP2015068670A (en) Device and method for inspecting defect of sheet-like matter
JP2014240766A (en) Surface inspection method and device
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP2020101396A (en) Device for detecting fault having rubber on topping rubber sheet
JP2001124538A (en) Method and device for detecting defect in surface of object
JP2014186030A (en) Defect inspection device
JP2016080517A (en) Surface inspection device
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP2632463B2 (en) Winding bobbin inspection device
KR102528464B1 (en) Vision Inspecting Apparatus
JP6996363B2 (en) Defect inspection equipment and manufacturing method for sheet-like materials
JP2015225042A (en) Defect inspection device and defect inspection method
JP2017026400A (en) Inspection device and manufacturing method of article
JP2022108464A (en) Device for detecting rubber adhesion failure on topping rubber sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R151 Written notification of patent or utility model registration

Ref document number: 7151469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151