JPH04109153A - Surface defect inspecting device - Google Patents

Surface defect inspecting device

Info

Publication number
JPH04109153A
JPH04109153A JP22750090A JP22750090A JPH04109153A JP H04109153 A JPH04109153 A JP H04109153A JP 22750090 A JP22750090 A JP 22750090A JP 22750090 A JP22750090 A JP 22750090A JP H04109153 A JPH04109153 A JP H04109153A
Authority
JP
Japan
Prior art keywords
light
video signal
light irradiation
camera
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22750090A
Other languages
Japanese (ja)
Other versions
JP2938948B2 (en
Inventor
Kazumoto Tanaka
一基 田中
Takeshi Sugihara
毅 杉原
Tatsumi Makimae
槙前 辰己
Hidenori Ishiide
石井出 秀則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22750090A priority Critical patent/JP2938948B2/en
Publication of JPH04109153A publication Critical patent/JPH04109153A/en
Application granted granted Critical
Publication of JP2938948B2 publication Critical patent/JP2938948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To simply and correctly detect a defect section difficult to detect by changing at least one of the luminosity and wavelength of the light outgoing from a light source in at least two directions, and detecting the information of the defect section via the reflected light from the inspected face in each direction. CONSTITUTION:A light radiating means 23 and a CCD camera 24 serving as a video signal generating means are fitted to the tip arm 22 of a robot device 21. The means 23 is switched to the first position and the second position rotat ed by 90 deg. with respect to the first position, for example, by a light radiating means controller 34. The inspection of a defect section 28 is performed at the first position of the means 23. The illuminance on the light radiation region is gradually changed when the means 23 is located at the first position, and it is photographed by the camera 24. The change of the illuminance on the light radiation region when the means 23 is located at the second position is photographed by the camera 24. The image photographed by the camera 24 is converted into a video signal and outputted to an image processor 33. The processor 33 sends the processed data to a host computer 31 for analysis.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被検査面に光を照射してその反射光から塗装欠
陥等の表面欠陥の有無を検出する表面欠陥検査装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a surface defect inspection device that irradiates a surface to be inspected with light and detects the presence or absence of surface defects such as paint defects from the reflected light.

(従来の技術) 自動車等の車両の製造ラインにおいては、一般に、車体
の塗装は製造ライン中に設けた塗装ステーションにおい
て行なわれる。
(Prior Art) In a manufacturing line for vehicles such as automobiles, painting of vehicle bodies is generally performed at a painting station provided in the manufacturing line.

ところで、車体の塗装後の塗装欠陥の検査は、従来より
、人間の目視検査によって行なわれていた。この検査で
は、検査者は塗膜面から微小な欠陥部を発見しなければ
ならないため、検査者の神経的負担が大きく、また肉体
的にもきびしい作業が強いられていた。
By the way, inspection for paint defects after painting a vehicle body has conventionally been carried out by human visual inspection. In this inspection, the inspector must find minute defects on the paint surface, which places a heavy burden on the inspector's nerves and also forces them to perform physically demanding work.

塗装欠陥の検査におけるこのような事情に鑑みて、物体
の被検査面に光を照射し、その反射光をスクリーン上に
投影させ、その投影像の鮮映度から被検査面の表面欠陥
を自動的に検出するようにした表面検査装置か提案され
ている(たとえば、特開昭62−233710号公報参
照)。
In view of these circumstances in inspection of paint defects, we have developed a system that irradiates light onto the surface of an object to be inspected, projects the reflected light onto a screen, and automatically detects surface defects on the surface to be inspected based on the sharpness of the projected image. A surface inspection device has been proposed that detects the surface of the surface (see, for example, Japanese Patent Laid-Open No. 62-233710).

この表面検査装置を車体の塗装欠陥の検出に応用すれば
、上記した塗装欠陥の自動検出か可能になり、従来の目
視による検査作業から検査者を解放することかできる。
If this surface inspection device is applied to the detection of paint defects on vehicle bodies, the above-mentioned paint defects can be automatically detected, and the inspector can be freed from the conventional visual inspection work.

(発明が解決しようとする課題) ところで、上記の光照射による表面検査技術を車体塗装
の自動検査に応用する場合、第4図に示すように、塗膜
面lの鏡面反射性を利用し、この塗膜面1に光源2から
線状(あるいはスポ’y h状)の光を照射して、塗膜
面1にビデオカメラ3のカメラ視野Fよりも充分に小さ
い光照射領域を作り、この先頚射領域からの反射光をビ
デオカメラ3により受光する装置か考えられる。
(Problems to be Solved by the Invention) By the way, when applying the above-mentioned surface inspection technology using light irradiation to automatic inspection of car body coatings, as shown in FIG. This coating surface 1 is irradiated with linear (or spot-shaped) light from the light source 2 to create a light irradiation area on the coating surface 1 that is sufficiently smaller than the camera field of view F of the video camera 3. A device that receives reflected light from the cervical region using a video camera 3 may be considered.

この装置では、ビデオカメラ3て作成される受光画像は
第5図のように、塗膜面1の光照射領域から反射した光
かカメラ視野F内に入り、カメラ視野F(第4図参照)
をカバーする全体として暗い受光画像5の中に、塗膜面
1の光照射領域が明るい線画像6となってとらえられる
。そして、この光照射領域中に塗装の欠陥部7(第4図
参照)かあった場合、この塗装の欠陥部7において光の
正反射方向か変化し、上記欠陥部7かなければ正常に反
射して上記カメラ視野F内に入るへきはずの光かカメラ
視野Fに入らなくなる。このため、上記の明るい線画像
6の中に黒く欠陥部7(第5図参照)か写ることになる
In this device, as shown in Fig. 5, the light-receiving image created by the video camera 3 is reflected from the light irradiation area of the coating surface 1 and enters the camera field of view F (see Fig. 4).
The light-irradiated area of the coating surface 1 is captured as a bright line image 6 in the light-receiving image 5 which is dark as a whole. If there is a paint defect 7 (see Figure 4) in this light irradiation area, the direction of specular reflection of the light changes at this paint defect 7, and if there is no defect 7, the light will be reflected normally. As a result, the light that should have entered the camera field of view F no longer enters the camera field of view F. Therefore, a black defective portion 7 (see FIG. 5) appears in the above-mentioned bright line image 6.

したがって、この黒(写る欠陥部7を画像処理技術によ
り識別することによって欠陥部7を検出することかでき
る。また、この装置によれば、塗膜面1を線状に狭く照
射するので、照射光量か少なく、光照射領域に入射する
光か欠陥部7て正反射方向が変化して、ビデオカメラ3
に入る光量か欠陥部7とそうでない部分とで明瞭に差か
でき、微小な欠陥をも検出することができることになる
Therefore, the defective part 7 can be detected by identifying the defective part 7 that appears in black (image processing technology).Furthermore, according to this device, since the coating surface 1 is irradiated narrowly in a linear manner, the irradiation The amount of light is small, and the direction of specular reflection changes due to the light incident on the light irradiation area due to the defect 7, and the video camera 3
The amount of light entering can be clearly differentiated between the defective portion 7 and the non-defected portion, and even minute defects can be detected.

しかし、上記装置のように、狭い光照射によれば、カメ
ラ視野Fに対して光照射領域か小さすぎ、一方、ビデオ
カメラ3かとらえることかできる欠陥部7は光照射領域
(すなわち、受光画像5中の線画像6)の内部か、近辺
てしがないので、常にカメラ視野Fの一部のみを使用し
た表面検査しかできず、検査能率に欠けるという問題か
あった。
However, with narrow light irradiation as in the above device, the light irradiation area is too small with respect to the camera field of view F, and on the other hand, the defect 7 that can be captured by the video camera 3 is the light irradiation area (i.e., the light reception image Since there is no image inside or near the line image 6) in 5, it is always possible to perform surface inspection using only a part of the camera field of view F, resulting in a problem of a lack of inspection efficiency.

また、欠陥部7か上記のようなスポット状のものではな
く、塗膜面1が緩やかに盛り上がって一定の長さに渡っ
て連続しているようなものである場合、上記線画像6の
長手方向かこの欠陥部7の長さ方向に合致すると、上記
欠陥部7は緩やかに盛り上がっているに過ぎないので、
欠陥部7による光の正反射方向の変化が生じてもビデオ
カメラ3に入る光量が欠陥部7とそうでない部分とで明
瞭な差かできにくく、欠陥部7の検出か困難になる。
In addition, if the defect 7 is not a spot-like one as described above, but the coating surface 1 is gently raised and continuous over a certain length, the longitudinal line image 6 If the direction matches the length direction of the defective part 7, the defective part 7 is only gently raised, so
Even if a change occurs in the direction of specular reflection of light due to the defective portion 7, it is difficult to clearly differentiate the amount of light entering the video camera 3 between the defective portion 7 and the non-defective portion, making it difficult to detect the defective portion 7.

さらに、被検査面か自動車等の車両の車体であるときに
は、第4図の光源2ならびにビデオカメラ3をロホノト
装置(図示せず。)で車体表面に沿って移動させながら
検査を行うことになる。しかし、この場合には、車体は
多(の曲面からなるので、これらの曲面部に検査箇所が
移動すると、光源2によって車体表面にできている線状
の照射形状が歪む。このため、ビデオカメラ3の受光画
像5中の線画像6も第6図のように歪み、甚たしい場合
にはカメラ視野Fから逸脱することになる。
Furthermore, when the surface to be inspected is the body of a vehicle such as an automobile, the inspection is performed while moving the light source 2 and video camera 3 shown in FIG. 4 along the surface of the vehicle using a Rohonoto device (not shown). . However, in this case, since the car body consists of many curved surfaces, if the inspection point moves to these curved surfaces, the linear illumination shape formed on the car body surface by the light source 2 will be distorted. The line image 6 in the received light image 5 of No. 3 is also distorted as shown in FIG. 6, and in severe cases it will deviate from the camera field of view F.

このため、自動車等の車両の車体では、塗膜面1の正常
な検査か困難で、常にカメラ視野F内に線画像6が収ま
るようにするためには、ロホノト装置の制御か複雑にな
るという問題があった。
For this reason, it is difficult to properly inspect the coating surface 1 on the body of a vehicle such as an automobile, and the control of the Rohonoto device is complicated in order to ensure that the line image 6 always falls within the camera field of view F. There was a problem.

以上のような難点を解消するために、第7図に示すよう
に、塗膜面lを光源2′によってカメラ視野Fと同等も
しくはそれ以上の範囲で広(照射するようにし、この広
い光照射領域をビデオカメラ3によってとらえることが
考えられる。
In order to solve the above-mentioned difficulties, as shown in Fig. 7, the coating surface L is irradiated over a wide range (equivalent to or larger than the camera field of view F) by the light source 2', and this wide light irradiation is carried out. It is conceivable that the area is captured by a video camera 3.

しかし、このように広く塗膜面1を照射すると照射光量
が大幅に増加するので、欠陥部7での光のハレーション
を生じてビデオカメラ3が微小な欠陥部7を明確にとら
えることかできなくなる。
However, when the coating surface 1 is irradiated widely in this way, the amount of irradiated light increases significantly, which causes light halation at the defective areas 7, making it impossible for the video camera 3 to clearly capture the minute defective areas 7. .

たとえば光[2’からの光L+、Lxは塗膜面Iで反射
し、その反射光がビデオカメラ3の受光面に入るか、光
照射領域に欠陥部7がないとすると、受光面に入る光量
はとの部分でも同じであるから、受光画像は一面明るい
画像となっている。
For example, the lights L+ and Lx from the light [2' are reflected by the coating surface I, and the reflected light enters the light-receiving surface of the video camera 3, or if there is no defect 7 in the light irradiation area, it enters the light-receiving surface. Since the amount of light is the same in both parts, the light-receiving image is entirely bright.

これに対して、光照射領域に欠陥部7があると、この欠
陥部7で上記光照射領域に入射する光の正反射方向が変
化し、欠陥部7に対応する受光面部分の入射光量が減っ
て黒い点として受光画像中に写るはずである。
On the other hand, if there is a defect 7 in the light irradiation area, the direction of specular reflection of the light incident on the light irradiation area changes at this defect 7, and the amount of incident light on the light receiving surface portion corresponding to the defect 7 changes. It should decrease and appear as a black dot in the received light image.

しかし、光#2′は、上記のように、広く塗膜面1を照
射しているので、光源2′の他の部分からの光L3.L
、か欠陥部7,7で反射して、光量か減少するはずの受
光面部分に入る。
However, since the light #2' widely irradiates the coating surface 1 as described above, the light L3. L
, the light is reflected by the defective parts 7, 7 and enters the light-receiving surface where the amount of light is supposed to decrease.

したがって、受光画像中の明るさが大きくは低下せず、
このため、欠陥部7.7か微小であったり、塗膜面1が
緩やかに盛り上がって一定の長さに渡って連続している
ときには、欠陥部7,7により正反射方向に変化が生じ
ても欠陥部7,7とそうでない部分との明るさに差が生
じにくくなり、画像処理しても欠陥部7,7を識別する
ことができなくなる。
Therefore, the brightness in the received light image does not decrease significantly,
Therefore, if the defect 7.7 is minute or if the coating surface 1 is gently raised and continuous over a certain length, the defect 7.7 will cause a change in the direction of specular reflection. Also, a difference in brightness between the defective portions 7, 7 and the non-defective portions becomes less likely to occur, and the defective portions 7, 7 cannot be identified even by image processing.

本発明の目的は、曲面を含む被検査面に存在する欠陥部
や緩やかな盛り上がりを有する欠陥部等、検出の困難な
欠陥部を簡単かつ正確に検出することができる表面欠陥
検査装置を提供することである。
An object of the present invention is to provide a surface defect inspection device that can easily and accurately detect defects that are difficult to detect, such as defects that exist on a surface to be inspected, including curved surfaces, and defects that have a gentle bulge. That's true.

(課題を解決するための手段) このため、本発明は、平面状の光の出射面に対して複数
の光源か配置されて被検査面を照射する光照射手段と、
この光照射手段の光の出射面の任意の方向に上記出射面
から出射する光の光度もしくは波長の少なくとも一方を
変化させる光照射制御手段と、上記被検査面の光照射領
域からの反射光をとらえる受光画面を有し、この受光画
面にとらえられた上記光照射領域内の受光画像をビデオ
信号に変換するビデオ信号発生手段と、上記出射面から
出射する光の光度もしくは波長の少なくとも一方を上記
光照射手段の少なくとも2つの方向に変化させ、各方向
についてビデオ信号発生手段からそれぞれ出力するビデ
オ信号について被検査面に存在する欠陥部の情報を検出
し、各ビデオ信号についてそれぞれ検出した欠陥部の検
出情報を総合して上記欠陥部を検出する画像情報処理手
段とを備えたことを特徴としている。
(Means for Solving the Problems) Therefore, the present invention provides a light irradiation means for irradiating a surface to be inspected by disposing a plurality of light sources on a planar light emission surface;
a light irradiation control means for changing at least one of the luminous intensity or the wavelength of the light emitted from the light emitting surface in any direction of the light emitting surface of the light emitting means; a video signal generating means for converting a light-receiving image captured by the light-receiving screen in the light irradiation area into a video signal; The light irradiation means is changed in at least two directions, information on the defective portion existing on the surface to be inspected is detected from the video signals output from the video signal generating means in each direction, and information on the defective portions detected for each video signal is detected. The present invention is characterized by comprising an image information processing means that integrates the detection information and detects the defective portion.

(作用) 上記光照射制御手段は、光照射手段の光の出射面の任意
の方向に上記光源の光度もしくは上記光源から出射する
光の波長の少なくとも一方を変化させる。
(Function) The light irradiation control means changes at least one of the luminous intensity of the light source or the wavelength of the light emitted from the light source in any direction of the light emission surface of the light irradiation means.

上記画像情報処理手段は、光照射手段の光の出射面の少
なくとも2つの方向に上記光源から出射する光の光度も
しくは波長の少なくとも一方を変化させたときに上記ビ
デオ信号発生手段からそれぞれ出力する各ビデオ信号に
ついて被検査面に存在する欠陥部の情報を検出する。そ
して、上記画像情報処理手段は、この検出情報を総合し
て、欠陥部を検出する。
The image information processing means outputs each signal from the video signal generation means when at least one of the luminous intensity or the wavelength of the light emitted from the light source is changed in at least two directions of the light output surface of the light irradiation means. Information about defects present on the surface to be inspected is detected from the video signal. Then, the image information processing means integrates this detection information and detects a defective portion.

(発明の効果) 本発明によれば、少なくとも2つの方向に光源から出射
する光の光度もしくは波長の少なくとも一方を変化させ
て各方向での被検査面からの反射光から欠陥部の情報を
検出し、その結果を総合して、欠陥部を検出するように
したので、一つの方向での反射光による欠陥部の検出が
できなくても、ほかの方向での反射光による欠陥部の検
出か行なわれ、検出の困難な欠陥部も簡単かつ確実に検
出することができる。
(Effects of the Invention) According to the present invention, at least one of the luminous intensity or the wavelength of the light emitted from the light source is changed in at least two directions, and information on the defective portion is detected from the light reflected from the surface to be inspected in each direction. However, the results are integrated to detect the defective part, so even if the defective part cannot be detected by reflected light in one direction, it is possible to detect the defective part by reflected light in other directions. Even defects that are difficult to detect can be detected easily and reliably.

(以下、余白) (実施例) 以下に、添付の図面を参照して本発明の詳細な説明する
(Hereinafter, blank spaces) (Example) The present invention will be described in detail below with reference to the accompanying drawings.

まず、本発明に係る表面欠陥検査装置を自動車の車体の
塗装欠陥の検査に適用した一つの実施例の全体構成を第
1図に示す。
First, FIG. 1 shows the overall configuration of one embodiment in which the surface defect inspection apparatus according to the present invention is applied to inspection of paint defects on the body of an automobile.

第1図に示すように、車体の塗装検査ステー7ョン20
には、台座Bに乗ったロボット装置21か装備される。
As shown in Figure 1, a car body paint inspection station 20
is equipped with a robot device 21 mounted on a pedestal B.

上記ロボット装置21には、その先端アーム22に光照
射手段23と、ビテオ信号発生手段としてのCCDカメ
ラ24とか支持金具25を介して取り付けられる。ロボ
ット装置21のこれら光照射手段23とCCDカメラ2
4とは、塗装検査ステー7ョン20に搬入された車体2
6の塗膜面27をトレースし、その際、光照射手段23
によって照射された光か、車体26の表面の塗膜面27
て反射してCCDカメラ24に入射する。
A light irradiation means 23, a CCD camera 24 as a video signal generation means, and a support metal fitting 25 are attached to the robot device 21 at its tip arm 22. These light irradiation means 23 and CCD camera 2 of the robot device 21
4 is the vehicle body 2 brought into the paint inspection station 720.
The coating surface 27 of No. 6 is traced, and at that time, the light irradiation means 23
The coating surface 27 on the surface of the vehicle body 26
The light is reflected and enters the CCD camera 24.

また、このような光照射手段23とCCDカメラ24に
よる塗装欠陥検査においては、ホストコンピュータ31
によって与えられる指令によって、ロホ、トコントロー
ラ32か駆動される。そして、それによる口十ノドコン
トローラ32の信号かロボット装置21に送られる。
In addition, in such a coating defect inspection using the light irradiation means 23 and the CCD camera 24, the host computer 31
The controller 32 is driven by the command given by the controller 32. The resulting signal from the controller 32 is sent to the robot device 21.

上記ロボット装置!21は、内蔵されている図示しない
アクチュエータか作動し、これにより、ロボット装置2
1は光照射手段23およびCCDカメラ24か車体26
の表面をなぞるように、これら光照射手段23およびC
CDカメラ24を移動させる。
The above robot device! Reference numeral 21 operates a built-in actuator (not shown), and thereby the robot device 2
1 is a light irradiation means 23 and a CCD camera 24 or a vehicle body 26
These light irradiation means 23 and C
Move the CD camera 24.

上記光照射手段23は、第2図(a)に示すように、ホ
ックス41の内部に複数本の蛍光灯42(特に蛍光灯4
2に限られるものではない。)が装置されている。
As shown in FIG. 2(a), the light irradiation means 23 includes a plurality of fluorescent lamps 42 (particularly fluorescent lamps 42) inside the hook 41.
It is not limited to 2. ) is installed.

これら蛍光灯42の全面には、次に説明する光フィルタ
43が設置され、さらにこの光フイルり43の全面を覆
って、拡散スクリーン44か取り付けられる。この拡散
スクリーン44は、上記光フィルタ43から透過してく
る光を拡散させ、上記蛍光灯42か間隔をおいて配置さ
れていることにより光度の低い領域か生しないようにす
るためのものである。
An optical filter 43, which will be described next, is installed on the entire surface of these fluorescent lamps 42, and a diffusion screen 44 is also attached to cover the entire surface of this optical filter 43. This diffusion screen 44 is used to diffuse the light transmitted from the optical filter 43, and to prevent the fluorescent lamps 42 from appearing in areas with low luminous intensity due to the arrangement of the fluorescent lamps 42 at intervals. .

上記光フィルタ43は、光照射手段23の光の出射面1
3aに関して、たとえば第2図(a)に示すように予め
設定した基準のxyX座標すへてのy座標値に対し、同
一のX座標を有する点での光の透過度は等しく、X座標
により光の透過度を漸変させる。
The optical filter 43 includes a light output surface 1 of the light irradiation means 23.
Regarding 3a, for example, as shown in Fig. 2(a), for all y coordinate values of the preset reference xyX coordinates, the transmittance of light at points having the same Gradually changes the degree of light transmission.

上記光照射手段23は、光照射手段]ントローラ34(
第1図参照)により、基準のXV座標に対して、全体か
上記した第2図(a)の関係を有する第1の位置と、こ
の第1の位置に対してたとえば90度回転した第2の位
置とに相互に切り換えられる。
The light irradiation means 23 is a light irradiation means] controller 34 (
(see Figure 1), there is a first position that has the relationship shown in Figure 2 (a) above with respect to the reference XV coordinate, and a second position that is rotated, for example, by 90 degrees with respect to this first position. and the position.

そして、光照射手段23の上記第1の位置にて、第1図
の自動車の車体26の塗膜面27に光が照射され、第3
図(a)に示すように、欠陥部28の検査か行われる。
Then, at the first position of the light irradiation means 23, light is irradiated onto the coating surface 27 of the car body 26 of the automobile shown in FIG.
As shown in Figure (a), the defective portion 28 is inspected.

すなわち、上記光照射手段23が第1の位置にあるとき
には、光照射手段23の光の出射面13aから出射する
光の光度かxyX座標X軸方向で変化するのに対応して
、第3図(a)において矢印A1て示す方向に上記光照
射手段23の光照射領域S上での照度か漸変する。これ
をCCDカメラ24で撮像する。
That is, when the light irradiation means 23 is in the first position, the luminous intensity of the light emitted from the light emission surface 13a of the light irradiation means 23 changes in the xyX coordinate X-axis direction. In (a), the illuminance on the light irradiation area S of the light irradiation means 23 gradually changes in the direction shown by arrow A1. This is imaged by the CCD camera 24.

同様に、上記光照射手段23か第2の位置にあるときに
は、光照射手段23の光の出射面13aから出射する光
の光度がxyX座標X軸方向で変化するのに対応して、
第3図(b)において矢印A、て示す方向に上記光照射
手段23の光照射領域S上での照度が漸変する。これを
CCDカメラ24て撮像する。
Similarly, when the light irradiation means 23 is in the second position, the luminous intensity of the light emitted from the light emission surface 13a of the light irradiation means 23 changes in the xyX coordinate X-axis direction.
In FIG. 3(b), the illuminance on the light irradiation area S of the light irradiation means 23 gradually changes in the direction indicated by arrow A. This is imaged by the CCD camera 24.

上記CCDカメラ24にとらえられた画像は、CCDカ
メラ24によりビデオ信号に変換され、このビデオ信号
は第1図の画像処理プロノセ・ノサ33に出力する。
The image captured by the CCD camera 24 is converted into a video signal by the CCD camera 24, and this video signal is output to the image processing processor 33 shown in FIG.

画像処理プロセッサ33では画像処理を行い、その処理
テークを上記ホストコンピュータ31に伝送して解析さ
せる。
The image processor 33 performs image processing and transmits the processed take to the host computer 31 for analysis.

画像処理プロセッサ33とホストコンピュータ31によ
る上記画像処理とその解析はたとえば次のように行われ
る。
The image processing and analysis thereof by the image processing processor 33 and the host computer 31 are performed, for example, as follows.

いま、第1図の自動車の車体26の塗膜面27に存在す
る欠陥部28か、塗膜面27か緩やかに盛りとかって、
一定の長さに渡って連続しているものとする。そして、
上記欠陥部28は第3図(a)に示すように、光照射手
段23か第1の位置で光照射領域Sにおいて照度変化の
ない方向にのひているものとする。
Now, if there is a defect 28 existing on the coating surface 27 of the car body 26 of FIG. 1, or if the coating surface 27 is gently raised,
It is assumed to be continuous over a certain length. and,
As shown in FIG. 3(a), it is assumed that the defective portion 28 extends in the direction in which the illuminance does not change in the light irradiation area S at the first position of the light irradiation means 23.

光照射手段か第1の位置にあるときに、画像処理プロセ
ッサ33にこのビデオ信号か入力すると、画像処理プロ
セッサ33は欠陥部11の存在によるCCDカメラ24
から出力するビデオ信号を処理し、その処理信号、たと
えば微分信号が予め設定した値を越えるビデオ信号の走
査線、この走査線上で微分信号か1記しきい値を越える
タイミング、およびこのタイミング近傍での上記微分信
号の符号の変化を検出する。これにより、受光画像12
内での欠陥部28の位置および形状等の識別情報を得る
When this video signal is input to the image processing processor 33 when the light irradiation means is in the first position, the image processing processor 33 detects the CCD camera 24 due to the presence of the defective part 11.
A scanning line of the video signal in which the processed signal, for example, a differential signal exceeds a preset value, the timing at which the differential signal exceeds the threshold value 1 on this scanning line, and the timing near this timing. A change in sign of the differential signal is detected. As a result, the received light image 12
Identification information such as the position and shape of the defective portion 28 within the interior is obtained.

しかしなから、このときは、上記したように、上記欠陥
部28は、光照射手段23か第1の位置で光照射領域S
において照度変化のない方向にのひているので、欠陥部
28による光の正反射方向の変化か生しても、欠陥部2
8とそうでない部分との明るさに差か生しにくい。この
ため、上記で得られた欠陥部28の位置および形状等の
情報の信頼性はやや低い。
However, in this case, as described above, the defective portion 28 is located at the light irradiation area S at the first position of the light irradiation means 23.
Since it extends in the direction where there is no change in illumination, even if there is a change in the direction of specular reflection of light by the defective part 28, the defective part 2
It is difficult to see a difference in brightness between 8 and the other parts. Therefore, the reliability of the information such as the position and shape of the defective portion 28 obtained above is somewhat low.

次に、光照射手段23か第2の位置まで回転する。この
ときに、CCDカメラ24により撮像された画像のビデ
オ信号か画像処理プロセッサ33に入力すると、画像処
理プロセッサ33は欠陥部11の存在によるC CDカ
メラ24から出力するビデオ信号の上記微分信号が予め
設定した値を越えるビデオ信号の走査線、この走査線上
で微分信号か上記しきい値を越えるタイミング、および
このタイミング近傍での上記微分信号の符号の変化を検
出する。これにより、受光画像12内での欠陥部28の
位置および形状等の識別情報を検出する。
Next, the light irradiation means 23 is rotated to the second position. At this time, when the video signal of the image captured by the CCD camera 24 is input to the image processing processor 33, the image processing processor 33 detects that the differential signal of the video signal output from the CCD camera 24 is A scanning line of the video signal exceeding a set value, a timing at which the differential signal exceeds the threshold value on this scanning line, and a change in the sign of the differential signal near this timing are detected. Thereby, identification information such as the position and shape of the defective portion 28 within the received light image 12 is detected.

このときは、上記欠陥部28は、光照射手段23か第1
の位置で光照射領域Sにおいて照度変化のある方向にの
びているので、欠陥部28による光の正反射方向の変化
が生1」ると、欠陥部28とそうでない部分上の明るさ
に差か明確に生じる。
At this time, the defective portion 28 is exposed to the light irradiation means 23 or the first
Since the light irradiation area S extends in the direction where the illuminance changes at the position, if there is a change in the direction of specular reflection of light due to the defective part 28, there will be a difference in brightness between the defective part 28 and the other part. clearly occurs.

このため、上記で得られた欠陥部28の位置および形状
等の情報の信頼性は高い。
Therefore, the reliability of the information such as the position and shape of the defective portion 28 obtained above is high.

′ 上記画像処理プロセッサ33は、光照射手段23が
第1の位置にあるときに得た欠陥部28の位置および形
状等の情報と、光照射手段23か第2の位置にあるとき
に得た欠陥部28の位置および形状等の情報とを、たと
えば論理的に“OR”処理する等により、総合して欠陥
部28の検出を行う。
' The image processing processor 33 uses information such as the position and shape of the defective part 28 obtained when the light irradiation means 23 is in the first position, and information obtained when the light irradiation means 23 is in the second position. The defective portion 28 is comprehensively detected by, for example, logically performing “OR” processing on information such as the position and shape of the defective portion 28.

この検出結果のデータとロボット装置21の先端アーム
22の位置をメモリに記憶する。
The data of this detection result and the position of the tip arm 22 of the robot device 21 are stored in a memory.

そして、補修時には、このメモリの内容に応じた補修が
行われる。この補修は、人手により行うこともできるが
、上記ロボット装置21もしくはそれとは別に設けた図
示しない補修用のロボット装置により、日動的に行われ
る。
At the time of repair, the repair is performed according to the contents of this memory. This repair can be carried out manually, but it is carried out daily using the robot device 21 or a separate repair robot device (not shown).

上記から、通常の点もしくはスポット状の欠陥部はもち
ろん、第1図に示すような自動車の車体26の塗膜面2
7が緩やかに盛り上かつているに過ぎない欠陥部28の
場合にも、光照射手段23からの光照射の光度の変化の
方向を変えることにより、どのような方向に延びる欠陥
部28でも確実に検出することかできる。
From the above, it can be seen that not only normal point or spot-like defects, but also the coating surface 2 of the automobile body 26 as shown in FIG.
Even in the case of a defective portion 28 that is only a gradual bulge, the defective portion 28 extending in any direction can be reliably treated by changing the direction of change in the luminous intensity of the light irradiation from the light irradiation means 23. Can be detected.

上記実施例では、光照射手段23の光照射の光度の変化
の方向を2段に変えるために、光照射手段の全体を90
度回転させたか、たとえば第2図(b)に示すように、
光照射手段23のホックス41にタングステンランプ等
からなる多数の光源45.45.・・をマトリックス状
に配置し、これら光源45,45.  を第1図の光照
射手段]ントローラ34により、光照射手段23の基準
のxy座標の2つの方向、たとえばX軸方向およびy軸
方向に変化させるようにしてもよい。
In the above embodiment, in order to change the direction of change in the luminous intensity of light irradiation from the light irradiation means 23 in two stages, the entire light irradiation means is
For example, as shown in Figure 2(b),
The hook 41 of the light irradiation means 23 is provided with a large number of light sources 45, 45, such as tungsten lamps, etc. ... are arranged in a matrix, and these light sources 45, 45 . The reference xy coordinates of the light irradiation means 23 may be changed in two directions, for example, the X-axis direction and the y-axis direction, by the controller 34 of the light irradiation means shown in FIG.

また、光照射手段23の光照射の光度の変化の方向は、
2段に限らずそれ以上の段階に変え、各段階における欠
陥部28の検出情報から、総合的に欠陥部28を検出す
るようにすれば、欠陥部28の検出精度かより向上する
Furthermore, the direction of change in the luminous intensity of the light irradiation from the light irradiation means 23 is as follows:
If the defective part 28 is detected comprehensively based on the detection information of the defective part 28 in each stage, instead of being limited to two stages, the detection accuracy of the defective part 28 can be further improved.

以上では、光照射手段23の光照射の光度を変化させる
場合の実施例について説明したか、光照射手段23から
出射する光の色(波長)を、光照射手段23の基準のx
y座標の任意の複数の方向、たとえばX軸方向およびX
軸方向に変化させるようにしても、欠陥部28での光の
色の順序の変化により、外乱光の影響を受けることなく
、より確実に欠陥部28を検出することもできる。この
場合各色の光の光度も同時に変化させるようにしてもよ
い。
The above has described an embodiment in which the luminous intensity of the light irradiation of the light irradiation means 23 is changed, or the color (wavelength) of the light emitted from the light irradiation means 23 is
Any multiple directions of the y-coordinate, such as the X-axis direction and
Even if the light is changed in the axial direction, the defective portion 28 can be detected more reliably without being affected by ambient light by changing the order of the colors of the light at the defective portion 28. In this case, the luminous intensity of each color of light may also be changed at the same time.

本発明は、自動車の車体の塗装欠陥の検査装置に限らず
、表面欠陥検査に広く適用することができる。
The present invention is not limited to an inspection device for coating defects on automobile bodies, but can be widely applied to surface defect inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面欠陥検査装置の一実施例の全体構成図、 第2図(a)および第2図(b)はそれぞれは光照射手
段の構成を示す説明図、 第3図(a)および第3図(b)はそれぞれ欠陥部の検
出の説明図、 第4図は従来の表面欠陥検査装置の説明図、第5図は第
4図の表面欠陥検査装置のカメラにより得られる画像の
説明図、 第6図は被検査面が曲面のときにカメラにより得られる
画像の説明図、 第7図は従来のいま一つの表面欠陥検査装置の説明図で
ある。 20・・・塗装検査ステーション。 21・・ロボット装置、23・・・光照射手段。 24・・・CCDカメラ、25・・・支持金具、26・
・車体。 27・・塗膜面、28・欠陥部。 31・・・ホストコンピュータ。 32・・・ロボットコントローラ2 33・・画像処理プロッセッサ。 34・・・光照射手段]ントローラ 41・・・ボックス、42・・蛍光灯。 43・・・光フィルタ、44・・・拡散スクリーン。 45・・・光源。 第2図 第2図 (b) 【 第3図 (a) 第3図 (b) 第4図 第5図       第6図 6″X/′6 第7図 ≠−−−E−一
FIG. 1 is an overall configuration diagram of an embodiment of the surface defect inspection device, FIGS. 2(a) and 2(b) are explanatory diagrams showing the configuration of the light irradiation means, and FIG. 3(a) and FIG. 3(b) is an explanatory diagram of defect detection, FIG. 4 is an explanatory diagram of a conventional surface defect inspection device, and FIG. 5 is an explanation of an image obtained by the camera of the surface defect inspection device of FIG. 4. FIG. 6 is an explanatory diagram of an image obtained by a camera when the surface to be inspected is a curved surface, and FIG. 7 is an explanatory diagram of another conventional surface defect inspection apparatus. 20...Paint inspection station. 21... Robot device, 23... Light irradiation means. 24... CCD camera, 25... Support metal fittings, 26.
・Vehicle body. 27. Paint film surface, 28. Defect area. 31...Host computer. 32... Robot controller 2 33... Image processing processor. 34...Light irradiation means] Controller 41...Box, 42...Fluorescent lamp. 43... Light filter, 44... Diffusion screen. 45...Light source. Fig. 2 Fig. 2 (b) [ Fig. 3 (a) Fig. 3 (b) Fig. 4 Fig. 5 Fig. 6 Fig. 6''X/'6 Fig. 7≠---E-1

Claims (1)

【特許請求の範囲】[Claims] (1)平面状の光の出射面に対して複数の光源が配置さ
れて被検査面を照射する光照射手段と、この光照射手段
の光の出射面の任意の方向に上記出射面から出射する光
の光度もしくは波長のすくなくとも一方を変化させる光
照射制御手段と、上記被検査面の光照射領域からの反射
光をとらえる受光画面を有し、この受光画面にとらえら
れた上記光照射領域内の受光画像をビデオ信号に変換す
るビデオ信号発生手段と、上記出射面から出射する光の
光度もしくは波長の少なくとも一方を上記光照射手段の
少なくとも2つの方向に変化させ、各方向についてビデ
オ信号発生手段からそれぞれ出力するビデオ信号につい
て被検査面に存在する欠陥部の情報を検出し、各ビデオ
信号についてそれぞれ検出した欠陥部の検出情報を総合
して上記欠陥部を検出する画像情報処理手段とを備えた
ことを特徴とする表面欠陥検査装置。
(1) A light irradiation means in which a plurality of light sources are arranged with respect to a planar light emission surface and irradiates the surface to be inspected, and light is emitted from the light emission surface in any direction of the light emission surface of the light irradiation means. a light irradiation control means for changing at least one of the luminous intensity or the wavelength of the light to be inspected; and a light receiving screen that captures the reflected light from the light irradiated area of the surface to be inspected; a video signal generating means for converting a received light image of the light into a video signal, and a video signal generating means for changing at least one of the luminous intensity or the wavelength of the light emitted from the light emitting surface in at least two directions of the light emitting means, and for each direction. image information processing means for detecting information on defective parts present on the surface to be inspected for each video signal outputted from the video signal, and for detecting the defective part by integrating the detection information on the detected defective parts for each video signal. A surface defect inspection device characterized by:
JP22750090A 1990-08-28 1990-08-28 Surface defect inspection equipment Expired - Fee Related JP2938948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22750090A JP2938948B2 (en) 1990-08-28 1990-08-28 Surface defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22750090A JP2938948B2 (en) 1990-08-28 1990-08-28 Surface defect inspection equipment

Publications (2)

Publication Number Publication Date
JPH04109153A true JPH04109153A (en) 1992-04-10
JP2938948B2 JP2938948B2 (en) 1999-08-25

Family

ID=16861868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22750090A Expired - Fee Related JP2938948B2 (en) 1990-08-28 1990-08-28 Surface defect inspection equipment

Country Status (1)

Country Link
JP (1) JP2938948B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124513A (en) * 1999-10-25 2001-05-11 Totani Corp Position detector for heat seal of plastic film
JP2001188006A (en) * 1999-12-28 2001-07-10 Totani Corp Heat seal position detecting device for plastic film
JP2006208084A (en) * 2005-01-26 2006-08-10 Toppan Printing Co Ltd Inspection device for irregularities in cyclic pattern
JP2020106295A (en) * 2018-12-26 2020-07-09 東レ株式会社 Sheet defect inspection device
CN111855682A (en) * 2020-06-28 2020-10-30 汪俊 Automatic detection system for surface defects of turbine blades of aero-engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124513A (en) * 1999-10-25 2001-05-11 Totani Corp Position detector for heat seal of plastic film
JP2001188006A (en) * 1999-12-28 2001-07-10 Totani Corp Heat seal position detecting device for plastic film
JP2006208084A (en) * 2005-01-26 2006-08-10 Toppan Printing Co Ltd Inspection device for irregularities in cyclic pattern
JP2020106295A (en) * 2018-12-26 2020-07-09 東レ株式会社 Sheet defect inspection device
CN111855682A (en) * 2020-06-28 2020-10-30 汪俊 Automatic detection system for surface defects of turbine blades of aero-engine

Also Published As

Publication number Publication date
JP2938948B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US5237404A (en) Inspection apparatus with improved detection of surface defects over large and curved surfaces
US5610710A (en) Dual mode illumination system for optical inspection
US8184282B2 (en) Method and system for defect detection using transmissive bright field illumination and transmissive dark field illumination
JP3514107B2 (en) Painting defect inspection equipment
JPH04109153A (en) Surface defect inspecting device
JPH0979988A (en) Surface defect inspecting device
JP2726808B2 (en) Appearance inspection device
JP2001141662A (en) Method and apparatus for detecting flaw of transparent plate-shaped object
JP3017572B2 (en) Surface condition inspection method
JP2001124702A (en) Beltlike sheet-inspecting device
JPH04106461A (en) Inspecting apparatus of surface defect
JP3062293B2 (en) Surface defect inspection equipment
JPH04223262A (en) Processing method of image in fluorescent magnetic powder flaw detection
JP3321503B2 (en) Appearance inspection equipment for electronic components
JP2955686B2 (en) Surface defect inspection equipment
JP3054227B2 (en) Surface defect inspection equipment
JPH04109106A (en) Surface defect inspecting device
JPH04204314A (en) Surface defect inspection instrument
JP3339677B2 (en) Screen for surface condition inspection and inspection device using the screen
JP3100448B2 (en) Surface condition inspection device
JP3095820B2 (en) Surface condition detection device
JP2938953B2 (en) Surface defect inspection equipment
JPH05322543A (en) Surface defect inspection device
JP3056552B2 (en) Surface condition inspection method
JPH085573A (en) Method and apparatus for inspecting work surface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees