JP5476946B2 - 立体映像投影装置 - Google Patents

立体映像投影装置 Download PDF

Info

Publication number
JP5476946B2
JP5476946B2 JP2009269780A JP2009269780A JP5476946B2 JP 5476946 B2 JP5476946 B2 JP 5476946B2 JP 2009269780 A JP2009269780 A JP 2009269780A JP 2009269780 A JP2009269780 A JP 2009269780A JP 5476946 B2 JP5476946 B2 JP 5476946B2
Authority
JP
Japan
Prior art keywords
optical path
image
eye image
optical
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009269780A
Other languages
English (en)
Other versions
JP2011112900A (ja
Inventor
靖昌 澤井
淳 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009269780A priority Critical patent/JP5476946B2/ja
Priority to US12/948,444 priority patent/US20110128503A1/en
Publication of JP2011112900A publication Critical patent/JP2011112900A/ja
Application granted granted Critical
Publication of JP5476946B2 publication Critical patent/JP5476946B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Description

本発明は立体映像投影装置に関するものであり、更に詳しくは、左右の視差を持った左目用画像と右目用画像をスクリーン上に重ね合わせて投影する立体映像投影装置に関するものである。
同一の表示素子の異なる画像表示領域に左右の視差を持った映像を表示し、投影レンズの途中で光路を左目用と右目用とに分割して、実質的に2本の投影レンズで投影する立体映像投影装置が、特許文献1で提案されている。また、投影レンズのスクリーン側に配したミラーで左右の視差を持った映像の光路分離を行って、実質的に2本の投影レンズで投影する立体映像投影装置が、特許文献2で提案されている。これらの投影装置のように実質的に2本の投影レンズで投影する構成では、左右の視差を持った投影像のスクリーン上での重ね合せ調整が必要である。このため、投影距離等の設置条件が異なると、その都度、ユーザーによる再調整が必要となる。1本の投影レンズで投影を行う構成にすれば、設置条件が異なってもユーザーによる再調整は不要であり、そのような立体映像投影装置が特許文献3で提案されている。
特開2007−271828号公報 特開2005−62607号公報 特開2001−337295号公報
特許文献3で提案されている立体映像投影装置では、同一の表示素子の異なる画像表示領域に左右の視差を持った映像を表示し、一方の映像光をミラーで反射させて分離し、偏光特性差を与えた後、偏光ビームスプリッタで両方の映像光を合成して1本の投影レンズで投影する構成になっている。したがって、設置条件が異なってもユーザーによる再調整は不要である。しかし、ミラーによる光路分離が表示素子からかなり離れた位置で行われるため、左右の視差を持った映像光の境界部が互いに重なり合った状態になる。つまり、Fナンバーが考慮されておらず、光路分離時の境界部の分離が不十分であるため、右目用の映像光が左目用の映像光の光路に混入してしまうことになる。したがって、この効率の悪い光路分離は投影像の画質劣化の原因となる。また、左右の視差を持った映像光が光路長に差のある状態で光路合成されるため、一方の映像にピントを合せると他方の映像はピンボケになってしまう。つまり、左右の視差を持った映像間で光路長差に起因する合焦状態のズレが生じてしまう。
特許文献2で提案されている立体映像投影装置においても、特許文献3と同様の問題がある。つまり、ミラーが配されている位置で、左右の視差を持った映像光の境界部が互いに重なり合った状態になるため、右目用の映像光が左目用の映像光の光路に混入してしまう。また、左右の視差を持った映像光はスクリーンまでの光路長に差があるため、一方の映像はピンボケになる。さらに、左右の視差を持った映像光のスクリーンに対する投影角にも差があるため、台形歪の差が生じてしまう。
本発明はこのような状況に鑑みてなされたものであって、その目的は、右目用の映像光と左目用の映像光との光路分離を確実に行うことにより、光路境界部での映像光の混入に起因する画質劣化を抑えて、高品質の画像投影を可能とするコンパクトな立体映像投影装置を提供することにある。
上記目的を達成するために、第1の発明の立体映像投影装置は、左右の視差を持った左目用画像と右目用画像を画像表示面の異なる領域に表示する表示素子と、前記表示素子で表示された各画像の投影光束に互いに異なる光学特性を持たせる特性差発生部材と、前記特性差発生部材で互いに異なる光学特性を持った各投影光束の光路を、前記光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する光路分離部材と、前記光路分離部材で分離された右目用画像の光路と左目用画像の光路とを、前記光学特性の差異を利用して同軸に合成する光路合成部材と、前記光路合成部材で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像と左目用画像をスクリーン上に重ね合せて投影する単一の投影レンズと、を有することを特徴とする。
第2の発明の立体映像投影装置は、左右の視差を持った左目用画像と右目用画像を画像表示面の異なる領域に表示する表示素子と、前記表示素子に表示された右目用画像と左目用画像の中間像を形成するリレー光学系と、前記リレー光学系で形成された各中間像の投影光束に互いに異なる光学特性を持たせる特性差発生部材と、前記特性差発生部材で互いに異なる光学特性を持った各投影光束の光路を、前記光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する光路分離部材と、前記光路分離部材で分離された右目用画像の光路と左目用画像の光路とを、前記光学特性の差異を利用して同軸に合成する光路合成部材と、前記光路合成部材で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像と左目用画像をスクリーン上に重ね合せて投影する単一の投影レンズと、を有することを特徴とする。
第3の発明の立体映像投影装置は、上記第1又は第2の発明において、前記互いに異なる光学特性が、互いに直交する直線偏光の偏光特性であることを特徴とする。
第4の発明の立体映像投影装置は、上記第1〜第3のいずれか1つの発明において、前記光路分離部材が光路分離面を有し、前記光路合成部材が光路合成面を有し、右目用画像と左目用画像の両方の光路に関して、前記光路分離面に対する入射角と前記光路合成面に対する入射角とが異なり、前記表示素子から前記投影レンズまでの光路長が右目用画像の光路と左目用画像の光路とで同一であることを特徴とする。
第5の発明の立体映像投影装置は、上記第1〜第3のいずれか1つの発明において、さらに、前記表示素子から前記投影レンズまでの光路長が右目用画像の光路と左目用画像の光路とで同一になるように、右目用画像と左目用画像との光路長差の補正を行う光路長補正部材を有することを特徴とする。
本発明によれば、互いに異なる光学特性を持った各投影光束の光路を、光路分離部材が光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する構成になっているため、右目用の映像光と左目用の映像光との光路分離を確実に行うことができる。したがって、光路境界部での映像光の混入に起因する画質劣化を抑えて、高品質の画像投影を可能とするコンパクトな立体映像投影装置を実現することができる。
立体映像投影装置の第1の実施の形態を示す概略構成図。 表示素子の画像表示面を示す平面図。 立体映像投影装置の第2の実施の形態を示す概略構成図。 投影用のリレー光学系の第1変形例を示す概略構成図。 投影用のリレー光学系の第2変形例を示す概略構成図。 左右の視差を持つ映像間の光路長差を示す光路図。
以下、本発明に係る立体映像投影装置の実施の形態等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。
《第1の実施の形態(図1,図2,図6)》
図1に、立体映像投影装置の第1の実施の形態を上方から見た状態で示す。図1において、1は光源、2はランプリフレクタ、3はカラーホイール、4はロッドインテグレータ、5は照明用のリレー光学系、6は臨界角プリズム、7は表示素子、8は投影用のリレー光学系、9R,9Lは第1,第2偏光板、10は中間像、11は光路分離用の偏光ビームスプリッタ、12R,12Lは折り返しミラー、13R,13Lは1/2波長板、14は光路合成用の偏光ビームスプリッタ、15は投影レンズである。なお、ロッドインテグレータ4と臨界角プリズム6での偏光方向との位置関係は、実際には45°ねじれた関係であるが、図1では分かり易くするために展開して描いてある。
光源1は、白色光を発する放電ランプ(例えば、超高圧水銀灯)から成っている。ランプリフレクタ2の反射面は楕円面から成っており、その焦点位置に光源1が配置されている。つまり、ランプリフレクタ2は、光源1から発せられた光を集光して2次光源を形成する楕円面鏡(集光光学系)であり、光源1からの光束はランプリフレクタ2での反射により収束光となって射出する。なお、収束光の結像位置はロッドインテグレータ4の入射端面(又はその近傍)である。
ランプリフレクタ2から射出した収束光は、カラー表示のために射出光色を時分割で変化させるカラーホイール3に入射する。カラーホイール3は、表示素子7をカラーシーケンシャル方式で照明するためのカラーフィルターから成っている。例えば、R(赤色)・G(緑色)・B(青色)の色光をそれぞれ透過させるカラーフィルターで構成されている。このカラーホイール3を回転させると、照明光透過位置のフィルター部分が回転移動して、照明する色光が時間的に順次切り替わる。したがって、各色に対応した画像情報を表示素子7に表示すれば、投影画像をカラー化することができる。
カラーホイール3を通過した光束は、ロッドインテグレータ4に入射する。ロッドインテグレータ4は、4枚の平面ミラーを貼り合わせて成る中空ロッド方式の光強度均一化手段であり、その入射端面を2次光源近傍に有している。入射端面から入射してきた照明光は、ロッドインテグレータ4の側面(すなわち内壁面)で何度も繰り返し反射されることによりミキシングされ、照明光の空間的なエネルギー分布が均一化されて射出端面から射出する。ロッドインテグレータ4の入射端面と射出端面の形状(つまり断面形状)は、表示素子7の画像表示面7aと相似(又は略相似)の四角形になっており、また、ロッドインテグレータ4の射出端面と表示素子7の画像表示面7aとは、照明用のリレー光学系5により共役(略共役)になっている。したがって、上記ミキシング効果により射出端面での輝度分布が均一化されることにより、表示素子7の画像表示面7aは効率良く均一に照明されることになる。つまり、ロッドインテグレータ4での反射回数に応じて複数の2次光源像がリレー光学系5の瞳位置に形成され、リレー光学系5で重畳されることによって均質な照明が行われる。
なお、ロッドインテグレータ4は中空ロッドに限らず、四角柱形状のガラス体から成るガラスロッドでもよい。また、表示素子7の画像表示面7aの形状と適合するならば、その側面についても4面に限らない。したがって、用いるロッドインテグレータ4としては、複数枚の反射ミラーを組み合わせて成る中空筒体、多角柱形状のガラス体等が挙げられる。
ロッドインテグレータ4から射出した照明光は、照明用のリレー光学系5を通過した後、臨界角プリズム6に入射する。臨界角プリズム6は、第1プリズム6aと第2プリズム6bの2つのプリズムで構成されている。第1プリズム6aは第1入射面S1と臨界面S2と第1射出面S3を有しており、第2プリズム6bは第2入射面S4と第2射出面S5を有している。そして、第1プリズム6aの臨界面S2と第2プリズム6bの第2入射面S4とは、空気層を介して対向するように配置されている。
第1プリズム6aの第1入射面S1には、リレー光学系5の一部を成すエントランスレンズ5aが貼り合わされている。エントランスレンズ5aは、照明光をテレセントリックにするために設けられている。第1入射面S1にエントランスレンズ5aを貼り付ける代わりに、第1プリズム6aの第1入射面S1を曲面にして、エントランスレンズ5aの機能を第1プリズム6aに持たせてもよい。また前述したように、リレー光学系5は、照明光をリレーしてロッドインテグレータ4の射出端面を表示素子7の画像表示面7a上で結像させる。つまり、表示素子7の画像表示面7a上にはロッドインテグレータ4の射出端面の像が形成されることになる。
照明光はエントランスレンズ5aを経て、第1入射面S1から第1プリズム6aに入射する。第1プリズム6aの臨界面S2は、照明光が全反射するように配置されている。したがって、照明光は臨界面S2で反射され、第1プリズム6aの第1射出面S3から射出して、表示素子7の画像表示面7aを照明する。
表示素子7の画像表示面7aでは、照明光の強度変調により2次元画像が形成される。ここでは、表示素子7としてデジタル・マイクロミラー・デバイス(digital micromirror device)を想定している。ただし、使用される表示素子7はこれに限らず、投影系に適した他の反射型の表示素子(例えば液晶表示素子)を用いても構わない。デジタル・マイクロミラー・デバイスの画素は、画像表示面7aが構成する矩形の画像表示領域に対して45°の回転軸を有しており、その軸回りに例えば±12°回動することにより、ON/OFFを表現する。
表示素子7としてデジタル・マイクロミラー・デバイスを用いた場合、それに入射した光は、ON/OFF状態(例えば±12°の傾き状態)の各マイクロミラーで反射されることにより空間的に変調される。その際、ON状態のマイクロミラーで反射した光のみが臨界角プリズム6を通過することにより、表示素子7の表示画像がスクリーン(不図示)上に拡大投影される。つまり、画像表示状態においてON状態のマイクロミラーで反射された光束(すなわち投影光)が、第1プリズム6aの第1射出面S3から再び第1プリズム6aに入射し、第1プリズム6aの臨界面S2に到達する。投影光は、全反射条件を満たさない角度で臨界面S2に入射するため、臨界面S2を透過し、空気層を経て、第2入射面S4から第2プリズム6bに入射する。第2プリズム6bの第2射出面S5から射出した投影光は、リレー光学系8と投影レンズ15から成る投影光学系によって、スクリーン上に到達して、画像表示面7aの投影像を形成する。
画像表示面7a上の画像表示領域には、例えば図2に示すように、上半分に左目用画像ILが表示され、下半分に右目用画像IRが表示される。つまり、表示素子7は、左右の視差を持った左目用画像ILと右目用画像IRを画像表示面7aの異なる領域に表示する。投影用のリレー光学系8により、各画像IR,ILの中間像10が形成される。中間像10の位置(又はその近傍)には、第1,第2偏光板9R,9Lが配置されている。つまり、中間像10の右目用画像IRの画像領域には第1偏光板9Rが配置されており、中間像10の左目用画像ILの画像領域には第2偏光板9Lが配置されている。第1,第2偏光板9R,9Lは、表示素子7で表示された各画像IR,ILの投影光束に互いに異なる光学特性を持たせる特性差発生部材である。この実施の形態でいう「互いに異なる光学特性」とは、互いに直交する直線偏光の偏光特性であり、第1偏光板9Rから射出する右目用画像IRの投影光束と、第2偏光板9Lから射出する左目用画像ILの投影光束と、は互いに直交する直線偏光の特性を持つことになる。
第1,第2偏光板9R,9Lを透過した各画像IR,ILの投影光束は、光路分離用の偏光ビームスプリッタ11に入射する。ここで用いている光路分離用の偏光ビームスプリッタ11は光路分離プリズムであり、例えば、屈折率:約1.5168のプリズム媒質に、屈折率:約1.474のSiO2と、屈折率:約1.845のLa23とAl23の混合物と、の多層膜で偏光分離面11aを形成することにより、入射角:49.5度で良好な偏光分離ができるように構成されている。
光路分離用の偏光ビームスプリッタ11は、第1,第2偏光板9R,9Lで互いに異なる光学特性を持った各投影光束の光路を、光学特性の差異を利用して右目用画像IRの光路と左目用画像ILの光路とに分離する光路分離部材である。つまり、第1偏光板9Rで直線偏光となった右目用画像IRの光束は、光路分離用の偏光ビームスプリッタ11の偏光分離面11aにP偏光となる位置関係で入射し、透過する。一方、第2偏光板9Lで右目用画像IRの偏光方向とは直交する方向の直線偏光となった左目用画像ILの投影光束は、光路分離用の偏光ビームスプリッタ11の偏光分離面11aにS偏光として入射し、反射される。
偏光ビームスプリッタ11から射出した各画像IR,ILの投影光束は、折り返しミラー12R,12Lで反射され、1/2波長板13R,13Lを通過した後、光路合成用の偏光ビームスプリッタ14に入射する。ここで用いている光路合成用の偏光ビームスプリッタ14は光路合成プリズムであり、例えば、屈折率:約1.5168のプリズム媒質に、屈折率:約1.474のSiO2と、屈折率:約2.41のTiO2と、の多層膜で偏光合成面14aを形成することにより、入射角:56度で良好な偏光分離ができるように構成されている。
光路合成用の偏光ビームスプリッタ14は、偏光ビームスプリッタ11で分離された右目用画像IRの光路と左目用画像ILの光路とを、光学特性の差異を利用して同軸に合成する光路合成部材である。つまり、偏光ビームスプリッタ11から射出した右目用画像IRの投影光束は、折り返しミラー12Rで反射された後、1/2波長板13Rに入射して、その偏光方向が90度変換される。そして、光路合成用の偏光ビームスプリッタ14の偏光合成面14aに対しS偏光として入射し、反射される。一方、偏光ビームスプリッタ11から射出した左目用画像ILの投影光束は、折り返しミラー12Lで反射された後、1/2波長板13Lに入射して、その偏光方向が90度変換される。そして、光路合成用の偏光ビームスプリッタ14の偏光合成面14aに対しP偏光として入射し、透過する。
偏光ビームスプリッタ14から射出した各画像IR,ILの投影光束は、投影レンズ15でスクリーン上に重ね合わさった状態で投影される。つまり、投影レンズ15は、偏光ビームスプリッタ14で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像IRと左目用画像ILをスクリーン上に重ね合せて投影する。このとき、右目用画像IRと左目用画像ILとは異なる偏光特性を有しているため、右目部分には右目用画像IRの偏光成分のみを透過する偏光板が装着され、左目部分には左目用画像ILの偏光成分のみを透過する偏光板が装着された偏光眼鏡を介してスクリーンを見れば、スクリーン上の投影画像を立体映像として鑑賞することができる。またこのとき、左右の画像の重ね合わせ精度を向上させるため、偏光ビームスプリッタ11,14;折り返しミラー12R,12L等に調整機構を設けてもよい。左右の画像を正確に重ね合わせることにより、立体映像鑑賞時の違和感・疲労感を軽減できる上に、この光学系を用いた状態で、偏光眼鏡無しで非立体表示の投影画像も良好に鑑賞できる。
第1の実施の形態では、光源1からの光束が約60度の集光角でロッドインテグレータ4に集められるので、ロッドインテグレータ4の射出端面ではNA(numerical aperture)=0.5である。そして、照明用のリレー光学系5は、ロッドインテグレータ4の射出端面の像を2.5倍にして、表示素子7の画像表示面7aをNA=0.2の光束で照明しており、投影用のリレー光学系8は、画像表示面7aの画像を等倍でリレーして、NA=0.2の光束で中間像10を形成している。このため、中間像10の光束は約23度の角度分布を有しており、中間像10から離れるに従って、左目用画像ILと右目用画像IRの光束が混ざり合い、特に画像IR,ILの境界部ではすぐに混ざり合ってしまう。しかし、混ざり合いの少ない中間像面10近傍に第1,第2偏光板9R,9Lを配置して、異なる偏光特性を与えているので、それ以降の混ざり合いが大きくなった状態でも光路分離用の偏光ビームスプリッタ11によって良好に光路分離を行うことができる。
上記のように、異なる光学特性、すなわち偏光特性の差異を利用して光路分離を行っているので、特定のNAを持っている中間像10の右目用画像IRと左目用画像ILとが、光路分離において混入し合うことは無い。したがって、右目用の映像光と左目用の映像光との光路分離を確実に行うことができるので、光路境界部での映像光の混入に起因する画質劣化を抑えて、高品質の画像投影が可能である。また、単一の投影レンズ15で投影を行う構成になっているため、投影距離等の設置条件が異なってもユーザーによる再調整は不要であり、左右の視差を持った映像光のスクリーンに対する投影角に差が無いため、台形歪の差が生じることもない。
また、第1の実施の形態の構成では、2種類の画像IR,IL(図2)の合成を各光路2回の折り返しでコンパクトに実現している。しかも、左右の視差を持った映像光が光路長に差の無い状態に光路合成されるため、一方の映像にピントを合せると他方の映像がピンボケになるといった問題は生じない。つまり、左右の視差を持った映像間で光路長差に起因する合焦状態のズレは生じない。ここで、図6に示すように、光路分離用の偏光ビームスプリッタ11及び光路合成用の偏光ビームスプリッタ14とも同じ入射角で偏光の分離及び合成を行う構成を考える(なお、図6に示す構成では、偏光分離面11a,偏光合成面14aに対する各入射角はすべて45度である。)。
図6に示すように、第1偏光板9Rを介した右目用画像IRの光路と、第2偏光板9Lを介した左目用画像ILの光路と、が同軸に合成されたとき、各画像IR,ILの中間像10間の距離Δ分だけ、右目用画像IRの方は左目用画像ILよりも光路長が長くなる。これに対して第1の実施の形態の構成(図1)では、右目用画像IRと左目用画像ILの両方の光路に関して、偏光分離面11aに対する入射角(分離角度)αと偏光合成面14aに対する入射角(合成角度)βとが異なっており(図1は、左目用画像ILの光路について入射角α,βを示しているが、右目用画像IRの光路についても同様である。)、表示素子7から投影レンズ15までの光路長が右目用画像IRの光路と左目用画像ILの光路とで同一となっている。このように、分離角度αと合成角度βとを異ならせることにより、光路長差を生じさせること無くコンパクトな光路分離及び光路合成の配置を可能としている。
《第2の実施の形態(図3)》
図3に、立体映像投影装置の第2の実施の形態を上方から見た状態で示す。図3において、1は光源、2はランプリフレクタ、3はカラーホイール、4はロッドインテグレータ、5は照明用のリレー光学系、6は臨界角プリズム、7は表示素子、18は投影用のリレー光学系、19は1/2波長板、20は中間像、21は光路分離用の偏光ビームスプリッタ、22R,22Lは折り返しミラー、23は光路長補正板、24は光路合成用の偏光ビームスプリッタ、15は投影レンズである。
光源1から臨界角プリズム6までは、第1の実施の形態と第2の実施の形態とで同様の光学構成になっている。つまり、第2の実施の形態において第1の実施の形態と異なるのは、投影用のリレー光学系18、1/2波長板19(特性差発生部材)、及び光路の分離・合成部(光路分離部材光路,光路合成部材及び光路長補正部材から成る。)である。投影用のリレー光学系18は、瞳位置よりスクリーン側の前群16Bと、瞳位置より表示素子7側の後群16Aと、前群16Bと後群16Aとの間に組み込まれた偏光変換光学系17と、から成っている。偏光変換光学系17は、平行平板17a,偏光分離面17b及び三角プリズム17cから成る偏光ビームスプリッタと、瞳位置に置かれた複数の1/2波長板17dと、で構成されている。
投影用のリレー光学系18の瞳位置は、照明用のリレー光学系5の瞳位置と共役であり、そこには複数の2次光源像が形成されている。後群16Aからの投影光束は、三角プリズム17cに入射し、偏光分離面17bでS偏光が反射され、S偏光成分の2次光源像を瞳位置に形成する。偏光分離面17bを透過したP偏光は平行平板17aの反射面で反射され、再び偏光分離面17bを透過し、瞳位置にP成分の2次光源像を形成する。P偏光成分の2次光源像は、平行平板17aの厚みに対応してS偏光成分の2次光源像からズレた位置に形成され、その位置に1/2波長板17dが配置されている。1/2波長板17dは、P偏光成分の2次光源像をS偏光へと変換することにより、すべての2次光源像の偏光成分をS偏光に揃える。このため、投影用のリレー光学系18で形成される中間像20は、直線偏光の揃った状態で結像する。
中間像20の位置(又はその近傍)には、右目用画像IRの画像領域に1/2波長板19が配置されている。1/2波長板19は、入射光の偏光方向を90度変換して、左目用画像ILと異なる直線偏光を射出する。結果として、左目用画像ILと右目用画像IRとで互いに直交した偏光成分が形成される。つまり、1/2波長板19は、表示素子7で表示された各画像IR,ILの投影光束に互いに異なる光学特性を持たせる特性差発生部材である。この実施の形態でいう「互いに異なる光学特性」とは、互いに直交する直線偏光の偏光特性であり、1/2波長板19を通過した右目用画像IRの投影光束と、1/2波長板19を通過しない左目用画像ILの投影光束と、は互いに直交する直線偏光の特性を持つことになる。
右目用画像IRの投影光束は、光路分離用の偏光ビームスプリッタ21の偏光分離面21aにP偏光となる位置関係で入射し、透過する。一方、左目用画像ILの投影光束は、光路分離用の偏光ビームスプリッタ21の偏光分離面21aにS偏光として入射し、反射される。このように、光路分離用の偏光ビームスプリッタ21は、1/2波長板19で互いに異なる光学特性を持った各投影光束の光路を、光学特性の差異を利用して右目用画像IRの光路と左目用画像ILの光路とに分離する光路分離部材である。
右目用画像IRの投影光束は、光路長補正板23を透過し、折り返しミラー22Rで反射された後、光路合成用の偏光ビームスプリッタ24の偏光合成面24aにP偏光として入射し、透過する。一方、左目用画像ILの投影光束は、折り返しミラー22Lで反射された後、光路合成用の偏光ビームスプリッタ24の偏光合成面24aにS偏光として入射し、反射される。このように、光路合成用の偏光ビームスプリッタ24は、偏光ビームスプリッタ21で分離された右目用画像IRの光路と左目用画像ILの光路とを、光学特性の差異を利用して同軸に合成する光路合成部材である。
偏光ビームスプリッタ24から射出した各画像IR,ILの投影光束は、投影レンズ15でスクリーン上に重ね合わさった状態で投影される。つまり、投影レンズ15は、偏光ビームスプリッタ14で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像IRと左目用画像ILをスクリーン上に重ね合せて投影する。このとき、右目用画像IRと左目用画像ILとは異なる偏光特性を有しているため、右目部分には右目用画像IRの偏光成分のみを透過する偏光板が装着され、左目部分には左目用画像ILの偏光成分のみを透過する偏光板が装着された偏光眼鏡を介してスクリーンを見れば、スクリーン上の投影画像を立体映像として鑑賞することができる。
光路長補正板23は、表示素子7から投影レンズ15までの光路長が右目用画像IRの光路と左目用画像ILの光路とで同一になるように、右目用画像IRと左目用画像ILとの光路長差の補正を行う光路長補正部材である。図6に示す光路構成と同様、光路分離用の偏光ビームスプリッタ21及び光路合成用の偏光ビームスプリッタ24とも同じ入射角で偏光の分離及び合成を行う構成になっているが、光路長補正板23の媒質(例えばガラス)と空気との屈折率差を利用することで、その光路長差(図6中の距離Δに相当する。)の分だけ光路長補正板23で光路長差の補正が行われる。これにより、左右の視差を持った映像光が光路長に差の無い状態に光路合成されるため、一方の映像にピントを合せると他方の映像がピンボケになるといった問題は生じない。つまり、左右の視差を持った映像間で光路長差に起因する合焦状態のズレは生じず、右目用画像IR、左目用画像ILとも良好な合焦状態でスクリーンに投影することが可能となる。
第2の実施の形態では、上記のように光路長補正板23を用いることにより、光路長差を生じさせること無くコンパクトな光路分離及び光路合成の配置を可能としており、しかも、2種類の画像IR,IL(図2)の合成を各光路2回の折り返しでコンパクトに実現することを可能としている。なお、折り返しミラー22Rの代わりに直角プリズムを光路長補正部材として用い、その内面反射で右目用画像IRの投影光束を折り返す構成にしてもよい。そのように光路長補正板23と折り返しミラー22Rとを兼用すれば、光学構成のコンパクト化及び低コスト化に寄与することが可能である。
第2の実施の形態では、混ざり合いの少ない中間像面20近傍に1/2波長板19を配置して、異なる偏光特性を与えているので、第1の実施の形態と同様、それ以降の混ざり合いが大きくなった状態でも光路分離用の偏光ビームスプリッタ21によって良好に光路分離を行うことができる。このように、異なる光学特性、すなわち偏光特性の差異を利用した光路分離により、特定のNAを持っている中間像20の右目用画像IRと左目用画像ILとが、光路分離において混入することは無い。したがって、右目用の映像光と左目用の映像光との光路分離を確実に行うことができるので、光路境界部での映像光の混入に起因する画質劣化を抑えて、高品質の画像投影が可能である。また、第1の実施の形態と同様、単一の投影レンズ15で投影を行う構成になっているため、投影距離等の設置条件が異なってもユーザーによる再調整は不要であり、左右の視差を持った映像光のスクリーンに対する投影角に差が無いため、台形歪の差が生じることもない。さらに、第1の実施の形態では、中間像面に異なる偏光特性を与える際、偏光板で不要な偏光成分が吸収されて光量が半減するが、第2の実施の形態では、中間像面に異なる偏光特性を与える前に投影用のリレー光学系18で偏光変換が行われるため、中間像に異なる光学特性を効率良く与えることができ、明るい投影画像が得られる。
《投影用のリレー光学系の第1,第2変形例(図4,図5)》
図4は、第2の実施の形態(図3)における投影用のリレー光学系18の第1変形例(リレー光学系18A)であり、その一部を成す偏光変換光学系17が第2の実施の形態とは異なっている。投影用のリレー光学系18Aは、瞳位置よりスクリーン側の前群16Bと、瞳位置より表示素子7側の後群16Aと、前群16Bと後群16Aとの間に組み込まれた偏光変換光学系17と、から成っている。偏光変換光学系17は、複数の偏光分離面17bとそれらに対向する反射面17fとを配置した偏光ビームスプリッタアレイ17eと、瞳位置に置かれた複数の1/2波長板17dと、で構成されている。各偏光分離面17bは、リレー光学系18Aの光軸(一点鎖線)に対して45°傾けて、互いに平行に等間隔で配置されている。反射面17fは偏光分離面17bと平行に対向しており、偏光分離面17bを透過した光線と平行になるように、偏光分離面17bで反射した光線を反射する。1/2波長板17dは、リレー光学系18Aの瞳位置近傍であって偏光ビームスプリッタアレイ17eのスクリーン側に、偏光分離面17bと対向するように配置されている。なお、1/2波長板17dは、反射面17fと対向するように配置されていてもよい。
投影用のリレー光学系18Aの瞳位置は、照明用のリレー光学系5の瞳位置と共役であり、そこには複数の2次光源像が形成されている。1/2波長板17dの配置間隔は、リレー光学系18Aの瞳内に形成される2光源像の位置に対応した間隔となっている。後群16Aからの投影光束は、偏光分離面17bを透過するP偏光と、偏光分離面17bで反射されるS偏光と、に分離される。偏光分離面17bを透過したP偏光は1/2波長板17d近傍で結像し、2次光源像を形成するとともに、1/2波長板17dを通過してS偏光に変換される。一方、偏光分離面17bで反射されたS偏光は、隣の偏光分離面17bで再度反射され、1/2波長板17d近傍で、かつ、元々P偏光であった2次光源像の形成されている1/2波長板17dの傍らで結像し、S偏光の2次光源像を形成する。このとき、1/2波長板17dを通過せずS偏光のままで通過するので、リレー光学系18Aを出る投影光は偏光分離面17bに対してすべてS偏光となる。
上記のように、光源像と光源像との間に偏光分離した光源像を生成して偏光変換を行うので、より広いピッチで分布している方向に偏光分離する方が、効率良く偏光状態を揃えることができる。2次光源像は、ロッドインテグレータ4(図3)内での反射回数に応じてリレー光学系18Aの瞳面上に形成されるので、ロッドインテグレータ4の断面の長辺方向により広いピッチで分布する。ロッドインテグレータ4の断面の長辺方向は、表示素子7の画像表示領域の長辺方向に相当するので、この方向に偏光分離を行って偏光状態を揃えると、効率良く偏光変換を行うことができる。
偏光変換光学系17により、P偏光,S偏光のいずれか一方の光路が同軸となるようにリレー光学系18Aの前群16Bと後群16Aを配置すると、他方では光路シフト及び光路長差が生じ、その量があまり大きいとリレー光学系18Aの結像性能に悪影響を与えることになる。第1変形例(図4)では、2次光源像の分布ピッチに合わせた偏光変換を行う構成になっているので、光路全体で偏光変換を行う場合に比べて、その光路シフト量及び光路長差が小さくて済み、性能の劣化も少ない偏光変換を達成することができる。さらに、リレー光学系18Aの前群16Bと後群16Aを、偏光分離面17bの配置間隔の半分に相当する分(すなわち、P偏光とS偏光の光路分離の方向において、その分離量の半分に相当する分)、偏心した状態で配置することにより、両方の偏光成分の光路シフト量を均等にして、その最大値を小さくすると、光路シフトによる性能劣化をより一層抑えることができる。
図5は、第2の実施の形態(図3)における投影用のリレー光学系18の第2変形例(リレー光学系18B)であり、その一部を成す偏光変換光学系17が第2の実施の形態とは異なっている。第1変形例と同様、投影用のリレー光学系18Bは、瞳位置よりスクリーン側の前群16Bと、瞳位置より表示素子7側の後群16Aと、前群16Bと後群16Aとの間に組み込まれた偏光変換光学系17と、から成っている。偏光変換光学系17は、複数の偏光分離面17bとそれらに対向する反射面17fとを配置した偏光ビームスプリッタアレイ17eと、瞳位置に置かれた複数の1/2波長板17dと、で構成されている。各偏光分離面17bは、リレー光学系18Bの光軸(一点鎖線)に対して45°傾いているが、隣り合う偏光分離面17bが交互に傾き方向(つまり光路分離方向)を変えて配置されている。反射面17fは偏光分離面17bと平行に対向しており、偏光分離面17bを透過した光線と平行になるように、偏光分離面17bで反射した光線を反射する。1/2波長板17dは、リレー光学系18Bの瞳位置近傍であって偏光ビームスプリッタアレイ17eのスクリーン側に、偏光分離面17bと対向するように配置されている。なお、1/2波長板17dは、反射面17fと対向するように配置されていてもよい。
第2変形例(図5)のリレー光学系18Bのように、偏光ビームスプリッタアレイ17eを光路分離方向が交互に変化する構成にすることによっても、光路シフト量を小さく抑えることができる。そして、このリレー光学系18Bの構成では、1つの2次光源像の光路を2つの光路に分けることにより、リレー光学系18Bの前群16Bと後群16Aを偏心させること無しに、P偏光成分の光路シフトが無い状態で、S偏光成分の光路シフト量を第1変形例(図4)の場合と同じにすることができ、さらに光路長差を第1変形例(図4)の場合の半分にすることができる。
《各実施の形態の特徴点等》
上述した記載から分かるように、第1の実施の形態には以下の立体映像投影装置の構成(#1)〜(#4)が含まれており、第2の実施の形態には以下の立体映像投影装置の構成(#1)〜(#3)及び(#5)が含まれている。
(#1):左右の視差を持った左目用画像と右目用画像を画像表示面の異なる領域に表示する表示素子と、前記表示素子で表示された各画像の投影光束に互いに異なる光学特性を持たせる特性差発生部材と、前記特性差発生部材で互いに異なる光学特性を持った各投影光束の光路を、前記光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する光路分離部材と、前記光路分離部材で分離された右目用画像の光路と左目用画像の光路とを、前記光学特性の差異を利用して同軸に合成する光路合成部材と、前記光路合成部材で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像と左目用画像をスクリーン上に重ね合せて投影する単一の投影レンズと、を有することを特徴とする立体映像投影装置。
(#2):左右の視差を持った左目用画像と右目用画像を画像表示面の異なる領域に表示する表示素子と、前記表示素子に表示された右目用画像と左目用画像の中間像を形成するリレー光学系と、前記リレー光学系で形成された各中間像の投影光束に互いに異なる光学特性を持たせる特性差発生部材と、前記特性差発生部材で互いに異なる光学特性を持った各投影光束の光路を、前記光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する光路分離部材と、前記光路分離部材で分離された右目用画像の光路と左目用画像の光路とを、前記光学特性の差異を利用して同軸に合成する光路合成部材と、前記光路合成部材で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像と左目用画像をスクリーン上に重ね合せて投影する単一の投影レンズと、を有することを特徴とする立体映像投影装置。
(#3):前記互いに異なる光学特性が、互いに直交する直線偏光の偏光特性であることを特徴とする(#1)又は(#2)記載の立体映像投影装置。
(#4):前記光路分離部材が光路分離面を有し、前記光路合成部材が光路合成面を有し、右目用画像と左目用画像の両方の光路に関して、前記光路分離面に対する入射角と前記光路合成面に対する入射角とが異なり、前記表示素子から前記投影レンズまでの光路長が右目用画像の光路と左目用画像の光路とで同一であることを特徴とする(#1)〜(#3)のいずれか1項に記載の立体映像投影装置。
(#5):さらに、前記表示素子から前記投影レンズまでの光路長が右目用画像の光路と左目用画像の光路とで同一になるように、右目用画像と左目用画像との光路長差の補正を行う光路長補正部材を有することを特徴とする(#1)〜(#3)のいずれか1項に記載の立体映像投影装置。
構成(#1)又は(#2)によれば、互いに異なる光学特性を持った各投影光束の光路を、光路分離部材が光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する構成になっているため、右目用の映像光と左目用の映像光との光路分離を確実に行うことができる。例えば、広がりを持った光束でも確実な光路分離が可能であり、Fナンバーの明るい光学系でも効率の良い光路分離及び光路合成が可能である。したがって、光路境界部での映像光の混入に起因する画質劣化を抑えて、高品質の画像投影を可能とするコンパクトな立体映像投影装置を実現することができる。例えば、単一の表示素子と単一の投影レンズを用いる際、光路合成のために必要とされる効率的な光路分離を、コンパクトに実現することが可能となる。
また、右目用画像と左目用画像の光軸を合成して単一の投影レンズで投影する構成になっているため、様々な設置条件でも重ね合せ調整の煩わしさが無い。表示素子の異なる画像表示領域に、右目用画像と左目用画像を常時表示する構成にすれば、時分割表示の場合のようなチラツキ等の目障りな感触が無く、スムーズな立体映像の動画を一台のプロジェクタで得ることが可能となる。
なお「異なる光学特性」としては、偏光特性の他に、波長特性(つまり色特性)が挙げられる。例えば、第1の実施の形態(図1)において、第1,第2偏光板9R,9Lの代わりに、第1,第2カラーフィルターを用いてもよい。第1カラーフィルターは、RGBのそれぞれについて、波長の短い側の帯域だけ透過する透過率特性を有するものであり、第2カラーフィルターは、RGBのそれぞれについて、波長の長い側の帯域だけ透過する透過率特性を有するものである。
構成(#2)により、リレー光学系で右目用画像と左目用画像の中間像を形成し、例えば、偏光板,波長板,フィルタ等の光学部材を特性差発生部材として中間像位置又はその近傍に配置すれば、右目用画像と左目用画像に互いに異なる光学特性を与えることができる。反射型の表示素子(例えば、デジタル・マイクロミラー・デバイス)を用いる場合、照明光の影響もあり、上記のような光学特性を与える特性差発生部材を表示素子近傍に配置することは容易でない。しかし、リレー光学系で中間像を形成すれば、互いに異なる光学特性を与える特性差発生部材を容易に配置することが可能となる。
構成(#3)によれば、互いに直交する直線偏光の偏光特性を右目用画像と左目用画像に与える構成になっているので、例えば、偏光ビームスプリッタやワイヤグリッド等の光学部材を用いると、光束分離や光束合成を容易に行うことが可能となる。さらに、その偏光特性を利用すると、安価な偏光眼鏡で立体映像を鑑賞することが可能となる。
構成(#4)によれば、右目用画像と左目用画像の両方の光路に関して、光路分離面に対する入射角と光路合成面に対する入射角とが異なる構成になっているので、表示素子から投影レンズまでの光路長を揃えることができ、単一の投影レンズを用いた投影でありながら、左右の視差を持った映像の双方ともピントの合った状態にすることができる。なお、光路分離面としては、例えば多層膜から成る偏光分離面やワイヤグリッドから成る偏光分離面が挙げられ、光路合成面としては、例えば多層膜から成る偏光合成面やワイヤグリッドから成る偏光合成面が挙げられる。
構成(#5)によれば、右目用画像と左目用画像との光路長差の補正を行う光路長補正部材を有する構成になっているので、表示素子から投影レンズまでの光路長を揃えることができ、単一の投影レンズを用いた投影でありながら、左右の視差を持った映像の双方ともピントの合った状態にすることができる。
5 照明用のリレー光学系
7 表示素子
7a 画像表示面
8,18 投影用のリレー光学系
9R,9L 第1,第2偏光板(特性差発生部材)
10,20 中間像
11,21 光路分離用の偏光ビームスプリッタ(光路分離部材)
11a,21a 偏光分離面(光路分離面)
13R,13L 1/2波長板
14,24 光路合成用の偏光ビームスプリッタ(光路合成部材)
14a,24a 偏光合成面(光路合成面)
15 投影レンズ
17 偏光変換光学系
19 1/2波長板(特性差発生部材)
23 光路長補正板(光路長補正部材)
IR 右目用画像
IL 左目用画像

Claims (5)

  1. 左右の視差を持った左目用画像と右目用画像を画像表示面の異なる領域に表示する表示素子と、
    前記表示素子で表示された各画像の投影光束に互いに異なる光学特性を持たせる特性差発生部材と、
    前記特性差発生部材で互いに異なる光学特性を持った各投影光束の光路を、前記光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する光路分離部材と、
    前記光路分離部材で分離された右目用画像の光路と左目用画像の光路とを、前記光学特性の差異を利用して同軸に合成する光路合成部材と、
    前記光路合成部材で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像と左目用画像をスクリーン上に重ね合せて投影する単一の投影レンズと、
    を有することを特徴とする立体映像投影装置。
  2. 左右の視差を持った左目用画像と右目用画像を画像表示面の異なる領域に表示する表示素子と、
    前記表示素子に表示された右目用画像と左目用画像の中間像を形成するリレー光学系と、
    前記リレー光学系で形成された各中間像の投影光束に互いに異なる光学特性を持たせる特性差発生部材と、
    前記特性差発生部材で互いに異なる光学特性を持った各投影光束の光路を、前記光学特性の差異を利用して右目用画像の光路と左目用画像の光路とに分離する光路分離部材と、
    前記光路分離部材で分離された右目用画像の光路と左目用画像の光路とを、前記光学特性の差異を利用して同軸に合成する光路合成部材と、
    前記光路合成部材で光路が同軸に合成された投影光束を用いて、互いに異なる光学特性を持つ右目用画像と左目用画像をスクリーン上に重ね合せて投影する単一の投影レンズと、
    を有することを特徴とする立体映像投影装置。
  3. 前記互いに異なる光学特性が、互いに直交する直線偏光の偏光特性であることを特徴とする請求項1又は2記載の立体映像投影装置。
  4. 前記光路分離部材が光路分離面を有し、前記光路合成部材が光路合成面を有し、右目用画像と左目用画像の両方の光路に関して、前記光路分離面に対する入射角と前記光路合成面に対する入射角とが異なり、前記表示素子から前記投影レンズまでの光路長が右目用画像の光路と左目用画像の光路とで同一であることを特徴とする請求項1〜3のいずれか1項に記載の立体映像投影装置。
  5. さらに、前記表示素子から前記投影レンズまでの光路長が右目用画像の光路と左目用画像の光路とで同一になるように、右目用画像と左目用画像との光路長差の補正を行う光路長補正部材を有することを特徴とする請求項1〜3のいずれか1項に記載の立体映像投影装置。
JP2009269780A 2009-11-27 2009-11-27 立体映像投影装置 Expired - Fee Related JP5476946B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009269780A JP5476946B2 (ja) 2009-11-27 2009-11-27 立体映像投影装置
US12/948,444 US20110128503A1 (en) 2009-11-27 2010-11-17 Stereoscopic image projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269780A JP5476946B2 (ja) 2009-11-27 2009-11-27 立体映像投影装置

Publications (2)

Publication Number Publication Date
JP2011112900A JP2011112900A (ja) 2011-06-09
JP5476946B2 true JP5476946B2 (ja) 2014-04-23

Family

ID=44068629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269780A Expired - Fee Related JP5476946B2 (ja) 2009-11-27 2009-11-27 立体映像投影装置

Country Status (2)

Country Link
US (1) US20110128503A1 (ja)
JP (1) JP5476946B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450020B (zh) * 2011-10-07 2014-08-21 Qisda Corp 投影裝置
CN103424970B (zh) * 2012-05-23 2016-08-03 台达电子工业股份有限公司 立体投影光源系统
TWI489855B (zh) * 2012-05-23 2015-06-21 Delta Electronics Inc 立體投影光源系統
CN104216206B (zh) * 2014-08-20 2016-05-11 苏州佳世达光电有限公司 投影系统
JP6669068B2 (ja) * 2014-08-27 2020-03-18 ソニー株式会社 投射型表示装置
CN109188700B (zh) * 2018-10-30 2021-05-11 京东方科技集团股份有限公司 光学显示系统及ar/vr显示装置
CN113812145B (zh) * 2019-05-08 2024-03-08 杜比实验室特许公司 用于单个和多个投影仪的光学开关
US11796820B1 (en) * 2022-10-21 2023-10-24 Infineon Technologies Ag Binocular display light engine with single microelectromechanical system (MEMS) mirror and multiple light transmitters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211326A (ja) * 1995-02-03 1996-08-20 Canon Inc ヘッドマウントディスプレイ
JP4948695B2 (ja) * 2000-05-30 2012-06-06 日東光学株式会社 投影装置
JP4408368B2 (ja) * 2003-12-24 2010-02-03 株式会社 日立ディスプレイズ 表示装置および表示方法およびこれらを用いる機器
JP4904536B2 (ja) * 2005-01-28 2012-03-28 株式会社ビューマジック 立体映像投影装置
US7926949B1 (en) * 2006-07-22 2011-04-19 Simon Boothroyd Dual-mode three-dimensional projection display
CN102301275B (zh) * 2008-12-01 2014-10-08 瑞尔D股份有限公司 用于在中间像面使用空间复用的立体投影系统和方法

Also Published As

Publication number Publication date
JP2011112900A (ja) 2011-06-09
US20110128503A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5476946B2 (ja) 立体映像投影装置
JP5434085B2 (ja) 投射型画像表示装置および投射光学系
JP5350610B2 (ja) 投影器のための光学システム及び対応する投影器
JP7108840B2 (ja) 光源装置及び投写型立体表示装置
JP5360683B2 (ja) プロジェクター
JP5391662B2 (ja) 立体画像表示装置、偏光分離合成装置、立体画像表示方法
JP5239915B2 (ja) 投射型表示装置
JP4676874B2 (ja) 一つのプロジェクタを使用した投射型の3次元映像ディスプレイ装置
KR101174075B1 (ko) 입체영상 상영 시스템과 이를 위한 입체영상 플레이어 및 입체영상용 프로젝터
KR20100023858A (ko) 입체 투사를 위한 편광 변환 시스템 및 방법
JP2011527766A (ja) レーザーで照明されたマイクロミラープロジェクター
JP2006011475A (ja) 画像ディスプレーシステム、ディスプレーシステム用光偏向装置、および画像形成方法
KR20020001139A (ko) 화상투사장치
JP2010176084A5 (ja)
JP2007271828A (ja) 立体画像投射装置
JP3635979B2 (ja) 照明光学系および投写型表示装置
JP6319290B2 (ja) 画像投写装置
JP2012141574A (ja) 偏光変換リレー光学系及びそれを備えた画像投影装置
JP5509827B2 (ja) 照明光学系及び投影装置
JP2004226767A (ja) 光学ユニット及びそれを用いた表示システム並びに映像光出力方法
JP4835754B2 (ja) プロジェクタ
JP4158789B2 (ja) プロジェクタ
JP2008158274A (ja) プロジェクタ
JP2005250123A (ja) プロジェクタ
JP2006163191A (ja) 立体プロジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5476946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees