JP5438825B2 - スパッタリングターゲット - Google Patents

スパッタリングターゲット Download PDF

Info

Publication number
JP5438825B2
JP5438825B2 JP2012516244A JP2012516244A JP5438825B2 JP 5438825 B2 JP5438825 B2 JP 5438825B2 JP 2012516244 A JP2012516244 A JP 2012516244A JP 2012516244 A JP2012516244 A JP 2012516244A JP 5438825 B2 JP5438825 B2 JP 5438825B2
Authority
JP
Japan
Prior art keywords
target
divided
taper
sputtering
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012516244A
Other languages
English (en)
Other versions
JPWO2012144107A1 (ja
Inventor
崇 掛野
了 鈴木
敏也 栗原
祐一郎 中村
和広 関
修仁 牧野
吉一 熊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012516244A priority Critical patent/JP5438825B2/ja
Application granted granted Critical
Publication of JP5438825B2 publication Critical patent/JP5438825B2/ja
Publication of JPWO2012144107A1 publication Critical patent/JPWO2012144107A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、スパッタリング法により、透明導電膜を作製する際に使用されるスパッタリングターゲット、特に、複数枚のターゲット材からなり、分割部を有するITO、IZO、IGZO等のセラミックススパッタリングターゲットに関する。
透明導電膜形成用ITO、IZO、IGZO等の薄膜は、液晶ディスプレイ、タッチパネル、ELディスプレイ等を中心とする表示デバイスの透明電極として広く用いられている。多くの場合ITO、IZO、IGZO等の透明導電膜形成用酸化物薄膜はスパッタリングによって形成される。以下の説明においては、主としてITOターゲットを代表例に用いて説明する。
ITO(Indium Tin Oxide)薄膜は、高導電率、高透過率という特徴から、フラットパネル用表示電極等に使用されている。近年、フラットパネルディスプレー(FPD)の大型化に伴い、ITOターゲットの大型化の要求が強まってきている。
しかし、大型ITOを作製するための新規設備投資や反り等の原因による歩留まり低下のため、非常に困難である。そこで、現在、大型ITOターゲットは小型のITO部材を複数個接合した多分割ターゲットが用いられている。
ITO等のセラミックスターゲットは、金属に比べて強度(硬度、柔軟性、抗張力)を有するものではないので、接近配置する際には、僅かな接触でもチッピング(欠け)を発生する。また、このために接触配置するのではなく、分割ターゲットのそれぞれの間隙を0.1mm〜0.5mm程度開けられている。
そして、対向する分割ターゲットの縁部には、C加工やR加工が行われている。それでも、多分割ターゲットをバッキングプレート上に配置する場合には、相当の注意を必要とする。
一方、前述の様にして配置した多分割ターゲットを用いて、スパッタリングを長時間行うと、ターゲットの表面、特に、分割部部分にノジュールと呼ばれるインジウムの低級酸化物と考えられている黒色付着物が析出し、異常放電の原因となり易く、薄膜表面へのパーティクル発生源となることが知られている。
これに対して、クリアランス部分にインジウムや各種合金を全部埋め込むという方法によって、スパッタ時のノジュール発生や異常放電の抑制が可能であるとの記載がある。
例えば、特許文献1では、クリアランス部分にターゲット本体のインジウムと錫との原子数比に等しいインジウム-錫合金を充填する方法が開示されている。しかしながら、そのためには、ターゲット本体のインジウムと錫の原子数比を測定し、その結果を元に注入するインジウム-錫合金の組成をその度に調整する必要があるために、ターゲットの生産性に問題があった。
また、インジウム-錫合金をクリアランス部全部に注入するために、その上部に形成される膜の電気的特性が、他の部分に形成される膜の電気的特性と異なってしまうという問題があった。
また、特許文献2では、クリアランス部分にインジウムを、特許文献3では、接合材よりも高融点を有する合金を充填する方法が開示されている。
しかしながら、これらの方法でも、インジウム等をクリアランス部全部に注入するために、その上部に形成される膜の電気的特性が、他の部分に形成される膜の電気的特性と異なってしまうという問題があった。
特許文献4では、クリアランス部分に金属酸化物焼結体と構成元素が同一ではあるが、別組成の材料を充填する方法が開示されている。しかしながら、酸素の量が少ない場合は、通常の合金と殆ど変わらない特性を有するので、その上部に形成される膜の電気的特性が、他の部分に形成される膜の電気的特性と異なってしまうという問題があり、また、逆に、酸素の量が多い場合は、ITOの特性と殆ど変わらないので、低温でクリアランス部分に溶解して流し込みということはできないという問題があった。
上記については、いずれも分割ターゲットの隙間(クリアランス部)に充填剤を導入して隙間の発生を無くすという発想に基づくものである。
しかしながら、充填材そのものは、充填という特殊性からターゲット材と同質の材料とすることは難しく、どうしても境界が発生し、分割部にノジュールの発生を抑制又は減少させることは難しかった。
特開平01−230768号公報 特開平08−144052号公報 特開2000−144400号公報 特開2010−106330号公報
本発明は、分割セラミックスターゲットの連続スパッタ時においても、ノジュールの発生や異常放電を抑制することができるとともに、クリアランス部分に対向した基板上に形成される膜の特性が他の部分の膜の特性と差異がない、すなわち膜特性の均一性の高い膜が得られるセラミックス製スパッタリングターゲット、特にFPD用スパッタリングターゲットを提供することを課題とする。
上記の課題を解決するために、本発明者らは鋭意研究を行った結果、セラミックス製スパッタリングターゲットを複数の分割ターゲットから構成し、この複数の分割ターゲットの縁部を工夫することにより、分割ターゲットを配列して大型のターゲットを作製し、各分割ターゲットの縁部に起因するパーティクル発生による不良を低減することができるスパッタリングターゲット、特にFPD用スパッタリングターゲットを提供することができるとの知見を得た。
このような知見に基づき、本発明は、
(1)複数の分割ターゲットをバッキングプレート上に配列し、該バッキングプレートに接合して構成されるスパッタリングターゲットであって、配列した複数の各分割ターゲットの表面に、該分割ターゲットの側面からの距離が23.0mm〜0.10mmである位置から、分割ターゲットの側面に向かって下向きに傾斜する5〜40°のテーパーを有することを特徴とするスパッタリングターゲット、を提供する。
また、本発明は、
(2)分割ターゲットの側面に向かって下向きに傾斜する10〜30°のテーパーを有することを特徴とする上記(1)記載のスパッタリングターゲット、を提供する。
また、本発明は、
(3)分割ターゲット側面の、下向きに傾斜するテーパーによって形成される平坦面からの最大深さが、2.0mm以下であることを特徴とする上記(1)又は(2)記載のスパッタリングターゲット、を提供する。
また、本発明は、
(4)分割ターゲット側面の、下向きに傾斜するテーパーによって形成される平坦面からの最大深さが、1.0mm以下であることを特徴とする上記(1)又は(2)記載のスパッタリングターゲット、を提供する。
また、本発明は、
(5)分割ターゲット間のクリアランスが0.05〜1.0mmであることを特徴とする上記(1)〜(4)のいずれか一項に記載に記載のスパッタリングターゲット、を提供する。
また、本発明は、
(6)分割ターゲット間のクリアランスが0.1〜0.5mmであることを特徴とする上記(1)〜(4)のいずれか一項に記載に記載のスパッタリングターゲット、を提供する。
また、本発明は、
(7)分割ターゲットがセラミックス製ターゲットであることを特徴とする上記(1)〜(6)のいずれか一項に記載のスパッタリングターゲット、を提供する。
このように調整した本発明のスパッタリングターゲットは、分割ターゲットの連続スパッタ時においても、ノジュールの発生や異常放電を抑制することができるとともに、クリアランス部分に対向した基板上に形成される膜の特性が他の部分の膜の特性と差異がない、すなわち膜特性の均一性の高い膜が得られるスパッタリングターゲット、特にFPD用スパッタリングターゲットを提供することができ、成膜の歩留まりを向上させ、製品の品質を高めることができるという大きな利点を有する。
また、この発明は、特にITOターゲット、IZOターゲット、IGZOターゲット等のセラミックスターゲットに有効であるが、ノジュールを発生し易い金属製ターゲットにも適用できることは、容易に理解できるであろう。
本発明の分割スパッタリングターゲットに形成する代表的なテーパー(傾斜面)の断面説明図である。 分割ターゲットの縁部(エッジ部)の加工方法(C加工、R加工、本願発明のテーパー加工)によるターゲットライフに対応した、ノジュールの発生状況を示す概念説明図である。 本願発明の一例を示す11.3°のテーパー(傾斜面)を付与した分割ターゲットを用いてスパッタリングした場合の、分割ターゲット間のクリアランス(隙間)と縁部に形成されたノジュールの発生状況を示す図である。 従来の分割ターゲットの縁部に形成するC加工の断面説明図である。 従来の分割ターゲットにおいて、分割ターゲット間のクリアランス(隙間)と縁部に形成されたノジュールの発生状況を示す図である。
本発明のスパッタリングターゲットは、複数の分割ターゲットをバッキングプレート上に配列し、該バッキングプレートに接合して構成されるスパッタリングターゲットであり、配列した複数の各分割ターゲットの側面からの距離が23.0mm〜0.10mmである位置から、ターゲットの側面に向かって下向きに傾斜する5〜40°のテーパーを有する。なお、この場合「下向きに」という意味は、「バッキングプレート側に向かって」と言う意味である。
ターゲットは、平面的に見て、一般に矩形なので、これに対応させて長方形の分割ターゲットを複数個配列して作製することができる。しかしながら、分割ターゲットが長方形に限定されないことは、当然であり、他の形状、例えば正方形、三角形、扇型、あるいはこれらを適宜組み合わせて作製することもできる。本願発明は、これらを包含する。
バッキングプレートにボンディングを行う際には、インジウム又はインジウム合金からなるロウ材を用いて形成しても良い。他の手段としては、溶射法、めっき法などを用いることができる。被覆層を形成した後、例えば銅又は銅合金等からなるバッキングプレートに、インジウム又はインジウム合金からなるロウ材を用いて、ボンディングを行う。
本願発明の代表例を図1に示す。図1は、分割ターゲットの側面からの距離が5mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパー(斜面)を形成したものである。この場合、ターゲット縁部におけるターゲット平坦面からテーパー(斜面)の最深部の距離は、図1に示すように、1mmとなる。
他の例として、分割ターゲットの側面からの距離が2.5mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパー(斜面)を形成した場合には、ターゲット縁部におけるターゲット平坦面からテーパー(斜面)の最深部の距離は、図1に示すように、0.5mmとなる。
本発明のスパッタリングターゲットの前記テーパー面は、上記の範囲で任意に選択できるが、ノジュールの発生を抑制するための、より好ましい形態としては、ターゲットの側面に向かって下向きに傾斜する10〜30°のテーパーとするのが推奨される。これは各種実験により、テーパーの面積と深さは、広く浅くするのがノジュール防止に役立つからである。
また、分割ターゲット側面の、下向きに傾斜するテーパーによって形成されるターゲット平坦面からの最大深さについては2.0mm以下とするのが好ましい。さらにターゲット側面における縁部の、平坦面からの最大深さが、1.0mm以下であること、さらに平坦面からの最小深さは0.1mm以上であることが、より望ましい。
また、本発明は、分割ターゲット間のクリアランスは、1.0mm以下の範囲とする。好ましくは、分割ターゲット間のクリアランスが0.05〜1.0mmであり、さらに好ましくは、分割ターゲット間のクリアランスが0.1〜0.5mmである。分割ターゲット間のクリアランスが小さい場合には、複数の分割ターゲットをバッキングプレート上に配列する際に、分割ターゲットの接触によりチッピングを発生し易いので注意する必要がある。
スパッタリングターゲットの材料によっては、チッピングを発生し難い材料があるが、この場合にはクリアランスを設ける必要はない。すなわち、クリアランスを0mmとする。このクリアランスを0mmとした場合でも、分割ターゲットの側面に向かって下向きに傾斜する5〜40°のテーパーを形成した分割ターゲットは、クリアランスを設けた場合と同様に、ノジュールの発生を大きく抑制できる。
この現象は、バッキングプレートに各分割ターゲット相互に密接させて配列した場合であっても、分割ターゲットの側面にわずかでも隙間が存在すると、その隙間がノジュールの発生原因と成り得ることを推測している。本願発明を適用することにより、このような場合でもノジュール発生を抑制できる効果がある。本願発明は、クリアランスを設けない場合(クリアランス:0mm)を包含するものである。
また、ターゲットのスパッタリング時及び冷却時には、多少の熱膨張と収縮が繰り返されるが、分割ターゲットのクリアランスは、それを適度に調整する機能を持つので、ターゲットの亀裂や割れを防止できる効果もある。
また、分割ターゲットがセラミックス製ターゲット、特にITO、IZO、IGZOターゲットに好適に適用できる。
従来、分割ターゲットをバッキングプレート上に配列する場合には、ターゲット相互の接触によるチッピングを防止するために、若干の間隔を開けて配置すると共に、ターゲットの上端の縁部をR加工するか又はC加工(45°の切欠加工)する。この様子を図2に示す。図2の上左がR加工した場合、図2の中左がC加工した場合である。また、参考までに、本願発明のテーパー加工した場合を図2の下図に示す。
上記縁部をR加工した場合及びC加工した場合には、各分割ターゲットの近接部に加工溝が形成され、大きく凹んでいるために、ノジュール(リデポ)が堆積し易い。ターゲットのライフ初期〜50%までは、加工溝にノジュールが堆積していく。この概念図(ノジュールを粒「○」で示す、)を図2の中央に示す。
しかし、ターゲットライフが50〜100%になると、ノジュールが再スパッタされ、ターゲットの分割部は浅く窪んでいるがフラットに近い形状となり、ノジュールの堆積は殆ど見られなくなる。
本願発明は、この現象に大きなヒントを得た。すなわち、分割ターゲットに間隙(スペース)があり、C加工又はR加工した場合でも、このC加工又はR加工の加工溝が消失したターゲットライフが50〜100%に至る場合の表面形状を、初期の段階から形成することにより、ノジュールの発生を抑制できるとの知見を得た。
上記知見は、ある程度広く浅く、分割ターゲットの側面に向かって下向きに傾斜するテーパーを付与することである。多くの実験の結果、配列した複数の各分割ターゲットの側面からの距離が23.0mm〜0.10mmである位置から、ターゲットの側面に向かって下向きに傾斜する5〜40°のテーパーを付与することが有効であることが分かった。これについては、より好ましい条件はあるが、上記の範囲が、本願発明の基礎となるものである。
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
(実施例1)
原料として、比表面積が5m/gの酸化インジウム粉末と酸化錫粉末を重量比で9:1の割合に混合した混合粉末を、プレス用金型に入れて、700Kg/cmの圧力で成形し、ITO成形体を作製した。次に、このITO成形体を、酸素雰囲気中で、昇温速度5°C/minで室温から1500°Cまで昇温後、1500°Cで20時間温度を保持し、その後、炉冷することにより焼結した。
このようにして得られた焼結体の表面を研削し、さらに側辺をダイヤモンドカッターで127mm×254mmサイズに切断した。
さらに、図1に示すように、分割ターゲットの側面からの距離が5mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパー(斜面)を形成した。この場合、ターゲット縁部におけるターゲット平坦面からテーパー(斜面)の最深部の距離は、図1に示すように、1mmとなる。この様な加工体を2枚作製した。
次に、無酸素銅製のバッキングプレートを200°Cに設定したホットプレート上に設置し、インジウムをロウ材として使用し、その厚みが約0.2mmとなるように塗布した。このバッキングプレート上に、2枚のITO焼結体を冷却後に0.3mmのクリアランスになるように接合面同士を、相対して設置し、室温まで放置冷却した。
このターゲットをシンクロン製マグネトロンスパッタ装置(BSC−7011)に取り付け、投入パワーはDC電源で2.3W/cm、ガス圧は0.6Pa、スパッタガスはアルゴン(Ar)でガス流量は300sccm、スパッタ積算電力量は160WHr/cmまで行った。スパッタ中のノジュールの発生状況を調べた。また、ランドマークテクノロジー製マイクロアークモニター(MAM Genesis)にて、マイクロアーク発生回数(回)を測定した。
マイクロアークの判定基準は、検出電圧100V以上、放出エネルギー(アーク放電が発生している時のスパッタ電圧×スパッタ電流×発生時間)が20mJ以下である。積算160WHr/cmまでのマイクロアーク発生累積回数を表1に示す。
この表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は527回であり、後述する比較例に比べ、大きく減少した。
分割ターゲットの分割部のノジュールの発生状況を図3に示す。この図3に示すように、分割部のクリアランスが0.3mmであり、分割ターゲットの側面からの距離が5mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパー(斜面)を形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mmとした場合には、スパッタリング開始時からターゲットライフ100%まで、ノジュールの発生は殆ど見られなかった。この状態を、表1では○と記載した。
(実施例2)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が5mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mm、分割部のクリアランスを0.1mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は462回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール・アーキングともに減っていた。
(実施例3)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が5mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mm、分割部のクリアランスを0.5mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は576回であり、ノジュールの発生は殆ど見られなかったが、実施例1よりもノジュール、アーキングともに若干増えていた。しかし、後述する比較例に比べ、大きく減少した。
(実施例4)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が11.43mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は433回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール・アーキングともに減っていた。
(実施例5)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が2.75mmの位置から、ターゲットの側面に向かって、下向きに20°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は713回であり、実施例1よりもノジュール、アーキングともに若干増えていた。しかし、後述する比較例に比べ、大きく減少した。この状態を表1では△と記載したが、特に問題はないレベルである。
(実施例6)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が1.73mmの位置から、ターゲットの側面に向かって、下向きに30°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は796回であり、実施例1よりもノジュール、アーキングともに若干増えていた。しかし、後述する比較例に比べ、大きく減少した。この状態を表1では△と記載したが、特に問題はないレベルである。
(実施例7)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が5.71mmの位置から、ターゲットの側面に向かって、下向きに5°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.5mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は301回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに減っていた。
(実施例8)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が2.50mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.5mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は345回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに減っていた。
(実施例9)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が1.37mmの位置から、ターゲットの側面に向かって、下向きに20°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.5mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は442回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに減っていた。
(実施例10)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が0.87mmの位置から、ターゲットの側面に向かって、下向きに30°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.5mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は508回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに減っていた。
(実施例11)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が3.43mmの位置から、ターゲットの側面に向かって、下向きに5°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.3mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は194回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに半減していた。
(実施例12)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が1.50mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.3mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は250回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに半減していた。
(実施例13)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が0.82mmの位置から、ターゲットの側面に向かって、下向きに20°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.3mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は331回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに減少していた。
(実施例14)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示しているように、該分割ターゲットの側面からの距離が0.52mmの位置から、ターゲットの側面に向かって、下向きに30°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を0.3mm、分割部のクリアランスを0.3mmとした場合である。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は428回であり、ノジュールの発生は殆ど見られなかった。実施例1よりもノジュール、アーキングともに減少していた。
(比較例1)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、図4に示すように、該分割ターゲットの側面からの距離が1mmの位置から、ターゲットの側面に向かって、下向きに45°の角度のテーパーを形成した。
この場合、ターゲット縁部におけるターゲット平坦面からテーパー(斜面)の最深部の距離は、図5に示すように、1.0mmとなる。ターゲットの分割部のクリアランス(隙間)を0.3mmとした場合の、ノジュールの発生状況を図5に示す。この状態を表1では×と記載した。
この図5に示すように、ターゲット上端の縁部C1.0mm加工では、ターゲットライフ50%までノジュールの発生が多く、ターゲットライフ100%でノジュールが消失するという逆転現象が見られた。
これは、ターゲットライフ50%から100%にかけてエロージョンが進行することにより、縁部とターゲット平坦面部分の高低差が無くなり、全面平坦になったためノジュールまでスパッタされたためと考えられる。
前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1812回であり、50%から100%にかけて、アーキング発生回数が増大していた。また、ノジュールの発生も著しく増加した。
(比較例2)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示すように、該分割ターゲットの側面からの距離が0.5mmの位置から、ターゲットの側面に向かって、下向きに45°の角度のテーパーを形成した。また、ターゲットの分割部のクリアランスを0.1mmとした。
この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1762回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も著しく増加した。
(比較例3)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示すように、該分割ターゲットの側面からの距離が0.5mmの位置から、ターゲットの側面に向かって、下向きに45°の角度のテーパーを形成した。また、ターゲットの分割部のクリアランスを0.5mmとした。
この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1908回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も著しく増加した。
(比較例4)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、図5に示すように、該分割ターゲットの側面からの距離が1mmの位置から、ターゲットの側面に向かって、半径1mm円加工(R加工)を形成した(図4参照)。また、ターゲットの分割部のクリアランスを0.3mmとした。
この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1826回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も著しく増加した。
(比較例5)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示すように、該分割ターゲットの側面からの距離が0.5mmの位置から、ターゲットの側面に向かって、下向きに45°の角度のテーパーを形成した。また、ターゲットの分割部のクリアランスを0.3mmとした。
この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1522回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も増加した。
(比較例6)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示すように、該分割ターゲットの側面からの距離が0.5mmの位置から、ターゲットの側面に向かって、半径0.5mm円加工(R加工)を形成した。また、ターゲットの分割部のクリアランスを0.3mmとした。
この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1559回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も増加した。
(比較例7)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示すように、該分割ターゲットの側面からの距離が0.3mmの位置から、ターゲットの側面に向かって、下向きに45°の角度のテーパーを形成した。また、ターゲットの分割部のクリアランスを0.3mmとした。
この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1220回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も増加した。
(比較例8)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、表1に示すように、該分割ターゲットの側面からの距離が0.3mmの位置から、ターゲットの側面に向かって、半径0.3mm円加工(R加工)を形成した。また、ターゲットの分割部のクリアランスを0.3mmとした。この場合は、前記表1に示すように、スパッタリング開始時からターゲットライフ100%後の累積アーキング回数は1233回であり、マイクロアークの発生回数が極めて多くなるという結果となった。また、ノジュールの発生も増加した。
(実施例15)
ITO焼結体を製造するまでの工程は、実施例1と同様とし、分割ターゲットについては、該分割ターゲットの側面からの距離が5.0mmの位置から、ターゲットの側面に向かって、下向きに11.3°の角度のテーパーを形成し、ターゲット平坦面からテーパー(斜面)の最深部の距離を1mmとし、なおかつ、クリアランスを0mmとした場合である。
アーキングは287回、ノジュールの発生は少なく、実施例1よりも良い結果であった。クリアランスが0mmの場合も、効果がある事が分かった。
但し、これはターゲットのサイズが小さいため、クリアランスが0mmでも割れが発生しなかったが、大型のターゲットの場合には割れ対策が必要である。
上記の実施例、比較例から明らかなように、複数の分割ターゲットをバッキングプレート上に配列し、該バッキングプレートに接合して構成されるスパッタリングターゲットであって、配列した複数の各分割ターゲットの側面からの距離が23.0mm〜0.10mmである位置から、ターゲットの側面に向かって下向きに傾斜する5〜40°のテーパーを有する構造とすることは極めて重要である。これによって、ノジュールの発生や異常放電を抑制することができるとともに、クリアランス部分に対向した基板上に形成される膜の特性が他の部分の膜の特性と差異がない、すなわち膜特性の均一性の高い膜が得ることができる。
本発明のスパッタリングターゲットは、分割ターゲットの連続スパッタ時においても、ノジュールの発生や異常放電を抑制することができるとともに、クリアランス部分に対向した基板上に形成される膜の特性が他の部分の膜の特性と差異がない、すなわち膜特性の均一性の高い膜が得られるスパッタリングターゲットを提供することができ、成膜の歩留まりを向上させ、製品の品質を高めることができるという大きな利点を有し、分割ターゲット部に起因するパーティクル発生による不良率を低減することができる大型のスパッタリングターゲットを提供することができるので、特にFPD用スパッタリングターゲットとして有用である。

Claims (7)

  1. 複数の分割ターゲットをバッキングプレート上に配列し、該バッキングプレートに接合して構成されるスパッタリングターゲットであって、配列した隣接する複数の各分割ターゲットの表面に、該分割ターゲットの側面からの距離が23.0mm〜0.10mmである位置から、分割ターゲット側面のクリアランスに向かって下向きに傾斜する5〜40°のテーパーを有することを特徴とするスパッタリングターゲット。
  2. 分割ターゲット側面のクリアランスに向かって下向きに傾斜する10〜30°のテーパーを有することを特徴とする請求項1記載のスパッタリングターゲット。
  3. 分割ターゲット側面の、下向きに傾斜するテーパーによって形成される平坦面からの最大深さが、2.0mm以下であることを特徴とする請求項1又は2記載のスパッタリングターゲット。
  4. 分割ターゲット側面の、下向きに傾斜するテーパーによって形成される平坦面からの最大深さが、1.0mm以下であることを特徴とする請求項1又は2記載のスパッタリングターゲット。
  5. 分割ターゲット間のクリアランスが1.0mm以下であることを特徴とする請求項1〜4のいずれか一項に記載に記載のスパッタリングターゲット。
  6. 分割ターゲット間のクリアランスが0.05〜1.0mmであることを特徴とする請求項1〜4のいずれか一項に記載に記載のスパッタリングターゲット。
  7. 分割ターゲットがセラミックス製ターゲットであることを特徴とする請求項1〜6のいずれか一項に記載のスパッタリングターゲット。
JP2012516244A 2011-04-18 2011-12-09 スパッタリングターゲット Active JP5438825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012516244A JP5438825B2 (ja) 2011-04-18 2011-12-09 スパッタリングターゲット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011092074 2011-04-18
JP2011092074 2011-04-18
PCT/JP2011/078544 WO2012144107A1 (ja) 2011-04-18 2011-12-09 スパッタリングターゲット
JP2012516244A JP5438825B2 (ja) 2011-04-18 2011-12-09 スパッタリングターゲット

Publications (2)

Publication Number Publication Date
JP5438825B2 true JP5438825B2 (ja) 2014-03-12
JPWO2012144107A1 JPWO2012144107A1 (ja) 2014-07-28

Family

ID=47041244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012516244A Active JP5438825B2 (ja) 2011-04-18 2011-12-09 スパッタリングターゲット

Country Status (5)

Country Link
JP (1) JP5438825B2 (ja)
KR (2) KR20140108349A (ja)
CN (1) CN103348035B (ja)
TW (1) TWI518196B (ja)
WO (1) WO2012144107A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273734B2 (ja) * 2013-09-20 2018-02-07 東ソー株式会社 平板形スパッタリングターゲットとその製造方法
JP6960989B2 (ja) * 2017-03-31 2021-11-05 三井金属鉱業株式会社 分割スパッタリングターゲット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284573A (ja) * 1985-06-12 1986-12-15 Tokuda Seisakusho Ltd 放電電極
JPH08144052A (ja) * 1994-11-22 1996-06-04 Tosoh Corp Itoスパッタリングターゲット
JP3760652B2 (ja) * 1999-01-08 2006-03-29 東ソー株式会社 多分割スパッタリングターゲット
JP2005105389A (ja) * 2003-10-01 2005-04-21 Asahi Techno Glass Corp 分割型スパッタリングターゲット
JP4959118B2 (ja) * 2004-04-30 2012-06-20 株式会社アルバック スパッタリング装置及びスパッタリング装置用のターゲット
US7316763B2 (en) * 2005-05-24 2008-01-08 Applied Materials, Inc. Multiple target tiles with complementary beveled edges forming a slanted gap therebetween

Also Published As

Publication number Publication date
KR20140108349A (ko) 2014-09-05
KR20120137347A (ko) 2012-12-20
TWI518196B (zh) 2016-01-21
TW201243077A (en) 2012-11-01
JPWO2012144107A1 (ja) 2014-07-28
CN103348035A (zh) 2013-10-09
CN103348035B (zh) 2015-08-12
WO2012144107A1 (ja) 2012-10-26

Similar Documents

Publication Publication Date Title
TWI576442B (zh) 導電性膜形成用銀合金濺鍍靶材及其製造方法
JP5776740B2 (ja) 酸化物焼結体とその製造方法、ターゲット、及びそれを用いて得られる透明導電膜ならびに透明導電性基材
TWI515167B (zh) An oxide sintered body and a sputtering target, and a method for producing the oxide sintered body
JP2006225687A (ja) Al−Ni−希土類元素合金スパッタリングターゲット
TWI613305B (zh) 銀合金濺鍍靶
JP6681019B2 (ja) 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材
JP2011127189A (ja) Al基合金スパッタリングターゲット
JP6273735B2 (ja) 円筒形スパッタリングターゲットとその製造方法
JP5438825B2 (ja) スパッタリングターゲット
KR101347967B1 (ko) Ito 스퍼터링 타깃
TWI553140B (zh) Sputtering target - backplane assembly
JP6375829B2 (ja) Ag合金スパッタリングターゲット
KR101923292B1 (ko) 방식성의 금속과 Mo 또는 Mo 합금을 확산 접합한 백킹 플레이트, 및 그 백킹 플레이트를 구비한 스퍼터링 타깃-백킹 플레이트 조립체
JP6079228B2 (ja) 多分割スパッタリングターゲットおよびその製造方法
JP2013185160A (ja) スパッタリングターゲット
JPH1161395A (ja) Itoスパッタリングターゲット
JP3603693B2 (ja) Itoスパッタリングターゲット
JP2015017299A (ja) スパッタリング用銅ターゲット材及びスパッタリング用銅ターゲット材の製造方法
JP6273734B2 (ja) 平板形スパッタリングターゲットとその製造方法
JP2001040469A (ja) 多分割itoスパッタリングターゲットおよびその製造方法
JP2001164358A (ja) Itoスパッタリングターゲット
KR20120072072A (ko) 고효율 이형상 스퍼터링 타겟

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131213

R150 Certificate of patent or registration of utility model

Ref document number: 5438825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250