JP5435138B2 - 高耐圧集積回路装置 - Google Patents

高耐圧集積回路装置 Download PDF

Info

Publication number
JP5435138B2
JP5435138B2 JP2012527559A JP2012527559A JP5435138B2 JP 5435138 B2 JP5435138 B2 JP 5435138B2 JP 2012527559 A JP2012527559 A JP 2012527559A JP 2012527559 A JP2012527559 A JP 2012527559A JP 5435138 B2 JP5435138 B2 JP 5435138B2
Authority
JP
Japan
Prior art keywords
region
potential
contact
voltage
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012527559A
Other languages
English (en)
Other versions
JPWO2012176347A1 (ja
Inventor
将晴 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012527559A priority Critical patent/JP5435138B2/ja
Application granted granted Critical
Publication of JP5435138B2 publication Critical patent/JP5435138B2/ja
Publication of JPWO2012176347A1 publication Critical patent/JPWO2012176347A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

この発明は、例えばPWMインバータ、スイッチング電源等における、スイッチングパワーデバイスのゲートに、オン・オフの駆動信号を伝達する場合などに使用される高耐圧集積回路装置(HVIC)に関する。特に、回路内に負電圧サージが入力されたときに流れる過電流で誤動作が起こることを防止した高耐圧集積回路装置に関する。
PWMインバータ等の電力逆変換(直流交流変換)用ブリッジ回路の上側アームを構成するスイッチングパワーデバイスを駆動する手段としては、高耐圧接合を利用した素子分離方式のHVICが使用されている。HVICは、スイッチングパワーデバイスの異常時の過電流検出や温度検出手段を備えた高機能化や、または、トランスやフォトカプラ等による電位絶縁を行わないことでの電源システムの小型化・低コスト化を図ることができる。
図9は、インバータなどの電力変換装置のスイッチングパワーデバイスとそれを駆動する従来のHVICの接続例を示す説明図である。図9には、2つのスイッチングパワーデバイス(ここではIGBT114、115)が直列に接続された半ブリッジの例が示されている。図9に示す電力変換装置は、この上アームのIGBT115と下アームのIGBT114を交互にオンさせることで出力端子であるVs端子から高電位あるいは低電位を交互に出力して、L負荷118に交流電力を供給している(交流電流を流している)。
すなわち、高電位を出力する場合には、上アームのIGBT115がオンし、下アームのIGBT114がオフするようにIGBT114とIGBT115を動作させる。また、逆に低電位を出力する場合には上アームのIGBT115がオフし下アームのIGBT114がオンするようにIGBT114とIGBT115を動作させる。尚、IGBT114、115に逆並列に接続されたダイオードはFWD(Free Wheel Diode)116、117である。この間、駆動素子であるHVIC111では、下アームのIGBT114へのゲート信号はGND基準にて信号を出力し、上アームのIGBT115へのゲート信号はVs端子基準にて信号を出力することになる。このためHVIC111はレベルシフト機能を備えている必要がある。
尚、図9中の符号で、Vssは、主回路電源である高電圧電源の高電位側である。GNDは、グランド(接地)である。Vsは、Vss電位からGND電位まで変動する中間電位である。H−VDDは、Vsを基準とする第2低電圧電源の高電位側である。L−VDDは、GNDを基準とする第1低電圧電源の高電位側である。ブートストラップダイオード(図2のダイオード75)回路において第2低電圧電源は第1低電圧電源(L−VDD)から作られる。符号113は、ハイサイド電源であり、符号112は、ローサイド電源である。
また、H−INは、レベルアップ回路と接続するローサイド側のC−MOS回路のゲートに入力される入力信号および入力端子である。L−INは、下アームのIGBT114のゲートと接続するローサイド側のC−MOS回路のゲートに入力される入力信号および入力端子である。また、H−OUTは、上アームのIGBT115のゲートへ出力するハイサイド側のC−MOS回路の出力信号および出力端子である。L−OUTは、下アームのIGBT114のゲートへ出力する出力信号および出力端子である。また、ALM−INは、上アームのIGBT115の温度や過電流を検出したときの検出信号119の入力信号および入力端子である。ALM−OUTは、レベルダウンされた検出信号の出力信号および出力端子である。
図10および図11は、図9に示したHVIC111の内部のレベルシフト回路とその周辺回路を示す回路図である。図10はレベルアップ回路を含む回路図であり、図11はレベルダウン回路を含む回路図である。図10,11において、符号120は、Vsを基準とする第2低電圧電源の高電位側の端子である。
尚、以下の説明でpはp型、nはn型を示す。ここでは、周辺回路として、レベルシフト回路の入力信号を伝達するローサイド側のC−MOS回路と、レベルシフト回路の出力信号を上アームのIGBT115に伝達するハイサイド側のC−MOS回路とを示した。
図10において、ローサイド回路の入力信号(H−IN)が入力されると、その信号はローサイド回路のC−MOS回路を経由してレベルアップ回路のnチャネルMOSFET41のゲートに入力される。この信号でnチャネルMOSFET41はオン・オフし、レベルアップ回路の出力信号が出力部101から出力され、その信号によりハイサイド回路のC−MOS回路がオン・オフして出力信号(H−OUT)が出力される。この出力信号はVsを基準とした信号に変換される。この出力信号が上アームのIGBT115のゲートに入力されて、上アームのIGBT115をオン・オフさせる。図10のレベルアップ回路は、上アームのIGBT115がnチャネル型の場合に必要となる。
図11において、レベルダウン回路はpチャネルMOSFET43とレベルシフト抵抗72で構成される。レベルシフト抵抗には、ダイオード76が並列接続している。ALM−INの信号がハイサイド回路のC−MOS回路のゲートに入力され、C−MOS回路の出力信号がレベルダウン回路のpチャネルMOSFET43のゲートに入力される。pチャネルMOSFET43をオン・オフすることで、レベルダウン回路の出力部102からローサイド側の信号が出力され、ローサイド回路のC−MOS回路の出力からレベルダウンした信号がALM−OUTから検出信号としてローサイド側に出力される。
スイッチングパワーデバイスは、モーター制御用のインバータのほか、大容量のPDP(プラズマディスプレイパネル)、液晶パネルなどの電源用途、エアコンや照明といった家電用インバータなど多くの分野で広く利用されている。
これらモーターや照明などは図9に示したようなインダクタンス負荷となる。そのため、プリント基板上の配線や負荷までのケーブル等による寄生インダクタンス成分等の影響をHVICのVs端子やH−VDD端子は受ける。この寄生インダクタンス成分により、上アームのIGBT115がオフする時や、下アームのIGBT114がオンとなるスイッチング時にHVIC111のVs端子やH−VDD端子がグランド(図9のGND端子)に対してマイナス電位側へ変動する。この変動がハイサイド回路の誤動作やラッチアップによる素子破壊の原因になる。
図12は、従来のHVICのレベルシフト回路図の詳細図である。図12(a)はレベルアップ回路図であり、図12(b)はレベルダウン回路図である。図12(a)に示すレベルアップ回路は、レベルシフト抵抗71と、このレベルシフト抵抗71とドレインが接続するnチャネルMOSFET41とを備え、レベルシフト抵抗71とnチャネルMOSFET41との接続部をレベルアップ回路の出力部101とする構成となっている。
上記のようにH−VDDがGND電位より大幅に低電位になったときに(過大な負電圧サージが印加されたとき)、レベルシフト抵抗71が破壊されるのを防止するために、レベルシフト抵抗71にはダイオード75が並列に接続される。また、H−VDDに過電圧が印加された場合、ダイオード75は、ハイサイド回路のC−MOS回路のMOSFETのゲートに過大な電圧が印加されるのを防止する機能を有する。このダイオード75には、通常はツェナーダイオードが多用される。また、nチャネルMOSFET41には、逆並列にボディーダイオード42が内蔵されている。
一方、図12(b)に示すレベルダウン回路は、pチャネルMOSFET43のドレインと、このドレインと接続するレベルシフト抵抗72を備え、レベルシフト抵抗72とpチャネルMOSFET43との接続部をレベルダウン回路の出力部102とする構成となっている。
H−VDDがGND電位より大幅に低電位になったときに、レベルシフト抵抗72が破壊されるのを防止するために、レベルシフト抵抗72にはダイオード76が並列に接続される。また、pチャネルMOSFET43がオン動作時にH−VDDに過電圧が印加された場合、ダイオード76は、ローサイド回路のC−MOS回路のMOSFETのゲートに過電圧が印加されるのを防止する機能を有する。また、pチャネルMOSFET43には、逆並列にボディーダイオード44が接続されている。
図13は、従来の自己分離型の高耐圧集積回路装置500のハイサイド回路、ローサイド回路のそれぞれのロジック部とレベルアップ回路部および高耐圧接合終端領域(HVJT)の要部を示す断面図である。尚、図13中の符号a〜jは各領域上に形成した電極である。符号21はpオフセット領域である。符号22〜24,26〜28,32〜34,36〜38はソース、ドレインおよびコンタクトとなる領域である。また、符号25,29,35,39はゲート電極である。
図13において、GND電位に接続されたp半導体基板1の表面層には、nウェル領域2およびnウェル領域3が形成される。nウェル領域2内には、例えば、ローサイド回路のC−MOS回路などが形成される。nウェル領域3には、例えば、レベルシフト回路やハイサイド回路のC−MOS回路などが形成される。
レベルシフト用のnチャネルMOSFET41は、n-ウェル領域4と、n-ウェル領域4と接するp領域51と、p領域51の表面層に形成されるnソース領域53およびpコンタクト領域54と、n-ウェル領域4の表面層に形成されるnドレイン領域52と、nソース領域53とnドレイン領域52に挟まれたp領域51上にゲート酸化膜を介して形成されるゲート電極55とを備えている。
このnチャネルMOSFET41のドレイン領域52は、表面金属配線によってレベルシフト抵抗71を介してH−VDDに接続されている。高耐圧集積回路装置500は、nチャネルMOSFET41のドレイン領域52とレベルシフト抵抗71との接続部をレベルアップ回路の出力部101としている。
出力部101は、このレベルアップ用のnチャネルMOSFET41がオンされると低電位を出力し、オフされると高電位を出力する。このため、高耐圧集積回路装置500は、異なる基準電位間の信号伝達であるレベルシフト動作を行うことができる。
上述のように、上アームIGBT115をオフするタイミングでVs端子には、GND電位に対しマイナス電位となるサージが入る。この電圧VSは、以下の式(1)を使用して計算することができる。
S=L×dI/dt・・・(1)
電圧VSがGND電位−(Vsupply+Vf)よりも低くなると、半導体チップの内部寄生ダイオードが導通し始める。尚、Vsupplyはハイサイド電源113もしくは図示しないブートストラップコンデンサの両端間のバッテリ電圧であり、Vfは寄生ダイオード45,46の順方向電圧降下である。
電圧VSが大きくマイナス方向に引かれた場合には過電流がチップを流れ、その結果、ハイサイド回路が誤動作したり、チップが故障する虞がある。マイナス電圧に引かれている期間は、プリント基板上の配線や負荷までのケーブル等による寄生インダクタンス成分(L1)とIGBT115で流していたオン電流I1のオフする期間によるdI1/dtの積に比例して、スパイク状のマイナスサージがVs端子に、−30V程度およそ数百nsから500ns程度の期間かかる。
図14は、図13のハイサイド回路およびレベルシフタなどの要部を示す配置図である。高電位領域であるnウェル領域3には、H−VDDパッド、H−OUTパッド、Vsパッドおよび中間電位領域が形成される。中間電位領域とは、pオフセット領域31およびpドレイン領域34である。nウェル領域3の外周の表面層には、帯状にnコンタクト領域62が形成される。nコンタクト領域62上には、第1ピックアップ電極81が点在している。このnウェル領域3を取り囲んでn-ウェル領域4が形成される。このn-ウェル領域4を取り囲んでp領域61が形成される。
p領域61の表面層には、帯状にpコンタクト領域56が形成される。このpコンタクト領域56上には、第2ピックアップ電極82が点在している。p領域61を取り囲んで低電位領域であるnウェル領域2が形成される。このnウェル領域2に図13に示すローサイド回路が形成される。nコンタクト領域62とp領域61に挟まれたp領域51の表面層にはレベルシフタが形成される。また、nコンタクト領域62とp領域61およびこれらの領域に挟まれたn-ウェル領域4およびp領域51は高耐圧接合終端領域である。レベルシフタが形成されるp領域51とn-ウェル領域4とは接している。
前記の各領域を無駄なく効率よく配置してチップサイズの縮小化を図る場合、中間電位領域の一部は、nコンタクト領域62に近接した配置となる。この近接した箇所を符号Eとすると、このnコンタクト領域62に近接した箇所Eが中間電位領域と高耐圧接合終端領域とが対向する箇所であり、中間電位領域と高耐圧接合終端領域との対向距離Wが最小となる箇所である(以下、対向箇所Eとする)。
このような高耐圧集積回路として、高電圧集積回路チップに関し、より詳しくは、半ブリッジ構成のパワートランジスタを駆動する高電圧集積回路を保護するための回路であって、出力ノード(点)での過大な負のスイングを見込んだ回路を対象とし、負電圧スパイク中の電流を制限する抵抗器を基板と接地の間に有する高電圧集積回路チップが開示されている(例えば、下記特許文献1参照。)。
また、高耐圧集積回路装置として、レベルシフタに属するスイッチング素子のドレイン電極と増幅器(C−MOS回路)に属するMOSトランジスタのゲート電極との間にダイオードを挿入することで逆バイアスの影響を減殺する装置が開示されている(例えば、下記特許文献2参照。)。
また、別の高耐圧集積回路装置として、レベルシフタに属するスイッチング素子のドレインとレベルシフト抵抗と電流制限抵抗とが直列接続され、レベルシフト抵抗と電流制限抵抗との間をレベルアップ回路の出力部とすることが開示されている(例えば、下記特許文献3参照。)。
また、別の高耐圧集積回路装置として、次の装置が開示されている。共通接地ノード(COM)と仮想接地ノード(VS)との間に高耐圧ダイオード(D3)を高電圧制御回路(HVIC)内部に共通の基板領域を利用して設ける。それによって、パワーデバイス駆動回路において、高電位側基準電位(仮想接地VS)に発生する負電圧のアンダーシュートによる高電位側電源電圧の低下を確実に抑制する(例えば、下記特許文献4参照。)。
特許第3346763号公報 特開2001−25235号公報 特開2008−301160号公報 特開2010−263116号公報
しかしながら、上述した従来の高耐圧集積回路装置には、次のような問題がある。図9に示すスイッチングパワーデバイスとHVICとの接続において、Vssが1200V程度であり、H−VDDがVsに対して15V程度高い電位である場合について説明する。上アームのIGBT115が動作し、下アームのIGBT114がオフ動作をしている際は、上アームIGBT115からL負荷118に対して電流が流れる。
この状態から上アームのIGBT115がオフ動作するとL負荷118が電流を維持しようとするため、下アームのFWD116を介してGNDより電流が流れ、Vs端子の電位がGND電位よりも低くなり、−30V程度にもなる。Vs端子の電位が−30V程度となった場合、H−VDD端子の電位は−15V程度になる。
図13に示す高耐圧集積回路装置の構造では、p半導体基板1およびp領域61がGND電位にある。nウェル領域3、n-ウェル領域4がともにGND電位より低くなるまでVs端子の電位が低下した場合について説明する。
p半導体基板1およびnウェル領域3からなる寄生ダイオード45と、p領域61およびn-ウェル領域4からなる寄生ダイオード46とが順方向バイアスになり大きな電流が流れる。この電流はIGBT115のゲート・ソース間の容量を介して流れる。このパスには電流を制限する抵抗成分がないので極めて大きなパルス電流となる。このパルス電流によってHVICが破壊されたり、誤動作を起こしたりする。
また、図13および図14において、Vsパッド(端子)またはH−VDDパッド(端子)に負電圧サージが印加されると、寄生ダイオード46を構成するp領域61からn-ウェル領域4へ正孔が注入される。特に、中間電位領域に対して対向距離Wが短い対向箇所Eの高耐圧接合終端領域では他の箇所に比べて、中間電位領域とp領域61との間のn-ウェル領域4の抵抗(寄生ダイオード46のカソード抵抗)が小さくなるため、他の箇所よりp領域61からn-ウェル領域4への正孔量は多くなる。
このn-ウェル領域4に入った正孔は、nコンタクト領域62下を通って、マイナス電位のVs電位領域であるpオフセット領域31およびpドレイン領域36(ゲート電極39にオン信号が入っているとき)に流れて行く。pオフセット領域31に流入した正孔はpコンタクト領域38からVs端子へ引き抜かれる。
しかし、この正孔の一部は、nソース領域37下にも侵入し、nソース領域37、pオフセット領域31およびnウェル領域3で構成される寄生npnトランジスタのゲート電流となり、この寄生npnトランジスタがオンしてハイサイド回路のロジック部を誤動作させる場合がある。
さらに、nソース領域37下にも侵入した正孔がnソース領域37、pオフセット領域31、nウェル領域3およびp半導体基板1で構成される寄生サイリスタをオン(ラッチアップ)させてハイサイド回路を破壊させる場合がある。また、この正孔の一部がnウェル領域3を通ってpドレイン領域34に流れて行くと、やはりハイサイド回路のロジック部を誤動作させる場合がある。
また、上述した特許文献1に記載の技術では、電流を制限する抵抗器はGND(接地)端子と基板との間に接続されており、それ以外の箇所での接続に関しては触れられていない。この抵抗器はポリシリコン層で形成されているため、負電圧の大きなパルス電流(数A〜数十A)が過渡的にVs端子とGND端子間の寄生ダイオードに流れた際に、ポリシリコン層が過電流により熱溶解し破壊に至る虞がある。
また、上述した特許文献2に記載の技術では、逆バイアスの影響を減殺するためにダイオードを接続しており、L負荷によりH−VDDが負電位になった場合、ボディーダイオードや寄生ダイオードの電流を制限する抵抗やレイアウト方法に関しては触れられていない。
また、上述した特許文献3に記載の技術では、レベルシフト回路のVs基準の低電圧電源の高電位側(H−VDD)と低電位側(グランド)との間の経路に電流制限抵抗を接続することで、nチャネルMOSFETのボディーダイオードや寄生ダイオード自体が過電流破壊することや、レベルシフト回路の電流容量の小さい箇所が過電流破壊するのを防止することができることについては述べられている。しかしながら、Vs基準のハイサイド回路の寄生誤動作(誤反転)の防止については触れられていない。
また、上述した特許文献4に記載の技術では、高耐圧ダイオード(D3)をVs端子とGND電位にある高電圧制御回路(HVIC)の基板との間に設けることについて記載されているが、ブートストラップ電源ノードであるVB端子とGND電位にある高電圧制御回路(HVIC)の基板との間に設けることについては記載されていない。
この発明は、上述した従来技術による問題点を解消するため、H−VDD端子またはVs端子に負電圧サージが印加された場合にハイサイド回路の誤動作や破壊を防止できる高耐圧集積回路装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる高耐圧集積回路装置は、直列に接続された2つのパワートランジスタの高電位側パワートランジスタを駆動する高耐圧半導体集積回路装置であって、次の特徴を有する。第1導電型の半導体基板の表面層に形成された第2導電型の高電位領域と、前記半導体基板の表面層に、前記高電位領域と接し、かつ前記高電位領域の外周に沿って形成された、前記高電位領域よりも不純物濃度の低い第2導電型の耐圧領域と、前記半導体基板の表面層に、前記耐圧領域と接し、かつ前記耐圧領域の外周に沿って形成された、接地電位が印加される第1導電型のグランド電位領域と、前記半導体基板の表面層の、前記グランド電位領域の外側に形成された第2導電型の低電位領域と、前記高電位領域内に形成され前記高電位領域と接合分離された第1導電型の中間電位領域と、前記耐圧領域の前記高電位領域側端部に沿って形成された第2導電型の第1コンタクト領域と、前記グランド電位領域の表面層に前記第1コンタクト領域に対向して形成された第1導電型の第2コンタクト領域と、前記第1コンタクト領域に接する第1ピックアップ電極と、前記第2コンタクト領域に接する第2ピックアップ電極と、を備える。そして、前記中間電位領域は、直列に接続された2つの前記パワートランジスタの主回路電源である高電圧電源の高電位側電位からグランド電位までの間の中間電位が印加される領域である。前記低電位領域は前記グランド電位を基準とする第1低電圧電源の高電位側電位が印加される領域である。前記高電位領域は、前記中間電位を基準とする第2低電圧電源の高電位側電位が印加される領域である。前記耐圧領域、前記グランド電位領域、前記第1コンタクト領域および前記第2コンタクト領域から構成される高耐圧接合終端領域が形成されている。前記中間電位領域との対向距離が他の箇所より短い高耐圧接合終端領域の箇所における、前記第1ピックアップ電極と前記第2ピックアップ電極との間の電流通路の抵抗は他の箇所より高い。
この発明によれば、次の効果を奏する。図15は、負電圧サージとコンタクト領域から中間電位領域までの距離との関係を示す図である。図15には、図13,14に示す高耐圧集積回路装置の構成における、負電圧サージ印加時の保証電圧に対するコンタクト領域62と中間電位領域であるpオフセット領域31との距離を示す。
図15に示すように誤動作を抑制する保証電圧が−30V(パルス幅500ns)とした場合、コンタクト領域62とpオフセット領域31との距離は100μm以上必要となる。しかしながら、レイアウトの都合上、コンタクト領域と中間電位領域との距離を全ての領域において100μm以上空けることは、無効領域が多くなり、面積効率において好ましくない。したがって、コンタクト領域と中間電位領域との距離を100μmより短くし、当該距離を短くした代わりに、第1ピックアップ電極と第2ピックアップ電極との間の電流通路の抵抗を高くする。これにより中間電位領域に流れ込む正孔を少なくすることができ、誤動作を抑制することができる。
また、高耐圧接合終端領域と対向する中間電位領域以外の領域においては、図10で示したレベルシフト抵抗71やダイオード75など負電圧により誤動作が起きない領域が形成される。このため、正孔は抵抗値が低い高耐圧接合終端領域(他の箇所)を通って中間電位領域以外の領域に支配的に流れる。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる高耐圧集積回路装置は、直列に接続された2つのパワートランジスタの高電位側パワートランジスタを駆動するための高耐圧半導体集積回路装置であって、次の特徴を有する。第1導電型の半導体基板の表面層に形成された第2導電型の高電位領域と、前記高電位領域の外周の一部を分離する第1導電型の分離領域と、前記半導体基板の表面層に、前記高電位領域と接し、かつ前記高電位領域の外周に沿って形成された、前記高電位領域よりも不純物濃度の低い第2導電型の耐圧領域と、前記半導体基板の表面層に、前記分離領域と接し、かつ前記耐圧領域の外周に形成された、接地電位が印加される第1導電型のグランド電位領域と、前記半導体基板の表面層の、前記グランド電位領域の外側に形成された第2導電型の低電位領域と、前記高電位領域内に形成され前記高電位領域と接合分離された第1導電型の中間電位領域と、前記耐圧領域の前記高電位領域側端部に沿って形成された第2導電型の第1コンタクト領域と、前記グランド電位領域の表面層に前記第1コンタクト領域に対向して形成された第1導電型の第2コンタクト領域と、前記第1コンタクト領域に接する第1ピックアップ電極と、前記第2コンタクト領域に接する第2ピックアップ電極と、を備える。そして、前記中間電位領域は、直列に接続された2つの前記パワートランジスタの主回路電源である高電圧電源の高電位側電位からグランド電位までの間の中間電位が印加される領域である。前記低電位領域は前記グランド電位を基準とする第1低電圧電源の高電位側電位が印加される領域である。前記高電位領域は、前記中間電位を基準とする第2低電圧電源の高電位側電位が印加される領域である。前記耐圧領域、前記グランド電位領域、前記第1コンタクト領域および前記第2コンタクト領域から構成される高耐圧接合終端領域が形成されている。前記中間電位領域との対向距離が他の箇所より短い高耐圧接合終端領域の箇所における、前記第1ピックアップ電極と前記第2ピックアップ電極との間の電流通路の抵抗は他の箇所より高い。
また、この発明にかかる高耐圧集積回路装置は、上述した発明において、前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所を除いて、前記第1ピックアップ電極を形成することで前記抵抗が他の箇所より高くなっていることを特徴とする。
また、この発明にかかる高耐圧集積回路装置は、上述した発明において、前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所を除いて、前記第2ピックアップ電極を形成することで前記抵抗が他の箇所より高くなっていることを特徴とする。
また、この発明にかかる高耐圧集積回路装置は、上述した発明において、前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所において、少なくとも前記第1コンタクト領域と前記第1ピックアップ電極または前記第2コンタクト領域と前記第2ピックアップ電極のいずれかを電気的に絶縁することで前記抵抗が他の箇所より高くなっていることを特徴とする。
また、この発明にかかる高耐圧集積回路装置は、上述した発明において、前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所において、前記高耐圧接合終端領域の表面層に前記高電位領域と前記グランド電位領域とのそれぞれから離して前記グランド電位領域と同一の導電型の半導体領域を形成しダブルリサーフ構造とすることで前記抵抗が他の箇所より高くなっていることを特徴とする。
また、この発明にかかる高耐圧集積回路装置は、上述した発明において、前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所において、前記耐圧領域を前記低電位領域側に伸ばすことで前記抵抗が他の箇所より高くなっていることを特徴とする。
上述した発明によれば、中間電位領域に対し、対向距離が短い箇所の高耐圧接合終端領域を他の箇所より高い抵抗にすることで、負電圧サージ入力時に正孔の注入を局部的に少なくすることができる。
本発明にかかる高耐圧集積回路装置によれば、ハイサイド回路のロジック部の誤動作や破壊を防止することができるという効果を奏する。
図1は、この発明の実施の形態1にかかる高耐圧集積回路装置の要部を示す平面図である。 図2は、図1の切断線A−A線に平行な方向で切断した場合の全体の要部を示す断面図である。 図3は、図1のF部の拡大図で正孔と電子の流れを示した要部平面図である。 図4は、図1の高耐圧接合終端構造とその周辺の要部断面図である。 図5は、この発明の実施の形態2にかかる高耐圧集積回路装置の要部を示す平面図である。 図6は、この発明の実施の形態2にかかる高耐圧集積回路装置の要部を示す断面図である。 図7は、この発明の実施の形態3にかかる高耐圧集積回路装置の要部を示す平面図である。 図8は、この発明の実施の形態3にかかる高耐圧集積回路装置の要部を示す断面図である。 図9は、インバータなどの電力変換装置のスイッチングパワーデバイスとそれを駆動する従来のHVICの接続例を示す説明図である。 図10は、レベルアップ回路とその周辺回路を示す回路図である。 図11は、レベルダウン回路とその周辺回路を示す回路図である。 図12は、従来のHVICのレベルシフト回路図の詳細図である。 図13は、従来の自己分離型の高耐圧集積回路装置のハイサイド回路、ローサイド回路のそれぞれのロジック部とレベルアップ回路部および高耐圧接合終端領域(HVJT)の要部を示す断面図である。 図14は、図13のハイサイド回路およびレベルシフタなどの要部を示す配置図である。 図15は、負電圧サージとコンタクト領域から中間電位領域までの距離との関係を示す図である。 図16は、この発明の実施の形態4にかかる高耐圧集積回路装置の要部を示す平面図である。 図17は、この発明の実施の形態4にかかる高耐圧集積回路装置の要部を示す断面図である。
以下に添付図面を参照して、この発明にかかる高耐圧集積回路装置の好適な実施の形態を詳細に説明する。従来構造と同一部位には同一の符号を付した。また、文中においてpはp型、nはn型を示す。以下の実施の形態では、レベルシフタとしてレベルアップNMOSのみを記載しているが、レベルダウンPMOSを形成しても同様に効果を奏することができる。
図9〜図12の回路は、以下の実施の形態において対応する。
(実施の形態1)
図1は、この発明の実施の形態1にかかる高耐圧集積回路装置100の要部を示す平面図である。また、図2は、図1の切断線A−Aに平行な方向で切断した場合の全体の要部を示す断面図である。図1,2において、図9〜図13に示した構成に対応する構成には同一の符号を付した。
図3は、図1のF部の拡大図で正孔と電子の流れを示した要部平面図である。尚、斜めの点線で示した領域は、中間電位領域の一部がnコンタクト領域62に近接した配置となる箇所(対向箇所)Eであり、中間電位領域との対向距離Wが他の箇所より短い高耐圧接合終端領域の箇所である。
図4は、図1の高耐圧接合終端領域とその周辺の要部断面図である。図4(a)は、図1の切断線A−Aの断面構造について示す要部断面図である。図4(b)は、図1のB−Bの断面構造について示す要部断面図である。尚、図2の断面図は、図13の断面図と同じである。図2に示すハイサイドとは、Vs電位を基準電位としてL−VDD電位が重畳された電位(H−VDD電位)が印加される高電位領域と、Vs電位が印加される中間電位領域とを含む領域である。また、ローサイドとは、GNDを基準電位としてL−VDD電位が印加される低電位領域と、GND電位が印加されるグランド電位領域とを含む領域である。
図1〜図4において、nウェル領域3はハイサイドであり、このnウェル領域3上にH−VDDパッド、H−OUTパッド、Vsパッドおよび中間電位領域を形成する。これらのパッドは図2の各端子となる。
中間電位領域は、pオフセット領域31およびpドレイン領域34である。pドレイン領域34は、図2に示すnソース領域37とnドレイン領域36とで構成されるnMOSFET85がオンしたときにVs電位となるので、pドレイン領域34は中間電位領域になる。
一方、nMOSFET85がオフのときは、pソース領域33およびpドレイン領域34で構成されるpMOSFET86がオンするので高電位領域となる。すなわち、pドレイン領域34は、中間電位領域または高電位領域のどちらかになる。尚、本実施の形態の場合は、中間電位領域はpオフセット領域31とpドレイン領域34とであるがこれらの領域に限るものではない。
低電位領域は、p領域61、レベルシフタ(図2に示すNchMOSFET41)を構成するp領域51および図2に示すp半導体基板1である。NchMOSFET41のnソース領域53は、p領域51の表面層に形成される。NchMOSFET41のnドレイン領域はn-ウェル領域4である。
高耐圧接合終端領域は、高濃度のnコンタクト領域62と高濃度のpコンタクト領域56とを含むこれらの間にあるn-ウェル領域4とp領域61である。また、n-ウェル領域4は、p領域61とのpn接合に逆バイアスが印加された際に、空乏層を主として広げる領域であり、耐圧領域とする。nウェル領域2は低電位領域である。nウェル領域2には、L−VDD端子、L−OUT端子が形成される。グランド電位領域はp領域61であり、p領域61には、GND端子が形成される。
図1において、nウェル領域3を取り囲みn-ウェル領域4とnウェル領域3とに跨るようにそれらの表面層に帯状のnコンタクト領域62が形成される。この帯状のnコンタクト領域62上に帯状の第1ピックアップ電極81が形成される。この第1ピックアップ電極81とnコンタクト領域62との接触部81aはオーミック接触して点在する。接触部81aは帯状であってもよい。
nウェル領域3を取り囲みnウェル領域3に繋がるn-ウェル領域4が形成され、このn-ウェル領域4を取り囲んでp領域61が形成される。p領域61は帯状に形成され、このp領域61の表面層に帯状にpコンタクト領域56が形成される。この帯状のpコンタクト領域56上に帯状の第2ピックアップ電極82が形成される。この第2ピックアップ電極82とpコンタクト領域56との接触部82aはオーミック接触して点在する。接触部82aは帯状であってもよい。
p領域61と接して低電位領域であるnウェル領域2が形成され、このnウェル領域2にローサイド回路(図2に示すローサイド)が形成される。また、p領域51は、レベルシフタが形成される領域である。p領域51は、n-ウェル領域4に接しp領域61に張り出して、p半導体基板1の表面層に形成される。但し、図1では便宜的に張り出す箇所を接するように示した。
nコンタクト領域62上およびpコンタクト領域56上には、それぞれH−VDD端子に接続する第1ピックアップ電極81およびGND端子に接続する第2ピックアップ電極82が形成される。これらの第1,2ピックアップ電極81,82とコンタクト領域62,56とのそれぞれの接触部81a,82aは、前記したように共に点在して形成される。この接触部81a,82aは帯状に形成されても良い。
本実施の形態1において、中間電位領域(ここではpオフセット領域31)との対向距離Wが他の箇所より短い高耐圧接合終端領域の対向箇所Eでは、nコンタクト領域62上およびpコンタクト領域56上に、それぞれ第1ピックアップ電極81および第2ピックアップ電極82は配置されない。または、第1,2ピックアップ電極81,82を配置しない代わりに、第1,2ピックアップ電極81,82は配置して接触部81a,82aを設けなくてもよい。例えば、コンタクト領域56,62と第1,2ピックアップ電極81,82との間に絶縁膜を挟んで接触部81a,82aをなくするなどである。
尚、図1および図2では、対向箇所Eでは、中間電位領域の端部(pオフセット領域31の端部)とnコンタクト領域62の端部とは互いに平行である。前記のようにすることで、中間電位領域との対向距離Wが他の箇所より短い高耐圧接合終端領域の対向箇所Eで、第1ピックアップ電極81と第2ピックアップ電極82との間の抵抗を他の箇所より高くすることができる。
また、中間電位領域との対向距離Wが誤動作を抑制する保証電圧を確保する十分な距離を備えている場合、中間電位領域と高耐圧接合終端領域との間の領域には、図10で示したレベルシフト抵抗71やダイオード75など負電圧により誤動作が起きない領域が形成される。このため、負電圧サージ入力時にn-ウェル領域4に入った正孔は抵抗値が低い高耐圧接合終端領域(他の箇所)を通ってE領域以外の領域に支配的に流れる。
その理由を図3および図4を用いて説明する。図3において、第1ピックアップ電極81(接触部81a)が形成されていないnコンタクト領域62の対向する接触部81a間の中点をZ1とし、第2ピックアップ電極82(接触部82a)が形成されていないpコンタクト領域56の対向する接触部82a間の中点をZ2とする。また、第1ピックアップ電極81が途切れる端部(途切れる箇所の接触部81aの端)をZ3(左右に2箇所あり)、第2ピックアップ電極82が途切れる端部(途切れる箇所の接触部82aの端)をZ4(左右に2箇所あり)とする。
負電圧サージ入力時に、このZ1からZ2に向かって流れる電子84と、Z2からZ1に向かって流れる正孔83について説明する。電子84は図3の第1ピックアップ電極81(接触部81a)が途切れる端部Z3からnコンタクト領域62に入り、この帯状のnコンタクト領域62をZ1まで流れた後、nコンタクト領域62からn-ウェル領域4に入る。図では片方の経路(実線)のみ示す。その後、電子84はn-ウェル領域4をZ2に向かって流れて行く。このように点Z1からn-ウェル領域4に入る電子84は、帯状のnコンタクト領域62に沿って長い経路を流れるため、抵抗が大きくなり電子84量は大幅に減少する。このことは、第1ピックアップ電極81が接触する対向箇所E以外の箇所のnコンタクト領域62からn-ウェル領域4に入る電子84量に比べると、対向箇所Eの第1ピックアップ電極81が接触していないnコンタクト領域62からn-ウェル領域4に入る電子84量は少なくなる。
一方、正孔83は図3の第2ピックアップ電極82(接触部82a)が途切れる端部Z4からpコンタクト領域56に入り、この帯状のpコンタクト領域61をZ2まで流れた後、pコンタクト領域56からn-ウェル領域4に入る。図では片方の経路(点線)のみ示す。その後、n-ウェル領域4をZ1に向かって流れて行く。このように点Z2からn-ウェル領域4に入る正孔83は、帯状のpコンタクト領域56に沿って長い経路を流れるため、抵抗が大きくなり正孔83量は少なくなる。このことは、第2ピックアップ電極82が接触するpコンタクト領域56からn-ウェル領域4に入る正孔83量に比べると、第2ピックアップ電極82が接触していないpコンタクト領域56からn-ウェル領域4に入る正孔83量は少ない。
このように、第1,第2ピックアップ電極81,82がコンタクト領域56,62に接触していない対向箇所Eでは、電子84量および正孔83量が共に減少する。すなわち、この対向箇所Eでは、正孔83および電子84が帯状のコンタクト領域56,62に沿って流れる分、第1ピックアップ電極81と第2ピックアップ電極82間の電流通路の抵抗(電気抵抗)が高くなる。このことは、中間電位領域との対向距離Wが短い高耐圧接合終端領域の対向箇所Eにおいて、第1ピックアップ電極81と第2ピックアップ電極82との間の電流通路の抵抗が他の箇所より高くなるということを意味する。
また、第1ピックアップ電極81もしくは第2ピックアップ電極82の少なくとも一方を配置しない(または電極とコンタクト領域の間に絶縁膜を形成して絶縁する)ことで、負電圧サージの印加電圧が他の箇所に比べて対向箇所Eでは帯状のnコンタクト領域62もしくは帯状のpコンタクト領域56に空乏層が広がるため、n-ウェル領域4での印加電圧が低くなり、注入される正孔83量および電子84量が減少する。
前記したように、第1ピックアップ電極81もしくは第2ピックアップ電極82を配置しないことで、対向箇所Eではp領域61へ向かって流れる電子84量もしくはnコンタクト領域62へ向かって流れる正孔83量が減少する。このことは、電荷の中性原理に基づいてこの電子84もしくは正孔83を中性化しようとする正孔83量もしくは電子84量も減少する。すなわち、第1ピックアップ電極81もしくは第2ピックアップ電極82を配置しないことで、n-ウェル領域4を経由してnウェル領域3に流れ込む正孔83量もしくはp領域61に流れ込む電子84量が減少する。
その結果、Vs端子またはH−VDD端子に負電圧サージが入力したとき、高電位領域であるnウェル領域3への過渡的に流れる正孔83量を抑制することで、ハイサイド回路の誤動作や破壊が防止できる高耐圧集積回路装置(HVIC)を提供することができる。一方、低電位領域であるnウェル領域2へ過渡的に流れる電子84がローサイド回路を誤動作させることはない。
つぎに、各部位の形成方法について説明する。p半導体基板1上に形成された高電位領域であるnウェル領域3とn-ウェル領域4は、例えばリン(P)をそれぞれ、ドーズ量が1×1013/cm2〜2×1013/cm2、1×1012/cm2〜2×1012/cm2の不純物濃度でイオン注入して、その後高温(1100℃〜1200℃程度)の拡散工程により、それぞれ所定の拡散深さまで拡散させる。これにより、nウェル領域3とn-ウェル領域4が形成される。
同様にp領域61においては、ボロン(B)をイオン注入した後、高温(1100〜1200℃程度)の拡散工程で所定の拡散深さまで拡散される。つぎに、H−VDD端子とオーミック接触をとるための高濃度のnコンタクト領域62を、例えば、砒素を表面濃度1×1020/cm3程度になるようにイオン注入した後、750℃〜900℃程度のアニール工程により、所定の深さでp領域61が形成される。
また、GND端子とオーミック接触をとるための高濃度のpコンタクト領域56を例えばフッ化ホウ素(BF2)を表面濃度1×1020/cm3程度になるようにイオン注入する。その後の750℃〜900℃程度のアニール工程により、所定の深さでpコンタクト領域56が形成される。
その後、層間絶縁膜を被覆し層間絶縁膜にコンタクトをとるための開口部を形成し、第1,2ピックアップ電極81,82および各領域上に各電極や各端子を形成する。その後、図示しない保護膜で電極や端子が形成されたp半導体基板1の表面を被覆する。
図1,2に示したように、高電位領域であるnウェル領域3の表面層に、pソース領域33とpドレイン領域34とで構成されるpMOSFET86、中間電位領域およびnコンタクト領域62が配置される。この中間電位領域はpオフセット領域31およびpドレイン領域34である。pオフセット領域31の表面層には、nソース領域37とnドレイン領域36とで構成されるnMOSFET85が配置される。このnMOSFET85がオンするとpドレイン領域34は中間電位領域になる。nウェル領域3にはpMOSFET86とnMOSFET85とで構成されるC−MOS回路が形成され、ハイサイドロジック部となる。
ここで、前記したように、中間電位領域であるpオフセット領域31に対して、対向距離Wが短い対向箇所Eの高耐圧接合終端領域のnコンタクト領域62上およびpコンタクト領域56上にそれぞれ第1ピックアップ電極81および第2ピックアップ電極82を配置しない(互いを電気的に絶縁する)ことで、対向箇所Eを他の箇所より高い抵抗にすることができる。
尚、前記したように、負電圧サージが入力されると大きなパルス電流が寄生ダイオード46を通して流れることになり、コンタクト領域62,56を含む高耐圧接合終端領域の対向箇所Eで抵抗が大きくなると対向箇所Eでパルス電流を抑制することができる。
また、第1ピックアップ電極81と第2ピックアップ電極82とを配置しない(または絶縁膜を形成して接触部81a,82aを設けない)箇所でも、p領域61とn-ウェル領域4とは連続的に繋がっている。このため、耐圧特性に及ぼす影響は小さく、第1ピックアップ電極81と第2ピックアップ電極82とを配置している箇所と同程度の耐圧特性を得ることができる。
また、少なくとも第1ピックアップ電極81もしくは第2ピックアップ電極82のいずれかを除去しても同様の効果が得られる。特に、第2ピックアップ電極82の除去が効果的である。
また、第1,2ピックアップ電極81,82を除去せずに、少なくともコンタクト領域62,56のいずれかとの間に層間絶縁膜などの絶縁膜を挟んで、第1,2ピックアップ電極81,82とコンタクト領域62,56とを電気的に絶縁しても同様の効果が得られる。
尚、図2に示すように、寄生ダイオード46のカソード側をH−VDD端子に接続することで、上述した特許文献4に示す技術よりもVs端子に流れる正孔量を減少させることができる。その結果、ハイサイド回路の誤動作や破壊を防止することができる高耐圧集積回路装置(HVIC)を提供することができる。
(実施の形態2)
図5は、この発明の実施の形態2にかかる高耐圧集積回路装置200の要部を示す平面図である。また、図6は、この発明の実施の形態2にかかる高耐圧集積回路装置200の要部を示す断面図である。図6(a)は、図5の切断線A−Aの断面構造について示す要部断面図である。図6(b)は、図5の切断線B−Bの断面構造について示す要部断面図である。
図5の高耐圧集積回路装置200と図1の高耐圧集積回路装置100との違いは、第1ピックアップ電極81および第2ピックアップ電極82(または接触部81a,82a)を除去しないで、中間電位領域との対向距離Wが短い対向箇所Eの高耐圧接合終端領域にダブルリサーフ構造87を形成した点である。
図6(b)に示すように、中間電位領域に対して、対向距離が短い対向箇所Eの高耐圧接合終端領域であるn-ウェル領域4の表面層に、p領域61およびnコンタクト領域62から離してp-top層63を形成しダブルリサーフ構造とする。こうすることで、対向箇所Eで、n-ウェル領域4が上下方向(p半導体基板1の深さ方向)で狭められるため、第1ピックアップ電極81と第2ピックアップ電極82との間の電流通路の抵抗を高くすることができる。尚、この対向箇所E以外はシングルリサーフ構造であり、n-ウェル領域4が上下方向で狭められることはない。
この対向箇所Eの抵抗を高くすることで、p領域61とn-ウェル領域4とからなる寄生ダイオード46のカソード抵抗88が増大する。その結果、負電圧サージ入力時にこの対向箇所Eの正孔の注入を局部的に少なくすることができる。
ダブルリサーフ構造87は、高耐圧接合終端領域を構成するn-ウェル領域4の表面に、電界緩和領域であるp-top層63を設けた構造である。n-ウェル領域4が、p半導体基板1とp-top層63とで挟まれることでn-ウェル領域4の空乏化が促進され、この対向箇所Eの電界が緩和される。
この場合は、ダブルリサーフ構造87の領域は、n-ウェル領域4の表面層にp-top層63が形成されて、n-ウェル領域4の表面層のn型不純物濃度が低濃度化する。そのため、GND電位にあるp領域61とH−VDD電位領域にあるnウェル領域3との間に、例えば600V程度の高い逆電圧が印加された場合、ダブルリサーフ領域87の等電位線の分布がその他の箇所のシングルリサーフ領域とズレが生じる。
しかし、ダブルリサーフ構造87が形成される対向箇所Eはシングルリサーフ構造が形成される箇所よりも表面電界が緩和された箇所となるように、p-top層63およびn-ウェル領域4の不純物濃度を調整し、基板表面のn型不純物濃度を最適化することで、耐圧特性においても問題なく実現することができる。
このように、Vs電位領域との対向距離Wが短い対向箇所Eの高耐圧接合終端領域(n-ウェル領域4)の表面層にp-top層63を形成したダブルリサーフ構造87とすることで、負電圧サージ入力時には正孔の注入が抑制される高抵抗領域(カソード抵抗88)を形成することができる。
その結果、Vs端子またはH−VDD端子に負電圧サージが入力されたとき、高電位領域であるnウェル領域3への過渡的に流れる正孔量を抑制することができる。正孔量が抑制されることで、ハイサイド回路の誤動作や破壊を防止することができる高耐圧集積回路装置(HVIC)を提供することができる。本構成に実施の形態1で説明した構成を追加するとさらに効果を高めることができる。
(実施の形態3)
図7は、この発明の実施の形態3にかかる高耐圧集積回路装置300の要部を示す平面図である。また、図8は、この発明の実施の形態3にかかる高耐圧集積回路装置300の要部を示す断面図である。図8(a)は、図7の切断線A−Aの断面構造について示す要部断面図である。図8(b)は、図7の切断線C−Cの断面構造について示す要部断面図である。
図7の高耐圧集積回路装置300は、図5の高耐圧集積回路装置200との違いは、Vs電位領域との対向距離Wが短い対向箇所Eに、p-top層63を形成する代わりに高耐圧接合終端領域であるn-ウェル領域4の幅を他の箇所より広げた点である。こうすることで、高耐圧接合終端領域の対向箇所Eにおいて、第1ピックアップ電極81と第2ピックアップ電極82との間の電流通路の抵抗を他の箇所より高くすることができる。n-ウェル領域4のうち、他の箇所よりも幅を拡張したn-ウェル領域89の拡張分90は、HVICに求められる負電圧サージ耐量を満足する程度の距離でよい。具体的には、n-ウェル領域4のn型不純物濃度はnウェル領域3に比べて一桁薄いため、数μm程度でよい。そのため、チップ面積の増大はない。
この対向箇所Eが高抵抗領域となるため、p領域61とn-ウェル領域4とからなる寄生ダイオード46のカソード抵抗91を増大させることができる。その結果、負電圧サージ入力時に正孔の注入が局部的に少ない領域を耐圧領域内に形成することができる。
その結果、Vs端子またはH−VDD端子に負電圧サージが入力したとき、nウェル領域3への過渡的に流れる正孔量を抑制することができる。正孔量が抑制されることで、ハイサイド回路の誤動作や破壊を防止することができる高耐圧集積回路装置(HVIC)を提供することができる。本構成に実施の形態1で説明した構成を追加するとさらに効果を高めることができる。
尚、前記の実施の形態1〜3では、中間電位領域を構成するpオフセット領域31が高耐圧接合終端領域に隣接する場合について説明したが、中間電位領域を構成するnドレイン領域34が高耐圧接合終端領域に隣接する場合も同様のことが言える。また、実施の形態1〜3に示した構成を組み合せることができる。
(実施の形態4)
図16は、この発明の実施の形態4にかかる高耐圧集積回路装置400の要部を示す平面図である。また、図17は、この発明の実施の形態4にかかる高耐圧集積回路装置400の要部を示す断面図である。図17(a)は、図16の切断線G−Gの断面構造について示す要部断面図である。図17(b)は、図16の切断線G−Gの断面構造の別の一例について示す要部断面図であり、図17(a)の変形例である。
図16の高耐圧集積回路装置400は、図1の高耐圧集積回路装置100の変形例である。図16の高耐圧集積回路装置400が図1の高耐圧集積回路装置100と異なる点は、nウェル領域3がp型分離領域611によりnウェル領域301とnウェル領域302とに分離されている点と、n-ウェル領域4がp型分離領域611によりn-ウェル領域401とn-ウェル領域402とに分離されている点である。
p型分離領域611は、図17(a)においては、nウェル領域301とnウェル領域302との間においてLOCOS酸化膜に接するp半導体基板1により構成され、図17(b)においては、nウェル領域3の表面からp半導体基板1に達するp型拡散領域により構成されている。このような構成においても、実施の形態1と同様の効果を奏することができる。
また、実施の形態2の高耐圧集積回路装置200および実施の形態3の高耐圧集積回路装置300の構成においても、高耐圧集積回路装置400と同様にp型分離領域611を形成することができ、本発明の効果を奏することができる。
以上のように、本発明にかかる高耐圧集積回路装置は、PWMインバータ、スイッチング電源等における、スイッチングパワーデバイスのゲートに、オン・オフの駆動信号を伝達する場合などに使用される高耐圧集積回路装置に有用である。
1 p半導体基板(グランド電位領域)
2 nウェル領域(低電位領域)
3 nウェル領域(高電位領域)
4 n-ウェル領域(高耐圧接合終端領域)
21 pオフセット領域(低電位領域)
31 pオフセット領域(中間電位領域)
46 寄生ダイオード
51 p領域(レベルシフト形成領域)
56 第2コンタクト領域(pコンタクト領域;グランド電位領域)
61 p領域(グランド電位領域)
62 第1コンタクト領域(nコンタクト領域;高電位領域)
81 第1ピックアップ電極
81a 接触部
82 第2ピックアップ電極
82a 接触部
83 正孔
84 電子
85 nMOSFET
86 pMOSFET
87 ダブルリサーフ構造
100,200,300,400 高耐圧集積回路装置
Vs 中間電位
H−VDD Vs端子を基準とする低電圧電源の高電位側
GND グランド(接地)
L−VDD GNDを基準とする低電圧電源の高電位側

Claims (7)

  1. 直列に接続された2つのパワートランジスタの高電位側パワートランジスタを駆動する高耐圧半導体集積回路装置であって、
    第1導電型の半導体基板の表面層に形成された第2導電型の高電位領域と、
    前記半導体基板の表面層に、前記高電位領域と接し、かつ前記高電位領域の外周に沿って形成された、前記高電位領域よりも不純物濃度の低い第2導電型の耐圧領域と、
    前記半導体基板の表面層に、前記耐圧領域と接し、かつ前記耐圧領域の外周に沿って形成された、接地電位が印加される第1導電型のグランド電位領域と、
    前記半導体基板の表面層の、前記グランド電位領域の外側に形成された第2導電型の低電位領域と、
    前記高電位領域内に形成され前記高電位領域と接合分離された第1導電型の中間電位領域と、
    前記耐圧領域の前記高電位領域側端部に沿って形成された第2導電型の第1コンタクト領域と、
    前記グランド電位領域の表面層に前記第1コンタクト領域に対向して形成された第1導電型の第2コンタクト領域と、
    前記第1コンタクト領域に接する第1ピックアップ電極と、
    前記第2コンタクト領域に接する第2ピックアップ電極と、
    を備え、
    前記中間電位領域は、直列に接続された2つの前記パワートランジスタの主回路電源である高電圧電源の高電位側電位からグランド電位までの間の中間電位が印加される領域であり、
    前記低電位領域は前記グランド電位を基準とする第1低電圧電源の高電位側電位が印加される領域であり、
    前記高電位領域は、前記中間電位を基準とする第2低電圧電源の高電位側電位が印加される領域であり、
    前記耐圧領域、前記グランド電位領域、前記第1コンタクト領域および前記第2コンタクト領域から構成される高耐圧接合終端領域が形成されており、
    前記中間電位領域との対向距離が他の箇所より短い高耐圧接合終端領域の箇所における、前記第1ピックアップ電極と前記第2ピックアップ電極との間の電流通路の抵抗は他の箇所より高いことを特徴とする高耐圧集積回路装置。
  2. 直列に接続された2つのパワートランジスタの高電位側パワートランジスタを駆動するための高耐圧半導体集積回路装置であって、
    第1導電型の半導体基板の表面層に形成された第2導電型の高電位領域と、
    前記高電位領域の外周の一部を分離する第1導電型の分離領域と、
    前記半導体基板の表面層に、前記高電位領域と接し、かつ前記高電位領域の外周に沿って形成された、前記高電位領域よりも不純物濃度の低い第2導電型の耐圧領域と、
    前記半導体基板の表面層に、前記分離領域と接し、かつ前記耐圧領域の外周に形成された、接地電位が印加される第1導電型のグランド電位領域と、
    前記半導体基板の表面層の、前記グランド電位領域の外側に形成された第2導電型の低電位領域と、
    前記高電位領域内に形成され前記高電位領域と接合分離された第1導電型の中間電位領域と、
    前記耐圧領域の前記高電位領域側端部に沿って形成された第2導電型の第1コンタクト領域と、
    前記グランド電位領域の表面層に前記第1コンタクト領域に対向して形成された第1導電型の第2コンタクト領域と、
    前記第1コンタクト領域に接する第1ピックアップ電極と、
    前記第2コンタクト領域に接する第2ピックアップ電極と、
    を備え、
    前記中間電位領域は、直列に接続された2つの前記パワートランジスタの主回路電源である高電圧電源の高電位側電位からグランド電位までの間の中間電位が印加される領域であり、
    前記低電位領域は前記グランド電位を基準とする第1低電圧電源の高電位側電位が印加される領域であり、
    前記高電位領域は、前記中間電位を基準とする第2低電圧電源の高電位側電位が印加される領域であり、
    前記耐圧領域、前記グランド電位領域、前記第1コンタクト領域および前記第2コンタクト領域から構成される高耐圧接合終端領域が形成されており、
    前記中間電位領域との対向距離が他の箇所より短い高耐圧接合終端領域の箇所における、前記第1ピックアップ電極と前記第2ピックアップ電極との間の電流通路の抵抗は他の箇所より高いことを特徴とする高耐圧集積回路装置。
  3. 前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所を除いて前記第1ピックアップ電極を形成することで、前記抵抗が他の箇所より高くなっていることを特徴とする請求項1または2に記載の高耐圧集積回路装置。
  4. 前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所を除いて前記第2ピックアップ電極を形成することで、前記抵抗が他の箇所より高くなっていることを特徴とする請求項1または2に記載の高耐圧集積回路装置。
  5. 前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所において、少なくとも前記第1コンタクト領域と前記第1ピックアップ電極または前記第2コンタクト領域と前記第2ピックアップ電極いずれかを電気的に絶縁することで、前記抵抗が他の箇所より高くなっていることを特徴とする請求項1または2に記載の高耐圧集積回路装置。
  6. 前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所において、前記高耐圧接合終端領域の表面層に前記高電位領域と前記グランド電位領域とのそれぞれから離して前記グランド電位領域と同一の導電型の半導体領域を形成しダブルリサーフ構造とすることで、前記抵抗が他の箇所より高くなっていることを特徴とする請求項1または2に記載の高耐圧集積回路装置。
  7. 前記中間電位領域との対向距離が他の箇所より短い前記高耐圧接合終端領域の箇所において、前記耐圧領域を前記低電位領域側に伸ばすことで、前記抵抗が他の箇所より高くなっていることを特徴とする請求項1または2に記載の高耐圧集積回路装置。
JP2012527559A 2011-06-24 2011-09-12 高耐圧集積回路装置 Active JP5435138B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012527559A JP5435138B2 (ja) 2011-06-24 2011-09-12 高耐圧集積回路装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011140137 2011-06-24
JP2011140137 2011-06-24
JP2012527559A JP5435138B2 (ja) 2011-06-24 2011-09-12 高耐圧集積回路装置
PCT/JP2011/070760 WO2012176347A1 (ja) 2011-06-24 2011-09-12 高耐圧集積回路装置

Publications (2)

Publication Number Publication Date
JP5435138B2 true JP5435138B2 (ja) 2014-03-05
JPWO2012176347A1 JPWO2012176347A1 (ja) 2015-02-23

Family

ID=47422214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012527559A Active JP5435138B2 (ja) 2011-06-24 2011-09-12 高耐圧集積回路装置

Country Status (4)

Country Link
EP (1) EP2725606A4 (ja)
JP (1) JP5435138B2 (ja)
CN (1) CN103038876B (ja)
WO (1) WO2012176347A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160133473A (ko) * 2014-03-17 2016-11-22 케이엘에이-텐코 코포레이션 화상 센서, 검사 시스템 및 물품의 검사 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447139B2 (ja) * 2014-02-19 2019-01-09 富士電機株式会社 高耐圧集積回路装置
WO2016002508A1 (ja) * 2014-07-02 2016-01-07 富士電機株式会社 半導体集積回路装置
JPWO2016132418A1 (ja) * 2015-02-18 2017-05-25 富士電機株式会社 半導体集積回路
CN104900645B (zh) * 2015-05-28 2019-01-11 北京燕东微电子有限公司 电压浪涌保护器件及其制造方法
JP7472522B2 (ja) 2019-04-11 2024-04-23 富士電機株式会社 半導体集積回路
FR3101970B1 (fr) * 2019-10-15 2021-10-01 Seb Sa Circuit de contrôle de machine de distribution de boissons à sécurité électrique renforcée
CN111081705B (zh) * 2019-11-25 2022-06-10 重庆大学 单片集成式半桥功率器件模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0738011B1 (en) * 1995-04-12 2014-12-10 Fuji Electric Co., Ltd. High voltage integrated circuit, high voltage junction terminating structure, and high voltage MIS transistor
JP3941206B2 (ja) * 1998-02-26 2007-07-04 富士電機デバイステクノロジー株式会社 高耐圧ic
JP4961658B2 (ja) * 2003-02-17 2012-06-27 富士電機株式会社 双方向素子および半導体装置
CN101567373B (zh) * 2004-02-16 2011-04-13 富士电机系统株式会社 双方向元件及其制造方法
JP5191132B2 (ja) * 2007-01-29 2013-04-24 三菱電機株式会社 半導体装置
JP5072043B2 (ja) * 2009-03-24 2012-11-14 三菱電機株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160133473A (ko) * 2014-03-17 2016-11-22 케이엘에이-텐코 코포레이션 화상 센서, 검사 시스템 및 물품의 검사 방법
KR102172956B1 (ko) * 2014-03-17 2020-11-02 케이엘에이 코포레이션 화상 센서, 검사 시스템 및 물품의 검사 방법

Also Published As

Publication number Publication date
CN103038876B (zh) 2016-08-24
JPWO2012176347A1 (ja) 2015-02-23
CN103038876A (zh) 2013-04-10
WO2012176347A1 (ja) 2012-12-27
EP2725606A1 (en) 2014-04-30
EP2725606A4 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5435138B2 (ja) 高耐圧集積回路装置
US9478543B2 (en) Semiconductor integrated circuit
JP6447139B2 (ja) 高耐圧集積回路装置
JP5099282B1 (ja) 高耐圧集積回路装置
US8704328B2 (en) High-voltage integrated circuit device
JP4993092B2 (ja) レベルシフト回路および半導体装置
JP6237901B2 (ja) 半導体集積回路装置
JP5991435B2 (ja) 半導体装置
US9412732B2 (en) Semiconductor device
JP5353016B2 (ja) 半導体装置
WO2014058028A1 (ja) 半導体装置
EP2924723A2 (en) Semiconductor device
JP2014138091A (ja) 半導体装置およびその製造方法
JP2010010264A (ja) 半導体装置
JP5256750B2 (ja) 半導体装置
JP2009266933A (ja) 半導体装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5435138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250