JP5415985B2 - 管内移動装置 - Google Patents

管内移動装置 Download PDF

Info

Publication number
JP5415985B2
JP5415985B2 JP2010026769A JP2010026769A JP5415985B2 JP 5415985 B2 JP5415985 B2 JP 5415985B2 JP 2010026769 A JP2010026769 A JP 2010026769A JP 2010026769 A JP2010026769 A JP 2010026769A JP 5415985 B2 JP5415985 B2 JP 5415985B2
Authority
JP
Japan
Prior art keywords
driving force
driving
axial
pipe
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010026769A
Other languages
English (en)
Other versions
JP2011161564A (ja
Inventor
至 田村
公一 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010026769A priority Critical patent/JP5415985B2/ja
Publication of JP2011161564A publication Critical patent/JP2011161564A/ja
Application granted granted Critical
Publication of JP5415985B2 publication Critical patent/JP5415985B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明は、管体の内部を移動可能な管内移動装置に関する。
管体の内部を移動可能な管内移動装置の従来例として、例えば、下記の特許文献1に開示された技術がある。特許文献1に開示されている管内移動装置としての管内走行ロボットは、当該文献の図1、図2に示されるように、複数の体節4が自在継手5により一連に自在連結されてなり、体節4に備えられた走行駆動輪7が発生する推進力により管内走行が可能に構成されている。
特開2000−52282号公報
ところで、管内移動装置の走行の対象となる管体の内部形状は、管体の軸心方向に沿って一様とは限らない。例えば、継手や弁体の設置箇所等において、管体の内径が大きく変化したり、断面形状が円形ではなく多角形(例えば、四角形等)に変化したりする場合がある。しかしながら、上記特許文献1に記載の管内移動装置は、体節4が硬い構造体で形成されているため、管体の内径や断面形状等(以下、単に「内部形状」という。)が変化する箇所において管内移動装置の一部が引っ掛り、円滑な走行ができなくなったり走行不能になったりするおそれがある。
本発明は上記の課題に鑑みてなされたものであり、その目的は、管体の内部形状が変化しても円滑に移動可能な管内移動装置を提供することにある。
上記目的を達成するための管体の内部を移動可能な管内移動装置の特徴構成は、可撓性の長手部材が螺旋状に複数ターン巻回されてなる螺旋体と、前記螺旋体の軸心方向への推進力を発生する推進機構と、を備え、前記推進機構は、前記長手部材の延在方向に沿って分散配置された複数の駆動力発生部の夫々に備えられた複数の駆動機構を備え、前記複数の駆動機構の夫々は、対応する前記駆動力発生部において、前記螺旋体の軸心直交方向に対して傾いた方向に駆動力を働かせて前記推進力を発生するとともに、前記駆動力の作用方向を調整可能に構成されている点にある。
上記の特徴構成によれば、可撓性の長手部材が螺旋状に複数ターン巻回されてなる螺旋体が、管内移動装置を構成している。このような螺旋体は弾性的に変形可能であるため、螺旋体は、管体の内部形状に合わせて、自身の螺旋径や断面形状(軸心方向視における長手部材の形状)を柔軟に変えることができる。よって、上記のように構成された管内移動装置は、管体の内部形状が変化しても円滑に移動することができる。
なお、このような螺旋径や断面形状の変化は、螺旋体が備える弾性により、管内移動装置の進行に伴って自動的に行われる。そのため、螺旋体の螺旋径や断面形状を変えるための特別な機構は不要である。
ところで、管内移動装置が管体の内部形状が変化する箇所を走行する際における上記のような螺旋体の螺旋径や断面形状の管体の内部形状に合わせた柔軟な変化は、管内移動装置の進行に伴い、進行方向前方側部位から進行方向後方側部位に向かって順次行われる。この際、移動先の走行環境(例えば、走行抵抗等)が現在進行中の部位の走行環境とは異なるものとなることで、進行方向前方側部位の螺旋体の軸心方向に沿った移動速度(以下、単に「軸移動速度」という。)が変化し、進行方向後方側部位との間で軸移動速度に差が生じる場合があり得る。この点に関し、本願における螺旋体は軸心方向に弾性的に伸縮可能であるため、進行方向前方側部位と進行方向後方側部位との間に軸移動速度差が生じたとしても、当該軸移動速度差を軸心方向の伸縮により吸収することが可能な構成となっている。しかし、移動先の走行環境が現在進行中の部位の走行環境とは大きく異なり、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差が過大になった場合には、螺旋体が軸心方向に過度に収縮或いは伸長し、上述したような螺旋体の螺旋径や断面形状の柔軟な変化、ひいては管内移動装置の円滑な移動が妨げられる可能性がある。
この点に関し、上記の特徴構成によれば、複数の駆動力発生部が長手部材の延在方向に沿って分散配置されているとともに、当該複数の駆動力発生部に備えられた複数の駆動機構の夫々が、駆動力の作用方向を調整可能に構成されている。すなわち、長手部材の延在方向に沿って分散配置された複数の駆動力発生部のそれぞれの軸移動速度を調整可能に構成されている。従って、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制するような調整が可能な構成となっており、そのような構成とすることで、管内移動装置の円滑な移動を妨げないという観点から許容される、現在進行中の部位と移動先の部位との間の走行環境の変化幅を、駆動機構が発生する駆動力の作用方向を調整できない構成に比べ大きなものとすることができる。
ここで、前記駆動力発生部を含む前記長手部材の特定部分の螺旋形状に関連する物理量に応じて、当該駆動力発生部に備えられた前記駆動機構が発生する前記駆動力の作用方向を調整する駆動方向調整機構を備える構成とすると好適である。
この構成によれば、管内移動装置が管体の内部形状が変化する箇所を走行する際に、進行方向前方側部位の軸移動速度を直接検出しなくても、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することが可能となる。
補足説明すると、上記のように、管内移動装置が管体の内部形状が変化する箇所を走行する際には、螺旋体の螺旋径(螺旋形状に関連する物理量の一例)や断面形状(螺旋形状に関連する物理量の一例)は当該内部形状に合わせて変化する。すなわち、管体の内部形状が変化する際に生じ得る進行方向前方側部位の軸移動速度の変化には、当然ながら、螺旋体の進行方向前方側部位における螺旋径や断面形状の変化が伴う。また、進行方向前方側部位の軸移動速度が実際に変化すると、進行方向後方側部位との間の軸移動速度差により螺旋体が軸心方向に収縮或いは伸長するため、螺旋体の進行方向前方側部位における軸心方向の変位に対する周方向の変位の割合である変位割合(螺旋形状に関連する物理量の一例)が変化する。以上のように、管体の内部形状が変化する際に生じ得る螺旋体の進行方向前方側部位における軸移動速度の変化と、当該進行方向前方側部位の螺旋形状に関連する物理量の変化と、の間には関連性がある。
本構成では、このような関連性を利用し、管内移動装置が管体の内部形状が変化する箇所を走行する際に、進行方向前方側の特定部分の螺旋形状に関連する物理量の変化に応じて、当該特定部分に含まれる駆動機構が発生する駆動力の作用方向を調整することができる。よって、特定部分の螺旋形状に関連する物理量の変化に応じて、当該特定部分に含まれる駆動機構が発生する駆動力の作用方向が、当該特定部分の軸移動速度の予測される変化或いは実際の変化を打ち消す側に調整される構成とすることで、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができる。
また、上記のように、前記駆動機構が発生する駆動力の作用方向が、前記特定部分の螺旋形状に関連する物理量に応じて調整される構成において、前記螺旋形状に関連する物理量は、前記特定部分の、前記螺旋体の軸心方向視における曲率であり、前記駆動方向調整機構は、前記曲率が大きくなると、前記駆動力における前記螺旋体の軸心方向の成分が増加するように当該駆動力の作用方向を調整するとともに、前記曲率が小さくなると、前記駆動力における前記螺旋体の軸心方向の成分が減少するように当該駆動力の作用方向を調整する構成とすると好適である。
この構成によれば、特定部分の曲率に応じて、駆動機構が発生する駆動力の作用方向を適切に調整することができる。具体的には、曲率が大きく(すなわち、曲率半径が小さく)なることで螺旋体の径方向外側への復元力が大きくなり、その結果走行抵抗の増加により軸移動速度の減少が見込まれる或いは実際に減少した特定部分に対しては、対応する駆動機構が発生する駆動力の作用方向を、当該特定部分の軸移動速度が増加する側へ調整することができる。また、曲率が小さく(すなわち、曲率半径が大きく)なることで螺旋体の径方向外側への復元力が小さくなり、その結果走行抵抗の減少により軸移動速度の増加が見込まれる或いは実際に増加した特定部分に対しては、対応する駆動機構が発生する駆動力の作用方向を、当該特定部分の軸移動速度が減少する側へ調整することができる。よって、進行方向前方側の特定部分の曲率が変化した場合に、当該特定部分の軸移動速度の予測される変化や実際の変化を打ち消す側へ、当該特定部分に含まれる駆動機構が発生する駆動力の作用方向を調整することができる。従って、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができる。
ここで、上記のように、前記駆動方向調整機構が、前記特定部分の前記螺旋体の軸心方向視における曲率に応じて、前記駆動機構が発生する前記駆動力の作用方向を調整する構成において、前記駆動方向調整機構は、前記駆動機構を前記長手部材に対して回転可能に支持する支持機構と、前記駆動機構に一端が接続されるとともに、前記長手部材の延在方向に沿った位置が当該駆動機構と異なる前記長手部材の部分に他端が接続されたワイヤと、前記ワイヤを緊張状態に保つ緊張機構と、を備え、前記駆動機構が発生する前記駆動力の作用方向は、当該駆動機構の前記支持機構に対する回転角度に応じて定まり、前記駆動力における前記螺旋体の軸心方向の成分が増加する方向の前記駆動機構の前記支持機構に対する回転方向を第一回転方向と、前記駆動力における前記螺旋体の軸心方向の成分が減少する方向の前記駆動機構の前記支持機構に対する回転方向を第二回転方向とした場合に、前記緊張機構による前記ワイヤを緊張させる付勢力の方向と前記第一回転方向とが一致されていると好適である。
この構成によれば、特定部分の曲率が大きくなるとワイヤの張力が低下し、駆動機構は第一回転方向に回転する。ここで、第一回転方向は、軸移動速度が増加する側に対応する方向である。また、特定部分の曲率が小さくなるとワイヤの張力が増大し、駆動機構は第二回転方向に回転する。ここで、第二回転方向は、軸移動速度が減少する側に対応する方向である。よって、本構成によれば、曲率に応じて駆動力の作用方向を調整する上記の駆動方向調整機構を、ワイヤを用いた簡素な機械的機構で適切に構築することができる。
また、上記のように、前記駆動機構が発生する駆動力の作用方向が、前記特定部分の螺旋形状に関連する物理量に応じて調整される構成において、前記螺旋形状に関連する物理量は、前記特定部分の、前記螺旋体の軸心方向の変位に対する周方向の変位の割合である変位割合であり、前記駆動方向調整機構は、前記変位割合が大きくなると、前記駆動力における前記螺旋体の軸心方向の成分が増加するように当該駆動力の作用方向を調整するとともに、前記変位割合が小さくなると、前記駆動力における前記螺旋体の軸心方向の成分が減少するように当該駆動力の作用方向を調整する構成としても好適である。
この構成によれば、変位割合に応じて、駆動機構が発生する駆動力の作用方向を適切に調整することができる。具体的には、軸移動速度が減少することで軸心方向に収縮して変位割合が大きくなった特定部分に対しては、対応する駆動機構が発生する駆動力の作用方向を、当該特定部分の軸移動速度が増加する側へ調整することができる。また、軸移動速度が増加することで軸心方向に伸長して変位割合が小さくなった特定部分に対しては、対応する駆動機構が発生する駆動力の作用方向を、当該特定部分の軸移動速度が減少する側へ調整することができる。よって、進行方向前方側の特定部分の軸移動速度が変化することで変位割合が変化した場合に、当該特定部分の軸移動速度の変化を打ち消す側へ、当該特定部分に含まれる駆動機構が発生する駆動力の作用方向を調整することができ、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができる。
さて、上記の特徴構成において、前記複数の駆動力発生部の夫々の前記螺旋体の軸心方向に沿った軸移動速度に関連する物理量を検出する物理量検出手段と、前記物理量検出手段の検出結果に基づいて前記複数の駆動機構の夫々が発生する前記駆動力の作用方向を調整する駆動方向調整手段と、を備え、前記駆動方向調整手段は、前記物理量検出手段の検出結果が前記軸移動速度の減少を示す前記駆動力発生部に対して、当該駆動力発生部に備えられた前記駆動機構が発生する前記駆動力の作用方向を、前記螺旋体の軸心方向の成分が大きくなるように調整し、前記物理量検出手段の検出結果が前記軸移動速度の増加を示す前記駆動力発生部に対して、当該駆動力発生部に備えられた前記駆動機構が発生する前記駆動力の作用方向を、前記螺旋体の軸心方向の成分が小さくなるように調整する構成としても好適である。
この構成によれば、軸移動速度に関連する物理量に応じて、駆動機構が発生する駆動力の作用方向を適切に調整することができる。具体的には、軸移動速度の減少が見込まれる或いは実際に減少した駆動力発生部に対しては、対応する駆動機構が発生する駆動力の作用方向を、当該駆動力発生部の軸移動速度が増加する側へ調整することができる。また、軸移動速度の増加が見込まれる或いは実際に増加した駆動力発生部に対しては、対応する駆動機構が発生する駆動力の作用方向を、当該駆動力発生部の軸移動速度が減少する側へ調整することができる。よって、進行方向前方側部位の軸移動速度の予測される変化や実際の変化を打ち消す側へ、対応する駆動機構が発生する駆動力の作用方向を調整することができ、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができる。
ここで、前記軸移動速度に関連する物理量は、前記駆動力発生部を含む前記長手部材の特定部分の、前記螺旋体の軸心方向視における曲率であり、前記物理量検出手段は、前記長手部材の形状を検出する形状センサを備えて構成され、前記駆動方向調整手段は、前記曲率の増加を前記軸移動速度の減少として処理するとともに、前記曲率の減少を前記軸移動速度の増加として処理する構成とすると好適である。
また、前記軸移動速度に関連する物理量は、前記駆動力発生部を含む前記長手部材の特定部分の、前記螺旋体の軸心方向の変位に対する周方向の変位の割合である変位割合であり、前記物理量検出手段は、前記長手部材の形状を検出する形状センサを備えて構成され、前記駆動方向調整手段は、前記変位割合の増加を前記軸移動速度の減少として処理するとともに、前記変位割合の減少を前記軸移動速度の増加として処理する構成としても好適である。
さらに、前記軸移動速度に関連する物理量は、前記駆動機構の管内移動に伴う移動負荷であり、前記物理量検出手段は、前記移動負荷を検出する移動負荷センサを備えて構成され、前記駆動方向調整手段は、前記移動負荷の増加を前記軸移動速度の減少として処理するとともに、前記移動負荷の減少を前記軸移動速度の増加として処理する構成としても好適である。
これら3つの何れの構成においても、各構成における軸移動速度に関連する物理量(特定部分の曲率、特定部分の変位割合、或いは駆動機構の移動負荷)を検出するためのセンサ(形状センサ或いは移動負荷センサ)を備えることで、管内移動装置が管体の内部形状が変化する箇所を走行する際に、進行方向前方側部位の軸移動速度の変化を予測したり実際の変化を間接的に検出することができ、当該予測される変化や実際の変化を打ち消す側へ、対応する駆動機構が発生する駆動力の作用方向を調整することができる。なお、3番目の構成においては、駆動機構の管内移動に伴う移動負荷の増加は、管内移動装置の走行抵抗が増大した場合(管体の内径が小さくなった場合等)に生じ得るので、軸移動速度の減少として処理される構成となっている。また、駆動機構の管内移動に伴う移動負荷の減少は、管内移動装置の走行抵抗が減少した場合(管体の内径が大きくなった場合等)に生じ得るので、軸移動速度の増加として処理される構成となっている。
また、上記の何れの構成においても、前記複数の駆動力発生部の前記螺旋体の軸心方向に沿った軸移動速度が互いに同一になるように、前記複数の駆動機構が発生する前記駆動力の作用方向が調整される構成とすると好適である。
この構成によれば、螺旋体の各部の軸移動速度が互いに同一になるように各駆動機構が発生する駆動力の作用方向が調整されるため、管内移動装置が管体の内部形状が変化する箇所を走行する際においても、螺旋体の各部の軸移動速度をほぼ一様にすることができる。よって、管体の内部形状が変化する際における管内移動装置の円滑な移動をより確実に実現することができる。
本発明の実施形態に係る管内移動装置の側面図である。 本発明の実施形態に係る管内移動装置の概略的な分解斜視図である。 本発明の実施形態に係る管内移動装置の斜視図である。 本発明の実施形態に係る管内移動装置における螺旋体の一ターンを軸心方向に沿って見た図である。 本発明の実施形態に係る駆動方向調整機構の斜視図である。 本発明の実施形態に係る駆動方向調整機構の斜視図である。 本発明の実施形態に係る駆動方向調整機構の側面図である。 駆動方向調整機構を備えない場合の管内移動装置の挙動を説明するための説明図である。 本発明の実施形態に係る駆動方向調整機構の作用の一例を説明するための図である。 本発明の実施形態に係る管内移動装置の挙動の一例を説明するための図である。 本発明の別実施形態に係る駆動方向調整機構の作用の一例を説明するための図である。 本発明の別実施形態に係る管内移動装置の挙動の一例を説明するための図である。 本発明の別実施形態に係る管内移動装置の側面図である。
本発明に係る管内移動装置の実施形態について図面に基づいて説明する。なお、本発明は以下に説明する実施形態や図面に記載される構成に限定されるものではなく、同様の作用効果を奏する構成であれば種々の改変が可能である。
ここでは、管内移動装置1を構成する螺旋体2が、平板状の可撓性長手部材5により形成されている場合を例として説明する。図1に示すように、管内移動装置1は、螺旋体2と、推進機構7と、駆動方向調整機構8と、を備えて構成されており、推進機構7が備える複数の駆動機構3の夫々が、駆動方向調整機構8により、駆動力の作用方向を調整可能に構成されていることに特徴を有している。これにより、管内移動装置1の円滑な移動を妨げないという観点から許容される、現在進行中の部位と移動先の部位との間の走行環境の変化幅の拡大を図ることが可能となっている。以下、本実施形態に係る管内移動装置1について、「管内移動装置の全体構成」、「推進機構の構成」、「駆動方向調整機構の構成」の順に説明する。
なお、以下の説明において、特に断らない限り、「軸心方向」は、管内移動装置1を構成する螺旋体2の中心軸線X(図1、図2参照)に沿った方向を、「径方向」は、当該軸心方向に対して直交する軸心直交方向を、「周方向」は、軸心方向周りの周回方向を表すものとする。
1.管内移動装置の全体構成
管内移動装置1は、図1に示すように、螺旋体2と、推進力を発生する推進機構7と、推進機構7が備える駆動機構3が発生する駆動力の作用方向を調整する駆動方向調整機構8と、を備え、各種の管体P(例えば、ガス管や水道管等)の内部を移動可能に構成されている。管体Pは、例えば、金属により形成されたもの(例えば、鋼管や鋳鉄管等)が使用される。そして、このような管内移動装置1は、例えば、管体Pの状態を確認及び検査するための機器(カメラ、検査機器等)を管体Pの内部に送り込むために使用される。これらの機器は、螺旋体2の進行方向における先端部や、螺旋体2の中央部Cの空洞部分等に配置される構成としたり、管内移動装置1により曳航される構成としたりすることができる。
螺旋体2は、図1に示すように、可撓性の平板状長手部材5が、所定の軸X(軸心方向)の方向に沿って、当該軸Xの周りに螺旋状に複数ターン巻回されて形成されたものである。具体的には、螺旋体2は、長手部材5の一方の面(外側部5b)が一様に螺旋体2の径方向外側(中心軸線Xから離れる側)を向き、長手部材5の他方の面(内側部5c)が一様に螺旋体2の径方向内側(中心軸線Xに近づく側)を向くように、螺旋状に形成されている。そして、管内移動装置1が管体Pの内部に配置された状態では、螺旋体2の中心軸線Xは管体Pの中心軸線とほぼ位置し、この際、長手部材5の外側部5bは一様に管体Pの壁部側を向いて当該管体Pの内面Sと対向し、長手部材5の内側部5cは一様に管体Pの壁部から離間した側を向く。なお、長手部材5は、例えば樹脂や金属製(例えば、ステンレス製)の部材で構成することができる。
本例では、図1に示すように、螺旋体2は、中心軸線Xの周りに7ターン巻回されて形成されている。なお、厳密には、螺旋体2のターン数は管内移動装置1が配置される管体Pの内部形状に応じて変化し得るが、ここでは、図1に示すような状態におけるターン数を考えている。図1に示す管体Pは、管内移動装置1の移動対象となる標準的な管体Pの一例である。そして、螺旋体2は、中央部Cの3つのターンが互いに同一の螺旋径となるように形成されているとともに、端部Eの2つのターンは、中央部Cの3つのターンよりも螺旋径が小さくなるよう、且つ、先端側に向かうに従って螺旋径が小さくなるように形成されている。ここで、「螺旋径」とは、螺旋体2の各ターンについて定まるものであり、螺旋体2を軸心方向から見たときの一ターンを構成する長手部材5により形成される実質的な円の径である。なお、一つのターンの始点は、長手部材5の延在方向に沿った任意の位置にとることができるが、ここでは図1における中心軸線Xに対して紙面奥側付近を一つのターンの始点としている。そして、管体Pの内部形状にもよるが、本例では、互いに同一の螺旋径に形成された中央部Cの3つのターンが、管内移動装置1が管体Pの内部を移動する際に実質的に走行機能を発揮する部分である。なお、後述するように、端部Eの2つのターンは、小径部や狭隘部への円滑な進入を主な目的として形成されている。
上記のように形成された螺旋体2は、弾性的に変形可能である(すなわち、弾性変形能力を有する)とともに、自然状態における形状から変形した状態では、自然状態における形状に戻ろうとする復元力が発生する。ここで、「自然状態」とは、螺旋体2に重力以外の外力が作用していない状態である。例えば、螺旋体2の螺旋径が自然状態における螺旋径よりも小さい状態(以下、単に「縮径状態」という。)では、径方向外側への復元力が発生し、当該復元力により、螺旋体2には螺旋径を拡大させようとする力(以下、単に「拡径力」という。)が発生する。本発明では、螺旋体2が備えるこれらの弾性変形能力及び拡径力を利用して、管体Pの内部形状(管体の内径や断面形状等)が変化する箇所を走行する際における管内移動装置1の円滑な移動が実現されている。なお、本例ではこの拡径力は、螺旋体2が縮径状態にある場合の径方向外側への復元力によるものである。よって、ここで対象とする管体Pは、管内移動装置1が内部に配置された状態で、螺旋体2(中央部C)の螺旋径が自然状態における螺旋径以下となるような管体であり、以下の説明では特に断らない限り、管体Pとはこのような管体を指すものとする。
補足説明すると、螺旋体2は弾性変形能力を備えるとともに、拡径力により管体Pの内面S側に押圧されている。よって、管内移動装置1が管体Pの内部形状が変化する箇所を走行する際には、螺旋体2を形成する長手部材5は、その可撓性により、管体Pの内面S側に押圧された状態で当該内面Sの形状に沿うように変形する。これにより、螺旋体2の螺旋径や断面形状(軸心方向視における長手部材の形状)は、管体Pの内部形状の変化に対して柔軟に、当該内部形状に合わせて変化する。また、螺旋体2には、螺旋径や断面形状によらず拡径力が発生しているため、管体Pの内部形状が変化しても後述する駆動機構3が備えられた長手部材5は管体Pの内面Sに向けて押圧されており、駆動機構3に適切に推進力を発生させることが可能となっている。よって、管内移動装置1は、管体Pの内部形状が変化しても円滑に移動することができる。そして、このような螺旋径や断面形状の変化は、管内移動装置1の進行に伴って自動的に行われる。そのため、螺旋体2の螺旋径や断面形状を変えるための特別な機構は不要である。
さらに、本実施形態では、上記のように、螺旋体2の端部Eは、中央部Cに比べ螺旋径が小さく形成されている。これにより、管内移動装置1は、前進方向(図1に示す例では左方向)及び後進方向(図1に示す例では右方向)のいずれの方向に移動するときでも、螺旋径の小さな部分が先頭になるため、螺旋体2が管体Pの内面Sに引っ掛ることが抑制される。即ち、進行前方(移動先)が現在進行中の部位に比べて内径が小さい小径部(小径管等)や狭隘部である場合に、端部Eが先に小径部或いは狭隘部に進入し、その後管内移動装置1の進行に伴い、進行方向前方側から進行方向後方側に向かって中央部Cが縮径する。よって、管内移動装置1は小径部や狭隘部に良好に進入することができる。ここで、現在進行中の部位と、進行前方の部位との間に段差があっても、問題なく進行可能である。
さらに、螺旋体2は弾性的に変形可能であるため、あらゆる方向に屈曲することもできる。よって、管内移動装置1は、管体Pの曲がりに応じて自身を屈曲させながら管体Pの内部を移動することができる。
以上のように、本発明に係る管内移動装置1は、管体Pの内径が変化する箇所、管体Pが曲がっている箇所(エルボや分岐等)、管体Pの断面形状が円形でなくなる箇所(例えば、プラグバルブ等)等のような移動の障害となり得る箇所を円滑に通過することが可能な構成となっている。
2.推進機構の構成
次に、推進機構7の構成について詳細に説明する。推進機構7は、螺旋体2の軸心方向への推進力を発生する機構である。推進機構7は、長手部材5の延在方向に沿って分散配置された複数の駆動力発生部10の夫々に備えられた複数の駆動機構3を備えている。すなわち、図2に示すように、長手部材5には、その延在方向に沿って複数の駆動力発生部10(本例では、孔部5aの形成箇所と一致)が設定されている。そして、図3に示すように、複数の駆動力発生部10のそれぞれに駆動機構3が備えられている。
駆動機構3は、図2に示すように、車輪3aとその車輪3aを回転させるモータ3bとを備えている。モータ3bにはケーブル6を介して給電される。そして、駆動機構3は、図4に示すように、車輪3aの一部が螺旋体2を形成する長手部材5の外側部5bに対して径方向外側に突出する形態で螺旋体2に装着される。なお、図4は、図1に示す螺旋体2(中央部C)の一ターンを、図1における右側から軸心方向に沿って見た図である。具体的には、車輪3aの一部は、長手部材5に形成されている孔部5aを内側部5cから外側部5bへ貫通して、外側部5bよりも径方向外側に突出している。なお、後述するように、本実施形態では、軸心方向両側における複数の駆動機構3を除いて、駆動力の作用方向(後述する傾き角θ)を調整可能に構成されている。よって、図1に示すように、駆動力の作用方向を調整可能に構成されている駆動機構3に対応する孔部5aは、傾き角θの調整を許容できる大きさに形成されている。
そして、管体Pの内面Sに接触した状態の車輪3aがモータ3bにより回転されることで管内移動装置1に推進力が発生する。すなわち、管内移動装置1の推進力は、車輪3aと管体Pの内面Sとの間の摩擦力を利用して発生される。なお、本例では、図4に示すように、駆動機構3は、螺旋体2の一ターン中に4個(即ち、周方向に90°間隔で)設けられているが、螺旋体2の一ターン中に設けられる駆動機構3の個数は適宜変更可能である。また、モータ3bの回転方向を変えることで、管内移動装置1の移動方向を変更することができる。モータ3bの回転方向の変更は、ケーブル6に接続されている電源の極性を変更する方法等がある。
また、本実施形態では、図4に示すように、モータ3bは長手部材5の内側部5cに装着されている。このような構成を採用することで、螺旋体2を形成する長手部材5の外側部5bに対して径方向外側に突出した車輪3aによって推進力を発生しつつ、螺旋体2を形成する長手部材5の内側部5cに装着されたモータ3b等の管体Pの内面Sへの接触が防止されている。
このように、管内移動装置1の推進力は、車輪3aと管体Pの内面Sとの間の摩擦力として得られるが、本願のように螺旋体2を車体とする装置では、螺旋体2の拡径、縮径に従って、車輪3aの管体Pの内面Sへの押圧力が変化する。即ち、拡径は押圧力の低下を伴い、縮径は押圧力の上昇を伴う。この挙動を管内移動装置1の全体で必要となる走行力からみると、拡径時には当該走行力が低下し、縮径時には当該走行力が上昇することとなる。
そして、駆動機構3は、対応する駆動力発生部10において、軸心直交方向(軸心方向に対して直交する方向)に対して傾いた方向に駆動力を働かせて、管内移動装置1を軸心方向に沿って移動させる推進力を発生する。以下の説明では、駆動機構3が発生する駆動力の作用方向を、傾き角θを用いて表す。この傾き角θは、駆動機構3が発生する駆動力の作用方向と一意に対応するもので、以下のように定義される。すなわち、傾き角θは、各駆動機構3毎に個別に定義されるものであり、「駆動機構3(より正確には車輪3a)を径方向に沿って見た場合における、車輪3aの回転方向に沿う線分と、中心軸線Xに沿う線分とがなす角のうちの小さい方の角度」として定義する。これを図で表すと、図1のようになる。
上記のように定義される傾き角θは、0°から90°の範囲内の値をとり得る。そして、傾き角θが0°(即ち、軸心方向に平行)に近い程、管内移動装置1の進行速度は速く、回転速度は遅くなる。また、傾き角θが90°(即ち、軸心直交方向に平行)に近い程、管内移動装置1の進行速度は遅く、回転速度は速くなる。
このように、傾き角θは、管内移動装置1(螺旋体2)の進行速度や進行方向への推進力を定めるパラメータであり、傾き角θを調整することで、管内移動装置1(螺旋体2)の進行速度や進行方向への推進力を調整することができる。そして、詳細は後述するが、本実施形態では、駆動方向調整機構8により、複数の駆動機構3の夫々が、駆動力の作用方向(傾き角θ)を調整可能に構成されている。なお、本例では、軸心方向両側における複数の駆動機構3については、駆動力の作用方向は固定(正確には、長手部材5に対して固定)されている。
ところで、複数の駆動機構3の内の全てに駆動力を発生させる運用形態以外に、駆動機構3の一部のみを駆動する運用形態も可能である。例えば、管内移動装置1の状態(走行状態等)や管体Pの内面の状態に応じて、複数の駆動機構3の中から駆動する駆動機構3を選択する構成とすることができる。また、車輪3aの一部をモータ3bを備えない従動輪として構成することもできる。さらに、車輪3aの駆動力の大きさを、全ての車輪3aに対して一体的に或いは互いに独立に、調整可能な構成としても好適である。
3.駆動方向調整機構の構成
次に、駆動方向調整機構8の構成について詳細に説明する。駆動方向調整機構8は、駆動力発生部10(図5参照)を含む長手部材5の特定部分11(図7参照、詳細は後述する)の螺旋形状に関連する物理量に応じて、当該駆動力発生部10に備えられた駆動機構3が発生する駆動力の作用方向(傾き角θ)を調整する機構である。このような駆動方向調整機構8を備えることで、長手部材5の延在方向に沿って分散配置された複数の駆動力発生部10のそれぞれの螺旋体2の軸心方向に沿った移動速度(以下、単に「軸移動速度」という。)を調整することが可能となっている。
本実施形態では、上記の「螺旋形状に関連する物理量」は、特定部分11の軸心方向視における曲率とされている。すなわち、本実施形態では、駆動方向調整機構8は、駆動力発生部10を含む長手部材5の特定部分11の曲率に応じて、当該駆動力発生部10に備えられた駆動機構3が発生する駆動力の作用方向(傾き角θ)を調整する機構とされている。
駆動方向調整機構8は、本実施形態では、図4〜図7に示すように、支持機構20と、ワイヤ21と、緊張機構22と、プーリ23と、を備えている。支持機構20は、駆動機構3を長手部材5に対して回転可能に支持する機構である。具体的には、支持機構20は、図4、図6に示すように、底面部が長手部材5に固定されているととともに、回転軸24の一端部を回転可能に支持している。また、回転軸24の他端には、駆動機構3が固定されている。これにより、駆動機構3は、長手部材5に対して回転可能に支持され、駆動機構3が発生する駆動力の作用方向(傾き角θ)は、当該駆動機構3の支持機構20に対する回転角度に応じて定まることになる。
ワイヤ21は、駆動機構3に一端が接続されるとともに、長手部材5の延在方向に沿った位置が当該駆動機構3と異なる長手部材5の部分(本例では、内側部5c)に他端が接続されている。本例では、図4に示すように、ワイヤ21の他端は、一端が接続されている駆動機構3と、当該駆動機構3に対して周方向における時計回り方向側(長手部材5の延在方向に沿って後進方向側)に隣接する駆動機構3との間に位置する長手部材5の内側部5cに接続されている。このようなワイヤ21は、長手部材5における当該ワイヤ21の両端部間の部分の曲率に応じて張力Tが変化し、駆動方向調整機構8は、この張力Tの変化に応じて傾き角θを調整する。よって、本実施形態では、特定部分11は、図7に示すように、長手部材5におけるワイヤ21の両端部間の部分と概ね一致する。なお、ワイヤ21の他端の位置を変えることで、特定部分11の範囲は変更可能である。また、ワイヤ21の他端を、一端が接続された駆動機構3に対して長手部材5の延在方向に沿って図4における反時計回り方向側(長手部材5の延在方向に沿って前進方向側)に接続することも可能である。そして、本例では、ワイヤ21は、プーリ23を介して長手部材3と駆動機構3とをつないでいる。また、ワイヤ21は、例えば樹脂や金属製のものを採用することができる。
そして、緊張機構22は、ワイヤ21を緊張状態に保つ機構である。本実施形態では、緊張機構22は、支持機構20と一体的に構成されており、回転軸24に対して回転方向の付勢力を与える付勢手段(図示せず)を備えている。詳細な説明は省略するが、緊張機構22が備える付勢手段は、例えば、コイルばね等のばねを備えて構成される。また、緊張機構22を、車輪3aの接地面の形状を利用した構成としても良い。そして、図6、図7に示すように、緊張機構22は、ワイヤ21を緊張させる方向の付勢力Dを発揮する。これにより、支持機構20に対して回転可能に支持された駆動機構3は、緊張機構22による付勢力Dとワイヤ21の張力Tとがつりあう位置に位置決めされ、駆動機構3の支持機構20(すなわち、長手部材5)に対する回転角度が定まる。なお、長手部材5の延在方向は螺旋体2の軸心方向のピッチ(以下、単に「螺旋ピッチ」という。)に応じて変化する。具体的には、螺旋ピッチが小さくなると、図1に示す方向視では、長手部材5の延在方向は上下方向に近づく。また、螺旋ピッチが大きくなると、図1に示す方向視では、長手部材5の延在方向は水平方向に近づく。よって、駆動機構3が発生する駆動力の作用方向(傾き角θ)は、駆動機構3の支持機構20(すなわち、長手部材5)に対する回転角度と、螺旋ピッチと、により定まることになる。すなわち、駆動機構3の支持機構20に対する回転角度が変化しなくても、螺旋ピッチが変化すれば駆動力の作用方向(傾き角θ)は変化する。なお、螺旋ピッチは、螺旋体2の各部において一様とは限らず、軸心方向に沿った各部で個別に定まるものである。
ここで、図7に示すように、駆動力における螺旋体2の軸心方向の成分が増加する方向の駆動機構3の支持機構20に対する回転方向を第一回転方向B1とし、駆動力における螺旋体2の軸心方向の成分が減少する方向の駆動機構3の支持機構20に対する回転方向を第二回転方向B2とすると、緊張機構22によるワイヤ21を緊張させる付勢力Dの方向は、第一回転方向B1と一致するように構成されている。
以上のように構成された駆動方向調整機構8を備えることで、以下のような作用が得られる。すなわち、特定部分11の曲率が大きく(曲率半径が小さく)なることでワイヤ21の張力Tが低下すると、駆動機構3は、傾き角θが小さくなる側の第一回転方向B1に回転し、当該駆動機構3が発生する駆動力の作用方向は、軸心方向の成分が増加する側に調整される。また、特定部分11の曲率が小さく(曲率半径が大きく)なることでワイヤ21の張力Tが増大すると、駆動機構3は、傾き角θが大きくなる側の第二回転方向B2に回転し、当該駆動機構3が発生する駆動力の作用方向は、軸心方向の成分が減少する側に調整される。なお、これらの場合における調整後の駆動機構3の支持機構20に対する回転角度は、緊張機構22による付勢力Dとワイヤ21の張力Tとがつりあう位置となる。ここで、曲率の変化に対する傾き角θの調整量は、長手部材5の内側部5cにおけるワイヤ21の他端の固定位置を変えること等で調整可能である。そして、このような傾き角θの調整が行われる構成を備えることで、管内移動装置1の円滑な移動を妨げないという観点から許容される、現在進行中の部位と移動先の部位との間の走行環境(走行抵抗等)の変化幅を、駆動機構3が発生する駆動力の作用方向を調整できない構成に比べ大きなものとすることが可能となっている。この点について、図8〜図10に基づいて詳細に説明する。
図8は、駆動方向調整機構8を備えない場合の管内移動装置(本発明の実施形態ではない)の挙動を説明するための説明図である。なお、進行方向は図中における左側である。また、以下の図8に基づく説明においては、駆動方向調整機構8を備えない管内移動装置を符号「1」で表すとともに、その他の要素についても本実施形態に係る管内移動装置1と同じ符号を用いて説明する。なお、図8に示す螺旋体2の形状は実際の形状を正確に表すものではなく、理解を容易にすべく、形状の変化を誇張して表している。また、以下の説明では、内径が変化した部位に既に進入した螺旋体2の部分を「進行方向前方側部位」といい、当該部位に未だ進入していない螺旋体2の部分を「進行方向後方側部位」という。
図8(a)は、現在進行中の部位よりも内径が小さい部位(以下、単に「小径部」という。)に進入する場合の管内移動装置1の挙動を示している。この図に示すように、管内移動装置1が小径部に進入すると、螺旋体2の螺旋径が小さくなることで拡径力F(径方向外側への復元力)が大きくなるため、走行抵抗が大きくなる。よって、駆動機構3が発生する駆動力の大きさ等を特に制御しなければ、螺旋体2における小径部に進入した部分(進行方向前方側部位)の軸移動速度が低下し、進行方向前方側部位と進行方向後方側部位との間で軸移動速度差が生じる。この軸移動速度差により、螺旋体2は、内径が変化する部分で軸心方向に収縮し、進行方向前方側部位における螺旋ピッチは小さくなる。
そして、進行方向前方側部位は、小径部における走行環境(走行抵抗等)に応じた軸移動速度で前進する。この進行方向前方側部位の軸移動速度は、図8(a)に示すように、螺旋ピッチが小さくなることで増加した傾き角θ2(>θ1)に応じたものとなる。なお、傾き角θ2を付した車輪3aの回転中心点は、螺旋体2の中心軸線X(図1参照)よりもやや下側に位置するため、図8(a)は当該車輪3aを径方向に沿って見た図面ではない。そのため、本来の傾き角θ2は、図8(a)で示すような2つの線分が成す角度とは厳密には異なるが、ここでは発明の理解を容易にすべく、傾き角θ2を当該2つの線分が成す角度として表している。また、進行方向前方側部位における車輪3a(駆動機構)の位置は実際の位置を正確に表すものではない。図8(b)、図10、図12においても同様である。
一方、図8(b)は、現在進行中の部位よりも内径が大きい部位(以下、単に「大径部」という。)に進入する場合の管内移動装置1の挙動を示している。この図に示すように、管内移動装置1が大径部に進入すると、螺旋体2の螺旋径が大きくなることで拡径力F(径方向外側への復元力)が小さくなるため、走行抵抗が小さくなる。よって、駆動機構3が発生する駆動力の大きさ等を特に制御しなければ、螺旋体2における大径部に進入した部分(進行方向前方側部位)の軸移動速度が増加し、進行方向前方側部位と進行方向後方側部位との間で軸移動速度差が生じる。この軸移動速度差により、螺旋体2は内径が変化する部分で軸心方向に伸長し、進行方向前方側部位における螺旋ピッチは大きくなる。
そして、進行方向前方側部位は、大径部における走行環境(走行抵抗等)に応じた軸移動速度で前進する。この進行方向前方側部位の軸移動速度は、図8(b)に示すように、螺旋ピッチが大きくなることで減少した傾き角θ3(<θ1)に応じたものとなる。
なお、本願に係る螺旋体2は軸心方向に弾性的に伸縮可能であるため、上記のように螺旋体2が軸心方向に伸縮し、螺旋ピッチが増減しても問題は生じ難い。しかし、走行抵抗等の走行環境の変化の程度によっては、螺旋体2が過度に収縮或いは伸長することで、管内移動装置1の軸移動速度が過小或いは過大となったり、管体Pの内部形状に合わせた螺旋径や断面形状の柔軟な変化が妨げられたりする可能性がある。
この点に関し、本実施形態に係る管内移動装置1は、上記のような駆動方向調整機構8を備えることで、以下に述べるように、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができ、上記の問題を解消することが可能となっている。この点について、図9、図10を参照して説明する。
図9は、管内移動装置1が小径部に進入する場合の駆動方向調整機構8による傾き角θの調整を説明するための図であり、図10は、そのような調整が行われた場合の管内移動装置1の挙動を模式的に示したものである。図9(a)は、小径部に未だ進入していない部位(進行方向後方側部位)における長手部材5の一部を模式的に示す図であり、図9(b)は、小径部に既に進入した進行方向前方側部位における長手部材5の一部を模式的に示す図である。なお、進行方向は図中における左側である。この図に示すように、進行方向前方側部位(図9(b))では、上述したように拡径力Fが大きくなり走行抵抗が増大する。ここで、小径部に既に進入した進行方向前方側部位においては特定部分11の曲率が大きくなる。よって、進行方向前方側部位における駆動機構3は、傾き角θが小さくなる側の第一回転方向B1(図7参照)に回転し、傾き角θが、進行方向後方側部位における傾き角θ1より小さな値(θ4)となる。すなわち、駆動機構3が発生する駆動力の作用方向が、軸心方向の成分が増加する側に調整される。これにより、駆動方向調整機構8を備えていなければ拡径力Fの増大により減少する推進力Mが増加する側に調整され、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差が抑制される。従って、図10に模式的に示すように、進行方向前方側部位における螺旋ピッチの減少が抑制される。なお、図10には、進行方向前方側部位における螺旋ピッチと進行方向後方側部位における螺旋ピッチとがほぼ同一になるように傾き角θが調整される場合を例として示している。
一方、図示は省略するが、管内移動装置1が大径部に進入する場合には、駆動機構3は、傾き角θが大きくなる側の第二回転方向B2(図7参照)に回転し、進行方向前方側部位の傾き角θは、進行方向後方側部位の傾き角θ1より大きくなる。すなわち、駆動機構3が発生する駆動力の作用方向が、軸心方向の成分が減少する側に調整される。これにより、駆動方向調整機構8を備えていなければ拡径力Fの減少により増大する推進力Mが減少する側に調整され、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差が抑制される。従って、進行方向前方側部位における螺旋ピッチの増加が抑制される。以上のように、本実施形態に係る管内移動装置1は、駆動方向調整機構8を備えない場合に比べ、螺旋体2の過度な収縮や伸長が生じ難い構成を備えている。
なお、本実施形態では、進行方向前方側部位の軸移動速度が進行方向後方側部位の軸移動速度と同一又はほぼ同一になるように、傾き角θが調整されるように構成されている。すなわち、複数の駆動力発生部10の軸移動速度が互いに同一又はほぼ同一になるように、複数の駆動機構3が発生する駆動力の作用方向が調整されるように構成されている。これにより、管体の内部形状が変化する際における管内移動装置1の円滑な移動をより確実に実現することが可能となっている。なお、このような傾き角θの調整は、管体の内部形状(内径や断面形状等)と走行環境(走行抵抗等)との関係を予め計算や実験により求めておき、当該計算や実験の結果に基づき駆動方向調整機構8を設計することで実現可能である。
以上のように、本実施形態に係る管内移動装置1は、上述したような駆動方向調整機構8を備えることで、螺旋体2の過度な収縮や伸長を抑制できる構成となっており、管内移動装置1の円滑な移動を妨げないという観点から許容される、現在進行中の部位と移動先の部位との間の走行環境の変化幅が、駆動方向調整機構8を備えない構成に比べ、拡大されている。
なお、上記の説明では、理解を容易にするために、管内移動装置1が小径部や大径部に進入する場合の説明を行ったが、移動先の部位における管体Pの断面形状が円形でない場合でも、同様に円滑な進行が可能である。すなわち、例えば、進行方向前方が狭隘化しているような場合でも、実質的な管径に応じて定まる特定部分11の曲率に応じて傾き角θが調整され、同様に進行することができる。
また、駆動機構3のそれぞれが駆動力の大きさを調整可能に構成されている場合には、駆動力の大きさを増減させることで、駆動方向調整機構8による駆動力の作用方向(傾き角θ)の調整幅を低く抑えることも可能である。
4.その他の実施形態
(1)上記の実施形態では、複数の駆動力発生部10の軸移動速度が互いに同一になるように、複数の駆動機構3が発生する駆動力の作用方向が調整される場合を例として説明したが、複数の駆動力発生部10の軸移動速度が互いに異なるものとなることを許容する構成とすることもできる。このような構成(以下、この段落において「本構成」という。)の一例について、図11及び図12に基づいて説明する。図11は、管内移動装置1が小径部に進入する場合の、進行方向前方側部位における長手部材5の一部を模式的に示す図であり、図12は本構成に対応する管内移動装置1の挙動を模式的に表している。なお、図11(a)は、比較のために示す図であり、駆動方向調整機構8による調整が行われない場合の傾き角θ5を示すためのものである。また、図11(b)は、本構成における駆動方向調整機構8による調整を示す図である。図11(a)に示すように、駆動方向調整機構8による調整が行われない場合には、小径部に進入した進行方向前方側部位においては螺旋ピッチが減少し、傾き角θが大きくなる。図11(a)では、小径部に未だ進入していない進行方向後方側部位における傾き角θを上記実施形態に係る説明と同様θ1とし、螺旋ピッチの減少により増加した後の進行方向前方側部位における傾き角θをθ5(>θ1)としている。これに対し、本構成では、図11(b)に示すように、傾き角θを小さくする調整を行うものの、進行方向前方側部位の軸移動速度は、進行方向後方側部位の軸移動速度よりも小さなものとなる。すなわち、本構成における調整後の傾き角θであるθ6の図9に示すθ4及び図11(a)に示すθ5との関係は、「θ4<θ6<θ5」となる。よって、本構成では、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差が抑制されるものの、図12に示すように、進行方向前方側部位における螺旋ピッチは、進行方向後方側部位における螺旋ピッチに比べて小さくなる。なお、本構成において、傾き角θ6をθ1と等しくしても良い。なお、傾き角θ6をθ1に等しくした場合においても、駆動機構3の支持機構20に対する回転角度は、進行方向前方側部位と進行方向後方側部位とで異なるものとなる。
(2)上記の実施形態では、螺旋形状に関連する物理量が、特定部分11の曲率である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば、螺旋形状に関連する物理量が、特定部分11の、螺旋体2の軸心方向の変位に対する周方向の変位の割合である変位割合であり、駆動方向調整機構8は、変位割合が大きくなると、駆動力における軸心方向の成分が増加するように当該駆動力の作用方向(傾き角θ)を調整するとともに、変位割合が小さくなると、駆動力における軸心方向の成分が減少するように当該駆動力の作用方向(傾き角θ)を調整する構成とすることも、本発明の好適な実施形態の一つである。この構成によれば、走行抵抗の増加等に起因して軸移動速度が減少し、その結果軸心方向に収縮して変位割合が大きくなった特定部分11に対しては、対応する駆動機構3が発生する駆動力の作用方向が、当該特定部分11の軸移動速度が増加する側へ調整される。また、走行抵抗の減少等に起因して軸移動速度が増加し、その結果軸心方向に伸長して変位割合が小さくなった特定部分11に対しては、対応する駆動機構3が発生する駆動力の作用方向が、当該特定部分11の軸移動速度が減少する側へ調整される。よって、このような構成においても、上記実施形態と同様、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができる。
(3)上記の実施形態では、駆動方向調整機構8が、支持機構20と、ワイヤ21と、緊張機構22と、を備えて構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、駆動方向調整機構8を、歯車機構(例えば、カサバ歯車等を備えた機構等)を備えて構成することもできる。例えば、駆動機構3を長手部材5に対して回転可能な回転ステージに載置し、当該回転ステージの長手部材5に対する回転角度が、当該回転ステージに固定された第一のカサバ歯車に噛み合う第二のカサバ歯車の回転位置によって調整される構成とすることができる。この第二のカサバ歯車は、一端に回転自在に支持されたローラを備えたアームの他端に固定されている。このローラは、回転軸が螺旋体2の中心軸線Xとほぼ平行に配置され、長手部材5の内側部5cに当接するように備えられる。そして、このアームは、ローラを備えた一端が螺旋体2の螺旋径(長手部材5の曲率)の変化に合わせて移動することで、他端である第二のカサバ歯車の回転軸を回転中心として回転する。これにより、螺旋体2の螺旋径(長手部材5の曲率)の変化に合わせて第二のカサバ歯車の回転位置が変化し、駆動機構3を備えた回転ステージが回転することで駆動力の作用方向(傾き角θ)が調整される。ここで、ローラの回転軸に直交する断面の形状を扁平させれば、螺旋径(曲率)の変化と傾き角θの変化との関係を非線形なものにすることも可能である。
(4)上記の実施形態では、駆動方向調整機構8が機械的な機構である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、機械的機構に代えて以下のような手段を備える構成とすることも、本発明の好適な実施形態の一つである。すなわち、図13に示すように、複数の駆動力発生部10の夫々の軸心方向に沿った軸移動速度に関連する物理量(軸移動速度自体を含む)を検出する物理量検出手段31と、物理量検出手段31の検出結果に基づいて複数の駆動機構3の夫々が発生する駆動力の作用方向(傾き角θ)を調整する駆動方向調整手段32と、を備える構成とする。なお、図13に示す例では、物理量検出手段31と駆動方向調整手段32は、管内移動装置1が螺旋体2とは別に備える制御装置30に備えられている。この制御装置30は、例えばCPU等の演算処理装置を備えて構成される。また、駆動機構3は、例えば電動回転ステージ等の長手部材5に固定されたステージに備えられ、駆動方向調整手段32の決定に基づいて駆動機構3が発生する駆動力の作用方向が調整される。この際、駆動方向調整手段32と駆動機構3を備えたステージとの間の通信は、図13に示す例のように制御用のケーブルを併設したケーブル6を介して行う構成としても良いし、無線通信により行う構成としても良い。なお、制御装置30が螺旋体2に備えられる構成とすることも可能である。
具体的には、駆動方向調整手段32は、物理量検出手段31の検出結果が軸移動速度の減少を示す駆動力発生部10に対して、当該駆動力発生部10に備えられた駆動機構3が発生する駆動力の作用方向を、軸心方向の成分が大きくなるように(すなわち、傾き角θが小さくなるように)調整し、物理量検出手段31の検出結果が軸移動速度の増加を示す駆動力発生部10に対して、当該駆動力発生部10に備えられた駆動機構3が発生する駆動力の作用方向を、軸心方向の成分が小さくなるように(すなわち、傾き角θが大きくなるように)調整するように構成される。このような構成とすれば、軸移動速度に関連する物理量に応じて、駆動機構3が発生する駆動力の作用方向を適切に調整することができる。具体的には、軸移動速度の減少が見込まれる或いは実際に減少した駆動力発生部10に対しては、対応する駆動機構3が発生する駆動力の作用方向が、当該駆動力発生部10の軸移動速度が増加する側へ調整される。また、軸移動速度の増加が見込まれる或いは実際に増加した駆動力発生部10に対しては、対応する駆動機構3が発生する駆動力の作用方向が、当該駆動力発生部10の軸移動速度が減少する側へ調整される。よって、進行方向前方側部位の軸移動速度の予測される変化や実際の変化を打ち消す側へ、対応する駆動機構3が発生する駆動力の作用方向を調整することができ、上記実施形態と同様、進行方向前方側部位と進行方向後方側部位との間の軸移動速度差を抑制することができる。
このような構成では、例えば、軸移動速度に関連する物理量を、駆動力発生部10を含む長手部材5の特定部分11の曲率とすることができる。この場合、物理量検出手段31を、長手部材5の形状を検出する形状センサ(図示せず)を備えて構成し、駆動方向調整手段32は、曲率の増加を軸移動速度の減少として処理するとともに、曲率の減少を軸移動速度の増加として処理する構成とする。なお、形状センサは、例えば、長手部材5の延在方向に沿って当該長手部材5の内側部5cに貼り付けた3次元形状センサとすることができる。
また、軸移動速度に関連する物理量を、駆動力発生部10を含む長手部材5の特定部分11の、軸心方向の変位に対する周方向の変位の割合である変位割合とすることもできる。この場合、物理量検出手段31を、長手部材5の形状を検出する形状センサ(図示せず)を備えて構成し、駆動方向調整手段32は、変位割合の増加を軸移動速度の減少として処理するとともに、変位割合の減少を軸移動速度の増加として処理する構成とする。なお、形状センサは、上記と同様、例えば、長手部材5の延在方向に沿って当該長手部材5の内側部5cに貼り付けた3次元形状センサとすることができる。
さらに、軸移動速度に関連する物理量を、駆動機構3の管内移動に伴う移動負荷とすることもできる。この場合、物理量検出手段31を、移動負荷を検出する移動負荷センサ(図示せず)を備えて構成し、駆動方向調整手段32は、移動負荷の増加を軸移動速度の減少として処理するとともに、移動負荷の減少を軸移動速度の増加として処理する構成とする。なお、移動負荷センサは、駆動機構3が備えるモータ3bの負荷を検出する構成を備えて構成することができ、例えば駆動機構3と一体的に構成することができる。この構成では、管体の内径が小さくなる等して管内移動装置1の走行抵抗が増大すると、モータ3bの負荷が大きくなり、管体の内径が大きくなる等して管内移動装置1の走行抵抗が減少すると、モータ3bの負荷が小さくなることを利用した構成である。
(5)上記の実施形態では、螺旋体2を構成する可撓性の長手部材5が、断面四角形の板状体である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、螺旋体2を構成する長手部材5は、延在方向に直交する断面における断面形状が円形や楕円形等の柱状部材であっても良い。
(6)上記の実施形態では、推進機構7が、車輪3aと管体Pの内面Sとの間の摩擦力を利用して、管内移動装置1の推進力を発生する場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、管体Pの内面Sとの間の摩擦力により推進力を発生可能な構成であれば、車輪3aを備えるものに限定されない。例えば、推進機構7を、無限軌道を備えて構成することができる。
本発明は、管体の内部を移動可能な管内移動装置に好適に利用することができる。
1:管内移動装置
2:螺旋体
3:駆動機構
5:長手部材
7:推進機構
8:駆動方向調整機構
10:駆動力発生部
11:特定部分
20:支持機構
21:ワイヤ
22:緊張機構
31:物理量検出手段
32:駆動方向調整手段
B1:第一回転方向
B2:第二回転方向
P:管体

Claims (10)

  1. 管体の内部を移動可能な管内移動装置であって、
    可撓性の長手部材が螺旋状に複数ターン巻回されてなる螺旋体と、前記螺旋体の軸心方向への推進力を発生する推進機構と、を備え、
    前記推進機構は、前記長手部材の延在方向に沿って分散配置された複数の駆動力発生部の夫々に備えられた複数の駆動機構を備え、
    前記複数の駆動機構の夫々は、対応する前記駆動力発生部において、前記螺旋体の軸心直交方向に対して傾いた方向に駆動力を働かせて前記推進力を発生するとともに、前記駆動力の作用方向を調整可能に構成されている管内移動装置。
  2. 前記駆動力発生部を含む前記長手部材の特定部分の螺旋形状に関連する物理量に応じて、当該駆動力発生部に備えられた前記駆動機構が発生する前記駆動力の作用方向を調整する駆動方向調整機構を備える請求項1記載の管内移動装置。
  3. 前記螺旋形状に関連する物理量は、前記特定部分の、前記螺旋体の軸心方向視における曲率であり、
    前記駆動方向調整機構は、前記曲率が大きくなると、前記駆動力における前記螺旋体の軸心方向の成分が増加するように当該駆動力の作用方向を調整するとともに、前記曲率が小さくなると、前記駆動力における前記螺旋体の軸心方向の成分が減少するように当該駆動力の作用方向を調整する請求項2記載の管内移動装置。
  4. 前記駆動方向調整機構は、前記駆動機構を前記長手部材に対して回転可能に支持する支持機構と、前記駆動機構に一端が接続されるとともに、前記長手部材の延在方向に沿った位置が当該駆動機構と異なる前記長手部材の部分に他端が接続されたワイヤと、前記ワイヤを緊張状態に保つ緊張機構と、を備え、
    前記駆動機構が発生する前記駆動力の作用方向は、当該駆動機構の前記支持機構に対する回転角度に応じて定まり、
    前記駆動力における前記螺旋体の軸心方向の成分が増加する方向の前記駆動機構の前記支持機構に対する回転方向を第一回転方向と、前記駆動力における前記螺旋体の軸心方向の成分が減少する方向の前記駆動機構の前記支持機構に対する回転方向を第二回転方向とした場合に、
    前記緊張機構による前記ワイヤを緊張させる付勢力の方向と前記第一回転方向とが一致されている請求項3記載の管内移動装置。
  5. 前記螺旋形状に関連する物理量は、前記特定部分の、前記螺旋体の軸心方向の変位に対する周方向の変位の割合である変位割合であり、
    前記駆動方向調整機構は、前記変位割合が大きくなると、前記駆動力における前記螺旋体の軸心方向の成分が増加するように当該駆動力の作用方向を調整するとともに、前記変位割合が小さくなると、前記駆動力における前記螺旋体の軸心方向の成分が減少するように当該駆動力の作用方向を調整する請求項2記載の管内移動装置。
  6. 前記複数の駆動力発生部の夫々の前記螺旋体の軸心方向に沿った軸移動速度に関連する物理量を検出する物理量検出手段と、前記物理量検出手段の検出結果に基づいて前記複数の駆動機構の夫々が発生する前記駆動力の作用方向を調整する駆動方向調整手段と、を備え、
    前記駆動方向調整手段は、前記物理量検出手段の検出結果が前記軸移動速度の減少を示す前記駆動力発生部に対して、当該駆動力発生部に備えられた前記駆動機構が発生する前記駆動力の作用方向を、前記螺旋体の軸心方向の成分が大きくなるように調整し、前記物理量検出手段の検出結果が前記軸移動速度の増加を示す前記駆動力発生部に対して、当該駆動力発生部に備えられた前記駆動機構が発生する前記駆動力の作用方向を、前記螺旋体の軸心方向の成分が小さくなるように調整する請求項1記載の管内移動装置。
  7. 前記軸移動速度に関連する物理量は、前記駆動力発生部を含む前記長手部材の特定部分の、前記螺旋体の軸心方向視における曲率であり、
    前記物理量検出手段は、前記長手部材の形状を検出する形状センサを備えて構成され、
    前記駆動方向調整手段は、前記曲率の増加を前記軸移動速度の減少として処理するとともに、前記曲率の減少を前記軸移動速度の増加として処理する請求項6記載の管内移動装置。
  8. 前記軸移動速度に関連する物理量は、前記駆動力発生部を含む前記長手部材の特定部分の、前記螺旋体の軸心方向の変位に対する周方向の変位の割合である変位割合であり、
    前記物理量検出手段は、前記長手部材の形状を検出する形状センサを備えて構成され、
    前記駆動方向調整手段は、前記変位割合の増加を前記軸移動速度の減少として処理するとともに、前記変位割合の減少を前記軸移動速度の増加として処理する請求項6記載の管内移動装置。
  9. 前記軸移動速度に関連する物理量は、前記駆動機構の管内移動に伴う移動負荷であり、
    前記物理量検出手段は、前記移動負荷を検出する移動負荷センサを備えて構成され、
    前記駆動方向調整手段は、前記移動負荷の増加を前記軸移動速度の減少として処理するとともに、前記移動負荷の減少を前記軸移動速度の増加として処理する請求項6記載の管内移動装置。
  10. 前記複数の駆動力発生部の前記螺旋体の軸心方向に沿った軸移動速度が互いに同一になるように、前記複数の駆動機構が発生する前記駆動力の作用方向が調整される請求項1から9の何れか一項記載の管内移動装置。
JP2010026769A 2010-02-09 2010-02-09 管内移動装置 Expired - Fee Related JP5415985B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026769A JP5415985B2 (ja) 2010-02-09 2010-02-09 管内移動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026769A JP5415985B2 (ja) 2010-02-09 2010-02-09 管内移動装置

Publications (2)

Publication Number Publication Date
JP2011161564A JP2011161564A (ja) 2011-08-25
JP5415985B2 true JP5415985B2 (ja) 2014-02-12

Family

ID=44592863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026769A Expired - Fee Related JP5415985B2 (ja) 2010-02-09 2010-02-09 管内移動装置

Country Status (1)

Country Link
JP (1) JP5415985B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106078801B (zh) * 2016-07-08 2018-04-10 北京空间飞行器总体设计部 一种等截面空间机械臂臂杆伸缩机构
CN107813320A (zh) * 2017-11-24 2018-03-20 郭辽兵 一种螺旋运动管道机器人
CN110435782A (zh) * 2018-05-03 2019-11-12 西南科技大学 一种单弹性囊控制的蠕动软体仿生机器人
CN109578747A (zh) * 2019-01-28 2019-04-05 西南大学 一种在腔内曲面移动的螺旋机器人
CN109591907A (zh) * 2019-01-30 2019-04-09 湖南达诺智能机器人科技有限公司 一种桥墩检测用行走机构和行走方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602986B2 (ja) * 1990-09-06 1997-04-23 東京電力株式会社 回収ロボット
JPH06238249A (ja) * 1993-02-17 1994-08-30 Makoto Azuma 管内清掃器具
JP2500739B2 (ja) * 1993-03-19 1996-05-29 管清工業株式会社 管路内自走装置
JP2549989B2 (ja) * 1994-04-25 1996-10-30 管清工業株式会社 管内自走装置
JPH11291901A (ja) * 1998-02-10 1999-10-26 Osaka Gas Co Ltd 管内走行装置
JP2000052282A (ja) * 1998-08-10 2000-02-22 Agriculture Forestry & Fisheries Technical Information Society T字分岐管内走行ロボット及びその方向制御方法
JP4916784B2 (ja) * 2006-06-20 2012-04-18 吉佳株式会社 光硬化性ライニング材の光硬化方法及び該方法に用いる光硬化システム
JP5498068B2 (ja) * 2009-07-09 2014-05-21 大阪瓦斯株式会社 管内移動装置

Also Published As

Publication number Publication date
JP2011161564A (ja) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5415985B2 (ja) 管内移動装置
JP6301078B2 (ja) 配管内移動装置
JP6562345B2 (ja) 管内走行装置
JPH10318478A (ja) 管内走行装置
Kakogawa et al. Designing arm length of a screw drive in-pipe robot for climbing vertically positioned bent pipes
EP2460643A1 (en) Pipe making machine and pipe making method
Kakogawa et al. Development of a screw drive in-pipe robot for passing through bent and branch pipes
CN101117138A (zh) 螺旋驱动的圆管道机器人
JP6337324B2 (ja) 管内走行装置
JP5498068B2 (ja) 管内移動装置
KR101494784B1 (ko) 소구경 배관 내부 검사로봇
Kurata et al. Helical rotation in-pipe mobile robot
US11602884B2 (en) Pipe-forming apparatus for spiral pipe and pipe-forming method thereof
JP6463621B2 (ja) 走行装置
JP5822905B2 (ja) 管内検査装置
JP5415984B2 (ja) 管内移動装置
JP2021105405A (ja) 管内移動体
JP2011052408A (ja) テーパー杭のガイド装置
JPH09295573A (ja) 管内走行機構
ES2703701T3 (es) Dispositivo de soldadura orbital con tren de rodadura ajustable
JP2011527943A5 (ja)
JP5814079B2 (ja) 管内移動装置
JP2019188679A (ja) 製管装置
CN209524231U (zh) 一种在腔内曲面移动的螺旋机器人
JP5654903B2 (ja) 管内移動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

LAPS Cancellation because of no payment of annual fees