JP5400447B2 - Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate - Google Patents
Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate Download PDFInfo
- Publication number
- JP5400447B2 JP5400447B2 JP2009087755A JP2009087755A JP5400447B2 JP 5400447 B2 JP5400447 B2 JP 5400447B2 JP 2009087755 A JP2009087755 A JP 2009087755A JP 2009087755 A JP2009087755 A JP 2009087755A JP 5400447 B2 JP5400447 B2 JP 5400447B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- copper foil
- roughened
- fine
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 312
- 239000011889 copper foil Substances 0.000 title claims description 169
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 143
- 239000010949 copper Substances 0.000 claims description 143
- 239000002245 particle Substances 0.000 claims description 85
- 238000007788 roughening Methods 0.000 claims description 50
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 41
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 32
- 239000003792 electrolyte Substances 0.000 claims description 31
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 31
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 30
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 19
- GJLUFTKZCBBYMV-UHFFFAOYSA-N carbamimidoylsulfanyl carbamimidothioate Chemical compound NC(=N)SSC(N)=N GJLUFTKZCBBYMV-UHFFFAOYSA-N 0.000 claims description 18
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 14
- 239000000460 chlorine Substances 0.000 claims description 14
- 229910052801 chlorine Inorganic materials 0.000 claims description 14
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 230000002265 prevention Effects 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims 2
- 239000010419 fine particle Substances 0.000 claims 1
- 239000002335 surface treatment layer Substances 0.000 claims 1
- 239000011347 resin Substances 0.000 description 49
- 229920005989 resin Polymers 0.000 description 49
- 239000000243 solution Substances 0.000 description 24
- 229920000106 Liquid crystal polymer Polymers 0.000 description 11
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000008151 electrolyte solution Substances 0.000 description 10
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 9
- 238000005868 electrolysis reaction Methods 0.000 description 9
- 229920001955 polyphenylene ether Polymers 0.000 description 9
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 8
- 239000004721 Polyphenylene oxide Substances 0.000 description 8
- 229920006380 polyphenylene oxide Polymers 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910001297 Zn alloy Inorganic materials 0.000 description 6
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- PYRZPBDTPRQYKG-UHFFFAOYSA-N cyclopentene-1-carboxylic acid Chemical compound OC(=O)C1=CCCC1 PYRZPBDTPRQYKG-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- OMSYGYSPFZQFFP-UHFFFAOYSA-J zinc pyrophosphate Chemical compound [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O OMSYGYSPFZQFFP-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Description
本件発明は、粗化処理銅箔及び粗化処理銅箔の製造方法に関する。特に、プリント配線板製造に用いる液晶ポリマー基材との密着性に優れた粗化処理面を備える銅箔に関する。 The present invention relates to a roughened copper foil and a method for producing a roughened copper foil. In particular, it is related with copper foil provided with the roughening process surface excellent in adhesiveness with the liquid crystal polymer base material used for printed wiring board manufacture.
従来から、プリント配線板の製造には、電解銅箔及び圧延銅箔が広く使用されてきた。これらのプリント配線板用銅箔は、エポキシ系樹脂、ポリイミド系樹脂等に代表される絶縁樹脂基材と張り合わせて使用される。そのため、金属材である銅箔の張り合わせ面には、微細な銅粒子を析出形成させることで粗化処理面を形成してきた。この銅箔表面にある微細銅粒子は、銅箔と絶縁樹脂基材とを張り合わせると、当該微細銅粒子が当該樹脂内に埋め込まれ、密着性を向上させるためのアンカー効果を発揮する。 Conventionally, electrolytic copper foil and rolled copper foil have been widely used for the production of printed wiring boards. These copper foils for printed wiring boards are used by being bonded to an insulating resin base material typified by epoxy resin, polyimide resin or the like. Therefore, a roughened surface has been formed by depositing fine copper particles on the bonding surface of a copper foil, which is a metal material. When the copper foil and the insulating resin base material are bonded together, the fine copper particles on the surface of the copper foil are embedded in the resin and exhibit an anchoring effect for improving adhesion.
従来の電解銅箔の場合には、図4に示すように、電解銅箔が必然的に備える山状の突起に微細銅粒子を析出形成させ、ここに防錆処理等の用途に応じて要求される表面処理を施している。これらは、プリント配線板用の粗化処理銅箔として、主にリジッドプリント配線板に使用されてきた。例えば、特許文献1には、プリント配線板の製造に用いる銅箔と基材との接着強度を増大させる目的で用いるシランカップリング剤の性能を最大限に引き出した銅箔とその製造方法の提供を目的とした表面処理銅箔を開示している。ここで言う表面処理銅箔は、特許文献1に模式図として示されている図2及び図4から理解できるように、本明細書で図4として示した走査型電子顕微鏡による観察像と同様の形態に分類できるものである。ところが、銅箔の絶縁樹脂との張り合わせ面が、この図4のような粗化処理が施され、且つ、顕著な凹凸が存在すると、現在要求されているファインピッチ回路の形成が困難となるため、当該銅箔の張り合わせ面の凹凸が少ないロープロファイル銅箔が望まれるようになった。 In the case of conventional electrolytic copper foil, as shown in FIG. 4, fine copper particles are deposited and formed on the mountain-shaped protrusions that the electrolytic copper foil inevitably has, and this is required depending on the use such as rust prevention treatment. Has been subjected to surface treatment. These have been mainly used for rigid printed wiring boards as roughened copper foils for printed wiring boards. For example, Patent Document 1 provides a copper foil that maximizes the performance of a silane coupling agent used for the purpose of increasing the adhesive strength between the copper foil used for the production of a printed wiring board and the base material, and a method for producing the copper foil. Discloses a surface-treated copper foil. The surface-treated copper foil referred to here is the same as the image observed by the scanning electron microscope shown in FIG. 4 in this specification, as can be understood from FIGS. 2 and 4 shown as schematic diagrams in Patent Document 1. It can be classified into forms. However, if the roughened surface of the copper foil with the insulating resin is roughened as shown in FIG. 4 and there are significant irregularities, it is difficult to form the fine pitch circuit currently required. Therefore, a low profile copper foil with less unevenness on the bonding surface of the copper foil has been desired.
一方、圧延銅箔は、その製造過程で電解銅箔のような粗面が形成されないため、銅箔の張り合わせ面の凹凸が少ないロープロファイル銅箔である。従って、リジッドプリント配線板に比べて、ファインピッチ回路の形成が要求される用途で広く使用されてきた。特に、フレキシブルプリント配線板の分野では、製造過程で不可避的に粗面が形成される電解銅箔の使用は敬遠され、歴史的に圧延銅箔が使用されてきた。圧延銅箔の粗化処理面の形状は、例えば、特許文献2の中の図4として示された模式図のような状態である。 On the other hand, the rolled copper foil is a low-profile copper foil with less unevenness on the bonding surface of the copper foil because a rough surface like the electrolytic copper foil is not formed in the manufacturing process. Therefore, it has been widely used in applications that require the formation of a fine pitch circuit compared to rigid printed wiring boards. In particular, in the field of flexible printed wiring boards, the use of electrolytic copper foil whose surface is unavoidably formed during the manufacturing process has been avoided, and rolled copper foil has been used historically. The shape of the roughened surface of the rolled copper foil is, for example, as shown in the schematic diagram shown in FIG.
ところが、市場においては、プリント配線板を使用する電気、電子機器等のダウンサイジング、軽量化、高機能化等の要求が顕著になってきた。その結果、リジッドプリント配線板にも、ファインピッチ回路の形成が要求されるようになり、圧延銅箔に比べてコストパフォーマンスに優れた電解銅箔の絶縁樹脂基材との張り合わせ面のロープロファイル化が要求されるようになり、特許文献3、特許文献4に開示されたようなロープロファイルの電解銅箔の提供が行われ、電解銅箔の張り合わせ面の粗度が、圧延銅箔に近づいてきている。 However, in the market, demands for downsizing, weight reduction, high functionality and the like of electric and electronic devices using printed wiring boards have become prominent. As a result, the formation of fine pitch circuits is also required for rigid printed wiring boards, and the low profile of the bonded surface of the electrolytic copper foil with the insulating resin base material, which is superior in cost performance to the rolled copper foil. Therefore, the low profile electrolytic copper foil as disclosed in Patent Literature 3 and Patent Literature 4 is provided, and the roughness of the bonding surface of the electrolytic copper foil approaches that of the rolled copper foil. ing.
そして、近年では、特許文献6及び特許文献7に開示されたように、新たな絶縁樹脂基材と組み合わせて、銅箔を使用することが求められ、良好な高周波特性を確保するとの観点から、ここにロープロファイル化された電解銅箔が使用される傾向が高くなっている。 And in recent years, as disclosed in Patent Document 6 and Patent Document 7, it is required to use copper foil in combination with a new insulating resin base material, from the viewpoint of ensuring good high-frequency characteristics, Here, the tendency to use low profile electrolytic copper foil is increasing.
特許文献6には、吸湿性が低く、高温での半田耐熱性を有する液晶ポリマーフィルムと銅箔とをラミネートした銅張積層板を製造し、これにファインパターンを形成することが可能な高周波プリント配線板用銅箔として、銅箔の少なくとも一方の面に直径が0.05〜1.0μmである球状の微細な粗化粒子からなる粗化処理層を施し、更に該粗化処理層上にモリブデン、ニッケル、タングステン、リン、コバルト、ゲルマニウムの内の少なくとも一種類以上からなる耐熱・防錆層を施し、更に該耐熱・防錆層上にクロメート皮膜層を施し、更に該クロメート皮膜層上にシランカップリング剤層を施すことを特徴とするものが開示されている。 Patent Document 6 discloses a high-frequency print capable of manufacturing a copper-clad laminate in which a liquid crystal polymer film having a low hygroscopic property and having a solder heat resistance at high temperatures and a copper foil are laminated, and a fine pattern can be formed thereon. As a copper foil for a wiring board, a roughening treatment layer made of spherical fine roughening particles having a diameter of 0.05 to 1.0 μm is applied to at least one surface of the copper foil, and further on the roughening treatment layer A heat-resistant / rust-proof layer composed of at least one of molybdenum, nickel, tungsten, phosphorus, cobalt, and germanium is applied, and a chromate film layer is further formed on the heat-resistant / rust-proof layer, and further on the chromate film layer. What is characterized by applying a silane coupling agent layer is disclosed.
特許文献7には、PPE樹脂含浸基材を代表とする高周波基板に対して強い引き剥がし強さを得ることができ、粗面粗度を超低粗度にする事でエッチングによる回路パターン形成後の回路ボトムラインの直線性を高め伝送損失の低減が可能な高周波プリント配線板用銅箔等が開示され、「少なくとも銅箔の片面に粗化粒子を付着して、その表面粗さRz:2.5〜4.0μmであり、明度値:25以下である粗化処理面とした表面処理銅箔と、50%以上が熱可塑性液晶ポリマーからなる絶縁基板とが積層されてなることを特徴とする基板用複合材。」と記載されている。 In Patent Document 7, it is possible to obtain a strong peeling strength against a high-frequency substrate typified by a PPE resin-impregnated base material, and after forming a circuit pattern by etching by making the roughness of the rough surface extremely low. A copper foil for a high-frequency printed wiring board capable of improving the linearity of the circuit bottom line and reducing transmission loss is disclosed, and “the surface roughness Rz: 2 is attached to at least one surface of the copper foil. A surface-treated copper foil having a roughened surface with a lightness value of 25 or less, and an insulating substrate composed of 50% or more of a thermoplastic liquid crystal polymer are laminated. The composite material for the substrate to be used. "
しかしながら、上述の特許文献3〜特許文献7で使用しているロープロファイル化された電解銅箔の絶縁樹脂基材との張り合わせ面は、従来の圧延銅箔の粗化処理に用いていた微細銅粒子の粒子形状と同様で、略球状と称しても差し支えの無い形状を備えている。 However, the bonded surface of the low profile electrolytic copper foil used in the above-mentioned Patent Documents 3 to 7 with the insulating resin base material is the fine copper used for the roughening treatment of the conventional rolled copper foil. Similar to the particle shape of the particles, it has a shape that can be referred to as a substantially spherical shape.
電解銅箔のロープロファイル表面に、当該略球状の微細銅粒子を析出形成させても、張り合わせる樹脂基材の樹脂成分が、液晶ポリマー、ポリフェニレンオキサイド樹脂(PPO)、ポリフェニレンエーテル樹脂(PPE)、シクロオレフィンポリマー(COP)等の高耐熱性及び高周波特性に優れる樹脂の場合には、電解銅箔と当該樹脂基材との密着性にバラツキが生じたり、実用上使用可能なレベルの密着性が得られない場合も多く見られた。 Even if the substantially spherical fine copper particles are deposited on the low profile surface of the electrolytic copper foil, the resin component of the resin base material to be bonded is a liquid crystal polymer, polyphenylene oxide resin (PPO), polyphenylene ether resin (PPE), In the case of a resin excellent in high heat resistance and high-frequency characteristics such as cycloolefin polymer (COP), the adhesion between the electrolytic copper foil and the resin base material varies, or there is a practically usable level of adhesion. Many cases were not obtained.
そして、電解銅箔と当該樹脂基材との密着性を向上させるためには、特許文献6のように、粗化処理の表面に設ける防錆処理層の成分を検討したり、シランカップリング剤処理を施す等の手法が考えられるが、その公知の手法にも限界が生じていた。 And in order to improve the adhesiveness of electrolytic copper foil and the said resin base material, like patent document 6, the component of the antirust process layer provided in the surface of a roughening process is examined, or a silane coupling agent Although a technique such as processing is conceivable, there is a limit to the known technique.
以上のことから、市場では、電解銅箔と当該樹脂基材との密着性を向上させ、且つ、安定化した銅張積層板製造に使用可能な新たなロープロファイル銅箔に対する要求が存在した。 From the above, there has been a demand in the market for a new low-profile copper foil that can improve the adhesion between the electrolytic copper foil and the resin base material and can be used for the production of a stabilized copper-clad laminate.
そこで、鋭意研究の結果、本件発明者等は、以下に示すように、ロープロファイルの張り合わせ面を備える電解銅箔と高周波用途で使用可能な絶縁樹脂基材との密着性を向上させるため、従来のロープロファイル電解銅箔の粗化処理面に析出形成していた微細銅粒子の形状を、以下に述べるものとすることで、粗化処理粒子のエッチング除去が容易で、且つ、高耐熱性及び高周波用途で使用可能な絶縁樹脂基材と十分な密着性を確保できることに想到した。 Therefore, as a result of diligent research, the inventors of the present invention, as shown below, have improved the adhesion between an electrolytic copper foil having a low profile bonding surface and an insulating resin base material that can be used in high frequency applications. The shape of the fine copper particles deposited on the roughened surface of the low profile electrolytic copper foil is as described below, so that the roughened particles can be easily removed by etching, and the high heat resistance and The inventors have conceived that sufficient adhesion can be secured with an insulating resin base material that can be used in high frequency applications.
本件発明に係る粗化処理銅箔: 本件発明に係る粗化処理銅箔は、銅箔の表面に微細銅粒子を析出形成させた粗化処理面を備える粗化処理銅箔において、当該粗化処理面は、頭頂部角度が85°以下の突起形状の微細銅粒子を0.05個/μm 2 以上含み、且つ、当該粗化処理面の10点平均粗さ(Rzjis)の値が0.6μm〜4.2μmであることを特徴とする。 Roughened copper foil according to the present invention: roughening treatment copper foil according to the present invention, the roughening treated copper foil having a roughened surface were precipitated form fine copper particles on the surface of the copper foil, the roughened The treated surface contains 0.05 / μm 2 or more of protrusion-shaped fine copper particles having a vertex angle of 85 ° or less , and the 10-point average roughness (Rzjis) of the roughened treated surface is 0. and wherein the 6μm~4.2μm der Rukoto.
本件発明に係る粗化処理銅箔の製造方法: 本件発明に係る粗化処理銅箔の製造方法は、硫酸銅系銅電解液を用いて、銅箔の表面に微細銅粒子を析出形成させた粗化処理面を備える粗化処理銅箔の製造方法であって、当該微細銅粒子の形成に用いる硫酸銅系銅電解液として、銅濃度が20g/l〜50g/l、硫酸濃度が25g/l〜100g/l、ホルムアミジンジスルフィド濃度が0.1mmol/l〜0.3mmol/l、塩素濃度が25mg/l〜80mg/lの組成を備えるものを用いることを特徴とする。 Manufacturing method of roughening copper foil which concerns on this invention: The manufacturing method of the roughening copper foil which concerns on this invention made the fine copper particle precipitate on the surface of copper foil using the copper sulfate type | system | group copper electrolyte solution. It is a manufacturing method of the roughening process copper foil provided with a roughening process surface, Comprising: As a copper sulfate type | system | group copper electrolyte solution used for formation of the said fine copper particle, copper concentration is 20g / l-50g / l, and sulfuric acid concentration is 25g / It is characterized by using one having a composition of 1 to 100 g / l, a formamidine disulfide concentration of 0.1 mmol / l to 0.3 mmol / l, and a chlorine concentration of 25 mg / l to 80 mg / l.
また、本件発明に係る粗化処理銅箔の製造方法は、硫酸銅系銅電解液を用いて、銅箔の表面に微細銅粒子を析出形成させた粗化処理面を備える粗化処理銅箔の製造方法であって、当該微細銅粒子の形成に用いる硫酸銅系銅電解液として、硫酸銅・5水和物(銅として)濃度が20g/l〜50g/l、硫酸濃度が25g/l〜100g/l、チオ尿素濃度が0.2mmol/l〜0.6mmol/l、塩素濃度が20mg/l〜130mg/lの組成を備えるものを用いることを特徴とする。 Moreover, the manufacturing method of the roughening copper foil which concerns on this invention is using the copper sulfate type | system | group copper electrolyte solution, The roughening copper foil provided with the roughening processing surface which made the fine copper particle precipitate on the surface of copper foil As a copper sulfate-based copper electrolyte used for forming the fine copper particles, the copper sulfate pentahydrate (as copper) concentration is 20 g / l to 50 g / l, and the sulfuric acid concentration is 25 g / l. A composition having a composition of ˜100 g / l, a thiourea concentration of 0.2 mmol / l to 0.6 mmol / l, and a chlorine concentration of 20 mg / l to 130 mg / l is used.
本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、上述の粗化処理銅箔を用いて得られることを特徴とする。 Copper-clad laminate according to the present invention: The copper-clad laminate according to the present invention is obtained using the above-mentioned roughened copper foil.
本件発明に係る粗化処理銅箔は、従来に無い形状の微細銅粒子で粗化されたロープロファイル表面であるため、張り合わせる樹脂基材が、液晶ポリマー、ポリフェニレンオキサイド樹脂(PPO)、ポリフェニレンエーテル樹脂(PPE)、シクロオレフィンポリマー(COP)等の高耐熱性及び高周波特性に優れる樹脂であっても、電解銅箔と当該樹脂基材との密着性が実用上支障のないレベルで安定化される。よって、この本件発明に係る粗化処理銅箔を用いることで、高品質の銅張積層板の製造が可能である。更に、この銅張積層板を用いることで、高耐熱性及び高周波特性に優れるプリント配線板の製造が可能になる。 Since the roughened copper foil according to the present invention has a low profile surface roughened with fine copper particles having an unprecedented shape, the resin base material to be bonded is a liquid crystal polymer, polyphenylene oxide resin (PPO), polyphenylene ether. Even if the resin (PPE), cycloolefin polymer (COP), etc. are excellent in heat resistance and high frequency characteristics, the adhesion between the electrolytic copper foil and the resin substrate is stabilized at a level that does not impede practical use. The Therefore, by using the roughened copper foil according to the present invention, it is possible to manufacture a high-quality copper-clad laminate. Furthermore, by using this copper-clad laminate, it is possible to produce a printed wiring board having excellent high heat resistance and high frequency characteristics.
また、本件発明に係る粗化処理銅箔の製造方法は、従来、電解銅箔の製造において使用が困難と言われてきたチオ尿素系添加剤を含有した硫酸銅系銅電解液を用いている。このような製造方法を採用することで、本件発明に係る粗化処理銅箔を効率よく製造することが出来る。 Moreover, the method for producing a roughened copper foil according to the present invention uses a copper sulfate-based copper electrolyte containing a thiourea-based additive that has been said to be difficult to use in the production of an electrolytic copper foil. . By employ | adopting such a manufacturing method, the roughening process copper foil which concerns on this invention can be manufactured efficiently.
本件発明に係る粗化処理銅箔、その製造方法等に関する実施形態に関して述べる。 Embodiments relating to the roughened copper foil according to the present invention and the method for producing the same will be described.
本件発明に係る粗化処理銅箔の形態: 本件発明に係る粗化処理銅箔は、銅箔の表面に微細銅粒子を析出形成させた粗化処理面を備える粗化処理銅箔である。ここで用いられる銅箔は、電解銅箔、圧延銅箔の全てを含み、厚さ、表面粗さに関しても特段の限定は無い。しかし、本件発明に係る粗化処理銅箔の粗化処理面を構成する微細銅粒子は、表面粗さ(Rzjis)が2.0μm以下のロープロファイル銅箔を粗化面形成に用いることが最も好ましい。 Form of roughened copper foil according to the present invention: The roughened copper foil according to the present invention is a roughened copper foil provided with a roughened surface on which fine copper particles are deposited on the surface of the copper foil. The copper foil used here includes all of electrolytic copper foil and rolled copper foil, and there is no particular limitation regarding thickness and surface roughness. However, as for the fine copper particles constituting the roughened surface of the roughened copper foil according to the present invention, it is most preferable to use a low profile copper foil having a surface roughness (Rzjis) of 2.0 μm or less for forming the roughened surface. preferable.
この本件発明に係る粗化処理銅箔の粗化処理面を構成する微細銅粒子として、頭頂部角度が85°以下の突起形状のものが含まれることが特徴である。図1に、この粗化処理面を構成する微細銅粒子2の形状を模式的に示している。図1には、理想的突起形状を左側に示している。しかし、走査型電子顕微鏡で観察する際の突起形状は、その微細銅粒子2の先端部である頭頂部のみが観察される場合がある。従って、図1の右の先端拡大図のように、走査型電子顕微鏡で観察した微細銅粒子2の確認可能な突起形状の高さの略中央部の稜線に接点を定め、この接点を通る「接線a」と「接線b」とのなす角度を「頭頂部角度」と称することとする。本件発明に係る粗化処理銅箔は、微細銅粒子の頭頂部角度が85°以下の突起形状のものが含まれることによって、高耐熱性及び高周波特性に優れる樹脂に対するアンカー効果が十分に発揮されるのである。ここで、頭頂部角度θが85°を超える場合には、高耐熱性及び高周波特性に優れる樹脂に対するアンカー効果が十分に発揮できる形状では無くなるため好ましくない。なお、頭頂部角度θは、より好ましい上限は80°であり、最も好ましくは75°以下である。一方、頭頂部角度θは、85°以下であれば、実用上、上述の効果を発揮できるので、下限は特に限定しない。しかし、頭頂部角度θが小さすぎると、微細銅粒子の先端部の先鋭化が過剰になり、擦れによる先端部の変形が起こりやすく高耐熱性及び高周波特性に優れる樹脂に対するアンカー効果が不安定になり、且つ、亜鉛、亜鉛合金等の防錆成分を電解法で電着させる際の電流集中が起こり、微細銅粒子の先端部に防錆成分が集中析出する傾向が見られる。そのため、より安定した品質を得るには、頭頂部角度θの下限は、5°以上、特に8°以上が好ましい。 The fine copper particles constituting the roughened surface of the roughened copper foil according to the present invention are characterized in that those having a protrusion shape with a top angle of 85 ° or less are included. In FIG. 1, the shape of the fine copper particle 2 which comprises this roughening process surface is shown typically. FIG. 1 shows an ideal protrusion shape on the left side. However, only the top of the head, which is the tip of the fine copper particles 2, may be observed as the protrusion shape when observing with a scanning electron microscope. Accordingly, as shown in the enlarged view of the tip on the right side of FIG. 1, a contact point is defined on the ridge line at the substantially central portion of the height of the protrusion shape of the fine copper particle 2 that can be confirmed, which is observed with a scanning electron microscope. The angle formed by the tangent line “a” and the “tangent line b” will be referred to as a “top angle”. The roughened copper foil according to the present invention includes a protrusion having a fine copper particle with a head-top angle of 85 ° or less, thereby sufficiently exhibiting an anchor effect for a resin excellent in high heat resistance and high frequency characteristics. It is. Here, when the top angle θ is greater than 85 °, it is not preferable because the anchoring effect for the resin excellent in high heat resistance and high frequency characteristics is not obtained. The top angle θ is more preferably 80 °, and most preferably 75 ° or less. On the other hand, if the top angle θ is 85 ° or less, the above-described effects can be exhibited practically, and the lower limit is not particularly limited. However, if the top angle θ is too small, the tip of the fine copper particles will be excessively sharpened, and the tip will be deformed easily due to rubbing, and the anchor effect on the resin having high heat resistance and high frequency characteristics will be unstable. In addition, current concentration occurs when electrodepositing a rust-preventing component such as zinc or zinc alloy by an electrolytic method, and there is a tendency for the rust-preventing component to concentrate and precipitate at the tip of the fine copper particles. Therefore, in order to obtain more stable quality, the lower limit of the crown angle θ is preferably 5 ° or more, particularly preferably 8 ° or more.
そして、本件発明に係る粗化処理銅箔の粗化処理面は、頭頂部角度が85°以下の突起形状の微細銅粒子が0.05個/μm2以上であることが好ましい。微細銅粒子が0.05個/μm2未満の場合には、粗化処理銅箔と樹脂基材と張り合わせたときのアンカー効果が小さくなり、密着性が低くなるため好ましくない。また、より好ましくは、当該頭頂部角度が85°以下の突起形状の微細銅粒子が0.1個/μm2以上である。粗化処理銅箔と樹脂基材とを張り合わせたときの密着安定性が飛躍的に向上する傾向にあるからである。ここで、特に、上限値を定めていないが、エッチングによるファインピッチ回路の形成能を考慮すると、0.6個/μm2以下であることが好ましい。 And it is preferable that the roughening process surface of the roughening copper foil which concerns on this invention is 0.05 piece / micrometer < 2 > or more of protrusion-shaped fine copper particles whose top part angle is 85 degrees or less. When the number of fine copper particles is less than 0.05 particles / μm 2 , the anchor effect when the roughened copper foil and the resin base material are bonded to each other is reduced, and the adhesiveness is lowered. More preferably, the number of protrusion-shaped fine copper particles having a vertex angle of 85 ° or less is 0.1 / μm 2 or more. This is because the adhesion stability when the roughened copper foil and the resin base material are bonded to each other tends to be drastically improved. Here, although the upper limit is not particularly defined, it is preferably 0.6 / μm 2 or less in consideration of the ability to form a fine pitch circuit by etching.
次に、色差計を用いて、本件発明に係る粗化処理銅箔の粗化処理面を測定すると、以下に述べる一定の範囲の値を示す。従って、色差計の値をもって、銅箔の表面に対して上述の形状の微細銅粒子が、良好な状態で析出形成しているか否かの代替指標として用いることも可能となる。なお、本件発明において色差測定に使用したのは、日本電色工業株式会社製の分光式色差計SE2000である。 Next, when the roughened surface of the roughened copper foil according to the present invention is measured using a color difference meter, a value in a certain range described below is shown. Therefore, the value of the color difference meter can be used as an alternative index for determining whether or not the fine copper particles having the above-described shape are deposited in a good state on the surface of the copper foil. In the present invention, a spectroscopic color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd. was used for the color difference measurement.
本件発明に係る粗化処理銅箔の粗化処理面の色差の表示には、L*a*b*表色系を用いている。このL*a*b*表色系は、物の色彩を表すため、最も広く使用されている表色系であり、1976年に国際照明委員会(CIE)で規格化され、日本のJIS規格でもJIS Z 8729として規格化されている。このL*a*b*表色系では、明度をL*で表し、色相と彩度とを示す色度をL*a*b*表色系色度図におけるa*、b*で表すものである。 The L * a * b * color system is used to display the color difference of the roughened surface of the roughened copper foil according to the present invention. This L * a * b * color system is the most widely used color system for representing the color of an object. It was standardized by the International Commission on Illumination (CIE) in 1976, and is a Japanese JIS standard. However, it is standardized as JIS Z 8729. In this L * a * b * color system, it represents lightness L *, which represent the chromaticity indicating the hue and saturation a * in the L * a * b * color system chromaticity diagram, in b * It is.
本件発明に係る粗化処理銅箔の粗化処理面は、色差計で測定した際のL*値が45〜67であること等の所定の色差範囲にあることが好ましい。L*a*b*表色系色度図において、このL*値が大きくなるほど明るい色調となり、L*値が0に近づくほど暗い色調となる。当該粗化処理面を測定した際のL*a*b*表色系のL*値が45未満の場合には、粗化処理銅箔の粗化処理面を構成する微細銅粒子が過剰に微細化した状態になる傾向にあり、張り合わせる樹脂基材が上述の高耐熱性及び高周波特性に優れる樹脂の場合には、十分なアンカー効果が得られなくなるため好ましくない。一方、当該粗化処理面を測定した際のL*a*b*表色系のL*値が67を超える場合には、粗化処理銅箔の粗化処理面を構成する微細銅粒子の形状が粗大化したり、析出形成した当該微細銅粒子の存在密度が少なくなるため、張り合わせる樹脂基材が上述の高耐熱性及び高周波特性に優れる樹脂の場合には、十分なアンカー効果が得られなくなり好ましくない。 The roughened surface of the roughened copper foil according to the present invention is preferably in a predetermined color difference range such that the L * value measured by a color difference meter is 45 to 67. In the L * a * b * color system chromaticity diagram, becomes brighter shades the L * value increases, the dark tones higher L * value closer to 0. When the L * a * b * color system L * value when the roughened surface is measured is less than 45, the fine copper particles constituting the roughened surface of the roughened copper foil are excessive. If the resin base material to be bonded is a resin excellent in the above-described high heat resistance and high-frequency characteristics, a sufficient anchor effect cannot be obtained, which is not preferable. On the other hand, when the L * value of the L * a * b * color system when measuring the roughened surface is greater than 67, the fine copper particles constituting the roughened surface of the roughened copper foil Since the existence density of the fine copper particles that are coarsened or formed by precipitation is reduced, a sufficient anchor effect is obtained when the resin base material to be bonded is a resin having the above-mentioned high heat resistance and high frequency characteristics. It is not preferable because it disappears.
本件発明に係る粗化処理銅箔の粗化処理面は、色差計で測定した際のL*a*b*表色系のa*値が19〜35であることが好ましい。このa*値が19〜35の範囲を外れると、上述の高耐熱性及び高周波特性に優れる樹脂基材に張り合わせる場合の密着性にバラツキが生じやすくなり、粗化処理銅箔の粗化処理面を構成する微細銅粒子が適正な形状ではなくなると考えられる。 The roughened surface of the roughened copper foil according to the present invention preferably has an a * value of 19 to 35 in the L * a * b * color system as measured with a color difference meter. When this a * value is out of the range of 19 to 35, the adhesiveness in the case of bonding to the resin base material excellent in the above-mentioned high heat resistance and high frequency characteristics tends to vary, and the roughening treatment of the roughened copper foil It is considered that the fine copper particles constituting the surface are not in an appropriate shape.
また、本件発明に係る粗化処理銅箔の粗化処理面は、色差計で当該粗化処理面を測定した際のL*a*b*表色系のb*値が18〜33であることが好ましい。このb*値が18〜33の範囲を外れると、a*値の適正範囲の場合と同様に、上述の高耐熱性及び高周波特性に優れる樹脂基材に張り合わせる場合の密着性にバラツキが生じやすくなり、粗化処理銅箔の粗化処理面を構成する微細銅粒子が適正な形状ではなくなると考えられる。 Further, the roughened surface of the roughened copper foil according to the present invention has a b * value of 18 to 33 in the L * a * b * color system when the roughened surface is measured with a color difference meter. It is preferable. If this b * value is outside the range of 18 to 33, as in the case of the appropriate range of the a * value, there will be variations in the adhesion when pasting to the resin base material having the above-mentioned high heat resistance and high frequency characteristics. It becomes easy, and it is thought that the fine copper particle which comprises the roughening process surface of a roughening copper foil is not an appropriate shape.
そして、上述のL*a*b*表色系のa*値とb*値とは、同一平面上に存在するものであるため、本来であれば、a*値が19〜35、b*値が18〜33の条件を兼ね備えることが最も好ましい。現に、本件発明の完成に至るまでの研究では、a*値が19〜35、b*値が18〜33の条件のいずれか一方の値を満足する粗化処理銅箔と比べて、双方の条件を兼ね備える粗化処理銅箔の方が、前記絶縁樹脂基材と安定した密着性を示すことが分かっている。更に、L*a*b*表色系のL*値、a*値、b*値の全てを満足する粗化処理銅箔が、前記絶縁樹脂基材と最も安定した密着性を示すことも判明している。 And since the a * value and b * value of the above-mentioned L * a * b * color system exist on the same plane, originally, the a * value is 19 to 35, and b *. Most preferably, the value is 18 to 33. In fact, in the research up to the completion of the present invention, compared with the roughened copper foil that satisfies any one of the conditions of a * value of 19 to 35 and b * value of 18 to 33, both It has been found that the roughened copper foil having the conditions exhibits stable adhesion to the insulating resin base material. Furthermore, the roughened copper foil satisfying all of the L * value, a * value, and b * value of the L * a * b * color system may exhibit the most stable adhesion to the insulating resin substrate. It turns out.
また、本件発明に係る粗化処理銅箔の当該粗化処理面を測定した際に得られる10点平均粗さ(Rzjis)の値が0.6μm〜4.2μmであることが好ましい。言い換えれば、粗化処理銅箔の粗化処理面を構成する微細銅粒子の高さに比例する指標と考えることが出来る。当該10点平均粗さ(Rzjis)の値が0.6μm未満の場合には、粗化処理銅箔の粗化処理面を構成する微細銅粒子の頭頂部角度が85°以下の突起形状を備えていても、上述の高耐熱性及び高周波特性に優れる樹脂基材に対する良好なアンカー効果を得ることができず、良好な密着性が得られない。一方、当該10点平均粗さ(Rzjis)の値が4.2μmを超える場合には、銅張積層板としたときに、当該微細銅粒子が基材樹脂の中に深く侵入することになるため、エッチングによる回路形成時に設定するオーバーエッチングタイムが長くなることを考えると、ファインピッチ回路の形成に適さない粗化処理銅箔となり、且つ、エッチング加工の生産性が低くなるため好ましくない。なお、当該10点平均粗さ(Rzjis)の値は、より好ましくは0.7μm〜3.2μmである。 Moreover, it is preferable that the value of 10-point average roughness (Rzjis) obtained when the said roughening process surface of the roughening process copper foil which concerns on this invention is measured is 0.6 micrometer-4.2 micrometers. In other words, it can be considered as an index proportional to the height of the fine copper particles constituting the roughened surface of the roughened copper foil. When the value of the 10-point average roughness (Rzjis) is less than 0.6 μm, the top of the fine copper particles constituting the roughened surface of the roughened copper foil has a protrusion shape with a top angle of 85 ° or less. Even in this case, it is not possible to obtain a good anchor effect for the resin base material having excellent high heat resistance and high frequency characteristics as described above, and good adhesion cannot be obtained. On the other hand, when the value of the 10-point average roughness (Rzjis) exceeds 4.2 μm, when the copper-clad laminate is used, the fine copper particles deeply penetrate into the base resin. Considering that the over-etching time set at the time of circuit formation by etching becomes longer, it is not preferable because it becomes a roughened copper foil that is not suitable for forming a fine pitch circuit and the productivity of etching processing is lowered. The 10-point average roughness (Rzjis) is more preferably 0.7 μm to 3.2 μm.
本件発明に係る粗化処理銅箔では、表面の粗化状態を把握する上において、表面粗さは白色光の干渉作用を利用したZygo干渉計(Zygo New View 5032)を用いて測定した値を用いている。このZygo干渉計を用いた際の測定条件は、対物レンズ50倍のミラウ型、開口数(N/A)0.55、範囲144×108μm、測定再現性はRMSで0.1nmである。 In the roughened copper foil according to the present invention, the surface roughness is a value measured using a Zygo interferometer (Zygo New View 5032) using the interference action of white light in grasping the roughened state of the surface. Used. The measurement conditions when using this Zygo interferometer are a Mirau type with a 50 × objective lens, a numerical aperture (N / A) of 0.55, a range of 144 × 108 μm, and a measurement reproducibility of 0.1 nm in RMS.
また、本件発明に係る粗化処理銅箔の当該粗化処理面を測定した際に得られる比表面積の値が1.05〜3.40であることが好ましい。この比表面積は、銅箔表面に析出形成した微細銅粒子の析出密度に比例する指標である。この比表面積の値が1.05未満の場合には、銅箔表面に析出形成した微細銅粒子の析出密度が適正でないか、当該微細銅粒子の形状が過大な形状となる場合等に該当する傾向があり、高耐熱性及び高周波特性に優れる樹脂基材に対して、良好なアンカー効果を得ることができず、張り合わせた粗化処理銅箔と基材との同一面内での密着性がバラツクため好ましくない。この比表面積の値が3.40を超える場合には、当該微細銅粒子の形状が過剰に微細な形状となったり、銅箔表面に当該微細銅粒子が過剰に析出形成したりする等の傾向があり、銅箔表面に析出形成した微細銅粒子が脱落しやすくなるため好ましくない。より好ましくは、比表面積の値は1.10〜3.00である。 Moreover, it is preferable that the value of the specific surface area obtained when the said roughening process surface of the roughening process copper foil which concerns on this invention is measured is 1.05-3.40. This specific surface area is an index proportional to the deposition density of fine copper particles deposited on the copper foil surface. When the value of the specific surface area is less than 1.05, the precipitation density of the fine copper particles deposited on the copper foil surface is not appropriate, or the shape of the fine copper particles is excessive. There is a tendency, it is not possible to obtain a good anchor effect for a resin base material having high heat resistance and high frequency characteristics, and adhesion between the laminated roughened copper foil and the base material is in the same plane This is not preferable because of variations. When the value of the specific surface area exceeds 3.40, the shape of the fine copper particles tends to be excessively fine, or the fine copper particles are excessively deposited on the copper foil surface. This is not preferable because the fine copper particles deposited and formed on the surface of the copper foil easily fall off. More preferably, the value of the specific surface area is 1.10 to 3.00.
この比表面積は、超深度カラー3D形状測定顕微鏡(株式会社キーエンス製 VK−9500、可視光限界波長408nmのバイオレットレーザーを使用。)を用い、二次元表面積が6550μm2の領域について測定した値を用いて計算した。 This specific surface area uses the value measured about the area | region whose two-dimensional surface area is 6550 micrometers 2 using the ultra-deep color 3D shape measuring microscope (Keyence Co., Ltd. VK-9500, using the violet laser of visible light limit wavelength 408nm). Calculated.
以上に述べてきた粗化処理銅箔は、当該粗化処理銅箔の表面(粗化面及びその反対面を含む。)に防錆処理層、シランカップリング剤処理層の少なくとも一種の表面処理層を備えることが、長期保存性の確保、基材樹脂との密着性の更なる向上、耐薬品性能の向上、耐吸湿特性の向上等の実用上の観点から好ましい。ここで言う防錆処理層及びシランカップリング剤処理層の種類に関しては、特段の限定は無く、使用する絶縁樹脂基材、プリント配線板となって以降の用途に適したものであればよい。例えば、ベンゾトリアゾール、イミダゾール等の単分子被膜形成の可能な有機剤を用いた有機防錆被膜でも、亜鉛、亜鉛合金等の犠牲防蝕作用を果たす無機防錆被膜であっても構わない。また、シランカップリング剤処理層の形成に用いるシランカップリング剤の種類に関しても、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤等の使用が可能である。 The roughened copper foil described above is at least one surface treatment of a rust-proofing layer and a silane coupling agent-treated layer on the surface of the roughened copper foil (including the roughened surface and its opposite surface). It is preferable to provide a layer from a practical viewpoint such as ensuring long-term storage stability, further improving adhesion with the base resin, improving chemical resistance, and improving moisture absorption resistance. There are no particular limitations on the types of the antirust treatment layer and the silane coupling agent treatment layer referred to here, and any insulating resin base material or printed wiring board to be used may be used. For example, an organic rust preventive film using an organic agent capable of forming a monomolecular film such as benzotriazole or imidazole may be used, or an inorganic rust preventive film such as zinc or zinc alloy having a sacrificial anticorrosive action may be used. Moreover, regarding the kind of silane coupling agent used for forming the silane coupling agent treatment layer, an epoxy silane coupling agent, an amino silane coupling agent, a mercapto silane coupling agent, and the like can be used.
本件発明に係る粗化処理銅箔の製造形態: 本件発明に係る粗化処理銅箔の製造方法は、硫酸銅系銅電解液を用いて、銅箔の表面に微細銅粒子を形成した粗化処理面を備える粗化処理銅箔の製造方法において、当該微細銅粒子の形成に用いる硫酸銅系銅電解液として、以下に述べる溶液組成のいずれかを採用することが好ましい。以下、硫酸銅系銅電解液1及び硫酸銅系銅電解液2と称して分別して説明する。 Production form of roughened copper foil according to the present invention: The method for producing a roughened copper foil according to the present invention is a roughening process in which fine copper particles are formed on the surface of the copper foil using a copper sulfate-based copper electrolyte. In the manufacturing method of the roughening copper foil provided with a process surface, it is preferable to employ | adopt one of the solution compositions described below as a copper sulfate type | system | group copper electrolyte solution used for formation of the said fine copper particle. Hereinafter, the copper sulfate-based copper electrolyte solution 1 and the copper sulfate-based copper electrolyte solution 2 will be described separately.
[硫酸銅系銅電解液1]
硫酸銅系銅電解液1は、以下の溶液組成を備えることを基本とする。この硫酸銅系銅電解液1の特徴は、ホルムアミジンジスルフィドを含有している点にあり、以下に示す所定の電解条件を採用することが特に好ましい。硫酸銅系銅電解液1を用いる場合における最適条件を、以下に纏めて列挙する。
[Copper sulfate-based copper electrolyte 1]
The copper sulfate-based copper electrolyte 1 basically has the following solution composition. The feature of this copper sulfate-based copper electrolyte 1 is that it contains formamidine disulfide, and it is particularly preferable to employ the following predetermined electrolytic conditions. The optimum conditions when using the copper sulfate-based copper electrolyte solution 1 are listed below.
銅濃度: 20g/l〜50g/l
硫酸濃度: 25g/l〜100g/l
ホルムアミジンジスルフィド濃度:0.1mmol/l〜0.3mmol/l
塩素濃度: 25mg/l〜80mg/l
溶液温度: 45℃〜58℃
電流密度: 35A/dm2〜60A/dm2
Copper concentration: 20 g / l to 50 g / l
Sulfuric acid concentration: 25 g / l to 100 g / l
Formamidine disulfide concentration: 0.1 mmol / l to 0.3 mmol / l
Chlorine concentration: 25 mg / l to 80 mg / l
Solution temperature: 45 ° C-58 ° C
Current density: 35 A / dm 2 to 60 A / dm 2
最初に、添加剤として使用したホルムアミジンジスルフィドに関して述べる。このホルムアミジンジスルフィド濃度は、0.1mmol/l〜0.3mmol/lの範囲であることが好ましい。このホルムアミジンジスルフィドは、以下の化1に示す構造式を備え、チオ尿素の2量体に相当する化合物である。 First, the formamidine disulfide used as an additive will be described. The formamidine disulfide concentration is preferably in the range of 0.1 mmol / l to 0.3 mmol / l. This formamidine disulfide has a structural formula shown in the following chemical formula 1 and is a compound corresponding to a dimer of thiourea.
このホルムアミジンジスルフィドを硫酸銅系銅電解液に含有させることで、銅箔の表面に対して、頭頂部角度が85°以下の突起形状の微細銅粒子を効率的に析出形成して粗化処理面を形成できる。ホルムアミジンジスルフィド濃度が0.1mmol/l未満の場合には、銅箔の表面に析出する微細銅粒子の頭頂部角度が85°以下となりにくい傾向があり好ましくない。一方、ホルムアミジンジスルフィド濃度が0.3mmol/lを超えると、銅箔の表面に析出する微細銅粒子の頭頂部角度が85°以下となりにくい傾向があると同時に、過剰な硬度の粗化処理面となるため、粗化処理銅箔のフレキシビリティが損なわれ好ましくない。以下、硫酸銅系銅電解液1の他の構成成分に関して述べておく。 By containing this formamidine disulfide in the copper sulfate-based copper electrolyte, the copper foil surface is efficiently precipitated and formed into fine copper particles with protrusions with a head angle of 85 ° or less. A surface can be formed. When the formamidine disulfide concentration is less than 0.1 mmol / l, the top angle of the fine copper particles deposited on the surface of the copper foil tends to be less than 85 °, which is not preferable. On the other hand, when the formamidine disulfide concentration exceeds 0.3 mmol / l, the top angle of the fine copper particles deposited on the surface of the copper foil tends to be less than 85 °, and at the same time, a roughened surface with excessive hardness. Therefore, the flexibility of the roughened copper foil is impaired, which is not preferable. Hereinafter, other components of the copper sulfate-based copper electrolyte 1 will be described.
銅濃度は、20g/l〜50g/lの範囲である。銅濃度が20g/l未満の場合には、銅箔表面への微細銅粒子の析出が不均一となり場所的なバラツキが大きくなるため好ましくない。一方、銅濃度が50g/lを超える場合には、溶液中の銅濃度が平滑めっき条件に近づき、低電流を用いて微細銅粒子を形成するヤケめっきが困難となり好ましくない。 The copper concentration is in the range of 20 g / l to 50 g / l. When the copper concentration is less than 20 g / l, the deposition of fine copper particles on the surface of the copper foil is not uniform, and the local variation becomes large. On the other hand, when the copper concentration exceeds 50 g / l, the copper concentration in the solution approaches the smooth plating condition, and it is not preferable because burn plating that forms fine copper particles using a low current becomes difficult.
そして、硫酸濃度は、25g/l〜100g/lの範囲である。この硫酸濃度は、硫酸銅系銅電解液の使用目的を考慮して、上述の銅濃度との関係で定められるものである。この硫酸銅系銅電解液1において、硫酸濃度が25g/l未満の場合には、ヤケめっき条件で微細銅粒子を形成する溶液としての安定性に欠け、溶液寿命が短くなるため好ましくない。一方、硫酸濃度が100g/lを超える場合は、相対的銅濃度が低下するため、銅箔表面への微細銅粒子の析出が不均一となるため好ましくない。 The sulfuric acid concentration is in the range of 25 g / l to 100 g / l. This sulfuric acid concentration is determined in relation to the above-mentioned copper concentration in consideration of the intended use of the copper sulfate-based copper electrolyte. When the sulfuric acid concentration is less than 25 g / l in this copper sulfate-based copper electrolyte 1, it is not preferable because it lacks stability as a solution for forming fine copper particles under burn plating conditions and the solution life is shortened. On the other hand, when the sulfuric acid concentration exceeds 100 g / l, since the relative copper concentration is lowered, precipitation of fine copper particles on the surface of the copper foil is not preferable.
更に、塩素濃度は、25mg/l〜80mg/lの範囲であることが好ましい。塩素濃度が25mg/l未満となると、銅箔表面への微細銅粒子の析出が不安定となり、微細銅粒子の析出状態も不均一となり、良好な微細銅粒子の形成が困難となるため好ましくない。一方、塩素濃度が80mg/lを超えると、微細銅粒子の形成は容易であるが、微細銅粒子の形状の安定性が損なわれるため、微細銅粒子が析出形成した銅箔表面の凹凸が激しくなるため好ましくない。 Furthermore, the chlorine concentration is preferably in the range of 25 mg / l to 80 mg / l. When the chlorine concentration is less than 25 mg / l, the precipitation of fine copper particles on the copper foil surface becomes unstable, the precipitation state of the fine copper particles becomes uneven, and it becomes difficult to form good fine copper particles, which is not preferable. . On the other hand, when the chlorine concentration exceeds 80 mg / l, the formation of fine copper particles is easy, but the stability of the shape of the fine copper particles is impaired. Therefore, it is not preferable.
以上に述べてきた硫酸銅系銅電解液1は、溶液温度を45℃〜58℃の範囲として用いることが好ましい。溶液温度が45℃未満の場合には、良好な微細銅粒子の迅速な形成が困難となるため好ましくない。一方、溶液温度が58℃を超える場合には、水分蒸発が顕著になり溶液組成の変動が速く、溶液寿命も短くなるため好ましくない。 The copper sulfate-based copper electrolyte 1 described above is preferably used at a solution temperature in the range of 45 ° C to 58 ° C. When the solution temperature is lower than 45 ° C., it is difficult to quickly form good fine copper particles, which is not preferable. On the other hand, when the solution temperature exceeds 58 ° C., moisture evaporation becomes significant, the solution composition changes rapidly, and the solution life is shortened, which is not preferable.
更に、硫酸銅系銅電解液1を用いる場合は、電流密度は35A/dm2〜60A/dm2の範囲で、微細銅粒子を析出形成することが好ましい。電流密度が35A/dm2未満の場合には、良好な微細銅粒子の形成が困難となると同時に、工業的に求められる生産性を満足しない。一方、電流密度が60A/dm2を超える場合には、微細銅粒子の形成は容易となるが、析出形成する微細銅粒子のサイズを均一化することが困難であり、良好な粗化処理面を形成する事ができなくなるため好ましくない。 Furthermore, when using the copper sulfate-based copper electrolyte 1, it is preferable that the current density is in the range of 35 A / dm 2 to 60 A / dm 2 to deposit fine copper particles. When the current density is less than 35 A / dm 2 , it is difficult to form good fine copper particles, and at the same time, industrially required productivity is not satisfied. On the other hand, when the current density exceeds 60 A / dm 2 , the formation of the fine copper particles becomes easy, but it is difficult to make the size of the fine copper particles to be deposited and uniform, and a good roughened surface. This is not preferable because it cannot be formed.
[硫酸銅系銅電解液2]
硫酸銅系銅電解液2は、以下の溶液組成を備えることを基本とする。この硫酸銅系銅電解液2の特徴は、所定量のチオ尿素を含有しているにも拘わらず、チオ尿素に起因するスラッジの発生を抑制した溶液である点にある。そして、以下に示す所定の電解条件を採用することが特に好ましい。硫酸銅系銅電解液2を用いる場合における最適条件を、以下に纏めて列挙する。
[Copper sulfate-based copper electrolyte 2]
The copper sulfate-based copper electrolyte 2 is basically provided with the following solution composition. The feature of the copper sulfate-based copper electrolyte 2 is that it is a solution that suppresses the generation of sludge due to thiourea despite containing a predetermined amount of thiourea. And it is especially preferable to employ | adopt the predetermined electrolysis conditions shown below. The optimum conditions when using the copper sulfate-based copper electrolyte 2 are listed below.
銅濃度: 20g/l〜50g/l
硫酸濃度: 25g/l〜100g/l
チオ尿素濃度: 0.2mmol/l〜0.6mmol/l
塩素濃度: 20mg/l〜130mg/l
溶液温度: 45℃〜58℃
電流密度: 35A/dm2〜75A/dm2
Copper concentration: 20 g / l to 50 g / l
Sulfuric acid concentration: 25 g / l to 100 g / l
Thiourea concentration: 0.2 mmol / l to 0.6 mmol / l
Chlorine concentration: 20 mg / l to 130 mg / l
Solution temperature: 45 ° C-58 ° C
Current density: 35 A / dm 2 to 75 A / dm 2
硫酸銅系銅電解液2では、溶液の全体的な組成バランスが重要であるが、通常の銅箔の粗化処理に用いる溶液には添加することの無かったチオ尿素を添加剤として使用している。 In the copper sulfate-based copper electrolyte 2, the overall composition balance of the solution is important, but thiourea that has not been added to the solution used for the normal copper foil roughening treatment is used as an additive. Yes.
このチオ尿素を硫酸銅系銅電解液の添加剤として用いると、当該溶液中で化2に示す反応が起こっていると考えられる。従って、見かけ上、硫酸銅系銅電解液に添加するのは、チオ尿素であるが、溶液中では上述のホルムアミジンジスルフィドが一定量含まれる状態になっていると考えられる。従って、チオ尿素を単独で添加して使用する場合には、硫酸銅系銅電解液に対する上述のホルムアミジンジスルフィド濃度に比べて、高い濃度となるように添加する必要がある。更に、当該硫酸銅系銅電解液は、製品としての電解銅箔の採取を行う前に、当該硫酸銅系銅電解液に予備通電を行うことにより、化2に示す反応を促進することが可能であるから、当該硫酸銅系銅電解液に対して予備通電を行うことが好ましい。 When this thiourea is used as an additive for a copper sulfate-based copper electrolyte, it is considered that the reaction shown in Chemical Formula 2 occurs in the solution. Therefore, it is apparent that thiourea is added to the copper sulfate-based copper electrolyte, but it is considered that a certain amount of the formamidine disulfide is contained in the solution. Therefore, when thiourea is added alone and used, it must be added so as to have a higher concentration than the above-mentioned formamidine disulfide concentration with respect to the copper sulfate-based copper electrolyte. Furthermore, the copper sulfate-based copper electrolytic solution can promote the reaction shown in Chemical Formula 2 by pre-energizing the copper sulfate-based copper electrolytic solution before collecting the electrolytic copper foil as a product. Therefore, it is preferable to perform preliminary energization for the copper sulfate-based copper electrolyte.
硫酸銅系銅電解液2のチオ尿素濃度は、0.2mmol/l〜0.6mmol/lの範囲にあることが好ましい。チオ尿素濃度が0.2mmol/l未満の場合には、銅箔の表面に析出する微細銅粒子の頭頂部角度が85°以下となりにくい傾向があり好ましくない。一方、チオ尿素濃度が0.6mmol/lを超えると、銅箔の表面に析出する微細銅粒子の頭頂部角度が85°以下となりにくい傾向がある。 The thiourea concentration of the copper sulfate-based copper electrolyte 2 is preferably in the range of 0.2 mmol / l to 0.6 mmol / l. When the thiourea concentration is less than 0.2 mmol / l, the top angle of the fine copper particles deposited on the surface of the copper foil tends to be less than 85 °, which is not preferable. On the other hand, when the thiourea concentration exceeds 0.6 mmol / l, the top angle of the fine copper particles deposited on the surface of the copper foil tends to be less than 85 °.
なお、硫酸銅系銅電解液2の他の構成成分は、上述の硫酸銅系銅電解液1の他の構成成分と同じで、その濃度の上限及び下限の持つ意味合いも同じである。また、使用する溶液温度、電流密度に関する上限及び下限の持つ意味合いも、上述の硫酸銅系銅電解液1の場合と同じである。 The other components of the copper sulfate-based copper electrolyte 2 are the same as the other components of the copper sulfate-based copper electrolyte 1, and the meanings of the upper and lower limits of the concentration are also the same. Moreover, the meaning which the upper limit and lower limit regarding the solution temperature to be used and a current density have is the same as the case of the above-described copper sulfate-based copper electrolyte 1.
本件発明に係る銅張積層板の形態: 本件発明に係る銅張積層板は、上述の粗化処理銅箔を用いて得られることを特徴とする。本件発明に係る粗化処理銅箔は、あらゆる絶縁樹脂基材に対する張り合わせが可能で、種々の銅張積層板の製造が可能である。本件発明に係る粗化処理銅箔は、従来の銅箔を用いても、良好な密着性を安定して得ることが困難と言われてきた液晶ポリマー、ポリフェニレンオキサイド樹脂(PPO)、ポリフェニレンエーテル樹脂(PPE)、シクロオレフィンポリマー(COP)等の高耐熱性及び高周波特性に優れる樹脂を用いた絶縁樹脂基材との密着性に優れる。従って、本件発明に係る粗化処理銅箔を用いた銅張積層板には、上述の高耐熱性及び高周波特性に優れる樹脂成分を用いた絶縁樹脂基材と張り合わせた銅張積層板が含まれるが、これに限定されるものではない。 Form of copper clad laminate according to the present invention: The copper clad laminate according to the present invention is obtained by using the above-mentioned roughened copper foil. The roughened copper foil according to the present invention can be bonded to any insulating resin substrate, and various copper-clad laminates can be produced. The roughened copper foil according to the present invention is a liquid crystal polymer, polyphenylene oxide resin (PPO), polyphenylene ether resin which has been said to be difficult to stably obtain good adhesion even when a conventional copper foil is used. (PPE), cycloolefin polymer (COP), and the like are excellent in adhesion to an insulating resin base material using a resin excellent in high heat resistance and high frequency characteristics. Therefore, the copper clad laminate using the roughened copper foil according to the present invention includes the copper clad laminate laminated with the insulating resin base material using the resin component having excellent high heat resistance and high frequency characteristics as described above. However, the present invention is not limited to this.
この実施例1では、10点平均粗さ(Rzjis)の値が1.2μmの12μm厚さの電解銅箔の表面に、以下に述べる方法で粗化処理層を形成して、亜鉛−ニッケル合金防錆処理、クロメート処理、シランカップリング剤処理を施し、粗化処理銅箔を製造し、各種特性の評価を行った。 In Example 1, a roughened layer was formed by the method described below on the surface of a 12 μm thick electrolytic copper foil having a 10-point average roughness (Rzjis) value of 1.2 μm, and a zinc-nickel alloy was formed. Rust prevention treatment, chromate treatment, and silane coupling agent treatment were performed to produce a roughened copper foil, and various properties were evaluated.
この実施例1では、ホルムアミジンジスルフィドを含有した硫酸銅系銅電解液1を用いて、銅箔の表面に微細銅粒子を析出形成し、粗化処理面を形成した。このときの粗化処理条件を以下に示す。なお、ホルムアミジンジスルフィドは塩酸塩を使用したので、以下の塩酸濃度は、ホルムアミジンジスルフィド由来の塩素を含む濃度である。また、銅イオンは、硫酸銅・5水和物を用いて供給した。 In Example 1, using a copper sulfate-based copper electrolyte 1 containing formamidine disulfide, fine copper particles were deposited on the surface of a copper foil to form a roughened surface. The roughening conditions at this time are shown below. In addition, since formamidine disulfide used hydrochloride, the following hydrochloric acid concentrations are concentrations containing chlorine derived from formamidine disulfide. Copper ions were supplied using copper sulfate pentahydrate.
銅濃度: 30g/l
硫酸濃度: 50g/l
ホルムアミジンジスルフィド濃度: 0.25mmol/l
塩素濃度: 48mg/l
溶液温度: 50℃
電流密度: 50A/dm2
電解時間: 27秒
Copper concentration: 30 g / l
Sulfuric acid concentration: 50 g / l
Formamidine disulfide concentration: 0.25 mmol / l
Chlorine concentration: 48mg / l
Solution temperature: 50 ° C
Current density: 50 A / dm 2
Electrolysis time: 27 seconds
以上のようにして銅箔表面に形成した粗化処理層の走査型電子顕微鏡観察像を図2に示す。このときの微細銅粒子は、頭頂部角度が85°以下の突起形状となっている。この突起形状は、以下の防錆処理、シランカップリング剤処理を施しても、殆ど変わらない形状を維持する。 A scanning electron microscope observation image of the roughened layer formed on the copper foil surface as described above is shown in FIG. The fine copper particles at this time have a protruding shape with a top angle of 85 ° or less. This protrusion shape maintains a shape that is almost unchanged even when the following rust prevention treatment and silane coupling agent treatment are performed.
上記粗化処理条件で、銅箔表面に微細銅粒を析出形成し、その後防錆処理層を設けた。防錆処理層は、硫酸ニッケル2g/l、ピロリン酸亜鉛0.5g/l、ピロリン酸カリウム80g/lを含み、液温40℃、pH10としたニッケル−亜鉛合金めっき液を用いて、これを電流密度1.1A/dm2の条件で電解して、粗化処理層の微細銅粒子を覆うようにニッケル−亜鉛合金層を形成した。更に、防錆機能等の諸特性を強化するため、クロメート層を電解で形成した。以下、ニッケル−亜鉛合金層及びクロメート層を形成する場合には、同様の条件を採用した。 Under the above roughening conditions, fine copper particles were deposited on the surface of the copper foil, and then a rust-proofing layer was provided. The rust-proofing layer comprises nickel-zinc alloy plating solution containing nickel sulfate 2 g / l, zinc pyrophosphate 0.5 g / l, potassium pyrophosphate 80 g / l, and having a liquid temperature of 40 ° C. and pH 10. Electrolysis was performed under conditions of a current density of 1.1 A / dm 2 to form a nickel-zinc alloy layer so as to cover the fine copper particles of the roughened layer. Furthermore, a chromate layer was formed by electrolysis in order to strengthen various properties such as a rust prevention function. Hereinafter, when forming a nickel-zinc alloy layer and a chromate layer, the same conditions were adopted.
そして、更に、当該クロメート処理層の上にシランカップリング処理層を形成した。シランカップリング処理層の形成は、イオン交換水を溶媒として、γ−アミノプロピルトリメトキシシランを5g/lの濃度となるよう加えたものをシャワーリングにてクロメート層表面に吹き付けることにより吸着処理し、乾燥炉内で箔温度が180℃となる雰囲気内に10秒間保持し、水分をとばし、シランカップリング剤の縮合反応を促進する事により行った。以下、シランカップリング剤処理を行う場合には、同様の条件を採用した。 Further, a silane coupling treatment layer was formed on the chromate treatment layer. The formation of the silane coupling treatment layer is performed by adsorbing the surface of the chromate layer by spraying with γ-aminopropyltrimethoxysilane added at a concentration of 5 g / l using ion-exchanged water as a solvent. This was carried out by maintaining the foil temperature in a drying furnace in an atmosphere of 180 ° C. for 10 seconds to remove moisture and promote the condensation reaction of the silane coupling agent. Hereinafter, the same conditions were employed when the silane coupling agent treatment was performed.
以上のようにして、銅箔表面に微細銅粒を析出形成し、防錆処理及びシランカップリング剤処理層を備える粗化処理銅箔を得た。そして、この粗化処理銅箔を用いて各種評価を行った。この評価結果を、表1に纏めて示す。 As described above, fine copper particles were deposited on the surface of the copper foil to obtain a roughened copper foil having a rust preventive treatment and a silane coupling agent treatment layer. And various evaluation was performed using this roughening process copper foil. The evaluation results are summarized in Table 1.
引き剥がし強度測定用試料は、当該粗化処理銅箔と液晶ポリマー基材とを、290℃のプレス温度で張り合わせて、銅張積層板を製造し、エッチング法で、引き剥がし強さ測定用の10mm幅直線回路を形成したものを用いた。そして、この直線回路を、液晶ポリマー基材に対して90°方向に向けて引き剥がす際の密着強さを引き剥がし強さとして測定した。なお、測定に使用した色差計、Zygo干渉計に関しては、上述のものを用いている。 The sample for peel strength measurement was prepared by laminating the roughened copper foil and the liquid crystal polymer base material at a press temperature of 290 ° C. to produce a copper clad laminate, and using an etching method to measure the peel strength. What formed the 10 mm width linear circuit was used. And the adhesion strength at the time of peeling this linear circuit toward a 90 degree direction with respect to a liquid crystal polymer base material was measured as peeling strength. The color difference meter and the Zygo interferometer used for the measurement are those described above.
この実施例2では、実施例1と同様の銅箔を用いて、以下に述べる方法で粗化処理層を形成して、実施例1と同様にして亜鉛−ニッケル合金防錆処理、クロメート処理、シランカップリング剤処理を施し、粗化処理銅箔を製造し、各種特性の評価を行った。よって、異なるのは、粗化処理層の形成のみであるため、粗化処理層の形成に関してのみ説明する。 In Example 2, using the same copper foil as in Example 1, a roughening treatment layer was formed by the method described below, and in the same manner as in Example 1, zinc-nickel alloy rust prevention treatment, chromate treatment, A silane coupling agent treatment was performed to produce a roughened copper foil, and various properties were evaluated. Therefore, since only the formation of the roughening treatment layer is different, only the formation of the roughening treatment layer will be described.
この実施例2では、チオ尿素を含有した硫酸銅系銅電解液2を用いて、銅箔の表面に微細銅粒子を析出形成し、粗化処理面を形成した。このときの粗化処理条件を以下に示す。また、銅イオンは、硫酸銅・5水和物を用いて供給した。更に、当該硫酸銅系銅電解液に対して、40A/dm2 ×8分の予備通電を行った。 In Example 2, fine copper particles were deposited on the surface of the copper foil using a copper sulfate-based copper electrolyte solution 2 containing thiourea to form a roughened surface. The roughening conditions at this time are shown below. Copper ions were supplied using copper sulfate pentahydrate. Furthermore, preliminary energization of 40 A / dm 2 × 8 minutes was performed on the copper sulfate-based copper electrolyte.
銅濃度: 40g/l
硫酸濃度: 50g/l
チオ尿素濃度: 0.5mmol/l
塩素濃度: 60mg/l
溶液温度: 50℃
電流密度: 70A/dm2
電解時間: 20秒
Copper concentration: 40 g / l
Sulfuric acid concentration: 50 g / l
Thiourea concentration: 0.5 mmol / l
Chlorine concentration: 60mg / l
Solution temperature: 50 ° C
Current density: 70 A / dm 2
Electrolysis time: 20 seconds
以上のようにして銅箔表面に形成した粗化処理層の走査型電子顕微鏡観察像を図3に示す。このときの微細銅粒子は、頭頂部角度が85°以下の突起形状となっている。この突起形状は、以下の防錆処理、シランカップリング剤処理を施しても、殆ど変わらない形状を維持する。 A scanning electron microscope image of the roughened layer formed on the copper foil surface as described above is shown in FIG. The fine copper particles at this time have a protruding shape with a top angle of 85 ° or less. This protrusion shape maintains a shape that is almost unchanged even when the following rust prevention treatment and silane coupling agent treatment are performed.
上記粗化処理条件で、銅箔表面に微細銅粒を析出形成し、防錆処理層(ニッケル−亜鉛合金層、クロメート層)、シランカップリング処理層を形成し、銅箔表面に微細銅粒を析出形成し、防錆処理及びシランカップリング剤処理層を備える粗化処理銅箔を得た。そして、この粗化処理銅箔を用いて各種評価を行った。この評価結果を、表1に纏めて示す。なお、評価方法、測定方法等に関しては、実施例1と同様である。 Under the above roughening conditions, fine copper particles are deposited on the surface of the copper foil, a rust prevention layer (nickel-zinc alloy layer, chromate layer) and a silane coupling treatment layer are formed, and the fine copper particles are formed on the copper foil surface. And a roughened copper foil provided with a rust preventive treatment and a silane coupling agent treatment layer was obtained. And various evaluation was performed using this roughening process copper foil. The evaluation results are summarized in Table 1. The evaluation method, measurement method, and the like are the same as in Example 1.
この実施例3は、実施例1における引き剥がし強度測定用試料を作成する際に、実施例1で用いた液晶ポリマー基材を、熱変形温度の異なる液晶ポリマー基材に替えて、プレス温度を310℃とした点及び粗化処理条件のみが異なる。粗化処理条件に関しては、以下に示す。よって、重複することとなる説明は省略する。 In this Example 3, when the sample for peeling strength measurement in Example 1 was prepared, the liquid crystal polymer substrate used in Example 1 was replaced with a liquid crystal polymer substrate having a different thermal deformation temperature, and the press temperature was changed. Only the point which was 310 degreeC and the roughening process conditions differ. The roughening treatment conditions are shown below. Therefore, the overlapping description is omitted.
銅濃度: 30g/l
硫酸濃度: 50g/l
ホルムアミジンジスルフィド濃度: 0.25mmol/l
塩素濃度: 48mg/l
溶液温度: 50℃
電流密度: 60A/dm2
電解時間: 23秒
Copper concentration: 30 g / l
Sulfuric acid concentration: 50 g / l
Formamidine disulfide concentration: 0.25 mmol / l
Chlorine concentration: 48mg / l
Solution temperature: 50 ° C
Current density: 60 A / dm 2
Electrolysis time: 23 seconds
この実施例4は、実施例3における引き剥がし強度測定用試料を作成する際の、実施例3で用いた電解条件の内、硫酸濃度、電流密度及び電解時間のみが異なる。粗化処理条件に関しては、以下に示す。よって、重複することとなる説明は省略する。 This Example 4 differs only in the sulfuric acid concentration, the current density, and the electrolysis time among the electrolysis conditions used in Example 3 when preparing the peel strength measurement sample in Example 3. The roughening treatment conditions are shown below. Therefore, the overlapping description is omitted.
銅濃度: 30g/l
硫酸濃度: 75g/l
ホルムアミジンジスルフィド濃度: 0.25mmol/l
塩素濃度: 48mg/l
溶液温度: 50℃
電流密度: 45A/dm2
電解時間: 12秒
Copper concentration: 30 g / l
Sulfuric acid concentration: 75g / l
Formamidine disulfide concentration: 0.25 mmol / l
Chlorine concentration: 48mg / l
Solution temperature: 50 ° C
Current density: 45 A / dm 2
Electrolysis time: 12 seconds
本件発明に係る粗化処理銅箔は、従来に無い形状の微細銅粒子で粗化されたロープロファイル表面を備え、液晶ポリマー、ポリフェニレンオキサイド樹脂(PPO)、ポリフェニレンエーテル樹脂(PPE)、シクロオレフィンポリマー(COP)等の高耐熱性及び高周波特性に優れる樹脂基材に対する良好な密着性を備える。よって、この粗化処理銅箔を用いることで、高品質の銅張積層板の製造が可能で、結果として、高耐熱性及び高周波特性に優れるプリント配線板の安定製造が可能になる。 The roughened copper foil according to the present invention has a low profile surface roughened with fine copper particles having an unprecedented shape, and includes a liquid crystal polymer, a polyphenylene oxide resin (PPO), a polyphenylene ether resin (PPE), and a cycloolefin polymer. It has good adhesion to a resin base material that is excellent in high heat resistance and high frequency characteristics such as (COP). Therefore, by using this roughened copper foil, it is possible to produce a high-quality copper-clad laminate, and as a result, it is possible to stably produce a printed wiring board having excellent heat resistance and high frequency characteristics.
2 微細銅粒子
a,b 接線
θ 頭頂部角度
2 Fine copper particles a and b Tangent line θ Top angle
Claims (9)
当該粗化処理面は、頭頂部角度が85°以下の突起形状の微細銅粒子を0.05個/μm 2 以上含み、且つ、当該粗化処理面の10点平均粗さ(Rzjis)の値が0.6μm〜4.2μmであることを特徴とする粗化処理銅箔。 In the roughened copper foil provided with a roughened surface formed by depositing fine copper particles on the surface of the copper foil,
The roughened surface contains 0.05 fine particles / μm 2 or more of projection-shaped fine copper particles having a top angle of 85 ° or less , and the value of the 10-point average roughness (Rzjis) of the roughened surface. roughened copper foil but, wherein 0.6μm~4.2μm der Rukoto.
当該微細銅粒子の形成に用いる硫酸銅系銅電解液として、銅濃度が20g/l〜50g/l、硫酸濃度が25g/l〜100g/l、ホルムアミジンジスルフィド濃度が0.1mmol/l〜0.3mmol/l、塩素濃度が25mg/l〜80mg/lの組成を備えるものを用いることを特徴とする粗化処理銅箔の製造方法。 Using a copper sulfate-based copper electrolyte, a method for producing a roughened copper foil comprising a roughened surface on which fine copper particles are deposited on the surface of the copper foil,
As the copper sulfate-based copper electrolyte used for forming the fine copper particles, the copper concentration is 20 g / l to 50 g / l, the sulfuric acid concentration is 25 g / l to 100 g / l, and the formamidine disulfide concentration is 0.1 mmol / l to 0. A method for producing a roughened copper foil, characterized by using a material having a composition of 3 mmol / l and a chlorine concentration of 25 mg / l to 80 mg / l.
当該微細銅粒子の形成に用いる硫酸銅系銅電解液として、銅濃度が20g/l〜50g/l、硫酸濃度が25g/l〜100g/l、チオ尿素濃度が0.2mmol/l〜0.6mmol/l、塩素濃度が20mg/l〜130mg/lの組成を備えるものを用いることを特徴とする粗化処理銅箔の製造方法。 Using a copper sulfate-based copper electrolyte, a method for producing a roughened copper foil comprising a roughened surface on which fine copper particles are deposited on the surface of the copper foil,
As the copper sulfate-based copper electrolyte used for forming the fine copper particles, the copper concentration is 20 g / l to 50 g / l, the sulfuric acid concentration is 25 g / l to 100 g / l, and the thiourea concentration is 0.2 mmol / l to 0.00. The manufacturing method of the roughening process copper foil characterized by using what has a composition of 6 mmol / l and chlorine concentration 20 mg / l-130 mg / l.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009087755A JP5400447B2 (en) | 2009-03-31 | 2009-03-31 | Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009087755A JP5400447B2 (en) | 2009-03-31 | 2009-03-31 | Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010236058A JP2010236058A (en) | 2010-10-21 |
JP5400447B2 true JP5400447B2 (en) | 2014-01-29 |
Family
ID=43090660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009087755A Active JP5400447B2 (en) | 2009-03-31 | 2009-03-31 | Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5400447B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5850763B2 (en) * | 2012-02-27 | 2016-02-03 | 日新製鋼株式会社 | Stainless steel diffusion bonding products |
JP5940010B2 (en) * | 2012-03-28 | 2016-06-29 | 古河電気工業株式会社 | Surface roughening copper foil, method for producing the same, and circuit board |
KR102128954B1 (en) | 2012-06-06 | 2020-07-01 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Copper foil for printed wiring board, process for preparing the same, and printed wiring board using the copper foil |
MY182166A (en) * | 2013-09-20 | 2021-01-18 | Namics Corp | Copper foil, copper foil with carrier foil, and copper-clad laminate |
CN104404590A (en) * | 2014-10-31 | 2015-03-11 | 联合铜箔(惠州)有限公司 | Additive used for electrolytic copper foil and surface roughening treatment technology for electrolytic copper foil |
CN107429417B (en) * | 2015-03-31 | 2019-11-22 | 三井金属矿业株式会社 | Roughening treatment copper foil, band carrier copper foil, copper-clad laminated board and printed circuit board |
WO2016174998A1 (en) * | 2015-04-28 | 2016-11-03 | 三井金属鉱業株式会社 | Roughened copper foil and printed wiring board |
US9397343B1 (en) * | 2015-10-15 | 2016-07-19 | Chang Chun Petrochemical Co., Ltd. | Copper foil exhibiting anti-swelling properties |
JP6462961B2 (en) | 2016-12-14 | 2019-01-30 | 古河電気工業株式会社 | Surface treated copper foil and copper clad laminate |
JP6529684B2 (en) * | 2017-03-30 | 2019-06-12 | 古河電気工業株式会社 | Surface-treated copper foil and copper-clad laminate using the same |
EP3648557B1 (en) * | 2017-06-28 | 2023-08-30 | Kyocera Corporation | Power module substrate and power module |
JP6805217B2 (en) * | 2018-10-18 | 2020-12-23 | Jx金属株式会社 | Conductive materials, molded products and electronic components |
JP7014695B2 (en) * | 2018-10-18 | 2022-02-01 | Jx金属株式会社 | Conductive materials, molded products and electronic components |
TWM608774U (en) * | 2019-06-19 | 2021-03-11 | 金居開發股份有限公司 | Advanced reverse-treated electrodeposited copper foil and copper clad laminate using the same |
JP7392996B2 (en) | 2019-06-19 | 2023-12-06 | 金居開發股▲分▼有限公司 | Advanced electrolytic copper foil and copper-clad laminates using it |
CN113176188A (en) * | 2021-04-08 | 2021-07-27 | 九江德福科技股份有限公司 | Method for measuring specific surface area of electrolytic copper foil |
CN114196994B (en) * | 2021-12-30 | 2023-03-31 | 山东金宝电子有限公司 | Roughening treatment solution and roughening treatment process for surface of copper foil |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0246675B2 (en) * | 1986-07-04 | 1990-10-16 | Nippon Kagaku Sangyo Kk | SANSEIDOMETSUKYOKU |
JP2708130B2 (en) * | 1989-06-19 | 1998-02-04 | 日本電解 株式会社 | Rough surface forming method of copper foil for printed circuit |
JPH06237078A (en) * | 1993-02-09 | 1994-08-23 | Nikko Guurudo Foil Kk | Manufacture of copper foil for printed circuit |
JP3476264B2 (en) * | 1993-12-24 | 2003-12-10 | 三井金属鉱業株式会社 | Copper foil for printed circuit inner layer and method of manufacturing the same |
JP3709221B2 (en) * | 1994-10-06 | 2005-10-26 | 古河サーキットフォイル株式会社 | Copper foil surface roughening treatment method |
JPH10341066A (en) * | 1997-06-10 | 1998-12-22 | Furukawa Electric Co Ltd:The | Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it |
JPH11340595A (en) * | 1998-05-21 | 1999-12-10 | Furukawa Electric Co Ltd:The | Copper foil for printed circuit board and copper foil attached with resin |
JP2001177204A (en) * | 1999-12-15 | 2001-06-29 | Mitsui Mining & Smelting Co Ltd | Surface-treated copper foil and method of manufacturing the same |
JP2003243785A (en) * | 2002-02-18 | 2003-08-29 | Hitachi Cable Ltd | Resin bonding copper-foil, copper-foil/resin bonded film, and method of manufacturing resin bonding copper-foil |
US6969557B2 (en) * | 2002-06-04 | 2005-11-29 | Mitsui Mining & Smelting Co., Ltd. | Surface-treated copper foil low-dielectric substrate and copper-clad laminate and printed wiring board using the same |
JP4120806B2 (en) * | 2002-10-25 | 2008-07-16 | 福田金属箔粉工業株式会社 | Low rough surface electrolytic copper foil and method for producing the same |
JP4615226B2 (en) * | 2004-02-06 | 2011-01-19 | 古河電気工業株式会社 | Composite material for substrate and circuit board using the same |
JP4567360B2 (en) * | 2004-04-02 | 2010-10-20 | 三井金属鉱業株式会社 | Copper foil manufacturing method and copper foil obtained by the manufacturing method |
JP2006103189A (en) * | 2004-10-06 | 2006-04-20 | Furukawa Circuit Foil Kk | Surface-treated copper foil and circuit board |
JP2006210689A (en) * | 2005-01-28 | 2006-08-10 | Fukuda Metal Foil & Powder Co Ltd | Copper foil for high frequency printed wiring board and its production method |
JP4065004B2 (en) * | 2005-03-31 | 2008-03-19 | 三井金属鉱業株式会社 | Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil |
WO2007086454A1 (en) * | 2006-01-27 | 2007-08-02 | Okuno Chemical Industries Co., Ltd. | Additive added to solution for electrolytic copper plating using anode of phosphorated copper, solution for electrolytic copper plating and method of electrolytic copper plating |
JP2007281361A (en) * | 2006-04-11 | 2007-10-25 | Asahi Kasei Corp | Polyimide printed circuit board and polyimide printed wiring board |
JP2007332418A (en) * | 2006-06-15 | 2007-12-27 | Fukuda Metal Foil & Powder Co Ltd | Surface treated copper foil |
TWI434965B (en) * | 2008-05-28 | 2014-04-21 | Mitsui Mining & Smelting Co | A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method |
JP2010236072A (en) * | 2009-03-31 | 2010-10-21 | Nippon Mining & Metals Co Ltd | Stacked copper foil and method for manufacturing the same |
-
2009
- 2009-03-31 JP JP2009087755A patent/JP5400447B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010236058A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5400447B2 (en) | Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate | |
TWI715417B (en) | Electrolytic copper foil for printed circuit board with low transmission loss | |
KR100299392B1 (en) | High-tensile electrolytic copper foil and process for producing the same | |
TWI574452B (en) | Electrolytic copper foil, electric component and battery comprising the foil | |
TWI509111B (en) | Surface treatment of electrolytic copper foil, laminated board, and printed wiring board, electronic equipment | |
TWI588302B (en) | Roughened copper foil and printed circuit board | |
KR101154203B1 (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
JP5634103B2 (en) | A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate. | |
TWI434965B (en) | A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method | |
JP5255229B2 (en) | Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil | |
JP4065004B2 (en) | Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil | |
JP3910623B1 (en) | Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board | |
KR20070117465A (en) | Surface treatment copper foil and method for manufacturing the same , and circuit board | |
JP5215631B2 (en) | Surface treated copper foil | |
CN108728874A (en) | Electrolytic copper foil, its manufacturing method with low bounce-back power and its application | |
JP6014186B2 (en) | Electrolytic copper foil, electrical parts and batteries including the same | |
CN102215632A (en) | Copper foil for processing copper clad laminate, copper clad laminate and printed wiring board equipped with copper clad laminate | |
TWI418663B (en) | Electrolytic copper foil and circuit boards | |
JP2020122189A (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
JP2010180454A (en) | Surface-treated copper foil, method for manufacturing the same and copper-clad laminate | |
JP5432357B1 (en) | Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same | |
TW202030379A (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
WO2019208368A1 (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
EP4083272B1 (en) | Surface-treated copper foil and method for manufacturing same | |
JP2014152344A (en) | Composite copper foil and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5400447 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |