JP5394814B2 - 光検出素子及び撮像装置 - Google Patents

光検出素子及び撮像装置 Download PDF

Info

Publication number
JP5394814B2
JP5394814B2 JP2009111856A JP2009111856A JP5394814B2 JP 5394814 B2 JP5394814 B2 JP 5394814B2 JP 2009111856 A JP2009111856 A JP 2009111856A JP 2009111856 A JP2009111856 A JP 2009111856A JP 5394814 B2 JP5394814 B2 JP 5394814B2
Authority
JP
Japan
Prior art keywords
image
pixels
microlens
color
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009111856A
Other languages
English (en)
Other versions
JP2010263353A (ja
Inventor
俊幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2009111856A priority Critical patent/JP5394814B2/ja
Priority to KR1020100004475A priority patent/KR101679293B1/ko
Priority to US12/772,285 priority patent/US8358365B2/en
Publication of JP2010263353A publication Critical patent/JP2010263353A/ja
Application granted granted Critical
Publication of JP5394814B2 publication Critical patent/JP5394814B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、光検出素子及び撮像装置に関する。
従来の一般的なデジタルスチルカメラは、フォーカスレンズで集光した光をCCDイメージセンサやCMOSイメージセンサその他の撮像素子に照射することでカラー画像信号を生成している。しかし最近では、レンズと撮像素子の間に単一平面上に配列されたマイクロレンズ群からなるレンズアレイを備える光学系を有する撮像装置が提案されている(例えば非特許文献1参照)。かかる撮像装置はプレノプティック(Plenoptic)型の撮像装置と称されている。
非特許文献1には、かかる光学系により得られた画像を再構成することで、被写界深度を自在に決定する事例が紹介されており、視差を利用した測距や、3D画像への応用、解像度の向上等の展開が考えられている。また、かかる光学系を用いた技術としては、例えば特許文献1〜3が挙げられる。
特開2003−163938号公報 特開2004−146619号公報 特開2007−317951号公報
(Ren Ng)、他5名 "Light Field Photograph with a Hand-heldPlenoptic Camera"、Stanford Tech Report CTSR 2005-02、p.1-11
このようなマイクロレンズ群からなるレンズアレイを備える光学系を備えるデジタルスチルカメラは、マイクロレンズごとに分離された複数の光束情報を入手することができるので、被写界深度のコントロール、解像度の向上、視差を利用した距離測定等へ利用できることが期待されている。一方、デジタルスチルカメラにこのようなマイクロレンズ群からなるレンズアレイを備える光学系を備えた場合においては、画像データのカラー化が必須となる。
一般的な撮像装置は、単板の2次元撮像素子からカラー画像を生成する場合には、ベイヤー配列に代表されるように、位置毎に異なる分光特性を与えることで色情報を入手した後に、補間処理によって画素ごとに色を決定することでフルカラー画像データを生成している。
しかし、プレノプティック型の撮像装置では、マイクロレンズごとに分離された複数の光束情報に対してベイヤー化すると、光束情報の欠落に繋がるという問題があった。また、ベイヤー配列により分離された光束情報を増やそうとすると、マイクロレンズの微細化が要求され、マイクロレンズの微細化要求に伴ってマイクロレンズ加工の微細化や撮像素子の微細化が必要となり、技術的困難性やコスト増加を伴うという問題もあった。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、マイクロレンズ群からなるレンズアレイを備える光学系であっても、当該レンズアレイを備えることによる効果を損なわずにカラー画像を得ることが可能な、新規かつ改良された光検出素子及び撮像装置を提供することにある。
上記課題を解決するために、本発明のある観点によれば、単一平面上に設けられる複数のレンズが規則的に配列されたレンズアレイと、前記レンズアレイの各レンズの透過光の照射範囲に対応して単一平面上に設けられる複数の光電変換素子を備える光電変換部と、を備え、前記光電変換素子は、前記レンズの光軸を中心に設けられる第1領域と、前記第1領域の周辺に設けられる第2領域とで、異なる分光感度特性を有することを特徴とする、光検出素子が提供される。この結果、画像の再構成処理で用いる第1領域に主信号成分を受光させて、分離光束の欠損分が原画像から間引かれるのを未然に回避できるとともに、残りの第2領域に従信号成分を受光させて多チャンネル化を実現できる。
前記第1領域は輝度信号に相当する分光感度特性を有し、前記第2領域は色信号に相当する分光感度特性を有するようにした。この結果、画像の再構成処理で用いる第1領域に輝度成分を受光させて、分離光束の欠損分が原画像から間引かれるのを未然に回避できるとともに、残りの第2領域に色成分を受光させてカラー化を実現できる。
各前記光電変換領域は、前記画素の分光特性の配列パターンが全て同一であるようにした。この結果、マイクロレンズの微細化にあたって設計及び加工も、配列パターンが不規則な場合と比較して格段と容易にすることができる。
前記第2領域は、前記レンズアレイの各レンズからの透過光の照射範囲に含まれるように設けられることができる。この結果、各レンズごとに分離された光束情報に欠落が生じるのを回避することができる。
以上説明したように本発明によれば、マイクロレンズ群からなるレンズアレイを備える光学系であっても、当該レンズアレイを備えることによる効果を損なわずにカラー画像を得ることが可能な光検出素子及び撮像装置を提供することができる。
マイクロレンズ群からなるレンズアレイを備える光学系について説明する説明図である。 マイクロレンズ群からなるレンズアレイを備える光学系について説明する説明図である。 レンズアレイを備える光学系で撮像した画像をカラー化する場合について示す説明図である。 レンズアレイを備える光学系で撮像した画像をカラー化する場合について示す説明図である。 本発明の一実施形態にかかる撮像装置100の構成について示す説明図である。 本発明の一実施形態にかかる撮像装置100に用いられる撮像センサ106の構成について示す説明図である。 図6に示した撮像センサ106を拡大したものを示す説明図である。 色の三原色であるR,G,Bの各色の波長とスペクトラム強度との関係を示す説明図である。 シアン、マゼンタ、イエローの各色の波長とスペクトラム強度との関係を示す説明図である。 図10は輝度信号の波長とスペクトラム強度との関係を示す説明図である。 本発明の一実施形態にかかる撮像装置100を用いた撮像方法について示す流れ図である。 本発明の一実施形態にかかる撮像装置100におけるカラー画像の生成方法について示す流れ図である。 撮像センサ106の構成の変形例を示す説明図である。 マイクロレンズアレイ104´の構成を示す説明図である。 赤、緑、青の情報を得るための原色フィルタが貼付された撮像センサの構成例について示す説明図である。 赤、緑、青の情報を得るための原色フィルタが貼付された撮像センサの構成例について示す説明図である。 マイクロレンズアレイ104´´の構成を示す説明図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
まず、本発明の好適な実施の形態について説明する前に、従来のマイクロレンズ群からなるレンズアレイを備える光学系について説明し、続いて、かかる光学系を用いた場合におけるカラー化の問題点について説明する。
図1及び図2は、マイクロレンズ群からなるレンズアレイを備える光学系について説明する説明図である。図1は、被写体からの光を集光するレンズと撮像素子との間にレンズアレイを備えたものを側面方向から見た場合について示す説明図であり、図2は、レンズアレイの配置状態を概念的に示す説明図である。
図1に示したように、マイクロレンズ群からなるレンズアレイを備える光学系においては、主レンズ11を通過した被写体からの光がレンズアレイ12の各マイクロレンズ12aに合焦するように投影される。そして、撮像センサ13には、マイクロレンズ12aを透過した光が照射される。
撮像センサ13には、隣接するマイクロレンズ12aからの光が重ならないように、主レンズ11の絞り14を設定することが上記非特許文献1に記載されている。そして、上記非特許文献1には、図1に示したような光学系で得られた画像を再構成することで、被写界深度を自在に決定する事例が紹介されている。従って、このようなマイクロレンズ群からなるレンズアレイを備える光学系は、視差を利用した測距や三次元画像への応用、解像度の向上処理への展開が考えられている。
かかる光学系を汎用的なデジタルスチルカメラに利用する場合には、撮影画像のカラー化をどのように行うかが課題となる。ダイクロイックミラー(dichroic mirror)等を用いて分光し、複数の撮像センサを用いてカラー化する手法が考えられるが、これは撮像センサの設置スペースやコスト面から不利となるため、単板の撮像センサを用いてカラー化する手法が一般的である。そして、単板の撮像センサを用いてカラー化する際には、分光フィルタを受光素子の前面に特定のパターン配列で貼って撮像し、後に補間処理により全ての画素ごとに色情報を揃える手法が知られている。しかし、当該手法をマイクロレンズ群からなるレンズアレイを備える光学系にそのまま適用すると問題が生じてしまう。
図3は、デジタルスチルカメラで広く用いられているベイヤー配列を有する分光フィルタによって、レンズアレイを備える光学系で撮像した画像をカラー化する場合について示す説明図である。図3では、縦8画素×横8画素のブロックを1つのマイクロレンズに対応させた場合について示しており、図3に示したそれぞれの円は1つのマイクロレンズの投影範囲を表している。
所定の光学経路を通って撮像されるデータは特定の色情報として得ることとなるので、再構成処理にあたって同色同士で行うのが適当である。しかし、図3に示した分光フィルタのパターンは、最も多い緑色(G)成分であっても市松模様状のパターンでしか情報を持ち得ないので欠損状態となる。
情報を増やすために、マイクロレンズ単位で分光特性を変えて画像のカラー化を試みる方法も考えられる。図4は、マイクロレンズ単位で特性が異なる分光フィルタによって、レンズアレイを備える光学系で撮像した画像をカラー化する場合について示す説明図である。図4では、図3と同様に、縦8画素×横8画素のブロックを1つのマイクロレンズに対応させた場合について示しており、図4に示したそれぞれの円は1つのマイクロレンズの投影範囲を表している。
図4に示したような、マイクロレンズ単位で分光特性が異なる分光フィルタを用いた場合には、注目するマイクロレンズ単位で考えると、撮影画像に対する再構成処理は、図3に示したようなベイヤー配列を有する分光フィルタを用いた場合よるも有利である。しかし、レンズアレイを備える光学系は、1画素の情報をさらに分割して撮像するため、再構成後の画素数はマイクロレンズの数に減少する。さらに、この減少した画素から補間処理を実行することになるので、レンズアレイを備えるデジタルスチルカメラは、同じ撮像センサを用いた通常の光学系を有するデジタルスチルカメラに比べて少ない画素数となることを余儀なくされる。図4に示したような分光フィルタを用いる場合には、1つのマイクロレンズあたり64個の画素が割り当てられている。従って、記録画素数は撮像センサの画素数の1/64となる。補間処理は、記録されていない高周波成分を予測した作成や、色情報の位相のずれに起因する境界部の着色などの課題もあり、少ない画素数で実施すると画質の劣化が目立ちやすくなってしまう。
そこで、以下で説明する本発明の一実施形態においては、各マイクロレンズが照射する範囲において、画像の再構成に使用する領域で撮像される画素は輝度信号を受光し、それ以外の領域では補色フィルタを貼付してカラー信号を得る撮像センサを構成する。ここで、画像の再構成に使用する領域は、各マイクロレンズの光軸を中心とした所定の領域であることを特徴としている。
図5は、本発明の一実施形態にかかる撮像装置100の構成について示す説明図である。以下、図5を用いて本発明の一実施形態にかかる撮像装置100の構成について説明する。
図5に示したように、本発明の一実施形態にかかる撮像装置100は、主レンズ102と、マイクロレンズアレイ104と、撮像センサ106と、CPU108と、メモリ110と、アナログフロントエンド(AFE)部及びA/D変換部112と、画像入力部114と、カラー画素生成部116と、画像再構成部118と、デジタルバックエンド(DBE)部120と、画像圧縮部122と、メモリカードドライバ124と、表示画像生成部126と、表示ドライバ128と、タイミングジェネレータ(TG)130と、モータドライバ132と、フォーカスレンズモータ134と、を含んで構成される。
主レンズ102は、被写体へ焦点を合わせるためのレンズであるフォーカスレンズや、焦点距離を変化させるズームレンズ等を含んで構成される。フォーカスレンズモータ134の駆動により主レンズ102に含まれるフォーカスレンズの位置を移動させることで、撮像装置100は被写体に焦点を合わせることができる。
マイクロレンズアレイ104は、複数のマイクロレンズ群から構成されるレンズアレイである。マイクロレンズアレイ104は、マイクロレンズ104aが単一平面上に規則的に配列することで構成される。主レンズ102を通過した光はマイクロレンズアレイ104の各マイクロレンズを通過して撮像センサ106へ照射されることになる。
撮像センサ106は、マイクロレンズアレイ104を構成する各マイクロレンズ104aを通過した光から画像信号を生成するものである。撮像センサ106は、各マイクロレンズ104aに対応した所定の受光パターンを有しており、上述したように、各マイクロレンズ104aが照射する範囲において、画像の再構成に使用する領域で撮像される画素は輝度信号を受光し、それ以外の領域では補色フィルタが貼付されており、カラー信号を得るように構成されている。撮像センサ106の構成については後に詳述する。
CPU108は、撮像装置100の各部の動作を制御するものである。CPU108は、撮像装置100の内部に格納されたコンピュータプログラムを順次実行することで、撮像装置100の各部の動作を制御することができる。またメモリ110は、撮像装置100の動作の際に必要となる情報やデータが格納されるものである。
アナログフロントエンド部及びA/D変換部112は、撮像センサ106で光電変換されたアナログの信号を受け取り、デジタル信号に変換して出力するものである。アナログフロントエンド部及びA/D変換部112でデジタル信号に変換された信号は画像入力部114に送られる。
画像入力部114は、アナログフロントエンド部及びA/D変換部112で生成されたデジタル信号を受け取って、メモリ110に格納するものである。アナログフロントエンド部及びA/D変換部112で生成されたデジタル信号がメモリ110に格納されることで、撮像装置100はデジタル信号に対する各種信号処理を実行することができる。
カラー画素生成部116は、撮像センサ106が受光した光から生成された画像信号に対して色データを生成する信号処理を実行するものである。具体的には、カラー画素生成部116は、撮像センサ106で生成された画像信号のうち、色情報が存在していない画素に対して色データを生成するものである。カラー画素生成部116における色データの生成処理については、後に詳述する。
画像再構成部118は、マイクロレンズアレイ104を通して撮像された画像を再構成するものである。画像再構成部118は、例えばマイクロレンズアレイ104を通して撮像された画像の再構成により被写界深度を変更して、合焦させる被写体を変化させることができる。また画像再構成部118は、ノイズの除去や色の補正等による解像度向上処理を実行してもよい。
デジタルバックエンド部120は、マイクロレンズアレイ104を通して撮像され、カラー画素生成部116でカラー化された画像に対する画像処理を実行するものであり、例えば彩度を強調する処理を実行したり、画像サイズを変換する処理を実行したりするものである。
画像圧縮部122は、画像データを適切な形式に圧縮するものである。画像の圧縮形式は可逆形式であっても非可逆形式であってもよい。適切な形式の例として、JPEG(Joint Photographic Experts Group)形式やJPEG2000形式に変換してもよい。メモリカードドライバ124は、画像圧縮部122で圧縮された後の画像データの、メモリカード(図示せず)への記録、及びメモリカードに記録された画像データのメモリカードからの読み出しを実行するものである。
表示画像生成部126は、撮影画像や、撮像装置100の各種設定画面を表示する表示部(図示せず)に表示する画像(表示画像)を生成するものである。例えば、撮影画像を表示部に表示させる場合には、表示画像生成部126は、表示部の解像度や画面サイズに合わせて画像データを圧縮して、表示画像を生成する。表示ドライバ128は、表示画像生成部126が生成した表示画像を表示部に表示させる処理を実行するものである。
タイミングジェネレータ130は、撮像センサ106にタイミング信号を入力する。タイミングジェネレータ130からのタイミング信号によりシャッタ速度が決定される。つまり、タイミングジェネレータ130からのタイミング信号により撮像センサ106の駆動が制御され、撮像センサ106が駆動する時間内に被写体からの映像光を入射することで、画像データの基となる電気信号が生成される。
モータドライバ132は、CPU108の制御に基づいて、フォーカスレンズモータ134を駆動させるものである。フォーカスレンズモータ134は、モータによって主レンズ102の位置を制御するものである。モータドライバ132及びフォーカスレンズモータ134を介して主レンズ102の位置を制御することで、被写体のピントを調節することができる。
なお、図5には図示していないが、撮像装置100には、絞り、当該絞りを調節するためのモータ、及び当該モータを駆動させるためのモータドライバを備えていても良い。さらに、図5には図示していないが、撮像装置100には、撮影動作を開始するためのシャッタボタン、絞りやシャッタ速度、感度等の撮影情報を設定するための操作ボタン等を備えていてもよい。
以上、本発明の一実施形態にかかる撮像装置100の構成について説明した。次に、本発明の一実施形態にかかる撮像装置100に用いられる撮像センサ106の構成について説明する。
図6は、本発明の一実施形態にかかる撮像装置100に用いられる撮像センサ106の構成について示す説明図であり、図7は、図6に示した撮像センサ106を拡大したものを示す説明図である。
図6に示した円は、図3に示した円と同様に、マイクロレンズアレイ104を構成する1つのマイクロレンズ104aを透過する光が照射される範囲を示したものである。図6に示したように、撮像センサ106には、1つのマイクロレンズ104aを透過する光が照射される範囲に対応して複数の画素が割り当てられている。図6及び図7に示した例では、1つのマイクロレンズ104aに対して縦8画素、横8画素の計64画素が割り当てられており、1つのマイクロレンズ104aを透過した光は当該64個の画素によって光電変換が行われる。
図6及び図7に示した撮像センサ106では、1つのマイクロレンズ104aに対して割り当てられる64個の画素が、輝度信号を得る画素が含まれる領域と、補色信号を得る画素が含まれる領域とに分けられる。そして、画像再構成部118における再構成処理に用いる領域、すなわち各マイクロレンズの光軸付近で撮像される画素が含まれる領域は輝度信号を得る領域とし、その周囲の画素が含まれる領域は補色信号を得る領域とする。図6に示した撮像センサ106では、Yで示した画素からなる領域が輝度信号を得る領域であり、Cy、Mg、Yeで示した画素からなる領域が補色信号を得る領域となる。Cy、Mg、Yeで示した画素は、それぞれシアン、マゼンタ、イエローの情報を得る画素である。
図7は、1つのマイクロレンズ104aに対して割り当てられている64個の画素について拡大して示す説明図である。図7を用いてより詳細に撮像センサ106の構成を説明する。
画像の再構成に用いられる領域は、図7に示した画素の内、Y0からY51で示した画素からなる領域にあたる。その他の領域の画素にはそれぞれ補色フィルタが貼付され、シアン、マゼンタ、イエローの情報が得られるように構成されている。シアンの情報を得る画素は、図7のCy0〜Cy3で示した画素であり、マゼンタの情報を得る画素は、図7のMg0〜Mg3で示した画素であり、イエローの情報を得る画素は、図7のYe0〜Ye3で示した画素である。Y0からY51の画素に光が照射されることで得られる輝度信号からは、シアン、マゼンタ、イエローの情報を参照することでRGB信号を得ることができる。
補色信号を受光した画素では、輝度信号を受光する領域とは異なる光束の情報になるが、補色信号は輝度信号に比べて人の感度が低いことが知られている。そこで本実施形態では、撮像センサ106の輝度信号が受光した位置と、複数の補色信号の各受光位置との距離差に応じて重みをつけて算出し、輝度信号を受光した位置におけるRGB信号を生成する。
図8は、色の三原色であるR,G,Bの各色の波長とスペクトラム強度との関係を示す説明図であり、図9は、シアン、マゼンタ、イエローの各色の波長とスペクトラム強度との関係を示す説明図であり、図10は輝度信号の波長とスペクトラム強度との関係を示す説明図である。図8〜図10に示したように、輝度信号の波長とスペクトラム強度との関係は、図9に示したシアン、マゼンタ、イエローの各色の波長とスペクトラム強度との関係を含むような特性を有している。従って、複数の補色信号の各受光位置との距離差に応じて重みを付けて算出することで、輝度信号を受光した位置におけるRGB信号を生成することが可能となる。
以上、撮像装置100に用いられる撮像センサ106の構成について説明した。次に、本発明の一実施形態にかかる撮像装置100を用いた撮像方法、及びカラー画像の生成方法について説明する。
図11は、本発明の一実施形態にかかる撮像装置100を用いた撮像方法について示す流れ図であり、図12は、本発明の一実施形態にかかる撮像装置100におけるカラー画像の生成方法について示す流れ図である。以下、図11及び図12を用いて本発明の一実施形態にかかる撮像装置100を用いた撮像方法、及びカラー画像の生成方法について説明する。
本発明の一実施形態にかかる撮像装置100を用いて被写体を撮影する際には、まず被写体の測光結果を用いて自動的に、または撮影者の手によって最適な絞り値が設定され(ステップS101)、続いて、被写体の測光結果を用いて自動的に、または撮影者の手によって被写体の撮影に最適なシャッタ速度が設定され、また画像を撮影する際のゲインが決定される(ステップS102)。そして、モータドライバ132及びフォーカスレンズモータ134がフォーカスレンズの位置を移動させることでマイクロレンズアレイ104に主被写体が合焦される(ステップS103)。
マイクロレンズアレイ104に主被写体が合焦されると、シャッタボタンの押下によって撮像装置100での撮影処理が実行される(ステップS104)。撮像装置100での撮影処理は、被写体からの映像光を撮像センサ106に照射させることによって実行される。そして、撮像センサ106への光の照射は、上記ステップS102で設定したシャッタ速度の期間のみ照射されるように、タイミングジェネレータ130によって制御される。
被写体からの映像光が主レンズ102、マイクロレンズアレイ104を透過して撮像センサ106に照射されると、撮像センサ106で光電変換されて電気信号が生成される。撮像センサ106で生成された電気信号は、アナログフロントエンド部及びA/D変換部112によってデジタル信号に変換され、変換されたデジタル信号は、画像入力部114によって画像データとしてメモリ110に格納される(ステップS105)。
画像データがメモリ110に格納されると、カラー画素生成部116は、メモリ110に格納された画像データを読み出して、マイクロレンズ104aで区分けされた領域毎にRGB画像を生成する(ステップS106)。このステップS106における、カラー画素生成部116によるRGB画像の生成処理については、後に詳述する。
上記ステップS106における、カラー画素生成部116によるRGB画像の生成処理が完了すると、続いて、画像再構成部118が、画像の再構成処理に用いる再構成用のパラメータを取得する(ステップS107)。画像の再構成処理に用いる再構成用のパラメータには、例えば撮像装置100から被写体までの距離情報、マイクロレンズアレイ104を構成するマイクロレンズ104aのレンズ間のピッチ等の情報が含まれていてもよい。
上記ステップS107における、画像再構成部118による再構成用のパラメータの取得が完了すると、続いてその取得したパラメータを用いて、画像再構成部118で画像データの再構成処理を実行する(ステップS108)。画像再構成部118で画像データを再構成することで、撮影時とは異なる被写体に焦点が合った画像を生成することができる。なお、画像データの再構成処理については、例えば非特許文献1に開示されているので、ここでは詳細な説明は省略する。
上記ステップS108における、画像再構成部118による画像データの再構成処理が完了すると、続いて再構成後の画像データに対して、デジタルバックエンド部120が各種画像処理を実行する(ステップS109)。ここでの各種画像処理とは、例えばノイズ除去処理、彩度強調処理、画像サイズ変換処理等が含まれていてもよい。画像処理が施された画像データはメモリ110に格納される。
上記ステップS109における、デジタルバックエンド部120による各種画像処理が完了すると、続いて、画像処理が施された画像データに対する圧縮処理を画像圧縮部122が実行する(ステップS110)。画像データに対する圧縮処理が完了すると、メモリカードドライバ124は、圧縮後の画像データを記録媒体へ保存する(ステップS111)。
以上、本発明の一実施形態にかかる撮像装置100を用いた撮像方法について説明した。続いて、図11のステップS106で示した、カラー画素生成部116によるRGB画像の生成処理について詳細に説明する。
図12は、図11のステップS106で示した、カラー画素生成部116によるRGB画像の生成処理について説明する流れ図である。ここでは、図6及び図7に示したように、1つのマイクロレンズ104aに対応するのが縦8画素×横8画素の計64画素の領域である場合を例にして説明する。
まず、カラー画素生成部116は、マイクロレンズアレイ104を構成するマイクロレンズ104aの数を表す作業用の変数kを0に設定する(ステップS121)。ステップS121で変数kを0に設定すると、続いてカラー画素生成部116は、上述した縦8画素×横8画素の計64画素の領域を8行×8列の行列に置き換えた場合における行の要素を表す変数nを0に設定し(ステップS122)、続いて当該行列の列の要素を表す変数mを0に設定する(ステップS123)。
各変数を0に設定すると、続いて、カラー画素生成部116は、上述した64画素の領域で区分けされた領域内の、シアン(Cy[n][m])、マゼンタ(Mg[n][m])、イエロー(Ye[n][m])の値を算出する(ステップS124)。Cy[n][m]、Mg[n][m]、Ye[n][m]は、それぞれ、64画素の領域の四隅の画素からの距離に応じた加重平均で算出される。まずは算出対象の画素と、四隅のそれぞれの画素との距離を算出する。四隅の画素から算出対象の画素までの距離d0、d1、d2、d3は、それぞれ下記の数式1〜数式4で表すことができる。なお、図7に示したように、四隅のCy、Mg、Yeの各画素の位置は異なっているので、四隅のシアン、マゼンタ、イエローの各画素の位置から算出対象の画素までの距離d0、d1、d2、d3は、シアン、マゼンタ、イエローでそれぞれ異なることになる。従って、下記の数式1〜数式4は、シアン、マゼンタ、イエローでそれぞれ異なる式で表すのが適切であるが、ここでは概念を示すに留め、以下においては説明を簡略化するため、シアン、マゼンタ、イエローの各画素に対するd0、d1、d2、d3の区別は省略する。
Figure 0005394814
カラー画素生成部116が四隅の画素から算出対象の画素までの距離d0、d1、d2、d3を算出すると、続いてカラー画素生成部116は、上記数式1〜数式4で求めた四隅の画素から算出対象の画素までの距離d0、d1、d2、d3の和dを下記の数式5で求める。
Figure 0005394814
四隅の画素から算出対象の画素までの距離の和を算出すると、当該画素におけるCy[n][m]、Mg[n][m]、Ye[n][m]を求めることができる。Cy[n][m]、Mg[n][m]、Ye[n][m]は、上記数式5で求めた四隅の画素から算出対象の画素までの距離d0、d1、d2、d3の和dを用いて、下記の数式6〜数式8で求めることが出来る。なお、下記の数式6〜8において、Cy0、Cy1、Cy2、Cy3は、図7に示したCy0、Cy1、Cy2、Cy3の画素におけるシアンの値であり、Mg0、Mg1、Mg2、Mg3は、図7に示したMg0、Mg1、Mg2、Mg3の画素におけるマゼンタの値であり、Ye0、Ye1、Ye2、Ye3は、図7に示したYe0、Ye1、Ye2、Ye3の画素におけるイエローの値である。
Figure 0005394814
このようにシアン(Cy[n][m])、マゼンタ(Mg[n][m])、イエロー(Ye[n][m])を算出すると、続いてカラー画素生成部116は、上述した64画素の領域で区分けされた領域内の輝度信号Y[k][n][m]を用いて、この区分けされた領域の画素におけるR[n][m]、G[n][m]、B[n][m]の値を求める(ステップS125)。R、G、Bは、Cy、Mg、Yeの補色の関係であるので、各画素の輝度信号Y(Y[n][m])から減算することで当該画素のR、G、Bの値を導出できる。R[n][m]、G[n][m]、B[n][m]は、下記の数式9〜数式11で求めることが出来る。
Figure 0005394814
上記ステップS125でR[n][m]、G[n][m]、B[n][m]を算出すると、カラー画素生成部116は続いてmの値を1つインクリメントする(ステップS126)。mの値を1つインクリメントすると、カラー画素生成部116は続いてmの値が8未満であるかどうかを判定する(ステップS127)。mの値が8未満であれば上記ステップS124に戻る。一方、mの値が8以上であれば、カラー画素生成部116は続いてnの値を1つインクリメントする(ステップS128)。nの値を1つインクリメントすると、カラー画素生成部116は続いてnの値が8未満であるかどうかを判定する(ステップS129)。nの値が8未満であれば上記ステップS123に戻り、mの値をリセットする。一方、nの値が8以上であれば、これは1つのマイクロレンズ104aに割り当てられた64個の画素の全てに対してR、G、Bの値の算出が完了したことを意味するので、カラー画素生成部116は続いてkの値を1つインクリメントする(ステップS130)。kの値を1つインクリメントすると、カラー画素生成部116は続いてkの値がマイクロレンズアレイ104を構成するマイクロレンズ104aの数未満であるかどうかを判定する(ステップS131)。kの値がマイクロレンズ104aの数未満であれば上記ステップS122に戻り、nの値をリセットする。一方、kの値がマイクロレンズ104aの数以上であれば、これは全てのマイクロレンズ104aに対するR、G、Bの値の算出が完了したことを意味するので、一連の処理を終了する。
なお、上記数式6〜数式8では、Cy[n][m]、Mg[n][m]、Ye[n][m]は単純に四隅からの距離に応じた加重平均によって算出したが、本発明はかかる例に限定されない。図6及び図7に示した例では、シアン、マゼンタ、イエローの情報を取得する補色部は、円の外側に位置しているため、マイクロレンズ104aを通過した光がこれらの補色部に十分照射されない場合が考えられる。従って、補色部の光量が不足しているときは、上記数式6〜数式8では、平均化している右辺部分を実光量に則して変更しても良い。例えば、下記の数式12〜数式14に示したように、所定の係数αを乗じてCy[n][m]、Mg[n][m]、Ye[n][m]を算出してもよい。
Figure 0005394814
なお、この数式12〜14では、Cy[n][m]、Mg[n][m]、Ye[n][m]について全て同じ係数αを用いているが、本発明はかかる例に限定されないことは言うまでも無い。シアン、マゼンタ、イエローで別々の係数を用いても良く、シアン、マゼンタ、イエローの内のいずれか2つは、他の1つと異なる係数を用いても良い。
また、補色部の光量不足を補うために、例えば図13に示したように、マイクロレンズ104aを透過した光が照射される領域の内側に補色部が位置するように撮像センサ106を構成してもよい。図13に示した例では、シアンの情報を得る画素はCy0〜Cy3で示した画素であり、マゼンタの情報を得る画素はMg0〜Mg3で示した画素であり、イエローの情報を得る画素はYe0〜Ye3で示した画素である。また、図13のY0からY39の画素からなる領域にマイクロレンズ104aを透過した光が照射されることで得られる輝度信号からは、画素Cy0〜Cy3、Mg0〜Mg3、Ye0〜Ye3にマイクロレンズ104aを透過した光が照射されることで得られるシアン、マゼンタ、イエローの情報を参照することでRGB信号を得ることができる。
また、補色部の光量不足を補うために、マイクロレンズアレイ104に替えて、例えば図14に示したような、矩形型のマイクロレンズ104a´が規則的に配列されたマイクロレンズアレイ104´を用いてもよい。矩形型のマイクロレンズ104a´を用いることで透過光の照射範囲が広くなり、補色部の光量不足を補うことができる。
以上、カラー画素生成部116によるRGB画像の生成処理について説明した。
なお、ここまではシアン、マゼンタ、イエローの情報を得るための補色フィルタが貼付された撮像センサ106を用いた場合について説明したが、本発明はかかる例に限定されない。本発明は、赤、緑、青の情報を得るための原色フィルタが貼付された撮像センサを適用してもよい。図15及び図16は、赤、緑、青の情報を得るための原色フィルタが貼付された撮像センサの構成例について示す説明図である。図15に示した例は、図7に示した補色フィルタが貼付された撮像センサと同様の構成を有する場合のものである。画像の再構成に用いられる画素は、図15に示した画素の内、Y0からY51で示したものにあたる。その他の領域の画素にはそれぞれ原色フィルタが貼付され、赤、緑、青の情報を得るように構成されている。図15における各画素のR[n][m]、G[n][m]、B[n][m]の値は、それぞれ下記の数式で算出することができる。なお、四隅の画素から算出対象の画素までの距離d0、d1、d2、d3、及びd0、d1、d2、d3の和dの算出式は上記数式1〜数式5と同一のものを用いる。
Figure 0005394814
一方、図16は、図13に示した、マイクロレンズ104aを透過した光が照射される領域の内側に補色部が位置するように構成された撮像センサ106と同様の構成を有するものである。図16に示したように、マイクロレンズ104aを透過した光が照射される領域の内側に赤、緑、青の情報を取得する原色部が位置するように、撮像センサ106を構成してもよい。
以上説明したように本発明の一実施形態によれば、マイクロレンズアレイ104の透過光からカラー画像信号を生成する場合において、1つのマイクロレンズ104aに対して撮像センサ106の複数の画素が割り当てられた領域を設ける。当該領域は、マイクロレンズ104aの光軸を中心とした領域は輝度信号を、当該領域の周辺領域は補色信号または原色信号を、それぞれ得るような構成とする。そして、カラー画像信号を生成する際には、当該領域の四隅の画素からの距離に応じた加重平均によって領域内の各画素の補色データまたは原色データを算出し、算出された各画素の補色データまたは原色データ、及び当該画素の輝度データを用いて、各画素の色情報を算出する。
その結果、本発明の一実施形態によれば、周辺の画素を使って輝度補間処理を行わないので、解像度の低下や周辺部に不自然なエラーパターンが発生することは無く、広い範囲から加重平均化処理値を参照するために、従来のデジタルスチルカメラで用いられているベイヤー補間を用いた場合に比べ、位相ずれによる偽色の発生を低減させることができる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態では、撮像センサ106は、マイクロレンズ104aの光軸を中心とした領域は輝度信号を、当該領域の周辺領域は補色信号または原色信号を、それぞれ得るような構成としたが、本発明はかかる例に限定されない。撮像センサは、上記実施形態とは逆に、例えばマイクロレンズ104aの光軸を中心とした領域は補色信号または原色信号を、当該領域の周辺領域は輝度信号を、それぞれ得るような構成としてもよい。
また例えば、上記実施形態では、マイクロレンズアレイ104はマイクロレンズ104aが格子状に配列された構成を有していたが、本発明はかかる例に限定されない。マイクロレンズアレイを構成するマイクロレンズは、格子状以外に、例えばハニカム状に配列されていてもよい。図17は、マイクロレンズ104a´´がハニカム状に規則的に配列されたマイクロレンズアレイ104´´について示す説明図である。なお、図17では、ハニカム構造を有するマイクロレンズアレイ104´´を構成する1つのマイクロレンズ104a´の形状は円状であるが、本発明ではハニカム構造を有するマイクロレンズアレイ構成する1つのマイクロレンズの形状はかかる例に限定されない。
本発明は、光検出素子及び撮像装置に適用可能であり、特に複数のレンズを備えるレンズアレイの透過光を検出する光検出素子及び当該光検出素子を用いた撮像装置に適用可能である。
100 撮像装置
102 主レンズ
104、104´、104´´ マイクロレンズアレイ
104a、104a´、104a´´ マイクロレンズ
106 撮像センサ
108 CPU
110 メモリ
112アナログフロントエンド部及びA/D変換部
114 画像入力部
116 カラー画素生成部
118 画像再構成部
120 デジタルバックエンド部
122 画像圧縮部
124 メモリカードドライバ
126 表示画像生成部
128 表示ドライバ
130 タイミングジェネレータ
132 モータドライバ
134 フォーカスレンズモータ

Claims (4)

  1. 単一平面上に設けられる複数のレンズが規則的に配列されたレンズアレイと、
    前記レンズアレイの各レンズからの透過光の照射範囲に対応して単一平面上に設けられる複数の画素からなる光電変換領域を複数備える光電変換部と、
    を備え、
    各前記光電変換領域は、前記レンズの光軸を中心に設けられる第1領域と、前記第1領域の周辺に設けられる第2領域とで、異なる分光感度特性を有することを特徴とする、光検出素子。
  2. 前記第1領域は輝度信号に相当する分光感度特性を有し、前記第2領域は色信号に相当する分光感度特性を有することを特徴とする、請求項1に記載の光検出素子。
  3. 各前記光電変換領域は、前記画素の分光特性の配列パターンが全て同一であることを特徴とする、請求項1又は2に記載の光検出素子。
  4. 前記第2領域は、前記レンズアレイの各レンズからの透過光の照射範囲に含まれるように設けられることを特徴とする、請求項1〜3に記載の光検出素子。
JP2009111856A 2009-05-01 2009-05-01 光検出素子及び撮像装置 Expired - Fee Related JP5394814B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009111856A JP5394814B2 (ja) 2009-05-01 2009-05-01 光検出素子及び撮像装置
KR1020100004475A KR101679293B1 (ko) 2009-05-01 2010-01-18 광 검출 소자 및 촬상 장치
US12/772,285 US8358365B2 (en) 2009-05-01 2010-05-03 Photo detecting device and image pickup device and method thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111856A JP5394814B2 (ja) 2009-05-01 2009-05-01 光検出素子及び撮像装置

Publications (2)

Publication Number Publication Date
JP2010263353A JP2010263353A (ja) 2010-11-18
JP5394814B2 true JP5394814B2 (ja) 2014-01-22

Family

ID=43361101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111856A Expired - Fee Related JP5394814B2 (ja) 2009-05-01 2009-05-01 光検出素子及び撮像装置

Country Status (2)

Country Link
JP (1) JP5394814B2 (ja)
KR (1) KR101679293B1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205111A (ja) * 2011-03-25 2012-10-22 Casio Comput Co Ltd 撮像装置
JP5963448B2 (ja) 2012-01-13 2016-08-03 キヤノン株式会社 撮像装置
JP5591851B2 (ja) * 2012-03-15 2014-09-17 株式会社東芝 固体撮像装置および携帯情報端末
JP6046912B2 (ja) * 2012-05-01 2016-12-21 キヤノン株式会社 撮像装置及びその制御方法
JP6074201B2 (ja) * 2012-09-21 2017-02-01 キヤノン株式会社 画像処理装置、制御方法、及びプログラム
JP2014095688A (ja) 2012-10-09 2014-05-22 Ricoh Co Ltd 撮像装置及び撮像システム
US9955861B2 (en) 2015-10-16 2018-05-01 Ricoh Company, Ltd. Construction of an individual eye model using a plenoptic camera

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134208B1 (ko) * 2004-10-01 2012-04-09 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 촬상 장치 및 그 방법
JP4826152B2 (ja) * 2005-06-23 2011-11-30 株式会社ニコン 画像合成方法及び撮像装置
JP4659788B2 (ja) 2007-06-22 2011-03-30 富士フイルム株式会社 裏面照射型撮像素子
JP4968527B2 (ja) * 2007-07-10 2012-07-04 ソニー株式会社 撮像装置

Also Published As

Publication number Publication date
JP2010263353A (ja) 2010-11-18
KR20100119712A (ko) 2010-11-10
KR101679293B1 (ko) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5490514B2 (ja) 撮像装置及び撮像方法
JP4421793B2 (ja) ディジタルカメラ
US8358365B2 (en) Photo detecting device and image pickup device and method thereon
US8558915B2 (en) Photographing apparatus and method
JP5394814B2 (ja) 光検出素子及び撮像装置
JP5621056B2 (ja) カラー撮像素子
JP6366251B2 (ja) 撮像装置および撮像装置の制御方法
KR100827238B1 (ko) 고화질 영상을 위한 영상 표시 방법 및 장치
JP4730082B2 (ja) 画像信号処理装置、撮像装置、および画像信号処理方法、並びにコンピュータ・プログラム
JP5898481B2 (ja) 撮像装置及び焦点検出方法
JPWO2012039180A1 (ja) 撮像デバイス及び撮像装置
JP2013521706A (ja) 低解像度画像を用い高解像度画像を生成する方法及び装置
JP2006165975A (ja) 撮像素子、撮像装置、画像処理方法
JP5009880B2 (ja) 撮像装置及び撮像方法
JP4968527B2 (ja) 撮像装置
JP5600814B2 (ja) 画像処理装置及び方法並びに撮像装置
JP5620196B2 (ja) 撮像装置
JP2006270364A (ja) 固体撮像素子および固体撮像装置、ならびにその駆動方法
JP2013057761A (ja) 距離測定装置、撮像装置、距離測定方法
JP2004328117A (ja) ディジタルカメラおよび撮像制御方法
JP6671130B2 (ja) 撮像素子、撮像装置、焦点検出装置ならびに画像処理装置およびその制御方法
JP2011232615A (ja) 撮像装置
JP2010010958A (ja) マルチバンド画像撮像方法および装置
JP2003243639A (ja) 撮像素子及び撮像装置
JP3905342B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Ref document number: 5394814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees