JP5391100B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP5391100B2
JP5391100B2 JP2010022164A JP2010022164A JP5391100B2 JP 5391100 B2 JP5391100 B2 JP 5391100B2 JP 2010022164 A JP2010022164 A JP 2010022164A JP 2010022164 A JP2010022164 A JP 2010022164A JP 5391100 B2 JP5391100 B2 JP 5391100B2
Authority
JP
Japan
Prior art keywords
circuit
load
control signal
transmission circuit
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010022164A
Other languages
English (en)
Other versions
JP2011160618A (ja
Inventor
典之 篠塚
雄次 クラウジオ 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010022164A priority Critical patent/JP5391100B2/ja
Priority to US13/011,349 priority patent/US8988899B2/en
Priority to CN201110032752.2A priority patent/CN102142782B/zh
Publication of JP2011160618A publication Critical patent/JP2011160618A/ja
Application granted granted Critical
Publication of JP5391100B2 publication Critical patent/JP5391100B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電源装置に係り、特に電力変換トランスを有し、1次側と2次側とを絶縁した状態で負荷回路に電力を供給する電源装置に関する。
従来、絶縁型のスイッチング電源として、フライバックトランスを備え、1次側と2次側とを絶縁した状態で負荷回路に電力を供給するためのフライバック型電源装置が知られている。
このフライバック型電源装置においては、2次側の出力電圧をモニターし、フィードバック制御を行うことで所定の電圧が出力されるように制御されている(例えば、特許文献1、特許文献2参照)。
フィードバック制御の方法としては、例えば、以下の3通りの方法等が挙げられる。
(1)2次側の出力電圧(電圧情報)をフォトカプラなどの絶縁素子を介して1次側に伝送し、フィードバックに利用する方法。
(2) 3次コイル(フィードバックコイル)を用いて出力電圧を検出し、フィードバックに利用する方法。
(3) スイッチングするMOSFETのドレイン電圧(フライバック電圧)に基づいて出力電圧を推定してフィードバックに利用する方法。
特許第2679581号公報 特許第3399242号公報
上述した方法において、(1)で示した方法は、出力電圧を直接モニターしているため、2次側の負荷変動に対して、所定の出力電圧を精度良く出力できるが、多出力型とした場合には、モニターしている相以外の相は制御できないため、クロスレギュレーションが生じてしまうという問題点があった。
また、(2)の方法は、(1)の方法と比較して、絶縁デバイスが必要ないという特徴がある。しかしながら、フィードバック相の負荷は一定であるため、2次側の負荷変動に対しては追従することができず、クロスレギュレーションが生じてしまうという問題点があった。
また、(3)の方法は、基本的に(2)の方法と同様の問題が生じていた。
ところで、クロスレギュレーションが生じる原因は、複数の出力相のうち、フィードバック相(フィードバック系)が一定に保たれるのに対して、他の出力相は制御できないことにある。すなわち、多相出力型の電源装置では、各出力相を別々に制御できないため、負荷の条件が異なると異なる出力電圧が出力されることとなっていた。より詳細には、フィードバック相に対して、他の相は低負荷時には出力電圧が高くなる傾向があり、高負荷時には出力電圧が低くなってしまっていた。
また、フィードバック相では、出力相に流れる電流と同じ電流を流すためのブリーダ抵抗が用いられるが、ブリーダ抵抗は電力を消費させる目的で利用されるので、電源装置全体としては、消費電力が増加し、実効的な電力変換効率の低下を招く要因となっていた。
そこで、本発明の目的は、負荷変動に伴う出力電圧の変動を低減し、安定化を図ることができるとともに、実効的な電力変換効率の向上を図ることが可能な電源装置を提供することにある。
上記課題を解決するため、本発明の第1態様は、電源からの入力電圧が1次側に入力され、前記入力電圧を所定の出力電圧に変換して2次側に接続された負荷回路に出力する電力変換トランスと、互いに絶縁された1次側伝送回路と2次側伝送回路とを有し、前記1次側伝送回路に入力された負荷駆動制御信号を、前記2次側伝送回路を介して前記負荷回路に伝送する駆動制御信号伝送回路と、前記電力変換トランスの1次側に前記出力電圧を検出するために設けたコイルが生成するフィードバック電流に基づいて前記出力電圧をフィードバック制御するフィードバック回路と、を備え、前記フィードバック回路は、前記フィードバック電流を前記駆動制御信号伝送回路の1次側伝送回路に動作電力として供給することを特徴としている。
上記構成によれば、電力変換トランスは、電源からの入力電圧が1次側に入力され、入力電圧を所定の出力電圧に変換して2次側に接続された負荷回路に出力する。
駆動制御信号伝送回路は、1次側伝送回路に入力された負荷駆動制御信号を、2次側伝送回路を介して負荷回路に伝送する。
これらと並行してフィードバック回路は、電力変換トランスの1次側に出力電圧を検出するために設けたコイルが生成するフィードバック電流に基づいて出力電圧をフィードバック制御し、フィードバック電流を駆動制御信号伝送回路の1次側伝送回路に動作電力として供給する。
本発明の第2態様は、第1態様において、前記フィードバック回路は、前記負荷回路の負荷が小さい場合に、前記フィードバック電流の電流量を確保するためのブリーダ抵抗を備えていることを特徴としている。
上記構成によれば、負荷回路の負荷が小さい場合であってもブリーダ抵抗によりフィードバック電流の電流量を確保することができる。
本発明の第3態様は、第1態様または第2態様において、前記駆動制御信号伝送回路は、フォトカプラ、カップリングコンデンサ、カップリングコイルなどの絶縁素子を介して前記負荷駆動制御信号を伝送していることを特徴としている。
上記構成によれば、高効率で1次側伝送回路と2次側伝送回路との間の絶縁状態を保ったまま負荷駆動制御信号を伝送することができる。
本発明の第4態様は、第1態様ないし第3態様のいずれかにおいて、前記負荷回路は、それぞれPWM制御される複数のスイッチング素子を備え、前記駆動制御信号伝送回路には、前記負荷駆動制御信号としてPWM制御信号が入力される、ことを特徴としている。
上記構成によれば、駆動制御信号伝送回路は、入力されたPWM制御信号を複数のスイッチング素子に1次側伝送回路と2次側伝送回路との間の絶縁状態を保ったまま伝送する。
本発明の第1態様によれば、フィードバック回路は、電力変換トランスの1次側に出力電圧を検出するために設けたコイルが生成するフィードバック電流に基づいて出力電圧をフィードバック制御し、フィードバック電流を駆動制御信号伝送回路の1次側伝送回路に動作電力として供給するので、フィードバック電流は、1次側伝送回路における負荷駆動制御信号の伝送状態、すなわち、負荷回路の負荷変動状態に伴って変動することとなり、負荷回路の負荷変動に伴う出力電圧の変動を低減し、安定化を図ることができる。さらにフィードバック電流を、駆動制御信号伝送回路で有効に利用することができ、実効的な電力変換効率の向上を図れる。
本発明の第2態様によれば、負荷回路の負荷が小さい場合であってもブリーダ抵抗によりフィードバック電流の電流量を確保することができるので、出力電圧が上昇して消費電力が無駄に増加するのを抑制することができる。
本発明の第3態様によれば、高効率で1次側伝送回路と2次側伝送回路との間の絶縁状態を保ったまま負荷駆動制御信号を伝送することができる。
本発明の第4態様によれば、負荷回路の負荷状態は、負荷駆動制御信号であるPWM制御信号に同期し、比例することとなるので、負荷回路の負荷変動に伴う出力電圧の変動をより確実に低減し、安定化を図ることができる。
次に本発明の好適な実施の形態について図面を参照して説明する。
まず、具体的な説明に先立ち、本発明の原理について説明する。
図1は、本発明の概要構成説明図である。
電源装置10は、電力変換トランス11により電源12から入力された1次側の入力電圧Vinを所定の出力電圧Voutに変換して2次側に接続された所定の負荷回路13に出力するとともに、駆動制御信号伝送回路14により車載のECU15から入力されたPWM制御信号群GPWMを絶縁状態で2次側に接続された負荷回路13に出力する電力変換・信号伝送回路16と、を備えている。
電力変換・信号伝送回路16は、大別すると、上述した電力変換トランス11を有し、電力変換トランスを制御して電力変換を行う電力変換回路17と、上述した駆動制御信号伝送回路14とを備えている。
電力変換トランス11は、入力電圧Vinが入力される1次コイルと、1次コイルと共働して、所定の出力電圧Voutに変換し複数系統に出力するための複数の2次コイルと、を備えている。さらに電力変換トランス11は、複数の2次コイルから出力される出力電圧Voutを所定の電圧に安定させるために電力変換トランス11の1次側を流れる電流の電圧を内部的に検出し、フィードバック端子FBから制御信号伝送回路の1次側に動作電力FBPWとして供給する3次コイルと、を備えている。これら1次コイル、複数の2次コイル及び3次コイルについては、後に詳述する。
駆動制御信号伝送回路14は、ECU15から入力されるPWM制御信号群GPWMを絶縁状態で2次側に伝送するための1次側伝送回路14Aと、1次側伝送回路14Aから伝送されたPWM制御信号群GPWMを負荷回路13に出力する2次側伝送回路14Bと、を備えている。
図2は、実施形態の電源装置を用いたモーター駆動装置の概要構成図である。
このモーター駆動装置20は、電気自動車あるいはハイブリッド自動車などにおいて、電気モーター(本願における三相交流モーター26)を駆動する装置であり、電源である車載のバッテリーとして構成された電源12と、電源12から供給された直流電源の平滑化を行う平滑化コンデンサ22と、モーター駆動装置20を中枢的に制御するコントローラ23と、複数のIGBT(Insulatede Gate Bipolar Transistor)を備えたインバーター回路24と、インバーター回路24を構成するIGBTを駆動するIGBTドライバー部25と、インバーター回路24により駆動される三相交流モーター26と、三相交流モーター26の各相の駆動電流を検出する電流センサー27−U、27−V、27−Wと、を備えている。
コントローラー23は、マイクロコンピューターとして構成されており、図示しないMPU、ROM、RAMを備え、MPUがROMに予め記憶した制御プログラムに基づいて、RAMをワークエリアとして、各種処理を行っている。
さらにコントローラ23は、PWM制御信号群GPWMを負荷回路13に供給する。
インバーター回路24は、直列接続された二つのIGBTを有するIGBT直列回路24U、24V、24Wを備え、IGBT直列回路24U、24V、24Wがバッテリー21の正極及び負極間に並列接続されている。
ここで、IGBT直列回路24U、24V、24Wは、同一回路構成であるので、IGBT直列回路24Uを例として説明する。
IGBT直列回路24Uは、正側アームを構成するIGBT31Hと、IGBT31Hのコレクタ−エミッタ間に並列に接続されたダイオード32Hと、IGBT31Hのコレクタ−エミッタ間に並列に接続されたコンデンサ33Hと、負側アームを構成するIGBT31Lと、IGBT31Lのコレクタ−エミッタ間に並列に接続されたダイオード32Lと、IGBT31Lのコレクタ−エミッタ間に並列に接続されたコンデンサ33Lと、を備えている。
ここで、各IGBT31H、31Lのゲートは、IGBTドライバー部25に接続されている。
IGBTドライバー部25は、U相に対応するU相IGBT駆動部25UH、25UL、V相に対応するV相IGBT駆動部25VH、25VL、W相に対応するW相IGBT駆動部25WH、25WLを備えている。
ここで、コントローラ23は、U相IGBT駆動部25UHに対応するPWM制御信号UH、U相IGBT駆動部25ULに対応するPWM制御信号ULを出力し、U相に対応するIGBT31H、31Lを駆動する。同様にV相IGBT駆動部25VHに対応するPWM制御信号VH、V相IGBT駆動部25VLに対応するPWM制御信号VLを出力し、V相に対応するIGBT31H、31Lを駆動し、W相IGBT駆動部25WHに対応するPWM制御信号WH、W相IGBT駆動部25WLに対応するPWM制御信号WLを出力し、W相に対応するIGBT31H、31Lを駆動する。
電流センサー27−U、27−V、27−Wは、対応する各相を流れる電流を検出し、電流検出信号SIU、SIV、SIWをコントローラ23に出力する。
上記構成において、U相IGBT駆動部25UH、25UL、V相IGBT駆動部25VH、25VL、W相IGBT駆動部25WH、25WL及び対応するIGBTは、全体として負荷回路13に相当している。
図3は、コントローラの概要構成ブロック図である。
コントローラ23は、バッテリーとして構成された電源12から電力が供給され、電力変換を行うフライバックトランス(電力変換トランス)41と、このフライバックトランス41の3次コイル54に接続され、負荷回路に印加される電圧を1次側で擬似的に検出するための負荷電流検出部47と、3次コイル54を流れた電流の一部が供給されることにより発生した電圧を分圧して、出力電圧Voutを安定させるための電力変換制御に用いる電圧VLDとして出力する分圧回路48と、電圧VLDに基づいて、電力変換におけるPWM(Pulse Width Modulation)制御を行うPWM制御部49と、を備えている。
ここで、負荷電流検出部47及びPWM制御部49は、フィードバック回路を構成している。
負荷電流検出部47は、3次コイル54を逆流電流が流れるの防止するためのダイオード47−1と、3次コイル54を流れる電流の交流成分を除去するためのバイパスコンデンサ47−2と、負荷回路13の低負荷時に1次側の電力が低すぎることに起因して出力電圧Voutが上昇してしまうのを抑制するために、負荷電流検出部47に所定電流を流すために接続されるブリーダ抵抗47−3と、を備えている。
また、PWM制御部49は、電圧VLDと、基準電圧VREFと、の差を増幅して誤差増幅信号を出力する誤差増幅器51と、PWM制御用の所定の三角波信号を生成する発振器(三角波生成回路)52と、発振器52の出力した三角波信号と誤差増幅信号と、を比較して、PWM制御信号CPWMをスイッチングトランジスター44のゲートに出力して、スイッチング動作を行わせる比較器(コンパレータ)53と、を備えている。
さらに3次コイル54を流れた電流のうち、ブリーダ抵抗47−3及び分圧回路48を流れた以外の電流は、フィードバック端子FBを介して、駆動制御信号伝送回路14の1次側伝送回路14Aに動作電力FBPWとして供給される。
駆動制御信号伝送回路14は、図3に示すように、入力されたPWM制御信号UH、UL、VH、VL、WH、WLのバッファリングを行うバッファ回路62と、バッファ回路62から出力されたPWM制御信号UH、UL、VH、VL、WH、WLのそれぞれにより駆動される複数(本実施形態では、6個)のフォトカプラ63−1、63−2、…を備えたフォトカプラ部63と、を備えている。
図4は、制御信号伝送回路の詳細構成説明図である。
バッファ回路62は、PWM制御信号WHが入力され、PWM制御信号WHを所定倍率で増幅して出力するバッファアンプB1と、PWM制御信号VHが入力され、PWM制御信号VHを所定倍率で増幅して出力するバッファアンプB2と、PWM制御信号UHが入力され、PWM制御信号UHを所定倍率で増幅して出力するバッファアンプB3と、PWM制御信号ULが入力され、PWM制御信号ULを所定倍率で増幅して出力するバッファアンプB4と、PWM制御信号VHが入力され、PWM制御信号VHを所定倍率で増幅して出力するバッファアンプB5と、PWM制御信号WHが入力され、PWM制御信号WHを所定倍率で増幅して出力するバッファアンプB6と、を備えている。
さらにバッファ回路62は、ECU15から入力された第1出力イネーブル信号EN1及びコントローラ23から入力された第2出力イネーブル信号EN2が入力され、両イネーブル信号EN1、EN2が“L”レベルである場合に、“H”レベルのイネーブル信号ENをバッファアンプB1〜B6のイネーブル入力端子に入力してPWM制御信号UH、UL、VH、VL、WH、WLの出力を許可するNOR回路E1と、を備えており、各バッファアンプB1〜B6およびNOR回路E1には、動作電力FBPWが供給され、フォトカプラ63−1、63−2、…を構成する複数のLEDには、各バッファアンプB1〜B6を介して間接的に動作電力FBPWが供給される。
これにより、バッファアンプB1〜B6及びフォトカプラ63−1、63−2、…を構成する複数のLED(=1次側伝送回路14A)に動作電力FBPWが供給されることとなる。
ところで、バッファ回路62及びフォトカプラ63−1、63−2、…を構成する複数のLEDの消費電力は、PWM制御信号UH、UL、VH、VL、WH、WLの波形に応じたものとなるため、2次側の負荷変動、すなわち、U相IGBT駆動部25UH、25UL、V相IGBT駆動部25VH、25VL、W相IGBT駆動部25WH、25WL及び対応するIGBTを合わせた負荷に対して比例(略同期)したものとなっている。
したがって、フィードバック端子FBを介して、流れる電流ISETは、2次側の負荷変動に追従したものとなり、3次コイル54を流れる電流も次側の負荷変動に追従したものとなって出力電圧Voutの変動を抑制することができることとなる。
次に実施形態の動作について説明する。
コントローラ23は、電源装置10が起動されると、電源12から電力が供給され、この電力は、フライバックトランス41の1次コイル42に供給され、ひいては、3次コイル54に供給されて、負荷電流検出部47、分圧回路48およびフィードバック端子FBを介して駆動制御信号伝送回路14の1次側伝送回路14Aに供給される。
電力が供給されると、分圧回路48には、ブリーダ抵抗47−3および1次側伝送回路14Aの負荷状態に応じて規定される所定の電圧、すなわち、負荷回路13が定常動作を行っている場合に相当する電圧が供給され、分圧回路48を構成する抵抗の分圧比に応じて分圧されて、電圧VLDとしてPWM制御部49に出力される。
これにより、PWM制御部49の誤差増幅器51は、電圧VLDと、基準電圧VREFと、の差を増幅して誤差増幅信号を比較器53の反転入力端子に出力する。
これと並行して発振器52は、PWM制御用の所定の三角波信号を生成して、比較器53の非反転入力端子に出力する。
比較器53は、発振器52の出力した三角波信号と誤差増幅器51の出力した誤差増幅信号と、を比較して、PWM制御信号CPWMを生成し、スイッチングトランジスター44のゲートに出力して、スイッチング動作を行わせる。
この結果、フライバックトランス41の2次コイル55−1、55−2、……には、所定電圧の電力が供給され、負荷回路に供給される。
したがって、従来、フライバックトランス41の出力電圧制御のために、ブリーダ抵抗により無駄に消費されていた電力の一部を、1次側伝送回路14Aとして機能するバッファアンプB1〜B6及びフォトカプラ63−1、63−2、…を構成する複数のLEDの動作電力FBPWとして供給することができ、電源装置10の実効的な消費電力の低減化が図れる。
さらに、1次側伝送回路14Aに供給される動作電力FBPW(およびその電流値ISET)、負荷回路13の負荷状態に比例するので、電力変換回路17側で、負荷回路の動作状態を確実にシミュレートでき、負荷回路13側でオーバーシュートやクロスレギュレーションが発生したり、応答速度が遅くなったりしてしまうという不具合が生じることがない。
すなわち、出力電圧Voutの安定度の向上を図ることができる。
さらに、従来は、ブリーダ抵抗によって無駄に熱として消費されていた電力を、1次側伝送回路14Aで有効に利用することができ、実効的な電力変換効率を向上させることができる。
以上の説明においては、1次側伝送回路14Aを構成し、駆動制御信号であるPWM制御信号を絶縁状態で伝送する絶縁素子として、フォトカプラを用いていたが、コンデンサをカップリングしたカップリングコンデンサ、コイルをカップリングしたカップリングコイル等の絶縁素子を用いることが可能である。
次により具体的な実施例について説明する。
実際の回路においては、最低限の部品構成で回路を構成しているため、部品点数の増加及びコストパフォーマンスの観点から、1次側の負荷と2次側の負荷とを厳密に合わせる必要はない。
例えば、実際の回路の負荷が、
・2次側のゲート駆動回路の消費電力(IGBTゲート非駆動時):約10mA
・2次側のゲート駆動回路の消費電力(IGBTゲート駆動時) :約30mA
・1次側のフォトカプラの消費電流=約5mA×6相 :約24mA
・他の1次側回路の消費電流 :約1mA
であった場合には、1次側消費電流は、1〜25mAの範囲で変化し、2次側の消費電流は、10〜30mAの範囲で変化することとなる。
ところで、フライバックトランスを用いたスイッチング電源では、負荷が小さい(上述の例の場合、1次側消費電流が10mA未満)と、2次側の消費電流がそれほど高くないにもかかわらず、出力電圧Voutが上昇するため、必要最低限の負荷電流を流す必要がある。したがって、少なくとも10mA程度の電流を流すためのブリーダ抵抗(図3におけるブリーダ抵抗47−3に相当)を設けて電流バランスをとることになっている。
このような構成を採ったとしても、3次コイル54を流れる電流を完全固定負荷のブリーダ抵抗を設けて、熱に変換して消費してしまう場合と比較して、無駄に消費される電力を低減し、実効的な消費電力の低減を図ることができる。
図5は、負荷回路の負荷状態と、出力電圧の変動の関係を説明する図である。
また、2次側負荷の変動に追従してフィードバックの負荷も変わるので出力電圧も図5(a)に符号L1で示すように、3次コイル54を流れるフィードバック電流により完全に制御されている相と比較すれば出力電圧変化はあるものの、制御されている相に対して出力電圧Voutが高くなる相(図5(a)中、符号LHで示す)及び制御されている相に対して出力電圧Voutが低くなる相(図5(a)中、符号LLで示す)に対してその電圧変動を両者を併せたようなものとすることができ、図5(b)に示すように、負荷回路13の低負荷時の出力電圧に対して、高負荷時の出力電圧が大きく低下してしまう場合と比較して出力電圧変化を小さくした、安定した出力電圧Voutを得ることができる。
図1は、本発明の概要構成説明図である。 実施形態の電源装置を用いたモーター駆動装置の概要構成図である。 コントローラの概要構成ブロック図である。 制御信号伝送回路の詳細構成説明図である。 負荷回路の負荷状態と、出力電圧の変動の関係を説明する図である。
10 電源装置
11 電力変換トランス
12 電源
13 負荷回路
14 駆動制御信号伝送回路
14A 1次側伝送回路
14B 2次側伝送回路
15 ECU
16 電力変換・信号伝送回路
17 電力変換回路
31H、31L IGBT(スイッチング素子)
41 フライバックトランス(電力変換トランス)
42 1次コイル
44 スイッチングトランジスター
47 ブリーダ抵抗
49 PWM制御部
62 バッファ回路
63 フォトカプラ部
63−1、63−2 フォトカプラ(1次側伝送回路、2次側伝送か一路絶縁素子)
UH、UL、VH、VL、WH、WL PWM制御信号

Claims (4)

  1. 電源からの入力電圧が1次側に入力され、前記入力電圧を所定の出力電圧に変換して2次側に接続された負荷回路に出力する電力変換トランスと、
    互いに絶縁された1次側伝送回路と2次側伝送回路とを有し、前記1次側伝送回路に入力された負荷駆動制御信号を、前記2次側伝送回路を介して前記負荷回路に伝送する駆動制御信号伝送回路と、
    前記電力変換トランスの1次側に前記出力電圧を検出するために設けたコイルが生成するフィードバック電流に基づいて前記出力電圧をフィードバック制御するフィードバック回路と、を備え、
    前記フィードバック回路は、前記フィードバック電流を前記駆動制御信号伝送回路の1次側伝送回路に動作電力として供給することを特徴とする電源装置。
  2. 請求項1記載の電源装置において、
    前記フィードバック回路は、前記負荷回路の負荷が小さい場合に、前記フィードバック電流の電流量を確保するためのブリーダ抵抗を備えていることを特徴とする電源装置。
  3. 請求項1または請求項2記載の電源装置において、
    前記駆動制御信号伝送回路は、フォトカプラ、カップリングコンデンサ、カップリングコイルなどの絶縁素子を介して前記負荷駆動制御信号を伝送していることを特徴とする電源装置。
  4. 請求項1ないし請求項3のいずれかに記載の電源装置において、
    前記負荷回路は、それぞれPWM制御される複数のスイッチング素子を備え、
    前記駆動制御信号伝送回路には、前記負荷駆動制御信号としてPWM制御信号が入力される、
    ことを特徴とする電源装置。
JP2010022164A 2010-02-03 2010-02-03 電源装置 Expired - Fee Related JP5391100B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010022164A JP5391100B2 (ja) 2010-02-03 2010-02-03 電源装置
US13/011,349 US8988899B2 (en) 2010-02-03 2011-01-21 Switching regulator device
CN201110032752.2A CN102142782B (zh) 2010-02-03 2011-01-27 电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022164A JP5391100B2 (ja) 2010-02-03 2010-02-03 電源装置

Publications (2)

Publication Number Publication Date
JP2011160618A JP2011160618A (ja) 2011-08-18
JP5391100B2 true JP5391100B2 (ja) 2014-01-15

Family

ID=44341525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022164A Expired - Fee Related JP5391100B2 (ja) 2010-02-03 2010-02-03 電源装置

Country Status (3)

Country Link
US (1) US8988899B2 (ja)
JP (1) JP5391100B2 (ja)
CN (1) CN102142782B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9602006B2 (en) * 2012-10-24 2017-03-21 Infineon Technologies Ag Method and a controller for determining a demagnetization zero current time for a switched mode power supply
JP5846173B2 (ja) * 2013-09-18 2016-01-20 株式会社デンソー 絶縁電源装置
JP5842888B2 (ja) * 2013-09-24 2016-01-13 株式会社デンソー 絶縁電源装置
JP6315441B2 (ja) * 2013-12-17 2018-04-25 住友重機械工業株式会社 作業機械
DE102015214165A1 (de) 2015-07-27 2017-02-02 Continental Automotive Gmbh Schaltregler zum Erzeugen einer Mehrzahl von Gleichspannungen
US9933805B2 (en) * 2016-06-27 2018-04-03 Abb Schweiz Ag Power converter using wide band-gap devices
JP7040186B2 (ja) * 2018-03-20 2022-03-23 株式会社デンソー 絶縁電源装置
CN111614260B (zh) * 2019-06-25 2022-05-03 南京拓途电子有限公司 一种低频下可靠驱动线圈负载的电路
KR20210018598A (ko) * 2019-08-06 2021-02-18 현대자동차주식회사 차량용 전력 변환 시스템 및 그 제어 방법
US11813962B2 (en) 2020-10-09 2023-11-14 Our Next Energy, Inc. Supplying power to an electric vehicle
CN116054594B (zh) * 2023-04-01 2023-06-23 苏州美思迪赛半导体技术有限公司 一种同时具备模拟反馈和数字反馈的开关电源系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155672A (en) * 1990-08-09 1992-10-13 Heart Interface Corporation Switched multi-tapped transformer power conversion method and apparatus
JP2679581B2 (ja) * 1993-08-16 1997-11-19 日本電気株式会社 スイッチング電源回路
US5726901A (en) * 1996-01-25 1998-03-10 Dell Usa, L.P. System for reporting computer energy consumption
JP3399242B2 (ja) 1996-08-05 2003-04-21 松下電器産業株式会社 電源回路
JP2001156252A (ja) * 1999-11-29 2001-06-08 Hitachi Ltd パワーデバイスの駆動装置
US6693805B1 (en) * 2002-07-31 2004-02-17 Lockheed Martin Corporation Ripple cancellation circuit for ultra-low-noise power supplies
JP2004215469A (ja) * 2003-01-09 2004-07-29 Renesas Technology Corp スイッチング電源装置および電源制御用半導体集積回路
JP2005168167A (ja) * 2003-12-02 2005-06-23 Honda Motor Co Ltd Dc−dcコンバータ
JP4671019B2 (ja) * 2005-01-14 2011-04-13 サンケン電気株式会社 多出力型dc−dcコンバータ
JP2007295761A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd スイッチング電源装置
US7385832B2 (en) * 2006-07-03 2008-06-10 Semiconductor Components Industries, L.L.C. Method of forming a secondary-side controller and structure therefor
JP2009165316A (ja) * 2008-01-10 2009-07-23 Panasonic Corp スイッチング電源装置、およびそのスイッチング電源装置に使用される半導体装置
US7764516B2 (en) * 2008-02-21 2010-07-27 System General Corporation Method and apparatus of providing synchronous regulation circuit for offline power converter
US8891257B2 (en) 2008-06-23 2014-11-18 Telefonaktiebolaget L M Ericsson (Publ) Drive circuit for a synchronous rectifier and a method for controlling it

Also Published As

Publication number Publication date
CN102142782A (zh) 2011-08-03
CN102142782B (zh) 2015-07-15
US20110188271A1 (en) 2011-08-04
US8988899B2 (en) 2015-03-24
JP2011160618A (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5391100B2 (ja) 電源装置
JP5938008B2 (ja) 電力変換装置
JP5573587B2 (ja) 車両用回転電機
WO2016103990A1 (ja) 電源装置
JP5293155B2 (ja) Dc−dcコンバータ
US9160238B2 (en) Power converter with current feedback loop
JP2015204639A (ja) 電力変換装置及びその制御方法
US10193464B2 (en) DC-DC converter
JP5935789B2 (ja) 電力変換装置及び電力変換方法
JP5252214B2 (ja) スイッチング電源装置
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP2012257415A (ja) スイッチング電源回路および電動機の制御装置
JP2009247118A (ja) トランス結合型昇圧器のスイッチング制御方法
JP6384316B2 (ja) 電力変換装置及び電力変換装置の制御方法
JP2016195511A (ja) 電力変換装置
WO2017082033A1 (ja) 多相コンバータ
JP2008172979A (ja) スイッチング電源装置
JP2011160565A (ja) スイッチング電源装置
JP5252213B2 (ja) 電源装置
JP2013005461A (ja) 電源回路
JP2019009848A (ja) Dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP2006180606A (ja) 電圧駆動素子の制御装置
JP2013192406A (ja) 電源装置
JP5372564B2 (ja) 電源装置
JP2003299367A (ja) インバータ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees