JP5384154B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5384154B2
JP5384154B2 JP2009064412A JP2009064412A JP5384154B2 JP 5384154 B2 JP5384154 B2 JP 5384154B2 JP 2009064412 A JP2009064412 A JP 2009064412A JP 2009064412 A JP2009064412 A JP 2009064412A JP 5384154 B2 JP5384154 B2 JP 5384154B2
Authority
JP
Japan
Prior art keywords
valve
valve device
time
oxidant gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009064412A
Other languages
English (en)
Other versions
JP2010218892A (ja
Inventor
幸一郎 宮田
千大 和氣
純平 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009064412A priority Critical patent/JP5384154B2/ja
Publication of JP2010218892A publication Critical patent/JP2010218892A/ja
Application granted granted Critical
Publication of JP5384154B2 publication Critical patent/JP5384154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池システムに関する。
近年、水素(燃料ガス)と、酸素を含む空気(酸化剤ガス)とが供給されることで発電する燃料電池の開発が進められ、例えば、燃料電池車の電力源として応用されつつある。このような燃料電池は、その内部に、水素が通流するアノード流路(燃料ガス流路)と、空気が通流するカソード流路(酸化剤ガス流路)とを有している。
ところが、燃料電池の発電停止中、つまり、燃料電池と外部負荷とが電気的に遮断された状態において、外部からカソード流路に空気が流入し、この空気(酸素)がカソードの触媒(Pt、Ru等)下で電極反応により消費されると、カソードの電位が上昇したり、残留する水分が分解して活性の高いOHラジカル等が発生する虞がある。このように、カソードの電位が上昇したり、OHラジカル等が発生すると、カソードを形成するカーボンペーパの炭素(C)や触媒が酸化したり、電解質膜が分解し、燃料電池が劣化してしまう。
また、カソード流路の空気の一部は、電解質膜を透過して、アノードにクロスリークし、このクロスリークした空気が、アノードの触媒下で消費されると、アノードの電位が上昇したり、OHラジカル等が発生し、アノードを形成するカーボンペーパの炭素(C)や触媒が酸化したり、電解質膜が分解し、燃料電池が劣化してしまう。
そこで、カソード流路の上流及び下流に開閉弁(第1弁装置、第2弁装置)をそれぞれ設け、燃料電池の発電停止中、前記開閉弁を閉じて、カソード流路を封鎖し、外部からカソード流路への新たな空気の流入を停止すると共に、カソードからアノードへの空気のクロスリーク量を低減させる燃料電池システムが提案されている(特許文献1参照)。
特開2008−218072号公報
ここで、前記した開閉弁の入口ポートや出口ポートの内径や弁体の外径は、燃料電池の発電中、開閉弁を通流する空気への圧力損失を小さくするため、なるべく大きく設計される。
ところが、このように弁体の外径が大きくなると、その受圧面積が大きくなると共に、開弁応答性が低下、つまり、開弁指令が入力されてから開弁完了に至るまでの時間(開弁動作時間、応答時間)が長くなってしまう。また、システム起動時において、前記開閉弁が開弁完了する前に、コンプレッサ(酸化剤ガス供給手段)が作動し、コンプレッサからの吐出空気の圧力が、前記受圧面積の大きい弁体に作用すると、開弁動作時間さらに長くなり、システム起動に時間を要してしまう。
そこで、本発明は、発電停止中に酸化剤ガス流路を適切に封鎖しつつ、速やかに起動可能な燃料電池システムを提供することを課題とする。
前記課題を解決するための手段として、本発明は、燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスが、それぞれ供給されることで発電する燃料電池と、酸化剤ガスを供給する酸化剤ガス供給手段と、前記酸化剤ガス供給手段から前記酸化剤ガス流路に向かう酸化剤ガスが通流する酸化剤ガス供給流路と、前記酸化剤ガス流路から排出された酸化剤ガスが通流する酸化剤ガス排出流路と、前記酸化剤ガス供給流路に設けられた第1弁装置と、前記酸化剤ガス排出流路に設けられた第2弁装置と、前記酸化剤ガス供給手段、前記第1弁装置及び前記第2弁装置を制御する制御手段と、を備え、前記制御手段は、前記燃料電池の発電中、前記第1弁装置及び前記第2弁装置を開状態とすることで、前記酸化剤ガス流路を開放し、前記燃料電池の発電停止中、前記第1弁装置及び前記第2弁装置を閉状態とすることで、前記酸化剤ガス流路を封鎖する燃料電池システムであって、前記制御手段は、起動スイッチのON信号を検知した第1時刻に基づいて、前記酸化剤ガス供給手段の作動を開始するべき第2時刻を設定し、前記第2時刻から、前記第1弁装置及び前記第2弁装置が開弁開始から開弁完了となるまでに要する開弁動作時間前の時刻であって、前記第1弁装置及び前記第2弁装置に最大遅れて開弁指令を出力するべき第3時刻を設定し、前記第3時刻以前に、前記第1弁装置及び前記第2弁装置に開弁指令を出力し、前記第2時刻以後、前記酸化剤ガス供給手段の作動を開始することを特徴とする燃料電池システムである。
このような燃料電池システムによれば、燃料電池の発電停止後、発電停止中(システム停止中)、制御手段が、第1弁装置及び第2弁装置を閉状態とすることで、酸化剤ガス流路を封鎖できる。なお、燃料電池内の酸化剤ガス流路を封鎖することは、カソード封鎖とも称される。
一方、システム起動時、制御手段が、起動スイッチのON信号を検知した第1時刻に基づいて、酸化剤ガス供給手段の作動を開始するべき第2時刻を設定する。
次いで、制御手段は、第2時刻から、第1弁装置及び第2弁装置が開弁開始から開弁完了となるまでに要する開弁動作時間前の時刻であって、第1弁装置及び第2弁装置に最大遅れて開弁指令を出力するべき第3時刻を設定する。
次いで、制御手段は、第3時刻以前に、第1弁装置及び第2弁装置に開弁指令を出力する。したがって、開弁指令から開弁動作時間の経過時に、第1弁装置及び第2弁装置は開弁完了となる。
そして、制御手段は、開弁指令から開弁動作時間の経過以後、つまり、第1弁装置及び第2弁装置の開弁完了以後、酸化剤ガス供給手段の作動を開始させる。
このように、第1弁装置及び前記第2弁装置の開弁完了以後、酸化剤ガス供給手段の作動を開始するので、つまり、第1弁装置及び第2弁装置が開弁開始から開弁完了に至るまで(開弁動作中)、酸化剤ガス供給手段を作動しないので、開弁動作中に酸化剤ガスが第1弁装置及び第2弁装置を通流することはない。よって、第1弁装置及び第2弁装置が、酸化剤ガスの圧力の影響を受けずに、速やかに開弁完了に至ることができる。
すなわち、酸化剤ガス供給手段の作動を開始させるべき第2時刻よりも、開弁動作時間以前に、予め、第1弁装置及び第2弁装置に開弁指令を出力するので、酸化剤ガスの圧力の影響を受けずに、第1弁装置及び第2弁装置が開弁動作できる。
このようにして、第1弁装置及び第2弁装置が速やかに開弁完了するので、システムを速やかに起動できる。
また、前記燃料電池システムにおいて、前記制御手段は、前記開弁指令から前記開弁動作時間の経過前に、起動スイッチのOFF信号を検知した場合、前記第1弁装置及び前記第2弁装置の開弁動作を継続させ、開弁完了とした後、前記酸化剤ガス供給手段から前記酸化剤ガス流路に酸化剤ガスを導入し、システム停止中に前記燃料ガス流路から前記酸化剤ガス流路にリークした燃料ガスを希釈した後、前記第1弁装置及び前記第2弁装置に閉弁指令を出力することを特徴とする。
このような燃料電池システムによれば、制御手段は、第1弁装置及び第2弁装置への開弁指令から開弁動作時間の経過前に、つまり、開弁動作中に、起動スイッチのOFF信号を検知した場合、第1弁装置及び第2弁装置の開弁動作を継続させ、一旦開弁完了とする。この場合において、酸化剤ガス供給手段を作動しないので、第1弁装置及び第2弁装置は速やかに開弁完了する。
そして、第1弁装置及び第2弁装置が開弁完了した後、制御手段は、酸化剤ガス供給手段から酸化剤ガス流路に酸化剤ガスを導入する。これにより、システム停止中に燃料ガス流路から酸化剤ガス流路にリークした燃料ガスが希釈され、高濃度の燃料ガスがそのまま外部に流出することを防止できる。
次いで、燃料ガスを希釈した後、制御手段は、第1弁装置及び第2弁装置に閉弁指令を出力して、第1弁装置及び第2弁装置を閉状態とし、酸化剤ガス流路を封鎖できる。
また、前記燃料電池システムにおいて、前記制御手段は、前記開弁指令から、前記開弁動作時間の経過前に、起動スイッチのOFF信号を検知した場合において、システム停止中に前記燃料ガス流路が掃気されているとき、前記OFF信号に連動して前記第1弁装置及び前記第2弁装置に閉弁指令を出力し、前記酸化剤ガス供給手段を作動しないことを特徴とする。
なお、システム停止中に燃料ガス流路を掃気するとは、燃料ガス流路に掃気ガス(空気、窒素等)を導入し、この掃気ガスによって、燃料ガス流路に残留する水分(水蒸気、結露水)や、残留する燃料ガス(水素等)を、燃料ガス流路から押し出すことを意味する。よって、燃料ガス流路が掃気されると、燃料ガス流路に燃料ガスは略存在せず、燃料ガスが燃料ガス流路から酸化剤ガス流路に略リークしない。
このような燃料電池システムによれば、制御手段は、第1弁装置及び第2弁装置への開弁指令から、開弁動作時間の経過前に、つまり、開弁動作中に、起動スイッチのOFF信号を検知した場合において、システム停止中に燃料ガス流路が掃気されているとき、開弁中の第1弁装置及び第2弁装置を介して、燃料ガスが外部に流出することはないと判断する。そして、制御手段は、起動スイッチのOFF信号に連動して、第1弁装置及び第2弁装置に閉弁指令を出力する。これにより、第1弁装置及び第2弁装置は閉状態となり、速やかに、酸化剤ガス流路を再び封鎖できる。
また、制御手段は、酸化剤ガス供給手段を作動しないので、酸化剤ガス供給手段において、エネルギ(後記する実施形態では電力)が無駄に消費されることもない。
また、前記燃料電池システムにおいて、前記起動スイッチは、第1起動スイッチと、前記第1起動スイッチのON後にONされる第2起動スイッチと、を備え、前記制御手段は、前記第1起動スイッチのON信号を検知した第1時刻に基づいて、前記第2時刻を設定し、前記第3時刻以前に前記第2起動スイッチのON信号を検知した場合、前記第3時刻又は前記第3時刻直前に、前記第1弁装置及び第2弁装置に開弁指令を出力することを特徴とする。
このような燃料電池システムによれば、制御手段は、第1起動スイッチのON信号を検知した第1時刻に基づいて、第2時刻を設定する。
そして、制御手段は、第3時刻以前に第2起動スイッチのON信号を検知した場合、第3時刻又は第3時刻直前に、第1弁装置及び第2弁装置に開弁指令を出力し、開弁動作させる。よって、開弁指令から開弁動作時間の経過後、第1弁装置及び第2弁装置を開弁完了とできる。
前記燃料電池システムにおいて、前記制御手段は、前記第3時刻後に前記第2起動スイッチのON信号を検知した場合、当該第2起動スイッチのON信号に連動して、前記第1弁装置及び第2弁装置に開弁指令を出力し、前記開弁指令から前記開弁動作時間の経過以後、前記酸化剤ガス供給手段の作動を開始することを特徴とする。
このような燃料電池システムによれば、制御手段は、第2起動スイッチがなかなかONされず、第3時刻後に第2起動スイッチのON信号を検知した場合、第2起動スイッチのON信号に連動して、第1弁装置及び第2弁装置に開弁指令を出力する。
そして、この場合においても、制御手段は、第1弁装置及び第2弁装置への開弁指令から開弁動作時間の経過以後、酸化剤ガス供給手段の作動を開始させるので、つまり、第1弁装置及び第2弁装置の開弁動作中に、酸化剤ガスを通流しないので、第1弁装置及び第2弁装置を速やかに開弁完了できる。
本発明によれば、発電停止中に酸化剤ガス流路を適切に封鎖しつつ、速やかに起動可能な燃料電池システムを提供する。
本実施形態に係る燃料電池システムの構成を示す図である。 本実施形態に係るノーマルクローズ型の第1弁装置の側断面図であり、閉状態を示している。 温度と、コンプレッサが作動するまでに要するコンプレッサ所要時間と、第1弁装置及び第2弁装置の開弁動作時間との関係を示すマップである。 システム停止時間とカソード流路にクロスリークした水素量との関係を示すマップである。 システム停止時間と希釈時間との関係を示すマップである。 本実施形態に係る燃料電池システムの動作を示すフローチャートである。 本実施形態に係る燃料電池システムの一動作例を示すタイムチャートであり、第3時刻に開弁指令を出力する通常時を示す。 変形例に係る燃料電池システムの一動作例を示すタイムチャートであり、第3時刻の直前に開弁指令を出力する通常時を示す。 本実施形態に係る燃料電池システムの一動作例を示すタイムチャートであり、第1弁装置及び第2弁装置の開弁動作中にIGがOFFされた場合であって、アノード掃気が実行されていないときを示す。 本実施形態に係る燃料電池システムの一動作例を示すタイムチャートであり、第1弁装置及び第2弁装置の開弁動作中にIGがOFFされた場合であって、アノード掃気が実行されているときを示す。 本実施形態に係る燃料電池システムの一動作例を示すタイムチャートであり、第3時刻後にスタートボタンがONされた時を示す。
以下、本発明の一実施形態について、図1〜図11を参照して説明する。
≪燃料電池システムの構成≫
図1に示す本実施形態に係る燃料電池システム100は、図示しない燃料電池車(移動体)に搭載されている。燃料電池システム100は、燃料電池スタック110と、燃料電池スタック110のアノードに対して水素(燃料ガス、反応ガス)を給排するアノード系と、燃料電池スタック110のカソードに対して酸素を含む空気(酸化剤ガス、反応ガス)を給排するカソード系と、燃料電池スタック110の掃気時に掃気ガスをアノード系に導入する掃気ガス導入系と、これらを電子制御するECU160(Electronic Control Unit、電子制御装置)と、を備えている。
<燃料電池スタック>
燃料電池スタック110は、複数(例えば200〜400枚)の固体高分子型の単セルが積層して構成されたスタックであり、複数の単セルは直列で接続されている。単セルは、MEA(Membrane Electrode Assembly:膜電極接合体)と、これを挟む2枚の導電性を有するセパレータと、を備えている。MEAは、1価の陽イオン交換膜等からなる電解質膜(固体高分子膜)と、これを挟むアノード及びカソード(電極)とを備えている。
アノード及びカソードは、カーボンペーパ等の導電性を有する多孔質体と、これに担持され、アノード及びカソードにおける電極反応を生じさせるための触媒(Pt、Ru等)と、を含んでいる。
各セパレータには、各MEAの全面に水素又は空気を供給するための溝や、全単セルに水素又は空気を給排するための貫通孔が形成されており、これら溝及び貫通孔がアノード流路111(燃料ガス流路)、カソード流路112(酸化剤ガス流路)として機能している。
そして、アノード流路111を介して各アノードに水素が供給されると、式(1)の電極反応が起こり、カソード流路112を介して各カソードに空気が供給されると、式(2)の電極反応が起こり、各単セルで電位差(OCV(Open Circuit Voltage)、開回路電圧)が発生するようになっている。次いで、燃料電池スタック110と走行モータ等の外部回路とが電気的に接続され、電流が取り出されると、燃料電池スタック110が発電するようになっている。
2H→4H+4e …(1)
+4H+4e→2HO …(2)
<アノード系>
アノード系は、水素タンク121と、ノーマルクローズ型(常閉型)の遮断弁122と、減圧弁123と、エゼクタ124と、ノーマルクローズ型のパージ弁125と、ノーマルクローズ型の掃気ガス排出弁126と、を備えている。
水素タンク121は、配管121a、遮断弁122、配管122a、減圧弁123、配管123a、エゼクタ124、配管124aを介して、アノード流路111の入口に接続されている。そして、燃料電池スタック110を発電させるため、ECU160からの指令によって遮断弁122が開かれると、水素が、水素タンク121から遮断弁122等を通って、アノード流路111に供給されるようになっている。
遮断弁122は、パイロット式の電磁弁であって、メインバルブ122bと、メインバルブ122bよりも受圧面積の小さいパイロットバルブ122cと、を備えている。そして、遮断弁122にECU160から開弁指令が入力されると、まず、パイロットバルブ122cが開弁し、遮断弁122の下流側(二次側)の圧力が所定圧力に上昇した後、メインバルブ122bが開弁するようになっている。
減圧弁123は、例えば、特開2004−185831号公報、特開2004−185872号公報、特開2006−156208号公報に記載されるように、カソード系の後記する配管131aから配管123bを通って供給される空気の圧力をパイロット圧(作動圧、信号圧)として、水素の圧力を所定圧力に減圧するものである。
アノード流路111の出口は、配管124bを介して、エゼクタ124の吸気口に接続されている。そして、アノード流路111から排出された未消費の水素を含むアノードオフガスは、エゼクタ124に戻された後、アノード流路111に再供給され、その結果、水素が循環するようになっている。なお、配管124bには、アノードオフガスに同伴する液状の水分を分離する気液分離器(図示しない)が設けられている。
配管124bの途中は、配管125a、パージ弁125、配管125bを介して、後記する希釈器132に接続されている。パージ弁125は、例えば、システム起動時に、アノード流路111を所定水素濃度以上とするため、ECU160によって適宜に開弁される。その他、パージ弁125は、システム作動中(燃料電池スタック110の発電中)に、配管124bを循環するアノードオフガスに含まれる不純物(水蒸気、窒素等)を排出(パージ)する場合、ECU160によって定期的に開弁される。
また、配管125aの接続位置よりも上流側の配管124bは、配管126a、掃気ガス排出弁126、配管126bを介して、後記する配管132bに接続されている。掃気ガス排出弁126は、燃料電池スタック110の掃気時、詳細には、アノード流路111の掃気時に、コンプレッサ131が作動した状態で、ECU160により、後記する掃気ガス導入弁141と共に開かれる設定となっている。
なお、燃料電池スタック110の掃気時とは、本実施形態では、燃料電池スタック110の発電停止後のシステム停止中において、温度センサ(例えば後記する温度センサ153)によって検出されるシステム温度が所定温度(例えば0℃)未満であり、この後、燃料電池スタック110内が凍結すると判断される時である。
このように、アノード流路111の上流には、遮断弁122及び後記する掃気ガス導入弁141が配置され、アノード流路111の下流には、パージ弁125、掃気ガス排出弁126が配置されているが、いずれの弁もノーマルクローズ型であり、燃料電池スタック110の発電停止中(システム停止中)、原則として、閉状態で維持され、アノード流路111は封鎖された状態となる。したがって、車外の空気が、掃気ガス排出弁126等を通って、アノード流路111に流入することはない。
<カソード系>
カソード系は、コンプレッサ131(酸化剤ガス供給手段)と、ノーマルクローズ型(常開型)の第1弁装置1と、ノーマルクローズ型の第2弁装置2と、希釈器132と、水素センサ133とを備えている。
コンプレッサ131は、配管131a、第1弁装置1、配管131bを介して、カソード流路112の入口に接続されている。そして、コンプレッサ131は、ECU160の指令に従って作動すると、酸素を含む空気を取り込み、配管131a等を介して、カソード流路112に供給するようになっている。
なお、コンプレッサ131は、燃料電池スタック110の掃気時には、掃気ガスを供給する掃気ガス供給手段として機能する。また、コンプレッサ131、第1弁装置1、第2弁装置2、遮断弁122、及び、その他の弁は、燃料電池スタック110及び/又はこの電力を蓄えるバッテリ(図示しない)を電源としている。
すなわち、カソード流路112(酸化剤ガス流路)に向かう空気(酸化剤ガス)が通流する酸化剤ガス供給流路は、配管131aと配管131bとを備えて構成され、この酸化剤ガス供給流路に、第1弁装置1が設けられている。第1弁装置1は、ECU160によって制御されるノーマルクローズ型の電磁弁であり、燃料電池スタック110の発電中(システム作動中)は開状態となり、発電停止後、つまり、発電停止中(システム停止中)は閉状態となる。
なお、第1弁装置1の具体的構造は、後で説明する。
カソード流路112の出口は、配管132a、第2弁装置2、配管132bを介して、希釈器132に接続されている。そして、カソード流路112から排出されたカソードオフガス(酸化剤ガス)は、配管132a等を介して、希釈器132に排出されるようになっている。
なお、配管132bには、バタフライ等から構成され、その開度がECU160によって制御されるノーマルオープン型の背圧弁(図示しない)が設けられている。
すなわち、カソード流路112(酸化剤ガス流路)から排出されたカソードオフガスが通流する酸化剤ガス排出流路は、配管132aと、配管132bと、後記する配管132cとを備えて構成され、この酸化剤ガス排出流路に、第2弁装置2が設けられている。第2弁装置2は、ECU160によって制御されるノーマルクローズ型の電磁弁であり、燃料電池スタック110の発電中(システム作動中)は開状態となり、発電停止後、つまり、発電停止中(システム停止中)は閉状態となる。
なお、第2弁装置2の具体的構造は、後で説明する。
<第1弁装置、第2弁装置>
ここで、第1弁装置1、第2弁装置2の具体的構造について、図2を参照して説明する。
第1弁装置1は、ノーマルクローズ型の第1弁10と、通電により第1弁10を開閉操作する第1ソレノイド装置40(第1操作手段)と、を備えている。
第2弁装置2は、ノーマルクローズ型の第2弁10Aと、通電により第2弁10Aを開閉操作する第2ソレノイド装置40A(第2操作手段)と、を備えている。
ここで、第1弁装置1と第2弁装置2との構造は同一、つまり、第1弁10と第2弁10A、第1ソレノイド装置40と第2ソレノイド装置40A、はそれぞれ同一の構造であるので、以下、第1弁装置1について説明し、第2弁装置2については省略する。
[第1弁]
第1弁10は、入口ポート12及び出口ポート13が形成されたボディ11(弁箱)と、出口ポート13周りの弁座14に対して着座/離座する弁体20と、圧縮コイルばね31と、を備えている。
入口ポート12には、コンプレッサ131からの空気(掃気時は掃気ガスとしての空気)が通流する配管131aが接続されており、出口ポート13には、配管131bが接続されている。一方、第2弁10Aの入口ポート12には配管132aが接続されており、出口ポート13には配管132bが接続されている。
ただし、配管131a等の接続構成はこれに限定されず、例えば、出口ポート13(この場合入口ポートとなる)に配管131aが接続され、入口ポート12(この場合出口ポートとなる)に配管131bが接続された構成でもよい。
弁体20は、出口ポート13周りの弁座14に対して着座/離座する本体21と、本体21と一体に形成され、本体21の中心から上方に延び、上部がボディ11の天壁部を貫通し、第1ソレノイド装置40内に延びるロッド23と、を備えている。なお、ロッド23の上端には、第1ソレノイド装置40の固定コア(図示しない)に吸引される可動コア(図示しない)が一体に固定されている。
ここで、第1弁10(第2弁10A)は、システム作動中(燃料電池スタック110の発電中)、開状態となり、その内部をコンプレッサ131からの空気(カソードオフガス)が通流することになるから、通流する空気が第1弁10から受ける圧力損失を小さくするため、入口ポート12及び出口ポート13の内径はなるべく大きく、本体21の外径は出口ポート13に対応してなるべく大きく構成される。
このように本体21の外径が大きくなると、本体21の受圧面積も大きくなり、ECU160からの開弁指令/閉弁指令に対する第1弁10の応答性が低下する。よって、第1弁装置1は、開弁指令に連動して第1弁10が直ちに開弁することはできず、開弁指令に連動して開弁を開始した後、開弁中である開弁動作時間経過後、開弁が完了するという特性を有している。
なお、開弁前に空気(カソードオフガス)がボディ11内に供給されてしまうと、この空気によって本体21が閉方向に付勢されるので、第1弁10が開弁しにくくなる。また、開弁中となる開弁動作時間は、図3に示すように、第1弁装置1の温度(外気温度)が低くなるほど長くなるという傾向を有している。さらに、開弁動作時間は、圧縮コイルばね31のばね力が大きくなるほど長くなり、通電時における第1ソレノイド装置40の吸引力が小さくなるほど長くなる。
弁体20の本体21は円板状を呈し、本体21が弁座14から離座すると、第1弁10が開状態となり、入口ポート12と出口ポート13とが連通するようになっている。一方、本体21が弁座14に着座すると、第1弁10が閉状態となり、入口ポート12と出口ポート13とが遮断されるようになっている(図2参照)。
本体21の弁座14側面には、ゴム製等の環状のシール部材22が設けられている。そして、本体21が着座した場合(第1弁10が閉じた場合)、シール部材22が弾性変形することで、閉状態におけるシール性が高められている。なお、シール部材22が弁座14に設けられた構成でもよい
圧縮コイルばね31は、ボディ11の天壁部と、弁体20の本体21との間に縮設されており、本体21(弁体20)を閉方向に付勢している。そして、第1ソレノイド装置40への通電が停止されている場合、圧縮コイルばね31に付勢される本体21が弁座14に着座し、これにより、第1弁10がノーマルクローズ型に構成されている。
[第1ソレノイド装置]
第1ソレノイド装置40(第2ソレノイド装置40A)は、第1弁10(第2弁10A)を閉状態から開状態に駆動する第1電気駆動装置(第2電気駆動装置)であり、ソレノイド41と、ソレノイド41に通電された場合に励磁する固定コア(図示しない)と、を備えている。
そして、ECU160から開弁指令が入力されると、ソレノイド41に通電し、これにより励磁する固定コア(図示しない)に、ロッド23に固定された可動コア(図示しない)が吸引されることで、弁体20が離座し、第1弁10が開状態となる。
なお、第1ソレノイド装置40は、ボディ11に固定されると共に、バッテリ(図示しない)を電源としている。
図1に戻って説明を続ける。
希釈器132は、アノードオフガスとカソードオフガスとを混合し、アノードオフガス中の水素を、カソードオフガス(希釈用ガス)で希釈する容器であり、その内部に希釈空間を備えている。そして、希釈後のガスは、配管132cを介して、車外に排出されるようになっている。
水素センサ133は、配管132cに取り付けられており、希釈器132から車外に排出されるガス中の水素濃度を検出するようになっている。そして、水素センサ133は、検出した水素濃度を、ECU160に出力するようになっている。
このような水素センサ133は、特開2006−153598号公報、特開2007−40755号公報に記載されるように、水素を触媒上で燃焼させる接触燃焼式で構成され、バッテリ(図示しない)等を電源として作動する。そして、水素センサ133は、その起動から水素濃度を検出可能となるまでに、所定の暖機時間を必要とする。
なお、このような水素センサ133は、配管132cだけでなく、その他に、燃料電池スタック110が配置されるセンタートンネル、水素タンク121が配置されるタンク室、車室等にも取り付けられる。
また、配管131bと配管132aとを跨ぐように加湿器(図示しない)が設けられている。この加湿器は、水分透過性を有する中空糸膜を複数本内蔵し、この中空糸膜を介して、カソード流路112に向かう空気と、カソード流路112から排出された多湿のカソードオフガスとの間で水分交換させ、カソード流路112に向かう空気を加湿するものである。
<掃気ガス導入系>
掃気ガス導入系は、ノーマルクローズ型の掃気ガス導入弁141を備えている。掃気ガス導入弁141の上流は配管141aを介して配管131aに接続されており、掃気ガス導入弁141の下流は配管141bを介して配管124aに接続されている。
そして、燃料電池スタック110の掃気時に、コンプレッサ131が作動した状態で、ECU160によって掃気ガス導入弁141が開かれると、コンプレッサ131からの掃気ガスが、アノード流路111に導入されるようになっている。
<IG等>
IG151(第1起動スイッチ)は、燃料電池システム100(燃料電池車)の起動スイッチであり、運転席周りに設けられている。また、IG151はECU160と接続されており、ECU160はIG151のON/OFF信号を検知するようになっている。
スタートボタン152(第2起動スイッチ)は、燃料電池システム100(燃料電池車)の起動スイッチであり、運転席周りに設けられている。また、スタートボタン152はECU160と接続されており、ECU160はスタートボタン152のON信号を検知するようになっている。
なお、本実施形態では、IG151のON信号を検知している状態において、スタートボタン152のON信号を検知すると、ECU160は、運転者から起動要求があったと判断して、燃料電池システム100の起動処理を開始するように設定されている。
一方、システム作動中において、IG151のOFF信号を検知すると、ECU160は、運転者から停止要求があったと判断して、燃料電池システム100の停止処理を開始するように設定されている。
温度センサ153は、外気温度を検出するセンサであり、燃料電池車の適所に設けられている。そして、温度センサ153は、検出した外気温度をECU160に出力するようになっている。
<ECU>
ECU160(制御手段)は、燃料電池システム100を電子制御する制御装置であり、CPU、ROM、RAM、各種インタフェイス、電子回路などを含んで構成されており、その内部に記憶されたプログラムに従って、各種機能を発揮して各種機器を制御し、各種処理を実行するようになっている。
<ECU−第1弁装置、第2弁装置の開閉制御機能>
ECU160は、第1弁装置1の第1ソレノイド装置40と、第2弁装置2の後記する第2ソレノイド装置40Aとを制御し、第1弁10、第2弁10Aを開閉制御する機能を備えている。
<ECU−第2時刻設定機能>
ECU160は、システム起動時に、IG151のON信号を検知した第1時刻に基づいて、コンプレッサ131の作動を開始するべき第2時刻を設定する機能を備えている。
なお、IG151のONに連動してECU160が立ち上がり、この立ち上がり時刻を第1時刻としてもよく、このような構成としても技術的範囲に含まれることは言うまでもない。
具体的には、ECU160は、第1時刻から、コンプレッサ131が作動するまでに要するコンプレッサ所要時間先の時刻であって、運転者(オペレータ)の起動要求に対応して、コンプレッサ131の作動を開始させるべき第2時刻を設定する。
コンプレッサ所要時間とは、IG151のON時(第1時刻)から、水素センサ133の暖機や、遮断弁122の開弁等が完了し、コンプレッサ131が作動可能となる状態までに要する時間である。
ここで、外気温度が低くなると、水素センサ133の暖機時間や、遮断弁122の開弁完了までの時間が、長くなるので、図3のマップに示すように、外気温度が低くなると、コンプレッサ所要時間が長くなる。よって、外気温度が低くなると、第2時刻は遅い時刻に設定される。
なお、図3のマップは、事前試験等によって求められ、予め、ECU160に記憶される。また、図3のマップに代えて、図3の関係を示す関係式や、テーブル等に基づいて、コンプレッサ所要時間を算出する構成としてもよい。
<ECU−開弁動作時間算出機能>
ECU160は、システム起動時に、外気温度と、図3のマップとに基づいて、第1弁装置1及び第2弁装置2の開弁開始から開弁完了となるまでに要する開弁動作時間を算出する機能を備えている。開弁動作時間は、図3に示すように、外気温度が低くなると、長くなる。
なお、図3のマップは、事前試験等によって求められ、予め、ECU160に記憶される。
<ECU−第3時刻設定機能>
ECU160は、システム起動時に、第1弁装置1及び第2弁装置2に最大遅れて開弁指令を出力するべき第3時刻を設定する機能を備えている。すなわち、第3時刻は、開弁指令が最も遅れたとしても、この時刻以前に、第1弁装置1及び第2弁装置2に開弁指令を出力すれば、コンプレッサ131の作動を開始するべき第2時刻に、第1弁装置1及び第2弁装置2は開弁完了する時刻である。
具体的には、ECU160は、第2時刻から、前記した開弁動作時間前の時刻を、第3時刻として設定する。
≪燃料電池システムの動作≫
次に、燃料電池システム100の動作について説明する。
<システム停止時>
まず、燃料電池システム100の停止時(燃料電池スタック110の発電停止時)について説明する。
ECU160は、IG151のOFF信号を検知すると、運転者からシステムの停止要求があったと判断する。そして、ECU160は、燃料電池スタック110と外部負荷(走行用のモータ等)とを電気的に遮断し、燃料電池スタック110からの電流の取り出しを停止し、その発電を停止する。また、ECU160は、遮断弁122を閉じ、コンプレッサ131を停止する。
さらに、ECU160は、第1弁装置1及び第2弁装置2に閉弁指令をそれぞれ出力し、第1ソレノイド装置40及び第2ソレノイド装置40Aへの通電を停止する。そうすると、第1弁10及び第2弁10Aは、開状態から閉状態となり、カソード流路112が封鎖される。
このようにして、燃料電池スタック110の発電停止後(システム停止後)、発電停止中(システム停止中)において、第1弁装置1の第1弁10と、第2弁装置2の第2弁10Aとが閉状態となり、カソード流路112が封鎖されるので、車外の空気が、第1弁10又は第2弁10Aを通って、カソード流路112に新たに流入することはない。
これにより、MEAを構成するカソード又はアノードの電位の上昇や、OHラジカル等の発生が抑制され、カソード又はアノードの劣化や、電解質膜の分解が抑制される。その結果、燃料電池スタック110の劣化が抑制され、その耐久性が高められている。
また、第1弁10及び第2弁10Aはノーマルクローズ型であるので、電力等を消費せずに、第1弁10及び第2弁10Aは、閉状態で維持される。
このようなシステム停止中において、温度センサ153から入力されるが外気温度(システム温度)が、所定温度(例えば0℃)未満となり、この後、燃料電池スタック110内が凍結すると判断した場合、ECU160は、燃料電池スタック110を掃気する。
具体的には、ECU160は、第1弁装置1、第2弁装置2、掃気ガス導入弁141、掃気ガス排出弁126を開いた後、コンプレッサ131を作動させ、アノード流路111及びカソード流路112に掃気ガスを導入し、これらに残留する水分(結露水、水蒸気等)や、水素を車外に押し出す。
なお、第1弁装置1及び第2弁装置2は、後記するシステム起動時で説明するように、開弁指令から開弁完了となるまでに開弁動作時間を要するので、第1弁装置1及び第2弁装置2が開弁完了となった後、コンプレッサ131を作動する。また、アノード流路111及びカソード流路112を並行して掃気する方式に限らず、例えば、アノード流路111、カソード流路112の順で掃気する方式でもよい。
所定の掃気時間の経過後、コンプレッサ131を停止した後、第1弁装置1、第2弁装置2、掃気ガス導入弁141、掃気ガス排出弁126を閉じる。そして、ECU160は、アノード流路111及びカソード流路112を掃気したことを、フラグ等によって一時的に記憶する。
なお、このようにアノード流路111の掃気(アノード掃気)が実行されると、アノード流路111に残留する水素の車外に排出されるので、システム停止中に(詳細には掃気後)、残留する水素がMEAを透過し、カソード流路112にリークすることはない。
一方、アノード流路111の掃気が実行されないと、アノード流路111に残留する水素が、カソード流路112にリークする。そして、システム停止時間が長くなるほど、リークした水素の量が多くなる(図4参照)。よって、システム停止時間が長くなり、リークした水素の量が多くなるほど、後記する希釈に要する時間(希釈時間)が長くなる(図5参照)。
<システム起動時>
次に、燃料電池システム100の起動時(燃料電池スタック110の発電開始時)について、図6を参照して説明する。
なお、IG151(第1起動スイッチ)がONされると、そのON信号を検知したECU160は図6の各処理を開始する。
ステップS101において、ECU160は、水素センサ133への通電を開始し、水素センサ133の暖機を開始する。その他、車室等に取り付けられた水素センサ(図示しない)の暖機も開始する。
ステップS102において、ECU160は、IG151のON信号を検知した第1時刻と、コンプレッサ131が作動するまでに要するコンプレッサ所要時間と基づいて、コンプレッサ131の作動を開始するべき第2時刻を設定する。
なお、コンプレッサ所要時間は、外気温度と、図3のマップとに基づいて算出される。
ステップS103において、ECU160は、第2時刻と、第1弁装置1及び第2弁装置2の開弁動作時間とに基づいて、第1弁装置1及び第2弁装置2に最大遅れて開弁指令を出力するべき第3時刻を設定する。
なお、開弁動作時間は、外気温度と、図3のマップとに基づいて算出される。
ステップS104において、ECU160は、スタートボタン152がONされたか否か判定する。
スタートボタン152はONされたと判定した場合(S104・Yes)、ECU160の処理はステップS105に進む。一方、スタートボタン152はONされていないと判定した場合(S104・No)、ECU160の処理はステップS116に進む。
ステップS105において、ECU160は、遮断弁122に開弁指令を出力する。なお、開弁指令が入力されると、遮断弁122のパイロットバルブ122cが開き、下流側(二次側)の圧力が所定圧力に上昇した後、メインバルブ122bが開く。
ステップS106において、ECU160は、現在、ステップS103で設定した第3時刻であるか否か判定する。
第3時刻であると判定した場合(S106・Yes)、ECU160の処理はステップS107に進む。一方、第3時刻でないと判定した場合(S106・No)、ECU160の処理はステップS114に進む。
この他、ステップS106において、現在、第3時刻直前であるか否か判定し、第3時刻直前であると判定した場合、ステップS107に進むようにしてもよい。なお、第3時刻直前時とは、第3時刻から所定時間(例えば5〜10秒)前の時刻を意味する。
ステップS107において、ECU160は、第1弁装置1と、第2弁装置2とに開弁指令を出力する。
具体的に、ECU160は、第1弁装置1のソレノイド41と、第2弁装置2のソレノイド41への通電を開始する(図2参照)。そうすると、弁体20が弁座14から離座し始め、第1弁10及び第2弁10Aが開弁し始める。
ステップS108において、ECU160は、ステップS107で開弁指令を出力してから、開弁動作時間が経過したか否か判定する。
開弁動作時間は経過したと判定した場合(S108・Yes)、ECU160の処理はステップS109に進む。このようにステップS109に進む場合、第1弁装置1の第1弁10、及び、第2弁装置2の第2弁10Aは、開弁完了している。
一方、開弁動作時間は経過していないと判定した場合(S108・No)、ECU160の処理はステップS120に進む。このようにステップS120に進む場合、第1弁装置1の第1弁10、及び、第2弁装置2の第2弁10Aは、開弁完了してなく、開弁途中である。
ステップS109において、ECU160は、現在、ステップS102で設定した第2時刻の経過以後であるか否か判定する。
第2時刻以後であると判定した場合(S109・Yes)、ECU160の処理はステップS110に進む。一方、第2時刻以後でないと判定した場合(S109・No)、ECU160はステップS109の判定を繰り返す。
ステップS110において、ECU160は、コンプレッサ131の作動を開始し、カソード流路112に空気を通流させる。この場合において、第1弁10及び第2弁10Aは開弁完了しているので、通流する空気が第1弁10及び第2弁10Aから受ける圧力損失は小さくなる。
ステップS111において、ECU160は、配管123bを介して減圧弁123に入力されるパイロット圧(信号圧)が、所定圧力以上に上昇したか否か判定する。
具体的には、ステップS110でコンプレッサ131の作動を開始してから、パイロット圧が所定圧力以上に上昇したと判断される所定時間経過した場合、パイロット圧が所定圧力以上に上昇したと判定する。その他、圧力センサによってパイロット圧を直接検出してもよい。
パイロット圧が所定圧力以上に上昇したと判定した場合(S111・Yes)、ECU160の処理はステップS112に進む。
一方、パイロット圧が所定圧力以上に上昇していないと判定した場合(S111・No)、ECU160はステップS111の判定を繰り返す。
ステップS112において、ECU160は、燃料電池スタック110のOCVが発電可能な所定OCV以上であるか否をチェックするOCVチェックを開始する。
ここで、燃料電池スタック110のOCVは、燃料電池スタック110の出力端子に接続された電圧センサによって検出される。また、現在のOCVが、所定OCV以上でない場合、例えば、ECU160は、パージ弁125を間欠的に開き、アノード流路111のガスを排出すると共に、水素タンク121からの高濃度の水素をアノード流路111に押し込み、アノードにおける電極反応を促進させる。
そして、燃料電池スタック110のOCVが所定OCV以上となった場合、ECU160の処理はステップS113に進む。
ステップS113において、ECU160は、燃料電池スタック110と外部負荷(走行用のモータ等)とを電気的に接続し、アクセル等からの発電要求量に対応して、燃料電池スタック110を発電させる。
このようにして、燃料電池スタック110の発電中(システム作動中)において、第1弁装置1の第1弁10と、第2弁装置2の第2弁10Aとが開状態となり、カソード流路112が車外に開放される。
次に、ステップS106の判定結果がNoとなって進むステップS114を説明する。
ステップS114において、ECU160は、IG151がOFFされたか否か判定する。
IG151はOFFされたと判定した場合(S114・Yes)、ECU160の処理はステップS115に進む。一方、IG151はOFFされていないと判定した場合(S114・No)、ECU160の処理はステップS106に進む。
ステップS115において、ECU160は、燃料電池システム100を停止させる。
具体的には、ECU160は、水素センサ133への通電を停止し、遮断弁122に閉弁指令を出力する。
次に、ステップS104の判定結果がNoとなって進むステップS116を説明する。
ステップS116において、ECU160は、現在、ステップS103で設定した第3時刻の経過後であるか否か判定する。
第3時刻の経過後であると判定した場合(S116・Yes)、ECU160の処理はステップS117に進む。一方、第3時刻の経過後でないと判定した場合(S116・No)、ECU160の処理はステップS104に進む。
ステップS117において、ECU160は、スタートボタン152がONされたか否か判定する。
スタートボタン152はONされたと判定した場合(S117・Yes)、ECU160の処理はステップS118に進む。一方、スタートボタン152はONされていないと判定した場合(S117・No)、ECU160の処理はステップS119に進む。
ステップS118において、ECU160は、遮断弁122に開弁指令を出力する。その後、ECU160の処理は、ステップS107に進む。
このように、第3時刻後(S116・Yes)、スタートボタン152がONされた場合(S117・Yes)、スタートボタン152のONに連動して、ステップS107で開弁指令が出力されることになる。
ステップS119において、ECU160は、IG151がOFFされたか否か判定する。
IG151はOFFされたと判定した場合(S119・Yes)、ECU160の処理はステップS115に進む。一方、IG151はOFFされていないと判定した場合(S119・No)、ECU160の処理はステップS117に進む。
次に、ステップS108の判定結果がNoとなって進むステップS120を説明する。
ステップS120において、ECU160は、IG151がOFFされたか否か判定する。
IG151はOFFされたと判定した場合(S120・Yes)、ECU160の処理はステップS121に進む。このようにステップS121に進む場合は、第1弁装置1及び第2弁装置2への開弁指令後、開弁動作時間の経過前であって第1弁装置1及び第2弁装置2の開弁完了前に、IG151(第1起動スイッチ)のOFF信号を検知した場合である。
一方、IG151はOFFされていないと判定した場合(S120・No)、ECU160の処理はステップS108に進む。
ステップS121において、ECU160は、IG151のON前、つまり、システム停止中に燃料電池スタック110(特にアノード流路111)が掃気されているか否か、フラグを参照して判定する。
燃料電池スタック110は掃気されていると判定した場合(S121・Yes)、ECU160の処理はステップS127に進む。このようにステップS127に進む場合、燃料電池スタック110は掃気されているので、アノード流路111からカソード流路112への水素のクロスリークの心配は殆ど無く、カソード流路112に水素は略存在しない。
一方、燃料電池スタック110は掃気されていないと判定した場合(S121・No)、ECU160の処理はステップS123に進む。このようにステップS123に進む場合、燃料電池スタック110は掃気されていないので、アノード流路111からカソード流路112に水素はリークし、カソード流路112に水素が存在することになる。そして、第1弁装置1及び第2弁装置2が開弁動作したことによって(S107)、カソード流路112の水素は、自己拡散し、配管132a等を通って、徐々に車外に流出ようとする。
ステップS123において、ECU160は、ステップS107で開弁指令を出力してから、開弁動作時間が経過したか否か判定する。
開弁動作時間は経過したと判定した場合(S123・Yes)、ECU160の処理はステップS124に進む。このようにステップS124に進む場合、第1弁装置1の第1弁10、及び、第2弁装置2の第2弁10Aは、開弁完了している。
一方、開弁動作時間は経過していないと判定した場合(S123・No)、ECU160はステップS123の判定を繰り返す。
ステップS124において、ECU160は、コンプレッサ131を作動し、カソード流路112にリーク後、開弁した第2弁装置2を通って車外に流出しようとする水素を希釈する。この場合において、第1弁装置1及び第2弁装置2は開弁完了しているので、コンプレッサ131からの空気が第1弁装置1及び第2弁装置2から受ける圧力損失は、小さくなっている。
なお、希釈時間、つまり、コンプレッサ131を作動させる時間は、システムの停止時間と、図5のマップとに基づいて算出される。ここで、車外に排出される水素濃度を希薄な所定濃度以下に低下させるべく、図5に示すように、システムの停止時間が長くなると、つまり、カソード流路112にリークする水素の量(クロスリーク水素量)が増加するので、希釈時間(コンプレッサ131の作動時間)が長く、希釈に要する空気量が多くなる。
また、このように水素を希釈することによって、カソード流路112、第1弁装置1及び第2弁装置2は掃気されるので、掃気とも称される。
ステップS125において、ECU160は、水素の希釈が完了したか否か、つまり、コンプレッサ131の作動開始後、希釈時間が経過したか否か判定する。
希釈時間が経過し、希釈は完了したと判定した場合(S125・Yes)、ECU160の処理はステップS126に進む。一方、希釈時間が経過してなく、希釈は完了していないと判定した場合(S125・No)、ECU160はステップS125の判定を繰り返す。
ステップS126において、ECU160は、コンプレッサ131を停止する。
その後、ECU160は、第1弁装置1及び第2弁装置2に閉弁指令を出力し、これらを閉じる。つまり、第1弁装置1及び第2弁装置2のソレノイド41(図2参照)への通電を停止し、第1弁装置1及び第2弁装置2を閉状態とし、カソード流路112を封鎖する。
そして、ECU160の処理はステップS115に進む。
次に、ステップS121の判定結果がYesとなって進むステップS127を説明する。
ステップS127において、ECU160は、第1弁装置1及び第2弁装置2に閉指令を出力し、これらを閉じる。すなわち、ステップS127に進む場合、カソード流路112に水素は略存在せず、前記したように水素を希釈する必要がないので、第1弁装置1及び第2弁装置2は、IG151のOFFに連動して、速やかに閉じられることになる。
その後、ECU160の処理は、ステップS115に進む。
このように、システム停止中にアノード流路111が掃気されている場合(S121・Yes)、水素を希釈する必要がなく、コンプレッサ131を作動させずにシステムを停止するので(S115)、コンプレッサ131において無駄に電力消費されることはない。
≪燃料電池システムの効果≫
このような燃料電池システム100によれば次の効果について、図7〜図11を参照して説明する。
図7に示すように、第3時刻以前に、スタートボタン152のON信号を検知した場合(S116・No、S104・Yes)、第3時刻に第1弁装置1及び第2弁装置2に開弁指令を出力し(S106・Yes、S107)、その後、開弁動作時間が経過したとき(S108・Yes)、第1弁装置1及び第2弁装置2は開弁完了する。
そして、このように開弁完了した後、コンプレッサ131を作動させ(S110)、パイロット圧が上昇した後(S111・Yes)、OCVチェックを開始する(S112)。
すなわち、第1弁装置1及び第2弁装置2の開弁完了前に、コンプレッサ131が作動せず、第1弁装置1及び第2弁装置2に空気(カソードオフガス)が供給され、その空気圧によって、第1弁装置1及び第2弁装置2の開弁動作が遅れることはない。
これにより、第1弁装置1及び第2弁装置2の開弁完了状態で、第2時刻にコンプレッサ131をONすることができ、システムの起動に要する時間(所要時間)が長くならず、速やかに起動できる。また、第1弁装置1及び第2弁装置2は、空気(カソードオフガス)が通流しない状態で、つまり、空気圧の影響を受けずに開弁動作するので、例えば、第1弁装置1及び第2弁装置2を構成するソレノイド41を小さくできる。したがって、第1弁装置1及び第2弁装置2を小型化でき、燃料電池車に搭載容易となる。
次に、図8に示すように、第3時刻直前に、第1弁装置1及び第2弁装置2に開弁指令を出力する場合(S106・Yes)、つまり、開弁指令を早める場合、第1弁装置1及び第2弁装置2の開弁完了が早まる。これにより、コンプレッサ131がONされる第2時刻に(S109・Yes、S110)、第1弁装置1及び第2弁装置2は、確実に開弁完了した状態となる。
次に、図9に示すように、開弁指令から開弁動作時間の経過前(S108・No)、つまり、第1弁装置1及び第2弁装置2の開弁動作中にIG151がOFFされた場合において(S120・Yes)、アノード流路111が掃気されていないとき(S121・No)、コンプレッサ131を作動させずに、開弁動作時間の経過を待って(S123・Yes)、第1弁装置1及び第2弁装置2を速やかに開弁完了させる。
その後、コンプレッサ131を作動させて(S124)、水素を速やかに希釈するので、高濃度の水素が車外にそのまま排出されることを防止できる。
一方、図10に示すように、開弁指令から開弁動作時間の経過前(S108・No)、IG151がOFFされた場合において(S120・Yes)、アノード流路111が掃気されているとき(S121・Yes)、コンプレッサ131を作動させず、第1弁装置1及び第2弁装置2を速やかに閉じるので(S127)、コンプレッサ131で無駄に電力消費されることを防止できる。
次に、図11に示すように、第3時刻の経過後(S116・Yes)、スタートボタン152がONされた場合(S117・Yes)、これに連動して、第1弁装置1及び第2弁装置2に開弁指令を出力し(S107)、開弁動作時間が経過するまで(S108・Yes)、コンプレッサ131を作動しないので、第1弁装置1及び第2弁装置2が速やかに開弁完了する。
以上、本発明の一実施形態について説明したが、本発明はこれに限定されず、本発明の趣旨を逸脱しない範囲で、例えば次のように変更することができる。
前記した実施形態では、第1弁10及び第2弁10Aがノーマルクローズ型である構成を例示したが、ノーマルオープン型でもよい。なお、ノーマルオープン型に構成すれば、電力等を消費せずに、第1弁10及び第2弁10Aを開状態で維持できる。
また、弁体20が第1ソレノイド装置40(第2ソレノイド装置40A)によって作動する構成を例示したが、その他に例えば、弁体20のロッド23の上部外周面にラックを形成し、このラックに係合するピニオンを有するモータを回転させることにより、弁体20が作動する構成としてもよい。
さらに、第1弁10(第2弁10A)の閉状態/開状態で、弁体20をロックするロック機構を備える構成としてもよい。
前記した実施形態では、起動スイッチとしてIG151(第1起動スイッチ)と、スタートボタン152(第2起動スイッチ)とを備える構成としたが、例えば、IG151のみを備える構成でもよい。その他、IG151が、OFF、ONのポジションの他に、スタートのポジションを備え、ON位置となった場合、第1起動スイッチのON信号を出力し、スタート位置となった場合、第2起動スイッチのON信号を出力する構成でもよい。
前記した実施形態では、燃料電池システム100が燃料電池車に搭載された場合を例示したが、その他に例えば、自動二輪車、列車、船舶に搭載された燃料電池システムでもよい。また、家庭用の据え置き型の燃料電池システムや、給湯システムに組み込まれた燃料電池システムに、本発明を適用してもよい。
1 第1弁装置
2 第2弁装置
10 第1弁
10A 第2弁
20 弁体
40 第1ソレノイド装置(第1操作手段)
40A 第2ソレノイド装置(第2操作手段)
100 燃料電池システム
110 燃料電池スタック(燃料電池)
111 アノード流路(燃料ガス流路)
112 カソード流路(酸化剤ガス流路)
131 コンプレッサ(酸化剤ガス供給手段)
131a、131b 配管(酸化剤ガス供給流路)
132a、132b、132c 配管(酸化剤ガス排出流路)
133 水素センサ
151 IG(第1起動スイッチ)
152 スタートボタン(第2起動スイッチ)
160 ECU(制御手段)

Claims (5)

  1. 燃料ガス流路及び酸化剤ガス流路を有し、前記燃料ガス流路に燃料ガスが、前記酸化剤ガス流路に酸化剤ガスが、それぞれ供給されることで発電する燃料電池と、
    酸化剤ガスを供給する酸化剤ガス供給手段と、
    前記酸化剤ガス供給手段から前記酸化剤ガス流路に向かう酸化剤ガスが通流する酸化剤ガス供給流路と、
    前記酸化剤ガス流路から排出された酸化剤ガスが通流する酸化剤ガス排出流路と、
    前記酸化剤ガス供給流路に設けられた第1弁装置と、
    前記酸化剤ガス排出流路に設けられた第2弁装置と、
    前記酸化剤ガス供給手段、前記第1弁装置及び前記第2弁装置を制御する制御手段と、
    を備え、
    前記制御手段は、前記燃料電池の発電中、前記第1弁装置及び前記第2弁装置を開状態とすることで、前記酸化剤ガス流路を開放し、前記燃料電池の発電停止中、前記第1弁装置及び前記第2弁装置を閉状態とすることで、前記酸化剤ガス流路を封鎖する燃料電池システムであって、
    前記制御手段は、
    起動スイッチのON信号を検知した第1時刻に基づいて、前記酸化剤ガス供給手段の作動を開始するべき第2時刻を設定し、
    前記第2時刻から、前記第1弁装置及び前記第2弁装置が開弁開始から開弁完了となるまでに要する開弁動作時間前の時刻であって、前記第1弁装置及び前記第2弁装置に最大遅れて開弁指令を出力するべき第3時刻を設定し、
    前記第3時刻以前に、前記第1弁装置及び前記第2弁装置に開弁指令を出力し、
    前記第2時刻以後、前記酸化剤ガス供給手段の作動を開始する
    ことを特徴とする燃料電池システム。
  2. 前記制御手段は、
    前記開弁指令から前記開弁動作時間の経過前に、起動スイッチのOFF信号を検知した場合、前記第1弁装置及び前記第2弁装置の開弁動作を継続させ、開弁完了とした後、
    前記酸化剤ガス供給手段から前記酸化剤ガス流路に酸化剤ガスを導入し、システム停止中に前記燃料ガス流路から前記酸化剤ガス流路にリークした燃料ガスを希釈した後、
    前記第1弁装置及び前記第2弁装置に閉弁指令を出力する
    ことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記制御手段は、
    前記開弁指令から、前記開弁動作時間の経過前に、起動スイッチのOFF信号を検知した場合において、システム停止中に前記燃料ガス流路が掃気されているとき、前記OFF信号に連動して前記第1弁装置及び前記第2弁装置に閉弁指令を出力し、前記酸化剤ガス供給手段を作動しない
    ことを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記起動スイッチは、第1起動スイッチと、前記第1起動スイッチのON後にONされる第2起動スイッチと、を備え、
    前記制御手段は、
    前記第1起動スイッチのON信号を検知した第1時刻に基づいて、前記第2時刻を設定し、
    前記第3時刻以前に前記第2起動スイッチのON信号を検知した場合、前記第3時刻又は前記第3時刻直前に、前記第1弁装置及び第2弁装置に開弁指令を出力する
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の燃料電池システム。
  5. 前記制御手段は、
    前記第3時刻後に前記第2起動スイッチのON信号を検知した場合、当該第2起動スイッチのON信号に連動して、前記第1弁装置及び第2弁装置に開弁指令を出力し、
    前記開弁指令から前記開弁動作時間の経過以後、前記酸化剤ガス供給手段の作動を開始する
    ことを特徴とする請求項4に記載の燃料電池システム。

JP2009064412A 2009-03-17 2009-03-17 燃料電池システム Active JP5384154B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064412A JP5384154B2 (ja) 2009-03-17 2009-03-17 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064412A JP5384154B2 (ja) 2009-03-17 2009-03-17 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010218892A JP2010218892A (ja) 2010-09-30
JP5384154B2 true JP5384154B2 (ja) 2014-01-08

Family

ID=42977494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064412A Active JP5384154B2 (ja) 2009-03-17 2009-03-17 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5384154B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647079B2 (ja) * 2011-08-03 2014-12-24 本田技研工業株式会社 燃料電池システム
CN107150600A (zh) * 2017-04-06 2017-09-12 东风特汽(十堰)专用车有限公司 一种电池系统
CN114976149A (zh) * 2022-06-13 2022-08-30 中国第一汽车股份有限公司 一种燃料电池发动机热管理系统的控制方法以及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164167A (ja) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The 燃料電池発電システムの運転方法
JP4263555B2 (ja) * 2003-07-14 2009-05-13 本田技研工業株式会社 燃料電池システムの起動方法
JP4686997B2 (ja) * 2004-03-30 2011-05-25 カシオ計算機株式会社 電子機器
JP5052776B2 (ja) * 2004-10-19 2012-10-17 東芝燃料電池システム株式会社 燃料電池システムの停止保管起動方法、及び停止保管起動プログラム
JP2007323873A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp 燃料電池システム及びその制御方法
JP2008029051A (ja) * 2006-07-18 2008-02-07 Suzuki Motor Corp 燃料電池を搭載した車両

Also Published As

Publication number Publication date
JP2010218892A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5647079B2 (ja) 燃料電池システム
JP5613146B2 (ja) 燃料電池システム
JP4751463B2 (ja) 燃料電池システム
US8129044B2 (en) Fuel cell system and method for operating the same
JP4939556B2 (ja) 燃料電池システム
KR101923764B1 (ko) 연료 전지 시스템 및 연료 전지 탑재 차량
JP5384154B2 (ja) 燃料電池システム
JP4732407B2 (ja) 燃料電池システムの発電停止方法
JP2009117189A (ja) 燃料電池システムの制御方法
JP2010244778A (ja) 燃料電池システム
JP5596744B2 (ja) 燃料電池システム
JP5872315B2 (ja) 燃料電池システムの起動方法および起動装置
JP5098191B2 (ja) 燃料電池システム
JP5231847B2 (ja) 燃料電池システム及びその運転方法
JP2004179054A (ja) 燃料電池システムの発電停止方法
JP6450263B2 (ja) 燃料電池システム
JP2010199038A (ja) 燃料電池システム及び燃料電池システムの運転方法
JP5097016B2 (ja) 燃料電池システム及び遮断弁の開閉状態判定方法
JP2006155927A (ja) 燃料電池システムおよびその制御方法
JP5410766B2 (ja) 燃料電池システムおよび燃料電池システムのカソード圧制御方法
JP5302568B2 (ja) 燃料電池システム及びその運転方法
JP5161656B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007059067A (ja) 燃料電池システム
JP2010287467A (ja) 燃料電池システム
JP2009140860A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250