JP5381323B2 - 排熱回収装置 - Google Patents

排熱回収装置 Download PDF

Info

Publication number
JP5381323B2
JP5381323B2 JP2009124023A JP2009124023A JP5381323B2 JP 5381323 B2 JP5381323 B2 JP 5381323B2 JP 2009124023 A JP2009124023 A JP 2009124023A JP 2009124023 A JP2009124023 A JP 2009124023A JP 5381323 B2 JP5381323 B2 JP 5381323B2
Authority
JP
Japan
Prior art keywords
heat
fluid
exhaust
catalyst
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009124023A
Other languages
English (en)
Other versions
JP2010270983A (ja
Inventor
仲矢 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009124023A priority Critical patent/JP5381323B2/ja
Publication of JP2010270983A publication Critical patent/JP2010270983A/ja
Application granted granted Critical
Publication of JP5381323B2 publication Critical patent/JP5381323B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関の排気熱を利用して自動車等の車両における適宜の加熱対象の昇温を促進可能にする排熱回収装置に関する。
従来から、自動車等の車両に搭載される内燃機関の排気ガスの熱を、ヒートパイプでもって回収し、触媒の暖機(活性化)を促進させるためや、内燃機関の暖機を促進させるため等に利用することが知られている(特許文献1〜3参照。)。
特許文献1に係る従来例は、内燃機関の排気通路の排気熱を回収して流体を蒸発させる蒸発部(受熱部に相当)と、この蒸発させた流体を凝縮させる凝縮部(放熱部に相当)とを隣り合わせに配置した状態で一体化し、それらを閉ループに接続した構成の排熱回収装置であり、前記凝縮部に内燃機関の冷却水流路の一部を近接配置させることにより、この冷却水と気体状の流体との間で熱交換を行わせるようにしている。この従来例では、凝縮部の内部空間の容積を一定に設定している。
特許文献2に係る従来例は、複数のヒートパイプ110の下半分を内燃機関の排気通路に配置して蒸発部(受熱部に相当)110Aとし、複数のヒートパイプ110の上半分を内燃機関の冷却水通路に配置して凝縮部(放熱部に相当)110Bとし、ヒートパイプ110の凝縮部110B側にサーモスタット113によって昇降される弁体112を設けるようにした構成が開示されている。
この従来例の動作としては、段落0040〜0043に示されているように、エンジン始動後、冷却水温度が所定温度に達するまで、弁体112の外周が弁座111bから離れた状態になり、凝縮部110B内の凝縮水がヒートパイプ110の内壁面111aに沿って蒸発部110Aに戻る。一方、冷却水温度が所定温度以上になると、サーモスタット113によって弁体112が下降されて弁座111bに着座した状態になり、凝縮部110B内の凝縮水が蒸発部110Aに還流されなくなって、冷却水の加熱が停止される。
特許文献3に係る従来例は、複数のヒートパイプ110の下半分を内燃機関の排気通路に配置して蒸発部(受熱部に相当)110Aとし、複数のヒートパイプ110の上半分を内燃機関の冷却水通路に配置して凝縮部(放熱部に相当)110Bとし、各ヒートパイプ110の蒸発部110Aの下端を連通タンク140で連通し、この連通タンク140の一端に、媒体収容量を変更可能とする媒体容器130を設けるようにした構成が開示されている。
この従来例の動作としては、段落0039に示されているように、排気ガス温度が高い場合にヒートパイプ110内の圧力が上昇し、ベローズ131を伸長させて媒体容器130の媒体収容量を増大するので、ヒートパイプ110内の水量が減少し、熱輸送能力が低下する。一方、排気ガス温度が低い場合にはヒートパイプ110内の圧力が低下し、ベローズ131が収縮して媒体容器130の媒体収容量が減少するので、ヒートパイプ110内の水量が増加し、熱輸送能力が増加する。
特開2008−14304号公報 特開2006−317013号公報 特開2006−292337号公報
特許文献1に係る従来例のように、凝縮部(放熱部に相当)の内部空間の容積を一定にしている場合、次のような点で改良の余地がある。
まず、凝縮部による加熱対象との熱交換能力を高めるために凝縮部の内部空間の容積を大きく設定すると、例えば内燃機関を冷間始動した場合、蒸発部(受熱部に相当)での流体の蒸発量が少ないので、蒸発部から凝縮部へ十分な量の蒸気を送れなくなり、凝縮部の熱交換能力の立ち上がりに時間がかかる。そこで、蒸発部から凝縮部への流体移送路の断面積を大きくして蒸気の移送量を多くさせようとすると、この蒸気が前記流体移送路の内壁面に摩擦して当該蒸気の熱が奪われることになるために、逆に蒸発部から凝縮部への熱輸送能力が低下しやすくなって、加熱対象を昇温させるのに時間がかかる結果となる。
これに対し、前記凝縮部の容積を小さく設定すると、例えば内燃機関を冷間始動した場合、蒸発部(受熱部に相当)での流体の蒸発量が少ないものの、凝縮部で凝縮されずに蒸発部に通過する量が多くなるので、蒸発部と凝縮部との間の熱循環経路内に蒸気が溜まりやすくなり、蒸発部による熱回収を効率良く行える状態に早期に立ち上げることが可能になる。しかしながら、当然ながら、凝縮部の容積が小さいことに起因して凝縮部による熱交換能力が不足するために、加熱対象を昇温させるのに時間がかかる。このように、凝縮部の容積の設定が困難であった。
特許文献2に係る従来例では、凝縮部(放熱部に相当)110Bから蒸発部(受熱部に相当)110Aへの凝縮水の還流を許容する状態や阻止する状態に切り替えることで、加熱対象となる冷却水の加熱を実行可能にしたり停止したりするようになっているが、凝縮部110Bの熱交換能力を調整するという技術思想は伺えない。
特許文献3に係る従来例には、排気ガスの温度に応じて蒸発部(受熱部に相当)110A内の媒体の収容量を変更することで、蒸発部110Aから凝縮部110Bへの熱輸送能力を変更させるようにしている。しかしながら、この従来例には、本発明のように、熱回収を効率良く行える状態に早期に立ち上げてから放熱部による熱交換能力を高める状態に移行させるという技術思想についての開示や示唆はない。そのため、当然ながら、この従来例には、前記技術思想を具現化するために凝縮部の内部空間の容積を変更可能にするという構成についての記載もない。
このような事情に鑑み、本発明は、内燃機関の排気通路に設けられかつ内部の流体を排気熱で蒸発させるための受熱部と、この受熱部で蒸発された流体を受け入れて当該流体と加熱対象との間で熱交換させるための放熱部とを含むループ式ヒートパイプ構造の排熱回収装置において、受熱部による熱回収を効率良く行える状態に早期に立ち上げてから放熱部による熱交換能力を高める状態に移行させることにより、加熱対象を速やかに昇温可能とすることを目的としている。
本発明は、内燃機関の排気通路に設けられかつ内部の流体を排気熱で蒸発させるための受熱部と、この受熱部で蒸発された流体を受け入れて当該流体と前記排気通路に設けられる触媒との間で熱交換させるための放熱部と、前記受熱部から前記放熱部へ流体を移送するための移送路と、前記放熱部から前記受熱部へ流体を戻すための還流路とを含むループ式ヒートパイプ構造の排熱回収装置であって、前記放熱部は、前記触媒を包囲するように設けられるケースを有し、この放熱部には前記ケースの内部空間の容積を変更することによって前記触媒との熱交換能力を調整するための調整機構が設けられており、前記調整機構は、前記ケースの内部空間に前記触媒の排気流れ方向に沿ってスライド可能に設置されかつ前記内部空間の容積を変更するための区画部材と、この区画部材を適宜の初期位置に配置するための弾性力を発生する弾性体とを備え、前記移送路は、前記放熱部のケースにおいて前記触媒の排気流れ方向の下流側に位置する下流側壁面に連通連結され、前記区画部材には、前記ケースの下流側壁面に対する前記移送路の連通部を開閉するための弁体が設けられ、前記調整機構は、前記区画部材を必要に応じて強制的にスライドさせるための駆動装置をさらに備える、ことを特徴としている。
この構成では、例えば受熱部による熱回収の開始時に前記放熱部のケースの内部空間容積を小さくすれば、放熱部による触媒との熱交換能力が低くなるから、この放熱部内の気相状流体が凝縮されずに受熱部へ通過する量が多くなる。これにより、受熱部内で蒸発された気相状流体を、受熱部と放熱部との熱循環経路内に速やかに満たすことが可能になるので、受熱部による熱回収を効率良く行える状態に早期に立ち上げることが可能になる。
このように熱循環経路内に気相状流体を満たした後で、放熱部のケース内の空間容積を大きくすれば、放熱部による前記触媒との熱交換能力が高くなるから、前記触媒の昇温が促進されるようになる。しかも、この段階では、熱循環経路内に多量の気相状流体が存在する状態になっているから、受熱部から放熱部への気相状流体の移動が緩やかになり、流体の移送経路の内壁面に対する流体の摩擦に伴う熱の損失が抑制されることになる。このことによっても、熱輸送が効率良く行えるようになる。
このように、受熱部による熱回収を効率良く行える状態に早期に立ち上げてから、放熱部による熱交換能力を高める状態に移行させることが可能になり、それによって、前記触媒を速やかに昇温させることが可能になる。
また、前記構成では、受熱部で蒸発された気相状流体が移送路を経て放熱部のケースの下流側壁面側からケース内に導入されることになる。その際、ケース内に導入される気相状流体の圧力が区画部材に作用する。この気相状流体の圧力が弾性体の弾性力を上回るまでは区画部材は不動となってケースの内部空間の容積が初期設定のまま保持される。しかし、前記ケース内に導入される気相状流体の圧力が弾性体の弾性力を上回ると、区画部材がケースの上流側壁面寄りへ徐々にスライドされることになって、ケースの内部空間の容積が徐々に増えるようになる。
このように、受熱部による熱回収量の増加つまり流体の蒸発量の増加に伴い、自動的にケースの内部空間の容積を大きくさせるように構成しているので、区画部材のスライド動作を電気的に制御するための装置を用いる場合に比べて構成簡素化、低コスト化を図るうえで有利となる。
さらに、前記構成では、例えば駆動装置で区画部材をケースの下流側壁面寄りへスライドさせることによって、この区画部材に設けている弁体で前記連通部を閉塞させることが可能になる。これにより、受熱部で蒸発された気相状流体が放熱部に導入されなくなるので、前記触媒の加熱が停止されることになる。
ここで、例えば、前記触媒が目標温度にまで昇温した場合に、前記のような形態で区画部材をスライドさせて弁体で連通部を閉塞させれば、前記触媒の加熱を停止させることができるので、前記触媒が必要以上に昇温することを防げるようになる。
好ましくは、本発明の排熱回収装置は、前記受熱部から前記放熱部へ流体を移送するための移送路と、前記放熱部から前記受熱部へ流体を戻すための還流路とをさらに含み、前記放熱部のケース内には、前記触媒の排気流れ方向に複数の部屋を隣り合わせに作るための区画壁が設けられ、前記移送路において流体送り方向下流側は、前記部屋数と同数に分岐されて前記ケースの各部屋に個別に連通連結され、前記調整機構は、前記移送路の分岐により得られる複数の支流部のうちの1つを除く残りに設けられる弁装置を有する。
ここで、移送路の分岐によって得られる複数の支流部における1つを除く残りに弁装置を設置する場合、例えば受熱部による熱回収の開始時に前記弁装置を閉塞させると、受熱部内で蒸発される気相状流体が前記弁装置を設けていない1つの支流部から放熱部の1つの部屋のみに導入されるようになる。これはつまり、放熱部による熱交換能力が低くなるということであるから、放熱部に導入された気相状の流体が凝縮されずに受熱部へ通過する量が多くなる。
これにより、受熱部内で蒸発された気相状流体を、受熱部と放熱部との熱循環経路内に速やかに満たすことが可能になるので、受熱部による熱回収を効率良く行える状態に早期に立ち上げることが可能になる。
このように熱循環経路内に気相状の流体を満たした後で、前記弁装置を開放させると、受熱部内で蒸発される気相状流体がすべての支流部から放熱部のすべての部屋内に導入されるようになる。これはつまり、放熱部による熱交換能力が高くなるということであるから、加熱対象の昇温が促進されるようになる。しかも、この段階では、受熱部と放熱部との熱循環経路内に多量の気相状流体が存在する状態になっているから、受熱部から放熱部への気相状流体の移動が緩やかになり、流体の移送経路の内壁面に対する流体の摩擦に伴う熱の損失が抑制されることになる。このことによっても、熱輸送が効率良く行えるようになる。
このように、受熱部による熱回収を効率良く行える状態に早期に立ち上げてから、放熱部による熱交換能力を高める状態に移行させることが可能になり、それによって、加熱対象を速やかに昇温させることが可能になる。
なお、移送路の分岐によって得られる複数の支流部すべてに弁装置を設置する場合、例えば受熱部による熱回収の開始時にいずれか1つの弁装置以外の残りの弁装置を閉塞させると、受熱部内で蒸発される気相状流体がいずれか1つの支流部から放熱部のいずれか1つの部屋のみに導入されるようになる。これはつまり、放熱部による熱交換能力が低くなるということであるから、放熱部に導入された気相状の流体が凝縮されずに受熱部へ通過する量が多くなる。
これにより、受熱部内で蒸発された気相状流体を、受熱部と放熱部との熱循環経路内に速やかに満たすことが可能になるので、受熱部による熱回収を効率良く行える状態に早期に立ち上げることが可能になる。この後は、さらに前記閉塞している弁装置を開放させることにより、気相状流体をすべての支流部から放熱部のすべての部屋に導入させるようにすれば、放熱部による熱交換能力が高くなる。
好ましくは、前記弁装置は、予め設定される作動条件に従い自動的に開度を制御する自己作動タイプとされ、かつ、前記受熱部から放熱部へ移送される高温の流体の圧力が規定値未満の場合に閉じて、前記規定値以上の場合に開くものとされる。
ここでは、弁装置を自動的に開閉する構成にしているので、弁装置の開閉動作を電気的に制御するための装置を用いる場合に比べて構成簡素化、低コスト化を図るうえで有利となる。
本発明に係る排熱回収装置によれば、受熱部による熱回収を効率良く行える状態に早期に立ち上げてから放熱部による熱交換能力を高める状態に移行させることにより、加熱対象を速やかに昇温させることが可能になる。
本発明に係る排熱回収装置の一実施形態を示す概略構成図である。 図1の排熱回収装置の具体構成を示す断面図であり、放熱部内の空間容積を略半分にした初期状態を示している。 図2の(3)−(3)線断面の矢視図である。 図2の調整機構により放熱部内の空間容積を最大にした状態を示す断面図である。 図2の調整機構により移送路から放熱部への流体導入を遮断した状態を示す断面図である。 本発明に係る排熱回収装置の他実施形態を示す概略構成図である。 図6において放熱部内の空間容積を略半分にした初期状態を示す断面図である。 図6において放熱部内の空間容積を最大にした状態を示す断面図である。 本発明に係る排熱回収装置のさらに他実施形態を示す概略構成図であり、調整機構の初期状態を示している。 図9において放熱部内の空間容積を最大にした状態を示す断面図である。
以下、本発明を実施するための最良の形態について添付図面を参照して詳細に説明する。
図1から図5に本発明の一実施形態を示している。この実施形態では、車両に搭載される内燃機関に適用される排熱回収装置を例に挙げている。
図1を参照して、排熱回収装置の概略構成を説明する。図中、1は水冷式の内燃機関である。この内燃機関1は、吸気系から供給される空気と燃料供給系から供給される燃料とを適宜の空燃比で混合してなる混合気を内燃機関1の燃焼室に供給して燃焼させた後、燃焼室内の排気ガスを排気系から大気放出させるようになっている。
排気系は、内燃機関1に取り付けられるエキゾーストマニホールド2と、このエキゾーストマニホールド2に球面継手3を介して接続される排気管4とを少なくとも有する構成である。エキゾーストマニホールド2と排気管4とが、排気通路を構成している。
球面継手3は、エキゾーストマニホールド2と排気管4との適度な揺動を許容するとともに、内燃機関1の振動や動きを排気管4に伝達させないか、あるいは減衰して伝達するように機能する。
排気管4には、2つの触媒5,6が直列に設置されており、この2つの触媒5,6により排気ガスが浄化される。
これらの触媒5,6のうち、排気管4において排気ガスの流れ方向の上流側に設置される触媒5は、いわゆるスタートキャタリスタ(S/C)と呼ばれるもので、上流側触媒と言うことにし、一方、排気管4において排気ガスの流れ方向の下流側に設置される触媒6は、いわゆるメインキャタリスト(M/C)またはアンダーフロアキャタリスタ(U/F)と呼ばれるもので、下流側触媒と言うことにする。
これらの触媒5,6は、共に、例えば三元触媒と呼ばれるものとすることができる。この三元触媒は、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を一括して化学反応により無害な成分に変化させる、浄化作用を発揮するものである。
内燃機関1には、その内部に封入されるロングライフクーラント(LLC)と呼ばれる冷媒(以下、単に冷却水と言う)が冷却水取り出し路8から一旦取り出されてラジエータ7に供給され、このラジエータ7から冷却水還流路9を経て内燃機関1に戻される。ラジエータ7は、ウォータポンプ10によって循環される冷却水を外気との熱交換により冷却するものである。
そして、サーモスタット11によってラジエータ7を流通する冷却水量とバイパス路12を流通する冷却水量とが調節されるようになっている。例えば暖機時においてはバイパス路12側の冷却水量が増加されて暖機が促進され、ラジエータ7による冷却水の過冷却が防止される。
冷却水取り出し路8から分岐されて冷却水還流路9においてウォータポンプ10の上流側に接続されるヒータ流路13の途中には、ヒータコア14が設けられている。このヒータコア14は、前記の冷却水の熱を利用して車室内の暖房を行うための熱源である。このヒータコア14によって暖められた空気は、ブロアファン15によって車室内に導入されるようになっている。なお、前記のヒータコア14とブロアファン15とでヒータユニット16が構成されている。ヒータ流路13においてヒータコア14より下流側領域を流れる冷却水の温度は、ヒータコア14からの放熱により低温になる。
このような構成の内燃機関1の排気系には、排熱回収装置20が付設されている。
この排熱回収装置20は、内燃機関1から排出される排気ガスの熱を回収して例えば上流側触媒5に伝達することにより上流側触媒5の昇温を促進させる形態としたもので、主として、受熱部21、放熱部22、移送路23、還流路24を含んだループ式ヒートパイプ構造になっている。
なお、ループ式ヒートパイプ構造の排熱回収装置20とは、受熱部21と放熱部22との間で流体を相転移させながら循環させることによって、排気熱の回収と放熱とを繰り返すようなもののことである。
図示例の排熱回収装置20は、受熱部21と放熱部22とを離隔して配置したセパレートタイプとされている。
この排熱回収装置20の内部は、真空状態とされていて、そこに適量の流体が封入されている。流体は、例えば純水等とされる。水の沸点は、1気圧で100℃であるが、排気熱回収装置1内を減圧(例えば0.01気圧)しているため、沸点は、例えば5〜10℃となる。なお、流体は、純水の他に、例えばアルコール、フロロカーボン、フロン等とすることが可能である。また、排熱回収装置20の主要構成要素は、例えば高耐食性を備えるステンレス材で形成されている。
受熱部21は、排気管4において下流側触媒6より下流側に設置されており、内部に密封される液相状の流体が排気熱を受けて蒸発することにより気化熱として熱を回収するように構成されている。
具体的に、受熱部21は、排気管4に対してその排気ガス通過方向と直交する方向に設置されるものであって、例えば図2に示すように、上部タンク21aと下部タンク21bとを複数の流体通路21c・・・で連通させて、隣り合う各流体通路21cの対向間の排気通路21dに、多数のフィン21e・・・を設けた構成になっている。このフィン21eは、熱交換面積を拡大するように、コルゲートタイプとされている。このコルゲートタイプのフィン21eとは、例えば薄肉の帯板材をローラ加工によって円周方向に波形に成形したものである。
なお、上部タンク21aは、主に蒸発された気相状の流体が集められるので、高温側タンクとなる。下部タンク21bは、主に凝縮された液相状の流体が集められるので、低温側タンクとなる。
放熱部22は、加熱対象となる上流側触媒5に付設されており、受熱部21で蒸気とされた流体を受け取って、この流体の熱を上流側触媒5に伝達させるものであり、流体は熱伝達に伴い凝縮されて受熱部21に戻される。この放熱部22の構成は後で詳細に説明する。
移送路23は、受熱部21の上部タンク21aと放熱部22の内部空間とを連通連結するための配管で、受熱部21で蒸発された気相状の流体を放熱部22へ移送するものである。
還流路24は、放熱部22の内部空間と受熱部21の下部タンク21bとを連通連結するための配管で、放熱部22で凝縮された液相状の流体を受熱部21へ戻すものである。この還流路24は、放熱部22で凝縮された液相状の流体を受熱部21へ戻しやすくするために適宜の下り勾配がつけられている。
次に、内燃機関1の動作に関連した排熱回収装置20の基本的な動作について、まず簡単に説明する。
要するに、内燃機関1を冷間始動する場合、上流側触媒5および下流側触媒6、内燃機関1の冷却水のすべてが低温になっているが、内燃機関1からエキゾーストマニホールド2を経て排気管4に例えば300〜400℃の排気ガスが排出されることになり、2つの触媒5,6が内部から排気ガスで昇温されることになる一方、冷却水がラジエータ7を通らずにバイパス流路12を経て内燃機関1へ戻されることによって暖機運転されることになる。
この暖機運転中に排熱回収装置20でさらに上流側触媒5を加熱することにより上流側触媒5の活性化を促進させるようにする。
この排熱回収装置20の基本的な動作について説明する。
内燃機関1からエキゾーストマニホールド2を経て排気管4に排出された排気ガスが受熱部21に到達すると、この受熱部21内の液相状の流体が排気ガスの熱により加熱されて、蒸発されることになる。
この蒸発された気相状の流体が、移送路23を経て放熱部22に移送される。この放熱部22に送り込まれた気相状の流体の熱は、上流側触媒5に伝達される。これにより、上流側触媒5が排気ガスで内側から加熱されるうえ、前記気相状の流体で外側から加熱されるので、上流側触媒5の昇温が促進されることになって早期に活性化されることになる。なお、下流側触媒6は、上流側触媒5で浄化されることに伴い高温化する排気ガスによって昇温するようになる。
この放熱部22内に導入された高温の気相状の流体と上流側触媒5との間の熱交換に伴い、放熱部22内の気相状の流体が凝縮されて液相状となる。この液相状の流体は、還流路24から受熱部21に戻される。以降、受熱部21と放熱部22との間を流体が相転移しながら循環されることによって、上流側触媒5が加熱される。
次に、図2を参照して、放熱部22の構成を詳細に説明する。放熱部22は、加熱対象としての上流側触媒5を包囲するような円形のケース22aを有している。このケース22aにおいて上流側触媒5の排気流れ方向の下流側に位置する下流側壁面22bには、移送路23が連通連結されている。また、ケース22aの外周壁の下側には、還流路24が連通連結されている。ケース22aと上流側触媒5との対向環状空間が、ケース22aの内部空間となる。
この放熱部22には、下記する調整機構が設けられている。この調整機構は、要するに、ケース22aの内部空間つまりケース22aと上流側触媒5との対向環状空間の容積を変更することによって、放熱部22による熱交換能力つまり放熱部22による加熱能力を調整するものである。
この調整機構は、主として、区画部材としてのスライドプレート32と、弾性体33と、スライドプレート32を強制的にスライドさせるための駆動装置34とを含む構成になっている。
スライドプレート32は、放熱部22のケース22a内に、上流側触媒5の排気流れ方向に沿ってスライド可能に設置されている。このスライドプレート32は、この実施形態において、ケース22aと上流側触媒5との対向環状空間の断面形状に略合致するような円環状の板とされており、その停止位置によってケース22aの内部空間の容積を変更することができる。このスライドプレート32の一側面の所定位置には、前記したケース22aと移送路23との連通部26を開閉するための弁体35が設けられている。
弾性体33は、スライドプレート32を図2に示す初期位置に配置させるものであって、例えば円筒形状のコイルスプリング等とされる。この弾性体33の一端は、スライドプレート32に取り付けられ、弾性体33の他端は、上流側触媒5のハウジング等に取り付けられている。この初期位置は、この実施形態において、ケース22aと上流側触媒5との対向環状空間の容積を略半分とする位置、つまり排気流れ方向の中央位置に設定されている。なお、このようにスライドプレート32を初期位置に配置するときの弾性体33は、圧縮も伸張もしていない自然な状態になっている。
駆動装置34は、必要に応じてスライドプレート32を強制的にスライドさせるものであって、駆動源36と、操作部材37と、制御装置38とを含んで構成されている。
駆動源36は、例えば直線的な往復推進力つまり直線駆動力を発生するものであって、例えば直線駆動力を直接発生する直動シリンダとされている。この他、駆動源36は、例えば回転動力を発生するモータと、前記回転動力を直線駆動力に変換する変換機構とを組み合わせた構成等とすることができる。
操作部材37は、駆動源36で発生する直線駆動力をスライドプレート32に伝達するものであって、例えば図2に示しているように複数本の真っ直ぐな棒を組み合わせたような構成とされている。
制御装置38は、一般的に公知のECU(Electronic Control Unit)とされ、双方向性バスによって相互に接続した中央処理装置(CPU)、プログラムメモリ(ROM)、データメモリ(RAM)、バックアップメモリ(不揮発性RAM)等を含んだ構成になっている。
この制御装置38は、上流側触媒5において排気流れ方向の下流側に設置される温度センサ39からの検出出力に基づいて上流側触媒5の触媒床温度を検知し、この検知結果が判定基準値以上である場合に、上流側触媒5の暖機が完了していると判断して、受熱部21から放熱部22への流体移送を停止させる処理を行う。
この処理としては、駆動源36を作動させることにより、スライドプレート32をケース22aの下流側壁面22b側へスライドさせて、このスライドプレート32に設けている弁体35をケース22aと移送路23との連通部26に嵌入させることにより、当該連通部26を閉塞させる形態とされている。
次に、前記した構成の調整機構の動作について説明する。
まず、内燃機関1の冷間始動時には、2つの触媒5,6の温度が低く、排熱回収装置20の閉ループ内に蒸気が存在していないとする。そのため、調整機構のスライドプレート32は、弾性体33の弾性復元力により図2に示す初期位置つまり中央位置に配置されているものとする。なお、このときの弾性体33は、圧縮も伸張もしていない自然な状態になっている。この場合、ケース22aと上流側触媒5との対向環状空間の容積が略半分になる。
ここで、下流側触媒6を通過した排気ガスの熱を受熱部21が回収することにより、受熱部21内に存在する液相状の流体が蒸発されることになって、この蒸発されて高温となった気相状の流体が移送路23を経て放熱部22に順次導入されるようになる。
この熱回収の初期には、受熱部21内に存在している流体の温度が低く、かつ受熱部21と放熱部22との熱循環経路内に存在する蒸気の量が少ないが、放熱部22と上流側触媒5との対向環状空間の容積が最大時の略半分になっていて、放熱部22による熱交換能力が略半減している。
これにより、放熱部22内の気相状流体が凝縮されずに受熱部21へ通過する量が多くなる。言い換えれば、放熱部22から受熱部21への液相状流体の還流量が少なくなるので、高温の気相状流体が受熱部21と放熱部22との熱循環経路内に速やかに満たされることになって、受熱部21内の雰囲気温度が高温になるので、この受熱部21による熱回収が効率良く行えるようになる。
こうして受熱部21による熱回収量つまり受熱部21内での液相状流体の蒸発量が増加することに伴い、放熱部22に作用する圧力が徐々に高くなる。この圧力が弾性体33の弾性力に打ち勝つと、スライドプレート32がケース22aの上流側壁面22c側に徐々にスライドされて、ケース22aと上流側触媒5との対向環状空間の容積が徐々に増加することになる。
これで、例えば図4に示すように、スライドプレート32が弾性体33を圧縮させて上流側壁面22cに最も近寄った位置に到達すると、ケース22aと上流側触媒5との対向環状空間の容積が最大になり、放熱部22によるの熱交換能力が最大になる。そのために、上流側触媒5の昇温が促進されることになる。しかも、この段階では、受熱部21と放熱部22との熱循環経路内に多量の気相状流体が存在する状態になっているから、受熱部21から放熱部22への気相状流体の移動が緩やかになり、移送路23の内壁面に対する流体の摩擦に伴う熱の損失が抑制されることになる。このことによっても、熱輸送が効率良く行えるようになる。
このように、受熱部21による熱回収を効率良く行える状態に早期に立ち上げてから放熱部22による熱交換能力を高める状態に移行させているので、上流側触媒5の暖機を速やかに完了することが可能になる。
ところで、例えば上流側触媒5の暖機が完了した場合、例えば温度センサ39からの出力に基づいて上流側触媒5の温度が所定の判定基準値以上になったことを制御装置38が認識した場合には、この制御装置38が駆動装置36の駆動源37を制御してスライドプレート32をケース22aの下流側壁面22bへ向けてスライドさせることにより、図5に示すように、スライドプレート32の弁体35を放熱部22のケース22aと移送路23との連通部26に嵌入させて当該連通部26を閉塞させる。
これにより、受熱部21で蒸発された流体が放熱部22に導入できなくなる。そのため、放熱部22による上流側触媒5の加熱が停止され、放熱部22と受熱部21との間における熱循環が停止されることになる。しかも、弁体35で連通部26を閉塞すると、受熱部21内で蒸発された高温の気相状流体が放熱部22へ流入されなくなるので、放熱部22による上流側触媒5の加熱を速やかに停止させることが可能になり、上流側触媒5が過剰に昇温することを防止できるようになる。
なお、前記判定基準値は、上流側触媒5の活性化温度(例えば400℃)に基づいて適宜のマージンを見込んだ値に設定される。
以上説明したように、本発明を適用した実施形態では、ループ式ヒートパイプ構造の排熱回収装置20において、受熱部21による熱回収を効率良く行える状態に早期に立ち上げてから放熱部22による熱交換能力を高める状態に移行させることが可能になる。これにより、上流側触媒5の暖機を速やかに完了することが可能になって、内燃機関1の冷間始動時におけるエミッション低減を図るうえで有利となる。さらに、上流側触媒5の過剰昇温時には排熱回収装置20による上流側触媒5の加熱を即座に停止して上流側触媒5の機能低下を回避することが可能になる。
次に、図6から図8を参照して、本発明の他の実施形態を説明する。この実施形態では、調整機構において放熱部22の容積を変更するための具体構成が上記実施形態と相違している。
具体的に、放熱部22のケース22a内には、区画壁22dが設けられている。この区画壁22dは、ケース22a内において排気流れ方向中央に設置されており、それによってケース22aと上流側触媒5との対向環状空間を2つの部屋22A,22Bに仕切るようになっている。この2つの部屋22A,22Bの容積は、略同じに設定されている。
このようにケース22aの外周壁において2つの部屋22A,22Bの天井に相当する位置には、2つの導入口が設けられており、また、ケース22aの外周壁において2つの部屋22A,22Bの底に相当する位置には、2つの排出口が設けられている。
移送路23において流体送り方向下流側は、前記部屋数と同数、つまり二股に分岐されている。この移送路23の第1、第2の支流部23a,23bは、前記2つの導入口に個別に連通連結されている。
また、還流路24において流体送り方向上流側は、前記部屋数と同数、つまり二股に分岐されている。この還流路24の第1、第2の支流部24a,24bは、前記2つの排出口に個別に連通連結されている。
そして、移送路23における第2の支流部24bには、弁装置27が設けられている。この弁装置27は、予め設定される作動条件に従い自動的に開度を制御する自己作動タイプとされている。
この自己作動タイプの弁装置27としては、例えば図7および図8に示すように、主として、シリンダケース27aと、弁体27bと、駆動源としてのダイアフラムスプリング27cとを含む構成の感圧式弁装置が用いられている。
移送路23の途中が分断されており、この分断された移送路23の受熱部21側の端部がシリンダケース27aの周壁に設けられている流体導入口に連通連結されており、前記分断された移送路23の放熱部22側の端部がシリンダケース27aの一端壁に設けている流体排出口に連通連結されている。
シリンダ室27d内には、弁体25bがスライド可能に収納配置されている。弁体27bのバルブステムエンドは、ダイアフラムスプリング27cを介してシリンダケース27aの他端壁に取り付けられている。このダイアフラムスプリング27cは、シリンダ室27dの内圧の変化によって弾性変形して伸びた形状になったり弾性復元して湾曲した形状になったりするものであり、この弾性変形や弾性復元に伴い弁体27bをスライドさせることでケース22aの前記流体排出口を開閉させるようになっている。
この弁装置27の動作としては、例えば受熱部21から放熱部22へ移送される高温の気相状流体の圧力が規定値未満の場合にダイアフラムスプリング27cが弾性変形していない自然な湾曲姿勢になっていて弁体27bを閉じる状態になり、また、前記規定値以上の場合に前記気相状流体の圧力でダイアフラムスプリング27cが弾性変形されて真っ直ぐな姿勢になって弁体27bを開く状態になる。この規定値については、上流側触媒5が冷間時の温度よりも高く、かつ暖機完了時の温度よりも低い適宜の値に設定される。
さらに、移送路23の分岐よりも流体移送方向上流側には、熱循環停止用の弁装置28が設けられている。この弁装置28は、予め設定される作動条件に従い自動的に開度を制御する自己作動タイプとされている。
この自己作動タイプの弁装置28としては、詳細に図示していないが、例えばサーモスタットを駆動源として弁体を開閉位置に変位させる感熱式の弁装置が用いられており、例えば上流側触媒5の暖機が完了するまで開放されていて、上流側触媒5の暖機が完了した場合に閉塞されるようになっている。
次に、この実施形態の動作について説明する。
まず、内燃機関1の冷間始動時には、弁装置28が開放しているとともに、図7に示すように弁装置27が閉塞しているので、受熱部21で蒸発された気相状流体が第1の支流部24aのみから放熱部22の第1部屋22A内に導入されることになる。この状態では、放熱部22の熱交換可能な容積が最大時の略半分になっているので、放熱部22によるの熱交換能力つまり放熱部22による加熱能力が略半減する。
これにより、放熱部22内の気相状流体が凝縮されずに受熱部21へ通過する量が多くなる。言い換えれば、放熱部22から受熱部21への液相状の流体の還流量が少なくなるので、気相状の流体が受熱部21と放熱部22との熱循環経路内に速やかに満たされることになって、受熱部21による熱回収が速やかに立ち上げられることになる。
こうして受熱部21による熱回収量つまり受熱部21内での流体の蒸発量が増加することに伴い、放熱部22に作用する圧力が高くなる。この圧力が弁装置27の規定値以上になると、図8に示すように、弁装置27が開放されることになる。
これにより、受熱部21内で蒸発された気相状の流体が第1、第2の支流部24a,24bから第1、第2の部屋22A,22B内にそれぞれ導入されることになるので、ケース22aにおいて熱交換可能な空間容積が最大となり、放熱部22による熱交換能力が最大になる。そのため、上流側触媒5の昇温が促進される。しかも、この段階では、受熱部21と放熱部22との熱循環経路内に多量の気相状流体が存在する状態になっているから、受熱部21から放熱部22への気相状流体の移動が緩やかになり、移送路23の内壁面に対する流体の摩擦に伴う熱の損失が抑制されることになる。このことによっても、熱輸送が効率良く行えるようになる。
このように、受熱部21による熱回収を効率良く行える状態に早期に立ち上げてから放熱部22による熱交換能力を高める状態に移行させているので、上流側触媒5の暖機を速やかに完了することが可能になる。
ところで、例えば上流側触媒5の暖機が完了した場合、例えば上流側触媒5の温度が弁装置28の作動判定値以上になった場合には、この弁装置28が移送路23を閉塞させることになり、それによって、受熱部21で蒸発された流体が放熱部22に導入できなくなる。なお、前記作動判定値は、上流側触媒5の活性化温度(例えば400℃)に基づいて適宜のマージンを見込んだ値に設定される。そして、前記の状態になると、放熱部22による上流側触媒5の加熱が停止され、放熱部22と受熱部21との間における熱循環が停止されることになる。しかも、弁体35で連通部26を閉塞すると、受熱部21内で蒸発された高温の気相状流体が放熱部22へ流入されなくなるので、放熱部22による上流側触媒5の加熱を速やかに停止させることが可能になり、上流側触媒5が過剰に昇温することを防止できるようになる。
なお、本発明は、上記実施形態のみに限定されるものではなく、特許請求の範囲内および当該範囲と均等の範囲で包含されるすべての変形や応用が可能である。以下で例を挙げる。
(1)図1から図5に示す実施形態では、加熱対象としての上流側触媒5に付設する放熱部22のケース22aの外形について上流側触媒5を包囲するような形状とした例を挙げているが、このケース22aの外形形状は特に限定されるものではない。その場合、スライドプレート32の形状はケース22aの外形形状と上流側触媒5の外形形状とで作る対向環状空間の断面形状と合致する形状とされる。
(2)図6から図8に示す実施形態において、例えば図9および図10に示すように、区画壁22dを変形することが可能である。つまり、放熱部22のケース22a内に設けられる区画壁22dについて、その底部に切り欠き22eを設けることによって、2つの部屋22A,22Bを完全に独立させずに、2つの部屋22A,22Bの底部を連通させるようになっている。そして、還流路24については、前記のように分岐していない形状にしている。これら以外の構成については前記と同じになっている。
この場合の動作については、前記した実施形態と基本的に同じとなる。但し、図9に示すように弁装置27が閉塞されている場合には、受熱部21で蒸発された気相状流体が第1の部屋22Aにのみ導入されるようになる。一方、図10に示すように弁装置27が開放されている場合には、受熱部21で蒸発された気相状流体が2つの部屋22A,22Bに導入されるようになる。そして、2つの部屋22A,22Bでそれぞれ凝縮されて液相状となる流体は、各部屋22A,22Bの底部に集められるようになって、この底部に集められた液相状の流体が還流路24からまとめて受熱部21へ戻されるようになる。
このような実施形態の場合も、図6から図8に示す実施形態と略同様の作用、効果が得られる。
(3)図6から図8に示す実施形態や図9および図10に示す実施形態において、2つの弁装置27,28を自己作動タイプとした例を挙げているが、これらの弁装置27,28はアクチュエータ駆動タイプとすることができる。
また、図6から図8に示す実施形態や図9および図10に示す実施形態では、移送路23に熱循環停止用の弁装置28を設けているが、この弁装置28を無くし、その代わりに、図示していないが、移送路23の第1、第2支流部23a,23bの両方にアクチュエータ駆動タイプの弁装置を設ける構成とすることができる。
この場合、例えば適宜の制御装置を用いて、内燃機関1の冷間始動の初期において前記いずれか一方の弁装置を開いて残り他方を閉じた状態にすることにより受熱部21による熱回収を早期に立ち上げ、その後、両方の弁装置を開くことにより放熱部22による熱交換能力を最大にし、さらに上流側触媒5の暖機が完了したときに両方の弁装置を閉じることにより、上流側触媒5の過剰な加熱を停止させるようにすることができる。
(4)上記各実施形態において、内燃機関1はガソリンエンジンやディーゼルエンジン、その他のエンジンに限定されるものではない。ディーゼルエンジンとする場合には、触媒5,6を例えばDPF(Diesel Particulate Filter)やDPNR(Diesel Particulate -NOx Reduction system)等とすることができる。
なお、ディーゼルエンジンの場合において、上流側触媒5をNOx吸蔵還元触媒(NSR:NOx storage reduction)として、下流側触媒6をNOx選択還元触媒(SCR:Selective Catalytic Reduction)とすることも可能である。
(5)上記各実施形態では、2つの触媒5,6を備える場合の例を挙げているが、触媒の数は限定されるものではなく、例えば1個、あるいは3個以上であってもよい。
(6)上記各実施形態では、加熱対象として上流側触媒5を例に挙げているが、例えば内燃機関1からヒータ流路13へ一旦取り出される冷却水を加熱対象とすることが可能である。
1 内燃機関
2 エキゾーストマニホールド
4 排気管
5 上流側触媒
6 下流側触媒
20 排熱回収装置
21 受熱部
22 放熱部
22a ケース
23 移送路
24 還流路
32 スライドプレート(区画部材)
33 弾性体
34 駆動装置
35 弁体
36 駆動装置の駆動源
37 駆動装置の操作部材
38 駆動装置の制御装置

Claims (1)

  1. 内燃機関の排気通路に設けられかつ内部の流体を排気熱で蒸発させるための受熱部と、この受熱部で蒸発された流体を受け入れて当該流体と前記排気通路に設けられる触媒との間で熱交換させるための放熱部と、前記受熱部から前記放熱部へ流体を移送するための移送路と、前記放熱部から前記受熱部へ流体を戻すための還流路とを含むループ式ヒートパイプ構造の排熱回収装置であって、
    前記放熱部は、前記触媒を包囲するように設けられるケースを有し、この放熱部には前記ケースの内部空間の容積を変更することによって前記触媒との熱交換能力を調整するための調整機構が設けられており、
    前記調整機構は、前記ケースの内部空間に前記触媒の排気流れ方向に沿ってスライド可能に設置されかつ前記内部空間の容積を変更するための区画部材と、この区画部材を適宜の初期位置に配置するための弾性力を発生する弾性体とを備え、
    前記移送路は、前記放熱部のケースにおいて前記触媒の排気流れ方向の下流側に位置する下流側壁面に連通連結され、
    前記区画部材には、前記ケースの下流側壁面に対する前記移送路の連通部を開閉するための弁体が設けられ、
    前記調整機構は、前記区画部材を必要に応じて強制的にスライドさせるための駆動装置をさらに備える、ことを特徴とする排熱回収装置。
JP2009124023A 2009-05-22 2009-05-22 排熱回収装置 Expired - Fee Related JP5381323B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124023A JP5381323B2 (ja) 2009-05-22 2009-05-22 排熱回収装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124023A JP5381323B2 (ja) 2009-05-22 2009-05-22 排熱回収装置

Publications (2)

Publication Number Publication Date
JP2010270983A JP2010270983A (ja) 2010-12-02
JP5381323B2 true JP5381323B2 (ja) 2014-01-08

Family

ID=43419159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124023A Expired - Fee Related JP5381323B2 (ja) 2009-05-22 2009-05-22 排熱回収装置

Country Status (1)

Country Link
JP (1) JP5381323B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011573A1 (ja) * 2011-07-20 2013-01-24 トヨタ自動車株式会社 エンジンの冷却装置
JP6511948B2 (ja) * 2015-05-12 2019-05-15 いすゞ自動車株式会社 排熱回収システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846973U (ja) * 1981-09-22 1983-03-30 トヨタ自動車株式会社 熱交換器
JPS5971073U (ja) * 1982-10-28 1984-05-14 株式会社新潟鐵工所 能力可変式ヒ−トパイプ
JPH01151076U (ja) * 1988-04-08 1989-10-18
JPH01273995A (ja) * 1988-04-26 1989-11-01 Fujikura Ltd 磁石制御型ヒートパイプ
JPH08152292A (ja) * 1994-11-29 1996-06-11 Shimadzu Corp 熱交換器
JPH0914788A (ja) * 1995-06-28 1997-01-17 Aisin Seiki Co Ltd 化学蓄熱装置
JP4055728B2 (ja) * 2004-03-19 2008-03-05 トヨタ自動車株式会社 排熱回収装置
JP2007170299A (ja) * 2005-12-22 2007-07-05 Denso Corp 排熱回収装置
JP4682932B2 (ja) * 2006-06-26 2011-05-11 株式会社デンソー ループ式ヒートパイプ

Also Published As

Publication number Publication date
JP2010270983A (ja) 2010-12-02

Similar Documents

Publication Publication Date Title
EP2318676B1 (en) Exhaust heat recovery system
EP1801531B1 (en) Waste heat collecting apparatus
US8413434B2 (en) Exhaust heat recovery for transmission warm-up
US7520133B2 (en) Thermodynamic engine
US20090000577A1 (en) Waste heat collecting apparatus
US7877991B2 (en) Exhaust heat recovery device
WO2011102323A1 (ja) 排熱回収装置
CN104279032B (zh) 用于机动车的驱动单元
JP2007278623A (ja) 排熱回収装置
JP2010065543A (ja) 車両用冷却システム
JP5304450B2 (ja) 内燃機関の暖機装置
JP5381323B2 (ja) 排熱回収装置
JP5141479B2 (ja) 排気ガス浄化システム及び排気ガス浄化方法
JP2010059862A (ja) 排気熱回収装置
JP2010275999A (ja) 内燃機関の排気構造
JP5381337B2 (ja) 排熱回収装置
JP5018715B2 (ja) 廃熱回収装置
JP2008175125A (ja) 内燃機関の排気熱回収装置
JP6435734B2 (ja) 排気ガス浄化装置
JP2010133349A (ja) 排気熱回収装置
JP4941445B2 (ja) 排気熱回収装置
JP2004270487A (ja) エンジンの排気熱利用装置
JP4682932B2 (ja) ループ式ヒートパイプ
JP2010059954A (ja) 排気熱回収装置
JP2014070632A (ja) 車両用廃熱回収システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

LAPS Cancellation because of no payment of annual fees