JP5353763B2 - 変速制御装置及び車両制御装置 - Google Patents

変速制御装置及び車両制御装置 Download PDF

Info

Publication number
JP5353763B2
JP5353763B2 JP2010044716A JP2010044716A JP5353763B2 JP 5353763 B2 JP5353763 B2 JP 5353763B2 JP 2010044716 A JP2010044716 A JP 2010044716A JP 2010044716 A JP2010044716 A JP 2010044716A JP 5353763 B2 JP5353763 B2 JP 5353763B2
Authority
JP
Japan
Prior art keywords
shift
control
speed
request
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010044716A
Other languages
English (en)
Other versions
JP2011179598A (ja
Inventor
寛英 小林
秀顕 大坪
幸彦 出塩
光史 宮崎
真吾 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010044716A priority Critical patent/JP5353763B2/ja
Publication of JP2011179598A publication Critical patent/JP2011179598A/ja
Application granted granted Critical
Publication of JP5353763B2 publication Critical patent/JP5353763B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、変速機の変速制御を行う変速制御装置及び当該変速機を備えた車両の車両制御装置に関する。
従来、変速段の変速制御が自動的に為される変速機においては、変速要求に応じた目標最終変速段に至るまでの変速経路を制御装置が設定する。例えば、運転者がアクセルペダルの踏み込み操作を行ったときには、ダウンシフト要求と判断されることがあり、そのダウンシフト要求に応じた目標最終変速段に至るまでの変速経路、つまりダウンシフト時の変速段の切り替え順路が設定される。
ここで、機械動力源としてのエンジンと電気動力源としてのモータ/ジェネレータとを備えたハイブリッド車両においては、モータ/ジェネレータの動力(モータ力行トルク)のみでの走行(所謂EV走行)中にアクセルペダルの踏み込み操作が行われると、その踏み込み操作に応じた要求駆動力を発生させるべく、エンジンを始動させることがある。つまり、この種のハイブリッド車両においては、運転者のアクセルペダルの踏み込み操作によって変速機のダウンシフト要求とエンジン始動要求とが同時に生じる可能性がある。例えば、下記の特許文献1には、この種のハイブリッド車両のエンジン始動方法が開示されている。この特許文献1のハイブリッド車両においては、自動変速機のダウンシフト要求とエンジン始動要求とが生じた場合、双方の要求に係る制御の干渉による加速応答性の悪化を抑えるべく、ダウンシフト制御の実行後にエンジンの始動制御を実施している。
特開2006−306210号公報
ところで、上述した変速経路は、変速機における現状の変速制御状態と予め用意されている種々の変速パターンとの組み合わせによって規定されている。しかしながら、従来は、その規定された組み合わせの中からしか変速経路を設定できなかったので、その設定の自由度が低く、最適な変速経路が設定されない可能性がある。例えば、現状の変速制御状態が一定の変速段での固定状態又はアップシフト制御状態でダウンシフト要求が生じた場合、変速経路は、目標最終変速段への変速時間を短くするよりも運転者の駆動力要求の実現を優先した変速パターンになるものが規定されている。これが為、そのダウンシフト要求時にエンジン始動要求も起きたときには、特許文献1の如くダウンシフト制御後にエンジンを始動させると、そのエンジンの始動遅れを招いてしまう。
そこで、本発明は、かかる従来例の有する不都合を改善し、変速経路の最適化が可能な変速制御装置及び車両制御装置を提供することを、その目的とする。
上記目的を達成する為、本発明は、変速機の変速制御中に別の変速要求が為されると共にエンジン始動要求が為された場合、実行中の変速制御の際に係合制御されている前記変速機の係合部のトルク容量が所定値よりも小さければ、該実行中の変速制御の進行度を変速前期と判断する一方、実行中の変速制御の際に係合制御されている前記係合部のトルク容量が所定値以上ならば、該実行中の変速制御の進行度を変速後期と判断し、該判断の結果に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定することを特徴としている。
また、上記目的を達成する為、本発明は、変速機の変速制御中に別の変速要求が為されると共にエンジン始動要求が為された場合、実行中の変速制御の際に解放制御されている前記変速機の係合部のトルク容量が所定値よりも大きければ、該実行中の変速制御の進行度を変速前期と判断する一方、実行中の変速制御の際に解放制御されている前記係合部のトルク容量が所定値以下ならば、該実行中の変速制御の進行度を変速後期と判断し、該判断の結果に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定することを特徴としている。
ここで、前記変速経路は、存在する変速パターンの中から所望の要件に応じた最適なものを選択して設定することが望ましい。
また、前記変速経路は、最短の経路のものを設定することが望ましい。
更に、上記目的を達成する為、本発明は、変速機の変速制御中に別の変速要求と機械エネルギを動力にして駆動力を発生させる機械動力源の始動要求が為された場合、実行中の変速制御の進行度に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定し、且つ、前記目標最終変速段への変速完了後に前記機械動力源を始動させることを特徴としている。
本発明に係る変速制御装置及び車両制御装置は、変速機の変速制御中に別の変速要求が為されると共にエンジン始動要求が為された場合、その実行中の変速制御の進行度に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定する。これが為、この変速制御装置及び車両制御装置は、その変速制御の進行度に最適な変速経路を設定することができる。例えば、最短の変速経路を設定することによって、変速時間を短くできる。そして、変速制御中の別の変速要求と同時に機械動力源の始動要求も為された場合には、短い変速時間で別の変速要求に応じた目標最終変速段に変速し、その後で機械動力源を始動させるので、その機械動力源の始動遅れを抑えることができる。
図1は、本発明に係る変速制御装置及び車両制御装置とその適用対象の車両の一例を示す図である。 図2は、変速制御からエンジン始動制御に至るまでの動作について説明するフローチャートである。 図3は、制御後変速段から目標最終変速段への変速制御動作について説明するフローチャートである。 図4は、制御前変速段から目標最終変速段への変速制御動作について説明するフローチャートである。 図5は、アップシフト制御中にダウンシフト要求されたときの変速段と変速クラッチの推移の一例を示すタイムチャートである。
以下に、本発明に係る変速制御装置及び車両制御装置の実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。
[実施例]
本発明に係る変速制御装置と車両制御装置の実施例を図1から図5に基づいて説明する。
最初に、本実施例の変速制御装置と車両制御装置が適用される車両の一例について図1に基づき説明する。その図1の符号1は、機械エネルギを動力とする機械動力源と、電気エネルギを変換した機械エネルギを動力とする電気動力源と、動力断接装置や変速機を有する動力伝達システムと、を備えたハイブリッド車両について示す。その動力断接装置は、機械動力源と電気動力源との間の動力伝達を断接可能なものである。また、変速機は、変速制御装置による変速段の変速制御が可能なものであり、所謂自動変速機だけでなく、例えばデュアルクラッチ式変速機(DCT:デュアルクラッチトランスミッション)等の自動変速機能を備えたものも含む。
このハイブリッド車両1は、機械動力源として、出力軸(クランクシャフト)11から機械的な動力(エンジントルク)を出力するエンジン10を備える。そのエンジン10としては、内燃機関や外燃機関等が考えられる。このエンジン10は、その動作がエンジン用の電子制御装置(以下、「エンジンECU」という。)101のエンジン制御部によって制御される。
また、このハイブリッド車両1は、電気動力源として、モータ、力行駆動可能なジェネレータ又は力行及び回生の双方の駆動が可能なモータ/ジェネレータを備える。ここでは、モータ/ジェネレータ20を例に挙げて説明する。このモータ/ジェネレータ20は、例えば永久磁石型交流同期電動機として構成されたものであり、その動作がモータ/ジェネレータ用の電子制御装置(以下、「モータ/ジェネレータECU」という。)102によって制御される。力行駆動時には、モータ(電動機)として機能して、図示しないバッテリから供給された電気エネルギを機械エネルギに変換し、ロータ21と同軸上の回転軸22から機械的な動力(モータ力行トルク)を出力する。一方、回生駆動時には、ジェネレータ(発電機)として機能して、回転軸22から機械的な動力(モータ回生トルク)が入力された際に機械エネルギを電気エネルギに変換し、図示しないインバータを介して電力としてバッテリに蓄える。
また、このハイブリッド車両1には、そのエンジン10やモータ/ジェネレータ20の動力(エンジントルクやモータ力行トルク)を駆動力として駆動輪WL,WRに伝える動力伝達システムが設けられている。
動力伝達システムは、そのエンジン10とモータ/ジェネレータ20の内の少なくとも一方の動力を駆動輪WL,WR側へと伝達し得るものであり、その動力の伝達経路を構成する。
この動力伝達システムは、そのエンジン10とモータ/ジェネレータ20との間に動力断接装置を備える。その動力断接装置は、エンジン10と駆動輪WL,WR側との間でのトルクの伝達を断接させるものであると共に、そのエンジン10とモータ/ジェネレータ20との間でのトルクの伝達を断接させるものでもある。これが為、この動力断接装置は、エンジン10の出力軸11とモータ/ジェネレータ20の回転軸22とを係合させた係合状態と、これらを係合状態から解放(非係合)させた解放状態(非係合状態)と、の切り替えを可能にする。
例えば、この動力断接装置としては、所謂摩擦クラッチ装置であり、対向させて配置した第1係合部31と第2係合部32の間隔を調整することで係合状態と解放状態とを切り替えるクラッチ30を用いる。そのクラッチ30は、第1係合部31を出力軸11に一体となって回転させるよう連結すると共に、第2係合部32を回転軸22に一体となって回転させるよう連結する。このクラッチ30は、第1係合部31と第2係合部32が相互間の間隔の短縮によって圧着し、出力軸11と回転軸22とを連結させる係合状態となる。その係合状態は、第1係合部31と第2係合部32との間の圧着力に応じた状態であって、その間に滑りが発生している半係合状態と、圧着力の増加に伴い第1係合部31と第2係合部32とが一体になって回転している完全係合状態と、に大別される。一方、このクラッチ30は、例えば第1係合部31と第2係合部32の間隔が縮まるにつれて弾発力を発生させる弾性部(図示略)を備えており、その間の圧着方向の力が弾性部の弾発力を下回っているときに、第1係合部31と第2係合部32とが離間している解放状態となる。
このクラッチ30は、アクチュエータ40によって動作させられるものであり、その動作をクラッチ用の電子制御装置(以下、「クラッチECU」という。)103によって制御する。そのアクチュエータ40は、係合制御量に応じて第1係合部31と第2係合部32の間隔や係合時の圧着力(即ち係合状態)を変えるものであり、その係合制御量を所望の目標係合制御量に調整することによって、その間隔や係合時の圧着力(係合状態)を目標係合制御量に応じたものへと制御する。その際、係合状態のクラッチ30は、その目標係合制御量に応じたクラッチトルク容量となる。一方、このアクチュエータ40は、係合制御量を調整し、その係合制御量に応じた圧着方向の力を弾発力よりも下回らせることによって、クラッチ30を解放状態にする。
例えば、本実施例のアクチュエータ40は、作動流体によって動作させられるものとする。この場合には、その作動流体の圧力が係合制御量となる。このアクチュエータ40は、作動流体供給装置41とクラッチ駆動装置42とを備える。その作動流体供給装置41は、モータ41aの駆動力によって作動流体を圧送する電動ポンプ41bと、クラッチ駆動装置42に作動流体を送る作動流体流路41cと、を備える。また、クラッチ駆動装置42は、図示しないが、作動流体供給装置41から供給された作動流体の圧力を目標圧力(目標係合制御量)に調整する係合制御量調整部と、調整された目標圧力に応じてクラッチ30を動作させ、上記の間隔や係合時の圧着力(係合状態)を調整するクラッチ駆動部と、を備える。その係合制御量調整部としては、作動流体の流量調整により圧力の調整が可能な流量調整弁を用いればよい。
その作動流体供給装置41は、後述する自動変速機50への作動流体の作動流体流路41dも備えているものとする。これが為、ここでは、その作動流体供給装置41を後述するハイブリッドECU100に制御させることにする。そのハイブリッドECU100は、作動流体供給装置41から供給する作動流体について、少なくともクラッチ30における作動流体の目標圧力(目標係合制御量)と自動変速機50における作動流体の目標圧力よりも高圧のものを供給する。このように、作動流体は、クラッチ30と自動変速機50とで共用しているので、ATF(Automatic Transmission Fluid)等の作動油を用いればよい。この場合には、係合制御量調整部で調整される作動油の油圧がアクチュエータ40の係合制御量としてのクラッチ係合油圧となる。
ここで、その作動流体供給装置41がクラッチ30の専用のものとして用意されている場合には、クラッチ駆動装置42の係合制御量調整部が不要となる。この場合には、クラッチECU103がその作動流体供給装置41から供給する作動流体の圧力を目標圧力(目標係合制御量)に調整すればよい。また、ここでは作動流体によって動作するクラッチ30を例に挙げているが、例えば所謂電磁クラッチと云われるものを用いるならば、係合制御量は、アクチュエータたるクラッチ駆動装置の電磁石への印加電流のことを指す。また、アクチュエータたるクラッチ駆動装置が電動モータの駆動力を利用して上記の間隔等を調整するものならば、係合制御量は、その電動モータへの印加電流のことを指す。
更に、動力伝達システムは、エンジン10又は/及びモータ/ジェネレータ20の動力が入力され、入出力間の回転数(トルク)を変速比に応じて変える変速機を備える。その変速機は、変速制御装置によって変速段の変速制御が自動的に為されるものであって、ここでは有段の自動変速機50を例示する。その自動変速機50は、夫々の変速段を成す歯車群等からなる変速機本体51と、入力軸50aに入力された動力を変速機本体51の歯車群等に伝達するトルクコンバータ55と、を備えている。その入力軸50aは、モータ/ジェネレータ20の回転軸22に一体となって回転し得るよう連結している。これが為、この入力軸50aには、エンジン10やモータ/ジェネレータ20の動力が入力される。
その変速機本体51には、変速段の切り替え時に断接させて制御対象の変速段に応じた歯車群の組み合わせとする複数の係合部が設けられている。夫々の係合部は、制御対象の変速段に応じて係合状態にするものと解放状態にするものとが決まっている。例えば、或る変速段に固定されているときには、第1係合部と第2係合部が係合状態になっており、残りの係合部が解放状態になっている。この変速段から別の変速段に切り替える場合には、第1係合部を係合状態のまま保持すると共に、第2係合部を解放制御し且つ第3係合部を係合制御する。この場合には、これら以外の係合部が係合状態のまま保持される。
その変速機本体51の係合部とは、周知の変速クラッチ(ブレーキと呼ばれる場合もある)52のことである。尚、図1においては、図示の便宜上、変速クラッチ52を1つしか記載していない。その変速クラッチ52は、供給された作動流体の圧力により動作して、制御対象の変速段に応じた歯車へのエンジン10又は/及びモータ/ジェネレータ20からの動力伝達が可能な状態と不能な状態とを切り替えるものである。具体的に、変速クラッチ52は、夫々に対向させて配置した第1係合部52aと第2係合部52bとを備えており、その対向する各々の間隔を作動流体供給装置41から供給された作動流体で調整して係合状態と解放状態とを作り出す例えば摩擦クラッチである。この変速クラッチ52の動作は、変速機用の電子制御装置(以下、「変速機ECU」という。)104によって制御する。
例えば、この変速機本体51においては、夫々の変速クラッチ52毎に、係合状態にする為の作動流体の第1流路と解放状態にする為の作動流体の第2流路とが用意されている。変速クラッチ52は、その第1流路における作動流体の圧力を上昇させることで係合動作を行う。第2流路は、その第1流路における作動流体の圧力を低下させる為のものであり、その圧力の低下によって変速クラッチ52を解放状態にする。その第1及び第2の流路は、制御対象の変速段に合わせて流路切替装置53が切り替える。例えば、その流路切替装置53には、電磁駆動弁を用いる。変速機ECU104は、その流路切替装置53を制御することによって、夫々の変速クラッチ52を制御対象の変速段に応じた係合状態又は解放状態にする。
トルクコンバータ55のタービンランナ55aには、変速機本体51の入力軸51aが一体になって回転するよう接続されている。また、このトルクコンバータ55のポンプインペラ55bには、自動変速機50の入力軸50aが一体になって回転するよう接続されている。これが為、スリップ制御中のトルクコンバータ55においては、入力軸50aの回転に伴って入力軸51aが回転する。
また、このトルクコンバータ55には、係合状態にてタービンランナ55aとポンプインペラ55bとを一体回転させるロックアップクラッチ56が設けられている。このロックアップクラッチ56は、所謂摩擦クラッチ装置であり、入力軸50aに一体となって回転するよう接続された第1係合部56aと、入力軸51aに一体となって回転するよう接続された第2係合部56bと、を備える。このロックアップクラッチ56は、その第1係合部56aと第2係合部56bとの間の作動状態(係合状態又は解放状態)の切り替えが変速機ECU104によって実行される。
このハイブリッド車両1には、車両全体の動作を統括的に制御する電子制御装置(以下、「ハイブリッドECU」という。)100が設けられている。このハイブリッドECU100は、エンジンECU101、モータ/ジェネレータECU102、クラッチECU103及び変速機ECU104との間で夫々に各種センサの検出信号や制御指令等の情報の授受ができる。本実施例においては、そのハイブリッドECU100、エンジンECU101、モータ/ジェネレータECU102、クラッチECU103及び変速機ECU104によって、車両制御装置が構成されている。また、本実施例においては、少なくともそのハイブリッドECU100及び変速機ECU104によって、変速制御装置が構成されている。
このハイブリッド車両1においては、エンジン10の動力のみで走行するエンジン走行モードと、モータ/ジェネレータ20の動力のみで走行するEV走行モードと、エンジン10及びモータ/ジェネレータ20の双方の動力で走行するハイブリッド走行モードと、が用意されている。
ここで、EV走行モードにおいては、燃費を向上させるべく、エンジン10を停止させている。これが為、EV走行モードからエンジン10の動力を使用するエンジン走行モード又はハイブリッド走行モードに切り替える場合には、停止中のエンジン10を始動させる必要がある。そのエンジン10の始動には、駆動中のモータ/ジェネレータ20の回転トルク(モータ力行トルク)をクランキング動作に利用する。従って、そのエンジン始動時には、解放状態にあるクラッチ30を係合して、モータ力行トルクをエンジン10の出力軸11に伝える。これにより、エンジン10は、クランキング動作を開始するので、エンジン回転数が所定の目標エンジン回転数まで上昇したときに燃料噴射等によって始動する。動力伝達経路上においては、そのクラッチ30の係合に伴いトルク変動が生じる。このEV走行モードからの走行モードの切り替え(つまりエンジン始動制御)は、例えば運転者のアクセルペダル61の踏み込み操作を契機にして実行される。
そのアクセルペダル61が運転者によって踏み込まれた場合には、その踏み込み操作量や踏み込み操作速度等に応じて運転者による自動変速機50のダウンシフト要求と判断されることがある。これが為、EV走行中のアクセル踏み込み操作時には、運転者によってエンジン始動要求と自動変速機50のダウンシフト要求とが同時に行われたと判断されることがある。その際、ハイブリッド車両1においては、エンジン始動制御とダウンシフト制御とを同時期に実行すると、夫々の制御が干渉するので、加速度の立ち上がり(即ち加速応答性)が悪くなり、ドライバビリティの悪化を招く虞がある。従って、ハイブリッドECU100には、エンジン始動要求とダウンシフト要求が同時に起きたときに、ドライバビリティを向上させるべく、先ずダウンシフト制御を実行させ、ダウンシフトが終わってからエンジン始動制御を実施させる。
ところで、自動変速機50においては、変速要求が為されたときに、その変速要求に応じた目標最終変速段に至るまでの変速経路が設定される。その変速経路は、自動変速機50における現状の変速制御状態と予め用意されている変速パターンとの組み合わせによって規定されている。例えば、8速からのダウンシフト時の変速パターンとして、8速から5速への変速パターンと、8速から2速への変速パターンと、が用意されているとする。そして、現在の変速段(以下、「現変速段」という。)が8速で固定されている状態で2速へのダウンシフト要求が為された場合、この場合の変速経路は、8速から2速への変速パターンが規定されている。一方、7速から8速へのアップシフト制御中に2速へのダウンシフト要求が為された場合の変速経路は、8速から5速と5速から2速への変速パターンが規定されているものとする。以下においては、1つの変速段の切り替わりを示す変速パターンを単一変速パターンと云い、複数の変速段の切り替わりを示す変速パターンを多重変速パターンと云う。
しかしながら、従来は、その規定された組み合わせの中からしか変速経路を設定できなかったので、その設定の自由度が低く、最適な変速経路が設定されない可能性があった。例えば、上記の仮定を例に挙げれば、7速から8速へのアップシフト制御中に2速へのダウンシフト要求が為された場合に、変速経路が8速→5速→2速とならざるを得ないので、8速から2速へと直接ダウンシフトされるときよりも変速に要する時間が長くなってしまう。そして、この場合に、駆動力が運転者の要求駆動力より多少低くても、変速時間の短縮化が望まれる可能性もあり得る。例えば、そのダウンシフト要求と同時にエンジン始動要求も生じたときには、その変速時間の長期化がエンジン始動遅れを招くので、変速時間の短い変速経路の選択が好ましいこともある。
そこで、本実施例の変速制御装置及び車両制御装置は、最適な変速経路を選定し得るように構成する。ここでは、最短の変速経路の選択を可能にする為の構成を説明する。ハイブリッドECU100には、その記憶装置に予め用意されている様々な変速パターンの中から最も変速回数の少ないものを選ばせて、最短の変速経路を設定させる。
先ず、変速段を現変速段のまま固定した状態でダウンシフト要求が為された場合には、現変速段からダウンシフト要求に応じた目標最終変速段への単一変速パターンがあれば、これを選択し、その単一変速パターンが無ければ多重変速パターンを選択する。その際、現変速段から目標最終変速段への多重変速パターンも無いときには、現変速段から目標最終変速段に近い変速段(以下、「近似最終変速段」という。)への変速パターンを選択し、この近似最終変速段を介して目標最終変速段への変速を行う。
一方、変速制御中にダウンシフト要求が為された場合には、その変速制御の進行度に応じて変速経路を設定する。変速制御の進行度とは、変速制御における経過時間や変速動作の状態等で示されるものである。ここでは、変速制御期間を変速前期と変速後期に二分し、変速前期であれば、実行中の変速制御を始める前の変速段(以下、「制御前変速段」という。)を起点としてダウンシフト要求に応じた目標最終変速段への変速を行い、変速後期であれば、実行中の変速制御の目標最終変速段(以下、「制御後変速段」という。)を起点としてダウンシフト要求に応じた目標最終変速段への変速を行う。
変速制御の進行度は、変速クラッチ52のクラッチトルク容量Tcに基づいて判断することができる。何故ならば、変速制御時に係合制御される変速クラッチ52は、係合制御が進むにつれてクラッチトルク容量Tcが増加していくからである。また、変速制御時に解放制御される変速クラッチ52は、解放制御が進むにつれてクラッチトルク容量Tcが減少していくからである。これが為、係合制御される変速クラッチ52を観て判断する場合には、クラッチトルク容量Tcが所定値Tc0よりも少なければ変速前期と判断可能であり、クラッチトルク容量Tcが所定値Tc0以上ならば変速後期と判断可能である。一方、解放制御される変速クラッチ52を観て判断する場合には、クラッチトルク容量Tcが所定値Tc0以上ならば変速前期と判断可能であり、クラッチトルク容量Tcが所定値Tc0よりも少なければ変速後期と判断可能である。その所定値Tc0には、規定した変速前期と変速後期の境界部分のクラッチトルク容量Tcを設定する。
そのクラッチトルク容量Tcは、下記の式1の如く、第1係合部52aと第2係合部52bの摩擦材の摩擦係数μ、その夫々の摩擦材同士が触れ合う箇所の総面積A、第1係合部52aと第2係合部52bとの間の面圧P及び摩擦材同士が触れ合う箇所の外径dによって求めることができる。
Tc←μ*A*P*d/2 … (1)
ここで、面圧Pは、変速クラッチ52への作動流体の圧力に応じて変化する。一方、面圧P以外は、設計値であって、不変の値である。これが為、クラッチトルク容量Tcは、変速クラッチ52への作動流体の圧力に応じて変化することが判る。従って、変速制御の進行度を判断する際には、変速クラッチ52への作動流体の圧力からクラッチトルク容量Tcを推定し、その推定結果に基づいて判断させる。このことから、変速制御の進行度は、変速クラッチ52への作動流体の圧力に基づいて判断してもよい。
制御前変速段からダウンシフト要求に応じた目標最終変速段への変速を行う際、ハイブリッドECU100には、制御前変速段から目標最終変速段への単一変速パターンがあれば、これを選択させ、その単一変速パターンが無ければ多重変速パターンを選択させる。その際、制御前変速段から目標最終変速段への多重変速パターンも無いときには、制御前変速段から近似最終変速段への変速パターンを選択し、この近似最終変速段を介して目標最終変速段への変速を行う。
一方、制御後変速段からダウンシフト要求に応じた目標最終変速段への変速を行う際には、制御後変速段から目標最終変速段への単一変速パターンがあれば、これを選択し、その単一変速パターンが無ければ多重変速パターンを選択する。その際、制御後変速段から目標最終変速段への多重変速パターンも無いときには、制御後変速段から近似最終変速段への変速パターンを選択し、この近似最終変速段を介して目標最終変速段への変速を行う。
以下に、その変速制御動作を図2のフローチャートに基づき説明する。ここでは、ダウンシフト要求とエンジン始動要求とが同時に生じたときを例に挙げて説明する。
先ず、ハイブリッドECU100は、ダウンシフト要求とエンジン始動要求とを把握したときに(ステップST1)、自動変速機50が変速制御中であるのか否かを判定する(ステップST2)。
そして、変速制御中との判定が為された場合、ハイブリッドECU100は、変速クラッチ52のクラッチトルク容量Tcを求め(ステップST3)、そのクラッチトルク容量Tcと所定値Tc0とを比較して、実行中の変速制御の進行度を判断する(ステップST4)。ここでは、係合制御中の変速クラッチ52を判断時の対象にする。
そのステップST4においてクラッチトルク容量Tcが所定値Tc0以上の場合、ハイブリッドECU100は、変速制御の進行度が変速後期であると判断して、制御後変速段からダウンシフト要求に応じた目標最終変速段への変速を実行させる(ステップST5)。これに対して、このハイブリッドECU100は、そのステップST4においてクラッチトルク容量Tcが所定値Tc0よりも少ない場合、変速制御の進行度が変速前期であると判断して、制御前変速段からダウンシフト要求に応じた目標最終変速段への変速を実行させる(ステップST6)。
一方、ステップST2で変速制御中ではないとの判定が為された場合、ハイブリッドECU100は、現変速段からダウンシフト要求に応じた目標最終変速段への変速を実行させる(ステップST7)。
具体的に、そのステップST5においては、図3のフローチャートに示す如くして変速が行われる。
最初に、ハイブリッドECU100は、実行中の変速制御をそのまま続けて制御後変速段に変速させる(ステップST5A)。そして、このハイブリッドECU100は、予め用意されている様々な変速パターンの中に制御後変速段から目標最終変速段への単一変速パターンが存在しているのか否かを判断する(ステップST5B)。
ハイブリッドECU100は、その単一変速パターンが存在していれば、この単一変速パターンによる変速経路を設定し、目標最終変速段に変速させるよう変速機ECU104に指示する(ステップST5C)。その変速経路は変速後期において最短であり、自動変速機50は、変速後期にて最も短い変速時間で制御後変速段からダウンシフト要求に応じた目標最終変速段に変速する。
一方、ステップST5Bにて単一変速パターンが存在していないと判断された場合、ハイブリッドECU100は、夫々の変速パターンの中に制御後変速段から目標最終変速段への多重変速パターンが存在しているのか否かを判断する(ステップST5D)。
ハイブリッドECU100は、その多重変速パターンが存在していれば、この多重変速パターンによる変速経路を設定し、中間変速段を経て目標最終変速段に変速させるよう変速機ECU104に指示する。これにより、変速機ECU104は、自動変速機50を制御後変速段から中間変速段に変速させ(ステップST5E)、その後、ステップST5Cに進んで目標最終変速段に変速させる。その中間変速段とは、多重変速パターンにおける制御後変速段と目標最終変速段との間に介在している変速段のことであり、必ずしも1つとは限らない。
そのような単一変速パターンも多重変速パターンも存在していない場合、ハイブリッドECU100は、夫々の変速パターンの中から近似最終変速段(ダウンシフト要求に応じた目標最終変速段に近い変速段)を成す変速パターンによる変速経路を設定し(ステップST5F)、その近似最終変速段に変速させるよう変速機ECU104に指示する(ステップST5G)。その変速パターンは、単一変速パターンの場合もあれば多重変速パターンの場合もある。このときの近似最終変速段は、現変速段よりも低速側で、且つ、目標最終変速段よりも1段又は複数段高速側の変速段である。この近似最終変速段は、最も目標最終変速段に近い変速段にすることが望ましい。
ここで、近似最終変速段と目標最終変速段との間に未だ他の変速段が存在していることも有り得る。これが為、ハイブリッドECU100は、夫々の変速パターンの中に近似最終変速段から目標最終変速段への単一変速パターンが存在しているのか否かを判断する(ステップST5H)。
そして、その単一変速パターンが存在していれば、ハイブリッドECU100は、ステップST5Cに進んで目標最終変速段に変速させる。これに対して、その単一変速パターンが存在していなければ、ハイブリッドECU100は、夫々の変速パターンの中に近似最終変速段から目標最終変速段への多重変速パターンが存在しているのか否かを判断する(ステップST5I)。
ハイブリッドECU100は、その多重変速パターンが存在している場合、ステップST5E,ST5Cに進んで、中間変速段を経た目標最終変速段への変速を実行させるよう変速機ECU104に指示する。
一方、その多重変速パターンが存在していなければ、ハイブリッドECU100は、ステップST5Fに戻り、現在の近似最終変速段よりも更に目標最終変速段に近い変速段を成す変速パターンによる変速経路を設定する。以降、目標最終変速段への変速が実現されるまで、ハイブリッドECU100は、ステップST5F〜ST5Iの演算処理を繰り返す。
次に、ステップST6の変速について図4のフローチャートに基づき説明する。
最初に、ハイブリッドECU100は、実行中の変速制御をそのまま続けて制御前変速段に変速させる(ステップST6A)。そして、このハイブリッドECU100は、夫々の変速パターンの中に制御前変速段から目標最終変速段への単一変速パターンが存在しているのか否かを判断する(ステップST6B)。
ハイブリッドECU100は、その単一変速パターンが存在していれば、この単一変速パターンによる変速経路を設定し、目標最終変速段に変速させるよう変速機ECU104に指示する(ステップST6C)。その変速経路は変速前期において最短であり、自動変速機50は、変速前期にて最も短い変速時間で制御前変速段からダウンシフト要求に応じた目標最終変速段に変速する。
一方、ステップST6Bにて単一変速パターンが存在していないと判断された場合、ハイブリッドECU100は、夫々の変速パターンの中に制御前変速段から目標最終変速段への多重変速パターンが存在しているのか否かを判断する(ステップST6D)。
ハイブリッドECU100は、その多重変速パターンが存在していれば、この多重変速パターンによる変速経路を設定し、中間変速段を経て目標最終変速段に変速させるよう変速機ECU104に指示する。これにより、変速機ECU104は、自動変速機50を制御前変速段から中間変速段に変速させ(ステップST6E)、その後、ステップST6Cに進んで目標最終変速段に変速させる。
そのような単一変速パターンも多重変速パターンも存在していない場合、ハイブリッドECU100は、上述した変速後期のときのステップST5F〜ST5Iと同様に、近似最終変速段を介した目標最終変速段への変速を実行させる(ステップST6F〜ST6I)。
尚、ステップST7の変速については、図3の「制御後変速段」又は図4の「制御前変速段」を「現変速段」と読み替えたものと同じなので、ここでの説明を省略する。
ハイブリッドECU100は、図2に戻り、上記の目標最終変速段への変速が完了した後(ステップST8)、エンジン始動制御を実行させるようエンジンECU101に指示する(ステップST9)。このように、このハイブリッド車両1は、可能な限り最適な最短の変速経路で自動変速機50の目標最終変速段への変速が可能なので、エンジン10の始動遅れを抑えることができる。
ここで、その目標最終変速段への変速動作の具体例の1つを図5に基づき示す。
この例示は、7速から8速へのアップシフト制御中に運転者がアクセルペダル61の踏み込み操作を行い(アクセルオン)、2速へのダウンシフト要求が為された場合である。その夫々の変速段は、4つの変速クラッチ52の内の所定の2つを次の様に係合状態にすることで成立するものと仮定する。例えば、自動変速機50は、現変速段が7速のときに、第1変速クラッチと第2変速クラッチとが係合状態にあり、残りの変速クラッチが解放状態にある。また、現変速段が8速のときには、第1変速クラッチと第3変速クラッチとが係合状態にあり、残りの変速クラッチが解放状態にある。また、現変速段が2速のときには、第3変速クラッチと第4変速クラッチとが係合状態にあり、残りの変速クラッチが解放状態にある。尚、これら以外の変速段においては、その4つとは別の変速クラッチ52が使われることもある。
図5の実線、破線、一点鎖線及び二点鎖線は、各々第1変速クラッチ、第2変速クラッチ、第3変速クラッチ及び第4変速クラッチへの作動流体の圧力に応じたクラッチトルク容量Tcを示す。
7速から8速へのアップシフト制御中には、第3変速クラッチの係合制御が実行される。これが為、ハイブリッドECU100は、ステップST3において、ダウンシフト要求時の第3変速クラッチにおけるクラッチトルク容量Tcを演算する。この例示においては、「Tc>Tc0」となり、ステップST4で変速後期と判断される。従って、ハイブリッドECU100は、先ず、ステップST5Aにおいて8速へのアップシフトを完了させる。尚、このアップシフト制御の進行度を解放制御中の第2変速クラッチによって判断する場合には、「Tc<Tc0」となって変速後期と判断される。ここでは、制御後変速段たる8速から目標最終変速段たる2速への単一変速パターンが存在しているものとする。これが為、ハイブリッドECU100は、ステップST5Bにおいて肯定判定し、ステップST5Cで2速への変速を実行させる。
ここで、従来は、このアップシフト制御中のダウンシフト要求時に7速→8速→5速→2速の変速経路を辿るよう規定されていたとする(図5の破線)。これが為、8速から2速への単一変速パターンが用意されていたとしても、従来は、そのときに7速→8速→2速の変速経路で変速させることができない。これに対して、本実施例は、そのときに7速→8速→2速の変速経路で変速させることができるので、2速への変速時間の短縮が可能になる。例えばダウンシフト要求に伴う運転者の駆動力要求よりも変速時間の短縮を優先させたい場合には、本実施例の様に制御することで、その要件を満たす最適な変速経路で2速に変速させることができる。一方、従来の様に変速時間の短縮よりもダウンシフト要求に伴う運転者の駆動力要求の実現が優先されるのであれば、本実施例の変速制御装置及び車両制御装置は、その要件を満たすべく7速→8速→5速→2速の変速経路が設定されるように構成してもよい。
以上示した如く、本実施例の変速制御装置及び車両制御装置は、予め用意されている種々の変速パターンの中から所望の要件に応じた最適なものを選択し、この変速経路を辿るように目標最終変速段への変速を実行させる。これが為、この変速制御装置及び車両制御装置は、多様性のある変速経路の設定が可能になる。また、この変速制御装置及び車両制御装置は、存在している変速パターンの中で可能な限り短い最短の経路のものを選択させることができる。これが為、この変速制御装置及び車両制御装置は、変速制御中に別の変速要求が為された場合、その実行中の変速制御の進行度に応じた最適な変速経路を設定することができる。
更に、この種のハイブリッド車両1が展開される車種においては、そのハイブリッド車両1からクラッチ30とモータ/ジェネレータ20を取り除いた車両が用意されることもある。そして、その車両においては、EV走行を行えないので、自動変速機50の変速要求とエンジン始動要求とが同時に生じる可能性は殆ど無い。ここで、従来の考え方を踏襲するのであれば、この車両専用に様々な変速経路を規定すると共に、ハイブリッド車両1の専用の様々な変速経路も規定する必要があるので、その2つの車両の間で変速制御のプログラムを共用し難かった。仮に共用させる場合には、双方の変速経路を含ませなければならないので、用意される変速経路の仕様が複雑化し、コストの大幅な増加を招いてしまう。しかしながら、従来は予め規定された変速経路を辿らなければならなかったが、この変速制御装置及び車両制御装置は、変速パターンを増やすことなく、より多くの変速経路を設定することができる。従って、この変速制御装置及び車両制御装置は、変速経路を多様化させる為のコストの増加を抑えることもできる。特に、変速段が多段化されるほど必要な変速経路は増えるが、この変速制御装置及び車両制御装置は、その多段化にも低コストで対応できる。
また、本実施例の変速制御装置及び車両制御装置は、変速時間の短縮を要件とする場合にその実現が可能なので、目標最終変速段への変速完了後にエンジン10を始動させる際、そのエンジン10の始動遅れを抑えることができる。
ところで、ここまではアップシフト制御中のダウンシフト要求時を例に挙げて説明したが、本実施例の変速制御装置及び車両制御装置は、例えば、ダウンシフト制御中に運転者がアクセルペダル61の踏み込み操作を行い、更に低速段側へのダウンシフト要求が生じたときにも同様に適用可能であり、上記の例示と同様の効果を得ることができる。例えば、実行中のダウンシフト制御に係るダウンシフト要求と同時にエンジン始動要求も為されている場合には、このダウンシフト制御を終えてからエンジン10を始動させることになっているが、更なるダウンシフト要求によってエンジン10の始動開始時期が当初よりも遅れてしまう。このような状況下で従来の制御を行ったときには、変速時間よりも運転者の駆動力要求を優先させたダウンシフト制御が続けざまに実行されるので、エンジン10の始動が更に遅延してしまう。これに対して、本実施例の変速制御装置及び車両制御装置は、変速時間の短縮に重きを置いたダウンシフト制御が可能なので、従来よりもエンジン10の始動遅れを抑えることができる。
以上のように、本発明に係る変速制御装置は、変速制御が可能な変速機の変速経路を最適化させる技術に有用である。
1 ハイブリッド車両
10 エンジン(機械動力源)
41 作動流体供給装置
50 自動変速機
51 変速機本体
52 変速クラッチ
61 アクセルペダル
100 ハイブリッドECU
101 エンジンECU
102 モータ/ジェネレータECU
103 クラッチECU
104 変速機ECU
WL,WR 駆動輪

Claims (5)

  1. 変速機の変速制御中に別の変速要求が為されると共にエンジン始動要求が為された場合、実行中の変速制御の際に係合制御されている前記変速機の係合部のトルク容量が所定値よりも小さければ、該実行中の変速制御の進行度を変速前期と判断する一方、実行中の変速制御の際に係合制御されている前記係合部のトルク容量が所定値以上ならば、該実行中の変速制御の進行度を変速後期と判断し、該判断の結果に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定することを特徴とした変速制御装置。
  2. 変速機の変速制御中に別の変速要求が為されると共にエンジン始動要求が為された場合、実行中の変速制御の際に解放制御されている前記変速機の係合部のトルク容量が所定値よりも大きければ、該実行中の変速制御の進行度を変速前期と判断する一方、実行中の変速制御の際に解放制御されている前記係合部のトルク容量が所定値以下ならば、該実行中の変速制御の進行度を変速後期と判断し、該判断の結果に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定することを特徴とした変速制御装置。
  3. 前記変速経路は、存在する変速パターンの中から所望の要件に応じた最適なものを選択して設定することを特徴とした請求項1又は2に記載の変速制御装置。
  4. 前記変速経路は、最短の経路のものを設定することを特徴とした請求項1,2又は3に記載の変速制御装置。
  5. 変速機の変速制御中に別の変速要求と機械エネルギを動力にして駆動力を発生させる機械動力源の始動要求が為された場合、実行中の変速制御の進行度に基づいて前記別の変速要求による目標最終変速段に至るまでの変速経路を設定し、且つ、前記目標最終変速段への変速完了後に前記機械動力源を始動させることを特徴とした車両制御装置。
JP2010044716A 2010-03-01 2010-03-01 変速制御装置及び車両制御装置 Expired - Fee Related JP5353763B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044716A JP5353763B2 (ja) 2010-03-01 2010-03-01 変速制御装置及び車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044716A JP5353763B2 (ja) 2010-03-01 2010-03-01 変速制御装置及び車両制御装置

Publications (2)

Publication Number Publication Date
JP2011179598A JP2011179598A (ja) 2011-09-15
JP5353763B2 true JP5353763B2 (ja) 2013-11-27

Family

ID=44691312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044716A Expired - Fee Related JP5353763B2 (ja) 2010-03-01 2010-03-01 変速制御装置及び車両制御装置

Country Status (1)

Country Link
JP (1) JP5353763B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874612B (zh) * 2011-10-27 2017-03-15 丰田自动车株式会社 车辆控制系统及控制装置
JP6209834B2 (ja) * 2013-03-13 2017-10-11 日産自動車株式会社 自動変速機の制御装置
KR101491250B1 (ko) * 2013-05-14 2015-02-06 현대자동차주식회사 하이브리드 차량의 주행모드 변환 및 변속 제어 방법
JP6200208B2 (ja) * 2013-05-30 2017-09-20 株式会社Subaru 変速機の制御装置
DE102013210883A1 (de) * 2013-06-11 2014-12-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
KR101429423B1 (ko) * 2014-03-21 2014-08-13 강명구 하이브리드 차량의 동력전달장치
JP6390788B2 (ja) * 2015-03-31 2018-09-19 アイシン・エィ・ダブリュ株式会社 制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102241A (ja) * 1996-04-19 1998-01-06 Toyota Motor Corp ハイブリッド車両の制御装置
JP3565418B2 (ja) * 1999-11-11 2004-09-15 株式会社デンソー 自動変速機の電子制御装置
JP3887156B2 (ja) * 2000-09-18 2007-02-28 ジヤトコ株式会社 自動変速機の再変速制御装置
JP3467468B2 (ja) * 2000-10-24 2003-11-17 本田技研工業株式会社 自動変速機の制御装置
JP5045431B2 (ja) * 2007-03-12 2012-10-10 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置

Also Published As

Publication number Publication date
JP2011179598A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
KR100837903B1 (ko) 하이브리드 차량의 엔진 시동 제어 장치
JP5704148B2 (ja) 車両の走行制御装置
JP5083638B2 (ja) 制御装置
JP5353763B2 (ja) 変速制御装置及び車両制御装置
US9216734B2 (en) Control device
JP6020588B2 (ja) 車両の走行制御装置
JP6070716B2 (ja) 車両の走行制御装置
US9002604B2 (en) Shift control device of automatic transmission
WO2012104993A1 (ja) 車両制御装置
JP5505046B2 (ja) 車両制御システム
JP2006306210A (ja) ハイブリッド駆動装置のエンジン始動方法
JP6197874B2 (ja) 車両の制御装置
JP5501269B2 (ja) ハイブリッド車両の制御装置
WO2017057757A1 (ja) 制御装置
JP2014091398A (ja) 車両の走行制御装置
JP2010143308A (ja) 車両の駆動トルク制御装置
JP5917873B2 (ja) 車両の制御装置
JP5534332B2 (ja) 変速制御装置
JP2010167961A (ja) ハイブリッド車両の変速制御装置および変速制御方法
JP6409363B2 (ja) ハイブリッド車両の制御装置
JP5994794B2 (ja) ハイブリッド車両の制御装置
JP6200208B2 (ja) 変速機の制御装置
JP5578362B2 (ja) 制御装置
JP5533150B2 (ja) 車両制御システム
JP5557026B2 (ja) 変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees