JP5350714B2 - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
JP5350714B2
JP5350714B2 JP2008212135A JP2008212135A JP5350714B2 JP 5350714 B2 JP5350714 B2 JP 5350714B2 JP 2008212135 A JP2008212135 A JP 2008212135A JP 2008212135 A JP2008212135 A JP 2008212135A JP 5350714 B2 JP5350714 B2 JP 5350714B2
Authority
JP
Japan
Prior art keywords
phase shift
circuit
signal
amount
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008212135A
Other languages
English (en)
Other versions
JP2010046220A (ja
Inventor
正充 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008212135A priority Critical patent/JP5350714B2/ja
Publication of JP2010046220A publication Critical patent/JP2010046220A/ja
Application granted granted Critical
Publication of JP5350714B2 publication Critical patent/JP5350714B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

本発明は、内視鏡装置に関し、特に、相関2重サンプリング処理を行う内視鏡装置に関する。
従来より、医療分野では、体腔内に細長の挿入部を挿入することにより、体腔内臓器等を観察したり、必要に応じて処置具チャンネル内に挿通した処置具を用いて患部に対して各種治療あるいは処置のできる内視鏡が広く利用されている。また、工業用分野においても、ボイラ、タービン、エンジン、化学プラント等の内部の傷、腐食等の観察、検査等にエ業用内視鏡が広く用いられている。
上述の内視鏡装置、すなわち観察部位の映像を表示する映像装置に用いられる内視鏡には、挿入部の先端部に光学像を画像信号に光電変換するCCD等の撮像素子を配設した電子内視鏡(以下、内視鏡と略記する)がある。
この内視鏡は、光源装置から供給される照明光によって照らされた観察部位の観察像を撮像素子の撮像面に結像させ、この撮像素子で光電変換した観察像の画像信号を外部装置であるカメラコントロールユニット(以下CCUと略記する)の信号処理部に伝達して映像信号を生成し、モニタの画面上に内視鏡画像を表示させて、ユーザが観察部位を観察できる構成になっている。
このような内視鏡装置は、例えば、先端部に設けられた観察部位を撮像する固体撮像素子、及び観察部位を照明する光源を有する撮像部と、電源及び信号処理部を有する制御部とから構成されている。制御部と撮像部とは、複数の電線からなるケーブルで接続されており、このケーブルを介して、制御部から撮像部に対する電力供給と、撮像部を制御する制御信号及び撮像部からの映像信号等の送受信が行われる。
工業用途では、ユーザの要求が幅広く、例えば、1m〜30mの挿入部の長さに対応できるような内視鏡装置が要求される場合がある。撮像部と制御部とが最大30mのケーブルで接続される事になる場合、結果として、撮像部からの出力信号が制御部側の信号処理タイミングとずれてしまい、最適な画像処理が出来ないという問題があった。このような問題を解決する内視鏡装置が提案されている(例えば、特許文献1参照)。
特開2000−231062号公報
その提案に係る内視鏡装置では、撮像部からの出力信号を相関2重サンプリング処理するためのサンプリングパルスの位相を、撮像部からの信号の遅延量に合わせて遅延させるようにずらすことにより、最適な画像を得るように画像処理が行われる。従来、その遅延回路として、遅延素子としてのバッファ回路が多段で設けられて、信号遅延が行われる。その提案の内視鏡装置では、例えば1mのような比較的短いケーブル長に対応させる場合には、撮像部からの遅延量が少ないので精度良く遅延させることが可能である。
しかし、30mのような長いケーブルにも対応可能な遅延量を実現するためには、必要な遅延量が大きくなるため、バッファ回路を多段で構成する必要がある。その結果、バッファ回路におけるバッファ回路のバラツキが加算され、トータルの遅延量のバラツキが大きくなり精度良く遅延させることが出来ないという問題がある。精度のよい遅延が得られなければ、結果として、画像ノイズ増加、感度低下、色再現悪化、等の不具合が発生してしまう。
本発明は、このような事情を鑑みてなされたものであり、精度良くサンプリングパルスの位相を遅延することにより、様々なケーブル長に対しても最適な画像を得られる内視鏡装置を提供することを目的とする。
本発明の一態様によれば、内視鏡先端部に配置された対物レンズより取り込んだ被写体像を撮像する撮像手段で得られた信号を相関2重サンプリング処理する相関2重サンプリング手段と、前記相関2重サンプリング手段に前記相関2重サンプリング処理のためのタイミング信号を供給するタイミング発生手段と、前記相関2重サンプリング手段においてサンプルホールドされた信号をアナログデジタル変換するA/D変換手段と、前記A/D変換手段の出力を信号処理する映像信号処理手段と、を有し、前記タイミング発生手段は、パルス生成用クロック信号を基に、前記相関2重サンプリング処理のための前記タイミング信号を生成するパルス生成回路と、前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、第1の量だけ位相シフトさせる第1の位相シフト回路と、前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、前記第1の量とは異なる第2の量だけ位相シフトさせる第2の位相シフト回路と、を有して、前記パルス生成回路と、前記第1の位相シフト回路と、前記第2の位相シフト回路が直列に接続され、前記タイミング発生手段は、前記撮像手段を駆動するためのリセットゲートパルス信号を生成するリセットゲートパルス生成回路と、前記パルス生成用クロック信号もしくは前記リセットゲートパルス生成回路にて生成された前記リセットゲートパルス信号の位相を、第3の量だけ位相シフトさせる第3の位相シフト回路と、前記パルス生成用クロック信号もしくは前記リセットゲートパルス生成回路にて生成された前記リセットゲートパルス信号の位相を、前記第3の量とは異なる第4の量だけ位相シフトさせる第4の位相シフト回路と、をさらに有し、前記リセットゲートパルス生成回路と、前記第3の位相シフト回路と、前記第4の位相シフト回路が直列に接続される内視鏡装置が提供される。
本発明の一態様によれば、内視鏡先端部に配置された対物レンズより取り込んだ被写体像を撮像する撮像手段で得られた信号を相関2重サンプリング処理する相関2重サンプリング手段と、前記相関2重サンプリング手段に前記相関2重サンプリング処理のためのタイミング信号を供給するタイミング発生手段と、前記相関2重サンプリング手段においてサンプルホールドされた信号をアナログデジタル変換するA/D変換手段と、前記A/D変換手段の出力を信号処理する映像信号処理手段と、を有し、前記タイミング発生手段は、パルス生成用クロック信号を基に、前記相関2重サンプリング処理のための前記タイミング信号を生成するパルス生成回路と、前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、第1の量だけ位相シフトさせるバッファ又は遅延線により構成された第1の位相シフト回路と、前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、前記第1の量よりも大きい第2の量だけ位相シフトさせるシフトレジスタにより構成された第2の位相シフト回路と、前記第1の位相シフト回路と前記第2の位相シフト回路のそれぞれの前記第1の量と前記第2の量を決定する位相シフト量決定手段と、を有して、前記パルス生成回路と、前記第1の位相シフト回路と、前記第2の位相シフト回路が直列に接続され、前記位相シフト量決定手段は、前記第1の量が最小となるように前記第1の量と前記第2の量を決定する内視鏡装置が提供される。
本発明によれば、精度良くサンプリングパルスの位相を遅延することにより、様々なケーブル長に対しても最適な画像を得られる内視鏡装置を実現することができる。
以下、本発明の実施の形態を図面を用いて説明する。
(第1の実施の形態)
(全体構成)
図1は、本発明の第1の実施の形態に係る内視鏡装置の全体構成を示すブロック図である。
内視鏡装置1は、細長の挿入部11と、本体部12と、液晶表示装置(LCD)等の表示装置13、各種操作のためのリモコン14とを含んで構成されている。また、本体部12には記録媒体15が取り付け可能となっており、記録媒体15に静止画及び動画の記録が可能となっている。
挿入部11の先端部には、LED21、対物レンズ22及びCCD23が設けられている。挿入部11の先端部に配置された照明装置としてのLED21により照明された被写体の像は、同じ挿入部11の先端部に配置された対物レンズ22の結像位置に配置された、固体撮像素子としての電荷結合素子(以下、CCDと略記)23の撮像面上に結像され、被写体の像の撮像が行われる。
本体部12は、CCDドライバ31、画像処理部32、システム制御部33、画像記録部34、LED駆動部35を含む。
撮像手段としてのCCD23は、細長の複合同軸ケーブルにより接続された、本体部12のCCD駆動部としてのCCDドライバ31を介して画像処理部32に接続される。画像処理部32にて、CCD23を駆動するための各種パルスが生成されてCCDドライバ31に供給される。CCDドライバ31では、細長の複合同軸ケーブルにて各種CCD駆動パルスが減衰することを考慮して、供給された各種パルスが増幅されてCCD23に出力される。CCD23は、画像処理部32にて生成された各種CCD駆動パルスのタイミングに基づいて光電変換する。CCD23にて、光電変換されたCCD23の出力信号は細長の複合同軸ケーブルを介して、画像処理部32まで伝送される。
一方で、画像処理部32は、システム制御部33と通信を行っている。システム制御部33は、リモコン14からの入力信号である、ズーム設定、フリーズ設定、輪郭補正設定、ガンマ補正設定、輝度設定等の信号を受け取り、それぞれに対応した指示を画像処理部32に対して出力する。その指示に従って画像処理部32は、CCD23からの出力信号に対して各種画像処理を行い、映像出力信号を画像記録部34に出力する。
挿入部11の先端部に配置された照明用のLED21は、挿入部11を通る細長の信号ケーブルによりLED駆動部35と接続されている。また、LED駆動部35は、システム制御部33と接続されており、LED駆動部35は、システム制御部33からのLED点灯制御信号に基づいてLED21の点灯/消灯の駆動制御を行う。さらに、システム制御部33は、リモコン14と接続されており、リモコン14上のLED制御用のスイッチの操作に応じた制御信号をリモコン14から受け取り、その制御信号に応じてLED駆動部35を制御する。
また、画像処理部32より出力された映像信号は、画像記録部34に出力される。画像記録部34は、記録媒体15が取り付けられている場合、入力された映像信号に係る画像を、静止画及び動画として記録媒体15に記録することが可能である。その場合、システム制御部33がリモコン14からの入力信号に基づき、画像記録部34に対して記録のための指示信号を出力する。また、画像記録部34より出力された映像信号は、表示部であるLCD13に出力され、内視鏡画像が表示される。また、画像記録部34は、外部出力としての映像出力端子へも、映像信号を出力している。
(画像処理部)
次に、画像処理部32の構成について説明する。
図2は、画像処理部32の構成を説明するためのブロック図である。画像処理部32は、プリアンプ41、CDS42、タイミングジェネレータ(以下、TGと略す)43、プログラマブル・ゲイン・アンプ(PGA)44、CPU45、アナログデジタル変換器であるA/D部46、画像処理回路47、RAM48及びROM49を含んで構成されている。
CCD23から出力された出力信号は、プリアンプ41に入力される。プリアンプ41は、細長の複合同軸ケーブルを伝送することにより減衰した減衰分を補うために、CCD23の出力信号を増幅する。プリアンプ41より出力されたCCD23の出力信号は、CDS部42に入力される。CDS部42は、CCD23の出力信号に対して、TG43より供給されるタイミング信号のタイミングに基づいて、相関2重サンプリング処理を行ってノイズ除去を行う。相関2重サンプリング手段としてのCDS部42より出力されたサンプルホールドされたCCD23の出力信号は、プログラマブル・ゲイン・アンプ(PGA)に入力され、CPU45からの制御信号に基づく増幅率にて信号増幅されて、A/D部46に出力される。A/D変換手段としてのA/D部46は、TG43より供給されるAD変換のタイミング信号であるADCLK信号のタイミングに基づいて、A/D変換を行い、CCD23の出力信号のデジタル信号を画像処理回路47に出力する。画像処理回路47は、CPU45からの制御信号による指示に応じて各種画像処理を施して画像記録部34に映像信号を出力する映像信号処理手段である。CPU45は、システム制御部33からの画像処理に関する指示に応じて、画像処理回路47を制御している。画像処理回路47は、各種処理の中でも特に電子ズームを実現するために、フレームメモリとしてのRAM48に対して、画像データの書き込み及び読み出しも行っている。なお、CPU45は、ROM49に記憶されたプログラムを読み出して、所定の処理を実行している。
TG43は、CPU45からのCCD駆動パルス設定、及び画像処理回路47より供給される同期信号に基づいて、CCD23を駆動するためのリセットゲートパルス信号を含むCCD駆動パルスを生成する。TG43より出力されたCCD駆動パルスは、CCDドライバ31に出力され、上述したように信号増幅されてCCD31に供給される。
また、TG43は、CDS部42に、相関2重サンプリング処理のための、後述するSHP(サンプルホールドプリチャージレベル)及びSHD(サンプルホールドデータレベル)の各パルス信号を、タイミング信号として出力するタイミング発生手段である。
(タイミングジェネレータ(TG))
次に、タイミング発生手段としてのTG43の構成について説明する。
図3は、TG43の構成を示すブロック図である。TG43は、カウンタ回路51、パルス生成回路52、シリアルインターフェース回路(シリアルI/F)53、レジスタ54、SHP用遅延素子位相シフト回路55、SHP用位相シフトテーブル部56、SHP用パルス生成回路57、SHP用シフトレジスタ位相シフト回路58、SHD用遅延素子位相シフト回路59、SHD用位相シフトテーブル部60、SHD用パルス生成回路61、及びSHD用シフトレジスタ位相シフト回路62を含む。SHP用遅延素子位相シフト回路55、SHP用位相シフトテーブル部56、SHP用パルス生成回路57、及びSHP用シフトレジスタ位相シフト回路58が、SHP用位相シフト回路を構成する。SHD用遅延素子位相シフト回路59、SHD用位相シフトテーブル部60、SHD用パルス生成回路61、及びSHD用シフトレジスタ位相シフト回路62が、SHD用位相シフト回路を構成する。
画像処理回路47より出力される各種同期信号、ここではHD(水平同期)/VD(垂直同期)/FD(フィールド同期)信号がカウンタ回路51に入力される。カウンタ回路51は、各同期信号のカウント値及び各同期信号をパルス生成回路52に出力する。
さらに、画像処理回路47からのパルス生成用クロック信号CLK_INが、パルス生成回路52に入力されている。パルス生成回路52は、入力されたパルス生成用クロック信号CLK_IN、同期信号HD/VD/FD、及び同期信号カウント値、を基づく各種CCD駆動パルス信号とAD用クロック信号ADCLKを生成し、それぞれCCDドライバ31とA/D部46に出力している。各種CCD駆動パルス信号は、H1/H2,RG,XV1〜XSG1/VSG2,XSUBである。
なお、以下、CDS処理におけるSHP(サンプルホールドプリチャージレベル)及びSHD(サンプルホールドデータレベル)の各パルス信号を位相シフトさせる位相シフト回路の動作について説明するが、両者の回路は、同じ回路構成のためSHPパルス信号用の位相シフト回路を主として説明する。
画像処理回路47より出力されるパルス生成用クロック信号CLK_INは、SHP用遅延素子位相シフト回路55に入力される。SHP用遅延素子位相シフト回路55は、SHP用位相シフトテーブル部56からの制御信号DCS_SHPに基づいて、遅延素子を利用してパルス生成用クロック信号CLK_INの位相を、後述する小さい量だけ位相シフトさせた遅延SHPクロック信号CLK_DLY_SHPを生成し、SHP用パルス生成回路57に出力する位相シフト回路である。制御信号DCS_SHP は、遅延素子による位相シフトのためのSHP用の制御信号である。SHP用遅延素子位相シフト回路55の構成については、後述する。
SHP用パルス生成回路57は、遅延SHPクロック信号CLK_DLY_SHPを基準として、相関2重サンプリング処理のためのタイミング信号であるSHPパルス信号のSHP遅延1パルス信号SHP_DLY1を生成して、SHP用シフトレジスタ位相シフト回路58に出力している。
SHP用シフトレジスタ位相シフト回路58は、SHP用遅延素子位相シフト回路55から出力された遅延SHPクロック信号CLK_DLY_SHPを基準にし、かつSHP用位相シフトテーブル部56からの制御信号SCS_SHPに基づいて、SHP遅延1パルス信号SHP_DLY1の位相を、シフトレジスタにより、さらに大きな量だけ位相シフトさせて、SHP遅延2パルス信号SHP_DLY2を生成し、CDS部42に出力する位相シフト回路である。制御信号SCS_SHPは、シフトレジスタによる位相シフトのためのSHP用の制御信号である。
SHP用遅延素子位相シフト回路55における位相シフトされる量は、SHP用シフトレジスタ位相シフト回路58において位相シフトされる量とは異なっており、小さい。
CDS部42では、このSHP遅延2パルス信号SHP_DLY2を基準にしてCDS処理を行っている。
また、CPU45は、位相シフト量のデータを、シリアルインターフェース回路53を介して3線シリアルにてレジスタ54に伝送して設定する。SHP用位相シフトテーブル部56には、レジスタ54に設定された位相シフト量が入力される。レジスタ54に設定される位相シフト量は、内視鏡の挿入部の長さに応じた値である。SHP用位相シフトテーブル部56は、入力された位相シフト量に応じて予め設定されたデータを出力する。その出力されるデータは、その入力された位相シフト量に対して、遅延素子位相シフト量とシフトレジスタ位相シフト量の組み合わせの中で、遅延素子による位相シフト量が最小となるデータである制御信号DCS_SHPとSCS_SHPである。
遅延素子による位相シフト量が最小となるデータが設定されて出力するようにしたのは、遅延素子の位相シフト量のバラツキが大きく、シフトレジスタの位相シフト量のバラツキが小さいという特性を利用して、最もバラツキが小さくなるような遅延設定を実現するためである。
なお、ここでは、SHP用位相シフトテーブル部56は、位相シフト量に対して、遅延素子位相シフト量とシフトレジスタ位相シフト量の組み合わせのデータを保持するテーブルであり、入力された位相シフト量に対してその組み合わせのデータを出力する回路であるが、SHP用位相シフトテーブル部56は、組み合わせのデータの演算処理を行う回路でもよい。すなわち、SHP用位相シフトテーブル部56に代えて、入力された位相シフト量に対して、遅延素子位相シフト量とシフトレジスタ位相シフト量の組み合わせを、遅延素子による位相シフト量が最小となるように、演算して出力する回路を用いてもよい。すなわち、その演算回路は、遅延素子位相シフト量とシフトレジスタ位相シフト量の決定する位相シフト量決定手段を構成する。
さらに、なお、外部のCPU45が、位相シフト量に対して、遅延素子位相シフト量とシフトレジスタ位相シフト量の組み合わせデータを、遅延素子位相シフト量が最小となるように演算し、各位相シフト回路に出力するようにして、SHP用位相シフトテーブル部56を省略してもよい。
以上のように、SHP用位相シフトテーブル部56は、レジスタ54に設定された位相シフト量に対して、遅延素子位相シフト量とシフトレジスタ位相シフト量の組み合わせの中で、遅延素子位相シフト量が最小となるように各遅延量を決定して、SHP用遅延素子位相シフト回路55及びSHP用シフトレジスタ位相シフト回路58を制御している。
なお、SHD用遅延素子位相シフト回路59、SHD用位相シフトテーブル部60、SHD用パルス生成回路61、及びSHD用シフトレジスタ位相シフト回路62は、上述したSHPパルス信号用の位相シフト回路と、全く同じ動作あるいは処理を独立して行っているので、説明は省略する。
SHPパルス信号用の位相シフト回路とSHDパルス信号用の位相シフト回路を個別に設けているのは、内視鏡では、CCD出力信号を長距離伝送するによりCCD出力信号の波形が歪んでしまうので、SHPとSHDの各位相シフト量を独立に調整しないと最適な画像が得られない場合があるという理由からである。従って、SHD用位相シフトテーブル部60のデータの内容は、SHP用位相シフトテーブル部56の内容と同じでない場合がある。
次に、SHP用遅延素子位相シフト回路55の構成について説明する。図4は、SHP用遅延素子位相シフト回路55の構成例を示す回路図である。なお、SHD用遅延素子位相シフト回路59の構成も同様である。
図4のSHP用遅延素子位相シフト回路55は、遅延素子として複数のバッファ71を用いてパルス生成用クロック信号CLK_INの微小な量の位相シフトを実現する。複数のバッファ71は、直列に接続されており、その各接続ポイントからの出力が、セレクタ72に並列に入力されている。複数の接続ポイントの出力信号は、各接続ポイントまでに直列に接続されたバッファの数が異なっているので、互いに位相が異なった信号となる。セレクタ72は、SHP用位相シフトテーブル部56から出力される制御信号DCS_SHPに基づいて、並列に入力された互いに位相の異なる複数の信号のうち1つを選択して、遅延SHPクロック信号CLK_DLY_SHPとして、SHP用パルス生成回路57に出力する。
なお、SHP用遅延素子位相シフト回路55は、パルス生成用クロック信号CLK_INの微小な量の位相シフトを実現するので、バッファ71の数は多くない。そのため、回路規模も小さくでき、かつトータルの誤差も小さい。
図5は、SHP用遅延素子位相シフト回路55の他の構成例を示す回路図である。図5のSHP用遅延素子位相シフト回路55Aは、基本的な構成は図4の回路と同等で、遅延素子が遅延線73に置き換わった例である。動作は図4と全く同じであるので、説明は省略する。
なお、遅延素子は、上記したバッファや遅延線の他にも、コイル、基板上の配線、フィルタ等を利用してもよく、あるいは、種々の素子の組み合わせでもよく、同じ効果を得ることができる。
次に、SHP用シフトレジスタ位相シフト回路について説明する。
図6は、SHP用シフトレジスタ位相シフト回路58の構成例を示すブロック図である。なお、SHD用シフトレジスタ位相シフト回路62の構成も、図6と全く同等である。
SHP用シフトレジスタ位相シフト回路58は、4つのフリップフロップ回路(以下、FFと略す)81,82,83,84と、シフトレジスタ85と、セレクタ86と、HIGHあるいはLOWの信号を生成して出力するH/L信号生成回路87とを含む。
SHP用シフトレジスタ位相シフト回路58は、SHP用パルス生成回路57において生成され微小位相シフトしたSHP遅延1パルス信号SHP_DLY1の位相を、SHP用遅延素子位相シフト回路55において生成され微小位相シフトした遅延SHPクロック信号CLK_DLY_SHPを基準に、制御信号SCS_SHPに基づいて、シフトレジスタ85によって、位相シフトする。
SHP遅延1パルス信号SHP_DLY1は、FF81を経由して入力され、FF82とシフトレジスタ85に入力される。シフトレジスタ85は、SHP用位相シフトテーブル部56からのシフトレジスタ位相シフト用の制御信号SCS_SHPにより指定される位相シフト量に応じた位相シフトを実施して、位相シフトしたSHP遅延1パルス信号SHP_DLY1を、FF83を経由してセレクタ86に出力する。
シフトレジスタ85は、複数のシフトレジスタを有し、制御信号SCS_SHPに基づいて、シフトする位相量が制御される。シフトレジスタ85は、制御信号SCS_SHPにより指定された位相シフト量だけSHP遅延1パルス信号SHP_DLY1を位相シフトする。
セレクタ86には、FF82を経由したSHP遅延1パルス信号SHP_DLY1と、FF83を経由した、シフトレジスタ85により位相シフトされたSHP遅延1パルス信号SHP_DLY1とが入力される。セレクタ86は、入力された2つの信号の内の一つを選択して、FF84を経由して、選択した信号を、SHP遅延2パルス信号SHP_DLY2として、CDS部42に出力する。
また、セレクタ86には、H/L信号生成回路87からのHIGH又はLOWの信号が入力されている。セレクタ86は、LOW信号が入力されているときは、FF82からのSHP遅延1パルス信号SHP_DLY1を選択し、HIGH信号が入力されているときは、FF83からの位相シフトされたSHP遅延1パルス信号SHP_DLY1を選択し、選択した信号を出力する。
H/L信号生成回路87は、制御信号SCS_SHPの示す位相シフト量が0(ゼロ)のときは、LOW信号を生成し、制御信号SCS_SHPの示す位相シフト量が0(ゼロ)以外のときは、HIGH信号を生成する。すなわち、セレクタ86は、位相シフト量が0の時にはFF82の出力を選択し、位相シフト量が0以外の時にはFF83の出力を選択するように制御されている。
なお、FF82と83は、位相シフト量が0の時と、0以外の時とで、出力タイミングを一致させるために挿入されている。さらになお、FF81と84は、SHP用シフトレジスタ位相シフト回路58の入力および出力のタイミングが、外部回路とタイミングが合うようにするために挿入されている。
なお、図3から図6に示したTG43は、再構成可能なハードウェア、例えばFPGA(Field Programmable Gate Array)を用いて実現することが可能である。
また、各パルス信号の遅延素子位相シフト回路55,59、シフトレジスタ位相シフト回路58,62は、パルス生成回路57,61の後段に、直列に配置するようにしてもよく、かつその配置順序はいずれが先でも後でもよい。
次に、上述した回路構成における各信号の状態を説明する。以下、SHPパルス信号についてのみ説明し、SHDパルス信号については説明を省く。
図7は、位相シフト無しの場合のタイミングチャートである。図7は、例えば、内視鏡装置1の挿入部11が長い場合に位相シフトが無い、すなわち位相シフト量が0(ゼロ)、とするときのタイミングチャートである。
挿入部11が位相シフトをする必要のあるものであるか否かは、予め挿入部11の長さ、あるいはID等の識別情報により、CPU45は決定することができる。内視鏡装置1の挿入部11の長さに応じて、CPU45は、位相シフト量を決定し、レジスタ54に設定する。なお、挿入部11が着脱可能な場合は、取り付けられた挿入部に設けられたID信号記憶部に記憶されたIDを読み出して、CPU45は、シフト量を決定する。
レジスタ54に設定されたシフト量が0(ゼロ)であるので、SHP用遅延素子位相シフト回路55における位相シフトは無く、パルス生成用クロック信号CLK_INと遅延SHPクロック信号CLK_DLY_SHPは同位相となっている。SHP用パルス生成回路57は、この遅延SHPクロック信号CLK_DLY_SHPを基準に、SHP遅延1パルス信号SHP_DLY1を生成するが、位相シフト量が0なので、SHP用シフトレジスタ位相シフト回路58における位相シフトもない。その結果、SHP遅延1パルス信号SHP_DLY1と同位相のSHP遅延2パルス信号SHP_DLY2が、CDS42に出力される。この時、各種CCD駆動パルス、及びADCLK信号と同じように、パルス生成用クロック信号CLK_INの位相を基準にして、サンプルホールドプリチャージレベルのパルス信号であるSHP遅延2パルス信号SHP_DLY2が生成されることとなる。
図8は、位相シフト有りの場合のタイミングチャートである。CPU45は、挿入部11の長さから位相シフトが必要な場合、位相シフトすべきシフト量を決定し、レジスタ54に決定したシフト量データを設定する。
画像処理回路47から入力されるパルス生成用クロック信号CLK_INに対して、SHP用遅延素子位相シフト回路55は、微小量の位相シフトを施し、遅延SHPクロック信号CLK_DLY_SHPを生成する。この遅延SHPクロック信号CLK_DLY_SHPは、SHP用パルス生成回路57に入力され、入力クロック信号の位相を基準にして、SHP遅延1パルス信号SHP_DLY1が生成される。
このSHP遅延1パルス信号SHP_DLY1は、位相シフト無し時のSHP遅延2パルス信号SHP_DLY2(0)と比較して、微小量DSだけ位相シフトしたパルス信号となる。このSHP遅延1パルス信号SHP_DLY1は、さらに、SHP用シフトレジスタ位相シフト回路58において大幅に位相シフトされる。この大幅なシフト量SSの位相シフトは、シフトレジスタによりなされるものであり、大きなシフトが精度よく行える。シフト量DSとSSを加算したシフト量TSの位相シフトが実現される。その結果、最終的に全体としてシフト量TSのSHP遅延2パルス信号SHP_DLY2が、サンプルホールドプリチャージレベルのパルス信号としてCDS部42に出力される。
図8に示す例では遅延SHPクロック信号CLK_DLY_SHPは、3クロック分位相シフトしている。この時、各種CCD駆動パルス及びADCLK信号は、パルス生成用クロック信号CLK_INの位相を基準としているのに対して、SHP遅延2パルス信号SHP_DLY2は、トータルでシフト量TSだけ位相シフトした信号となっている。
以上のように、この例では、目標とする位相シフト量TSが、遅延SHPクロック信号CLK_DLY_SHPの3クロック分+α(=DS)としているので、SHP用位相シフトテーブル部56が上記のようにシフト制御を行っている。目標となる位相シフト量が変わった時には、SHP用位相シフトテーブル部56が、SHP用遅延素子位相シフト回路55とSHP用シフトレジスタ位相シフト回路58を、目標の位相シフト量に応じて、制御して最適な位相シフト量を実現する。このとき、位相シフト量のバラツキが大きいSHP用遅延素子位相シフト回路55での位相シフト量が最小となるように制御されることにより、全体として精度の良い位相シフトが実現されている。
図9から図11は、上述した位相シフトをした場合のCDS部42における相関2重サンプリングのタイミングを説明するための図である。
図9は、例えば30m等の挿入部11が長い場合のタイミングを示す図である。この時のサンプルホールドプリチャージレベルのパルス信号SHP_DLY2及びサンプルホールドデータレベルのパルス信号SHD_DLY2は、それぞれ、CCD23の出力信号CCD_OUTのフィードスルー期間及び信号期間の信号レベルをサンプルホールドするために、点線で示すタイミングで、適切に出力されている。よって、この場合は適切な画像を得ることが出来る。
図10は、例えば1m等の挿入部11が短い場合のタイミングを示す図である。この場合、CCD23の出力信号CCD_OUTの波形は、矢印Aで示す方向に遅れる。その結果、図9に示すタイミングと比較して、CCDの出力信号CCD_OUTに対する各タイミング信号の遅延量が少ない。その結果、図10にあるようにCCD23の出力信号CCD_OUTの位相が、最適なタイミング位置のサンプルホールドプリチャージレベルのパルス信号SHP_DLY2及びサンプルホールドデータレベルのパルス信号SHD_DLY2に対してずれてしまう。従って、パルス信号SHP_DLY2及びSHD_DLY2は、それぞれCCD23の出力信号CCD_OUTの最適なサンプリング位置でサンプルホールド出来ないので、正常な画像が得られない。
図11は、図10の場合におけるCCD23の出力信号CCD_OUTのタイミングに合わせて、パルス信号SHP_DLY2及びSHD_DLY2を適切に位相シフトさせた場合のタイミングを示す図である。図11では、サンプルホールドプリチャージレベルのパルス信号SHP_DLY2及びサンプルホールドデータレベルのパルス信号SHD_DLY2は、それぞれ適切な量だけ位相シフトされて、CCD23の出力信号CCD_OUTのフィードスルー期間及び信号期間の信号レベルにおいて適切にサンプルホールドが行われ、最適な画像を得ることが出来る。
以上のように、本実施の形態によれば、精度良くサンプリングパルスの位相を遅延することにより、様々なケーブル長に対しても最適な画像を得られる内視鏡装置を実現することができる。
(第2の実施の形態)
(全体構成)
本発明の第2の実施の形態に係る内視鏡装置は、RGパルス信号及びADCLK信号に対しても位相シフトを行うようにした点が、上述した第1の実施の形態の内視鏡装置とは異なる。本実施の形態の内視鏡装置の構成は、第1の実施の形態の内視鏡装置と略同じであるため、第1の実施の形態の内視鏡装置と同じ構成要素については同じ符号を用いて説明は省略し、異なる点のみを説明する。
図12は、本発明の第2の実施の形態に係る内視鏡装置の画像処理部32のTG43Aの構成を示すブロック図である。図12は、図3の構成に、RG遅延素子位相シフト回路63と、RG用位相シフトテーブル64と、RG用パルス生成回路65と、RG用シフトレジスタ位相シフト回路66と、ADCLK用シフトレジスタ位相シフト回路67とが、追加されている。
CDS処理におけるリセット期間のリセットゲートパルス信号(以下、RG信号という)は、CCDドライバ31へ出力される。RG遅延素子位相シフト回路63と、RG用位相シフトテーブル64と、RG用パルス生成回路65と、RG用シフトレジスタ位相シフト回路66が、RG用位相シフト回路を構成し、RG信号の位相シフトを行う。
RG遅延素子位相シフト回路63と、RG用位相シフトテーブル64と、RG用パルス生成回路65と、RG用シフトレジスタ位相シフト回路66は、それぞれ、第1の実施の形態におけるSHP及びSHDの各パルス信号を位相シフトさせる位相シフト回路と同じ構成である。具体的には、RG遅延素子位相シフト回路63の構成は、SHP用遅延素子位相シフト回路55及びSHD用遅延素子位相シフト回路59と同じである。RG用位相シフトテーブル64の構成は、記憶されているデータは異なるが、SHP用シフトテーブル部56及びSHD用位相シフトテーブル部64と同じである。RG用パルス生成回路65の構成は、SHP用パルス生成回路57及びSHD用パルス生成回路61と同じである。RG用シフトレジスタ位相シフト回路66の構成は、SHP用シフトレジスタ位相シフト回路58及びSHD用シフトレジスタ位相シフト回路62と同じである。
RG用位相シフト回路が、上述したSHP用位相シフト回路及びSHD用位相シフト回路と全く同じ動作をしてRG信号の位相シフトを実現して、リセット期間のRG信号RG_DLY2を、最終的にCCDドライバ31に出力している。
このときのRG用の位相シフト量は、ケーブル自体の個体特性によって決定される。そこで、内視鏡装置1の挿入部11あるいはケーブル自体が、その位相シフト量データを保持するか、あるいはその位相シフト量に応じたIDデータを保持する記憶部を有し、挿入部11の変更、又はケーブルの変更もしくは取り替え時に、CPU45がその記憶部に記憶されたデータを読み出すことによって、挿入部11等の個々の位相シフト量のデータをレジスタ54に設定することができる。
以上のように、本実施の形態によれば、同じケーブル長であってもケーブル特性のバラツキによりCCD23の出力信号CCD_OUTが変化してしまい、最適なCCD23の出力信号波形を得ることが出来ず、ノイズが増えてしまうという問題を解決するために、このRG用位相シフト回路により、位相を調整して最適なCCD23の出力信号波形を得ることにより、第1の実施の形態に示す構成よりもさらに画質を向上することが可能となる。
さらに、本実施の形態では、第1の実施の形態に対して、ADCLK用位相シフト回路としてのADCLK用シフトレジスタ位相シフト回路67が追加されている。ADCLK用シフトレジスタ位相シフト回路67には、A/Dパルス生成回路52からのA/Dタイミング信号であるADCLK信号が入力される。このADCLK用位相シフト回路を構成するADCLK用シフトレジスタ位相シフト回路67は、SHP用シフトレジスタ位相シフト回路58,SHD用シフトレジスタ位相シフト回路62及びRG用シフトレジスタ位相シフト回路66と全く同じの動作をして、ADCLK信号に対して設定された量の位相シフトを実現して、位相シフトされたADCLK信号であるADCLK_DLY信号を最終的にA/D部46に出力している。
A/D部46では、CDS部42においてサンプルホールドされた各信号を、ADCLK_DLY信号のタイミングに基づいてA/D変換することになる。
精度のよいA/D変換を行うためには、A/D部46におけるA/D変換のサンプリングは、信号レベルが安定しているときに行わなければならないが、ケーブル長の違いにより、その信号レベルの安定している期間が異なる。そこで、内視鏡装置1の挿入部11あるいはケーブル自体が、そのケーブル長データを保持するか、あるいはそのケーブル長に応じたIDデータを保持する記憶部を有し、挿入部11の変更、又はケーブルの変更もしくは取り替え時に、CPU45がその記憶部に記憶されたデータを読み出すことによって、挿入部11等の個々のケーブル長に対応するシフト量データをレジスタ54に設定することができる。設定されたデータは、ADCLK用シフトレジスタ位相シフト回路67に設定される。
以上のように、本実施に形態によれば、ADCLK用位相シフト回路は、信号レベルが確実に安定しているタイミングでA/D変換しないと最適な画像が得られないという問題を解決するために、ADCLK信号の位相調整を行い、最適なA/D変換タイミングを実現することにより、第1の実施の形態に示す構成よりもさらに画質を向上することが可能となる。
なお、ここで、ADCLK用位相シフト回路では、遅延素子による位相シフト回路が省略されている。これは、CDS部42において、サンプルホールドされた信号のレベルが安定したタイミングが比較的長いため、遅延素子による微妙な位相シフトは必要ないからである。このような構成にすることによって、ADCLK信号の必要な位相シフトを最小限の回路構成で実現することが出来る。
図13は、本実施の形態におけるADCLK信号の位相シフトのタイミングの例を示すタイミングチャートである。
画像処理部47から入力されたパルス生成用クロック信号CLK_INを基準として、パルス生成回路52がADCLK信号を生成する。このADCLK信号は、パルス生成用クロック信号CLK_INの位相に同期されたクロックとして生成される。このADCLK信号に対して、ADCLK用シフトレジスタ位相シフト回路67において位相シフトされたADCLK_DLY信号が最終的にA/D部46に出力される。図13に示す例では、ADCLK信号の位相を、パルス生成用クロック信号CLK_INの7クロック分だけ位相シフトさせて出力した場合の図となっている。ADCLK用位相シフト回路67は、SHP用及びSHD用位相シフト回路とは異なり、遅延素子による位相シフト回路が存在しないので、シフトレジスタによる位相シフト量がトータルの位相シフト量ADTSに等しくなる。
以上のように、本実施の形態によれば、RG信号とADCLK信号とに対して、位相シフトを行うようにしたので、第1の実施の形態に示す構成よりもさらに画質を向上することが可能となる。
なお、RG信号とADCLK信号の両方に対して位相シフトを行わなくても、いずれか一方のみに位相シフトを行っても、第1の実施の形態に示す構成よりもさらに画質を向上することができる。
以上のように、撮像手段を内視鏡先端部に配置した内視鏡装置において、撮像部出力信号の遅延量に応じて、相関2重サンプリングパルスの位相を精度良く遅延させることが出来るので、最適な画像処理を実現することが出来る。また、必要な遅延量によらず一定の回路規模にすることが出来るので、大きな遅延量が必要なケーブルを使用する場合には回路規模を小さくすることが出来る。
従って、上述した2つの実施の形態に係る内視鏡装置によれば、精度良くサンプリングパルスの位相を遅延することにより、様々なケーブル長に対して、最適な画像を得られるように信号処理が可能な内視鏡装置を実現することができる。
本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
本発明の第1の実施の形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第1の実施の形態に係る画像処理部の構成を説明するためのブロック図である。 本発明の第1の実施の形態に係るタイミングジェネレータ(TG)の構成を示すブロック図である。 本発明の第1の実施の形態に係るSHP用遅延素子位相シフト回路の構成例を示す回路図である。 本発明の第1の実施の形態に係るSHP用遅延素子位相シフト回路の他の構成例を示す回路図である。 本発明の第1の実施の形態に係るSHP用シフトレジスタ位相シフト回路の構成例を示すブロック図である。 本発明の第1の実施の形態に係る、位相シフト無しの場合のタイミングチャートである。 本発明の第1の実施の形態に係る、位相シフト有りの場合のタイミングチャートである。 本発明の第1の実施の形態に係る、例えば30m等の挿入部が長い場合のタイミングを示す図である。 本発明の第1の実施の形態に係る、例えば1m等の挿入部が短い場合のタイミングを示す図である。 図10の場合におけるCCDの出力信号CCD_OUTのタイミングに合わせて、パルス信号SHP_DLY2及びSHD_DLY2を適切に位相シフトさせた場合のタイミングを示す図である。 本発明の第2の実施の形態に係る内視鏡装置の画像処理部のタイミングジェネレータ(TG)の構成を示すブロック図である。 本発明の第2の実施の形態におけるADCLK信号の位相シフトのタイミングの例を示すタイミングチャートである。
符号の説明
1 内視鏡装置、11 挿入部、12 本体部、13 表示部、14 リモコン、15記録媒体、21LED 22 対物レンズ、23 CCD、31 CCDドライバ、32 画像処理部、33 システム制御部、34 画像記録部、35 LED駆動部、41 プリアンプ、42 CDS部 43 タイミングジェネレータ、44 PGA部、45 CPU、46 A/D部、47 画像処理回路、48 RAM、51 カウンタ回路、52 パルス生成回路、53 シリアルI/F、54 レジスタ、55、55A SHP用遅延素子位相シフト回路、 56 SHP用位相シフトテーブル部、57 SHP用パルス生成回路、58 SHP用シフトレジスタ位相シフト回路、59 SHD用遅延素子位相シフト回路、 60 SHD用位相シフトテーブル部、61 SHD用パルス生成回路、62 SHD用シフトレジスタ位相シフト回路、63 RG用遅延素子位相シフト回路、64 RG用位相シフトテーブル部、65 RG用パルス生成回路、66 RG用シフトレジスタ位相シフト回路、67 ADCLK用シフトレジスタ位相シフト回路、71 バッファ、72 セレクタ、73 遅延線、81 、82,83,84 FF、85 シフトレジスタ、86 セレクタ、87 H/L信号生成回路

Claims (10)

  1. 内視鏡先端部に配置された対物レンズより取り込んだ被写体像を撮像する撮像手段で得られた信号を相関2重サンプリング処理する相関2重サンプリング手段と、
    前記相関2重サンプリング手段に前記相関2重サンプリング処理のためのタイミング信号を供給するタイミング発生手段と、
    前記相関2重サンプリング手段においてサンプルホールドされた信号をアナログデジタル変換するA/D変換手段と、
    前記A/D変換手段の出力を信号処理する映像信号処理手段と、を有し、
    前記タイミング発生手段は、
    パルス生成用クロック信号を基に、前記相関2重サンプリング処理のための前記タイミング信号を生成するパルス生成回路と、
    前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、第1の量だけ位相シフトさせる第1の位相シフト回路と、
    前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、前記第1の量とは異なる第2の量だけ位相シフトさせる第2の位相シフト回路と、を有して、
    前記パルス生成回路と、前記第1の位相シフト回路と、前記第2の位相シフト回路が直列に接続され、
    前記タイミング発生手段は、
    前記撮像手段を駆動するためのリセットゲートパルス信号を生成するリセットゲートパルス生成回路と、
    前記パルス生成用クロック信号もしくは前記リセットゲートパルス生成回路にて生成された前記リセットゲートパルス信号の位相を、第3の量だけ位相シフトさせる第3の位相シフト回路と、
    前記パルス生成用クロック信号もしくは前記リセットゲートパルス生成回路にて生成された前記リセットゲートパルス信号の位相を、前記第3の量とは異なる第4の量だけ位相シフトさせる第4の位相シフト回路と、をさらに有し、
    前記リセットゲートパルス生成回路と、前記第3の位相シフト回路と、前記第4の位相シフト回路が直列に接続されることを特徴とする内視鏡装置。
  2. 内視鏡先端部に配置された対物レンズより取り込んだ被写体像を撮像する撮像手段で得られた信号を相関2重サンプリング処理する相関2重サンプリング手段と、
    前記相関2重サンプリング手段に前記相関2重サンプリング処理のためのタイミング信号を供給するタイミング発生手段と、
    前記相関2重サンプリング手段においてサンプルホールドされた信号をアナログデジタル変換するA/D変換手段と、
    前記A/D変換手段の出力を信号処理する映像信号処理手段と、を有し、
    前記タイミング発生手段は、
    パルス生成用クロック信号を基に、前記相関2重サンプリング処理のための前記タイミング信号を生成するパルス生成回路と、
    前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、第1の量だけ位相シフトさせるバッファ又は遅延線により構成された第1の位相シフト回路と、
    前記パルス生成用クロック信号もしくは前記パルス生成回路にて生成された前記タイミング信号の位相を、前記第1の量よりも大きい第2の量だけ位相シフトさせるシフトレジスタにより構成された第2の位相シフト回路と、
    前記第1の位相シフト回路と前記第2の位相シフト回路のそれぞれの前記第1の量と前記第2の量を決定する位相シフト量決定手段と、を有して、
    前記パルス生成回路と、前記第1の位相シフト回路と、前記第2の位相シフト回路が直列に接続され、
    前記位相シフト量決定手段は、前記第1の量が最小となるように前記第1の量と前記第2の量を決定することを特徴とする内視鏡装置。
  3. 前記パルス生成回路、前記第1の位相シフト回路及び前記第2の位相シフト回路は、前記相関2重サンプリング処理におけるサンプルホールドプリチャージレベルとサンプルホールドデータレベルの2つのタイミング信号を発生させるために、前記2つのタイミング信号毎に設けられていることを特徴とする請求項1又は2に記載の内視鏡装置。
  4. 前記第1の量は、前記第2の量よりも小さく、
    前記第1の位相シフト回路は、バッファ又は遅延線により前記位相シフトを実現するように構成されていることを特徴とする請求項に記載の内視鏡装置。
  5. 前記第2の位相シフト回路は、シフトレジスタにより前記位相シフトを実現するように構成されていることを特徴とする請求項に記載の内視鏡装置。
  6. 前記タイミング発生手段において、前記第1の位相シフト回路が前記パルス生成用クロック信号の位相を前記第1の量だけシフトし、前記パルス生成回路が前記第1の位相シフト回路において位相シフトされた前記タイミング信号を生成し、前記第2の位相シフト回路が前記パルス生成回路において生成された前記タイミング信号の位相を前記第2の量だけシフトさせることを特徴とする請求項1からのいずれか1つに記載の内視鏡装置。
  7. 前記第1の量と前記第2の量のデータは、前記内視鏡の挿入部の長さに応じて予め設定されたデータとして、記憶されていることを特徴とする請求項1からのいずれか1つに記載の内視鏡装置。
  8. 前記予め設定されたデータは、テーブルデータとして記憶部に記憶されていることを特徴とする請求項に記載の内視鏡装置。
  9. 前記予め設定されたデータは、外部から設定されて記憶されることを特徴とする請求項又はに記載の内視鏡装置。
  10. 前記タイミング発生手段は、
    前記A/D変換手段のA/Dタイミング信号を生成するためのA/Dパルス生成回路と、
    該A/Dパルス生成回路にて生成された前記A/Dタイミング信号の位相を第5の量だけ位相シフトさせる第5の位相シフト回路と、
    をさらに有することを特徴とする請求項1からのいずれか1つに記載に内視鏡装置。
JP2008212135A 2008-08-20 2008-08-20 内視鏡装置 Expired - Fee Related JP5350714B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212135A JP5350714B2 (ja) 2008-08-20 2008-08-20 内視鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212135A JP5350714B2 (ja) 2008-08-20 2008-08-20 内視鏡装置

Publications (2)

Publication Number Publication Date
JP2010046220A JP2010046220A (ja) 2010-03-04
JP5350714B2 true JP5350714B2 (ja) 2013-11-27

Family

ID=42063839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212135A Expired - Fee Related JP5350714B2 (ja) 2008-08-20 2008-08-20 内視鏡装置

Country Status (1)

Country Link
JP (1) JP5350714B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589329B1 (en) 2010-10-14 2017-02-22 Olympus Corporation Endoscope and endoscopic system
JP6173766B2 (ja) * 2013-05-10 2017-08-02 Hoya株式会社 電子内視鏡用プロセッサ、電子内視鏡システムおよび画像処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646979B2 (ja) * 1988-07-06 1994-06-22 オリンパス光学工業株式会社 電子式内視鏡装置
JPH02152436A (ja) * 1988-12-05 1990-06-12 Fuji Photo Optical Co Ltd 電子内視鏡装置
JP2821196B2 (ja) * 1989-09-29 1998-11-05 オリンパス光学工業株式会社 電子内視鏡用ビデオプロセッサ
JP2694753B2 (ja) * 1991-12-26 1997-12-24 富士写真光機株式会社 電子内視鏡装置の信号処理回路
JP2000231062A (ja) * 1999-02-09 2000-08-22 Olympus Optical Co Ltd 内視鏡装置
JP2001008199A (ja) * 1999-06-24 2001-01-12 Fuji Photo Optical Co Ltd 電子内視鏡装置

Also Published As

Publication number Publication date
JP2010046220A (ja) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5826968B2 (ja) 撮像素子、撮像装置、内視鏡および内視鏡システム
JP5097308B2 (ja) インピーダンスマッチング装置及びこれを備えた内視鏡
US9179828B2 (en) Electronic endoscope apparatus
WO2013099942A1 (ja) 撮像装置
JP2005117104A (ja) 映像信号発生装置
JP2013048694A (ja) 内視鏡装置
US20090262186A1 (en) Endoscope control unit and endoscope unit
EP2175633A3 (en) Solid-state image pickup device, optical apparatus, signal processing apparatus, and signal processing system
JP2006181021A (ja) 電子内視鏡装置
JP5861012B1 (ja) 撮像素子、撮像装置、内視鏡、内視鏡システム
JP5350714B2 (ja) 内視鏡装置
US11039733B2 (en) Image pickup apparatus and endoscope system
JP2005305124A (ja) 電子内視鏡装置
US9247863B2 (en) Endoscope apparatus which controls clamping of optical black included in an image pickup signal
JP2012115531A (ja) 電子内視鏡及び電子内視鏡システム
JP5791952B2 (ja) 電子内視鏡装置
US20090244295A1 (en) Imaging apparatus having camera control unit and separate camera head
JP5959331B2 (ja) 内視鏡装置
JP5332447B2 (ja) 撮像装置、内視鏡装置および制御装置
JPWO2016170642A1 (ja) 撮像装置、内視鏡、および内視鏡システム
JP4508603B2 (ja) 撮像装置を備えた電子内視鏡システム
JP2003204929A (ja) 内視鏡装置
JP5322633B2 (ja) 撮像装置
JP5326463B2 (ja) 撮像装置、内視鏡装置および制御装置
JP2007209506A (ja) 電子内視鏡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R151 Written notification of patent or utility model registration

Ref document number: 5350714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees