JP5314939B2 - 高合金極低炭素鋼の製造方法 - Google Patents

高合金極低炭素鋼の製造方法 Download PDF

Info

Publication number
JP5314939B2
JP5314939B2 JP2008151686A JP2008151686A JP5314939B2 JP 5314939 B2 JP5314939 B2 JP 5314939B2 JP 2008151686 A JP2008151686 A JP 2008151686A JP 2008151686 A JP2008151686 A JP 2008151686A JP 5314939 B2 JP5314939 B2 JP 5314939B2
Authority
JP
Japan
Prior art keywords
low carbon
carbon steel
ultra
steel
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008151686A
Other languages
English (en)
Other versions
JP2009299087A (ja
Inventor
陵平 鈴木
修平 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008151686A priority Critical patent/JP5314939B2/ja
Publication of JP2009299087A publication Critical patent/JP2009299087A/ja
Application granted granted Critical
Publication of JP5314939B2 publication Critical patent/JP5314939B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、RH精錬装置で精錬して製造する高合金極低炭素鋼の製造方法に関するものである。
従来より、RH精錬装置で溶鋼の真空脱ガス精錬(以降、RH処理ということがある)を行うことによって極低炭素鋼を製造することが一般的に行われている。極低炭素鋼は、[C]≦0.010質量%であり、[C]が非常に低いため、RH処理でのカーボンピックアップが発生すると所望の極低炭素鋼を製造することが困難となる。即ち、極低炭素鋼用の溶鋼に地金が溶融してRH処理後に[C]が上昇してしまうというカーボンピックアップが発生する。
そこで、極低炭素鋼をRH精錬装置で製造するにあたっては、カーボンピックアップを抑制するために、予め他の鋼種などでRH処理を行って、RH精錬装置の真空脱ガス槽内の地金等を除去した後に、極低炭素鋼をRH精錬装置で製造している(例えば、特許文献1〜特許文献3)。
特許文献1には、一次脱炭精錬炉から取鍋へ出鋼した溶鋼を収容し、溶製目標である中・低炭素鋼及び極低炭素鋼の両方を多数チャージ毎で交互に切り替えて再度精錬する真空脱ガス装置の使用方法が開示されている。この方法では、まず、中・低炭素鋼の溶製に際し、一次脱炭精錬炉からリムド状態で溶鋼を取鍋に出鋼し、該溶鋼を前記真空脱ガス装置で真空脱炭すると共に、該真空脱ガス装置に挿入した酸素吹き用ランスを介して該真空槽内の溶鋼浴面上の空間部に酸素ガスを吹き込んで、浴内発生COガスを二次燃焼させて真空槽内の付着地金を溶解してから、溶鋼の脱酸、成分調整する溶製のチャージを少なくとも複数回行い、その後に極低炭素鋼の溶製を行っていた。
特許文献2では、真空脱ガス処理後の最終C含有量が質量比で25ppm以下の極低炭素鋼を真空脱ガス処理によって溶製するのに先立って、質量比でC:0.02%〜0.10%、O:50ppm以上を含有する低炭素鋼溶鋼を真空脱ガス槽内に導き真空脱ガス処理を施すリムド処理を施すことによって、極低炭素鋼の溶製に先立つ操業により真空脱ガス槽内の溶鋼到達レベル直上のフリーボード部に付着した地金を溶解・除去していた。
特許文献3では、二以上の真空脱ガス槽を備え、何れかを処理槽とし、残りを待機槽とする真空脱ガス設備の操業方法であって、前記二以上の真空脱ガス槽の何れかを専用鋼種のための専用槽とし、少なくとも、その専用槽が待機槽となる待機期間中、当該専用槽内を400〜800℃の雰囲気温度で保持していた。
特開2005−272958号公報 特許第3765266号公報 特開2002−302714号公報
特許文献1〜特許文献3に示した従来の方法では、炭素成分が、[C]=0.010質量%以下である極低炭素鋼を製造することができるものの、合金元素の成分が[合金元素]≧1.5質量%で、且つ、炭素成分が[C]≦0.0020質量%である高合金極低炭素鋼の様に、一般的な極低炭素鋼に比べて脱炭後の処理時間が長いと言われる鋼種については、処理時間が長いゆえにその処理中に地金が剥離し易いために、十分にカーボンピックアップを抑制して製造することは非常に困難であった。
そこで、本発明は、[合金元素]≧1.5質量%、且つ、[C]≦0.0020質量%の高合金極低炭素鋼を確実に製造することができる高合金極低炭素鋼の製造方法を提供することを目的とする。
前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、RH精錬装置を用いて[合金元素]≧1.5質量%、且つ、[C]≦0.0020質量%の高合金極低炭素鋼を精錬により製造する高合金極低炭素鋼の製造方法であって、前記高合金極低炭素鋼を精錬する当該チャージの1つ前の前チャージで、[C]≦0.0020質量%となるように極低炭素鋼の脱炭処理を行うと共に、この脱炭処理後に還流量が0.32〜0.64t/分・溶鋼トンで、且つ、13分以上還流処理を行うことによって、前記RH精錬装置内に付着した地金を前記極低炭素鋼に溶融させて除去しておき、当該チャージで、前記高合金極低炭素鋼の製造を前記RH精錬装置で行う点にある。
発明者は、炭素成分の規格上限値が厳しく([C]≦0.0020質量%以下)、且つ、精錬時に合金添加の調整によって比較的精錬時間が長くなりやすい([合金元素]≧1.5質量%)高合金極低炭素鋼における製造について様々な観点から検証を行った。
合金元素の成分が、[合金元素]≧1.5質量%である鋼種をRH精錬装置で製造する場合、RH処理での脱炭処理後に多量の合金の投入を行わなければならないため、RH処理の全体の処理時間が長くなる。処理時間が長いために、地金が脱炭後の処理中に溶解して、地金中の炭素成分が溶鋼に溶解し易い状態となり、結果的に、溶鋼中の炭素成分値が上昇して、規格上限値を上回ってしまう恐れがある。
そこで、高合金極低炭素鋼をRH精錬装置で製造する場合にあっては、従来よりも十分に地金を除去する必要があり、前チャージでの炭素成分量、還流量及び脱炭後の還流処理時間に着目して、高合金極低炭素鋼に適した条件を実験等により検証を行った。
その結果、前チャージで、[C]≦0.0020質量%となるように極低炭素鋼の脱炭処理を行うと共に、この脱炭処理後に還流量が0.32〜0.64t/分・溶鋼トンで、且つ、13分以上還流処理を行うことによって、RH精錬装置に付着した地金を極低炭素鋼に溶融させて除去しておき、当該チャージで、高合金極低炭素鋼の製造をRH精錬装置で行うことを見出した。
本発明によれば、[合金元素]≧1.5質量%、且つ、[C]≦0.0020質量%の高合金極低炭素鋼を確実に製造することができる。
以下、本発明の実施の形態を、図面に基づき説明する。
図1は、高合金極低炭素鋼をRH精錬装置での精錬により製造する流れを示したものである。
図1に示すように、RH精錬装置1は、溶鋼2を還流させることで当該溶鋼2の真空脱ガス精錬処理(以降、RH処理ということがある)を行うものであって、溶鋼2が装入された取鍋3と、RH処理時に真空状態となって溶鋼2内の脱ガスを行う真空脱ガス槽4とを備えている。
真空脱ガス槽4の下部には取鍋3内の溶鋼2に浸漬させる2本の浸漬管5が設けられており、この浸漬管5の一方にはArガス等の不活性ガスを吹き込む吹き込み口(図示省略)が設けられている。真空脱ガス槽4の上部には、真空脱ガス槽4のガスを排気する排気口6が設けられている。
RH精錬装置1では、浸漬管5を取鍋3内の溶鋼2に浸漬し、吹き込み口から不活性ガスを吹き込むと共に、排気口6から真空脱ガス槽4のガスを排気することで真空脱ガス槽4内を略真空状態とし、この状態で、溶鋼2を真空脱ガス槽4と取鍋3との間で循環させることで、溶鋼2内に存在する水素等のガス成分の除去、溶鋼2の脱炭を行うことができる。
以下、高合金極低炭素鋼の製造方法について詳しく説明する。
[合金元素]≧1.5質量%、且つ、[C]≦0.0020質量%の高合金極低炭素鋼をRH精錬装置1の精錬により製造するにあたり、まず、1つ前の前チャージで[C]≦0.0020質量%となるように、極低炭素鋼の脱炭処理を行う。なお、合金元素とは、強度等を変更するために添加される非鉄金属のことで、例えば、Mn、Cr、Siなどである。
図1に示すように、RH精錬装置1にて高合金極低炭素鋼を製造するために精錬を行う段階を当該チャージ、この当該チャージの1つ前の段階であってRH精錬装置1にて精錬を行うことを前チャージとすると、まず、前チャージでは、高合金極低炭素鋼とは異なる別の極低炭素鋼の製造(溶製)を行う。
詳しくは、前チャージにおいて、[C]の規格上限値が0.010質量%以下(100ppm以下)の極低炭素鋼をRH精錬装置1で製造する。つまり、図2に示すように、転炉から極低炭素鋼向けの溶鋼2(例えば、キルド処理されていない溶鋼)が装入された取鍋3を真空脱ガス槽4の下方に設置する(S1)。そして、前チャージにおいて、真空脱ガス槽4内の真空引きを行いつつ不活性ガスにより極低炭素鋼向けの溶鋼2の還流しながら、当該溶鋼2の炭素成分が0.0020質量%以下(20ppm以下)となるまで、脱炭処理を行う(S2)。
即ち、前チャージでの脱炭処理では、[C]の規格上限値が100ppm以下の極低炭素鋼に対して[C]が20ppm以下になるように、溶鋼の過脱炭を行っている。
前チャージでの溶鋼2の[C]が0.0020質量%以下となり、極低炭素鋼向けの溶鋼2に対する脱炭処理が終了すると、溶鋼2にAlを添加して溶鋼2のキルド処理(脱酸処理)を行い、その後に、脱炭処理とは別に溶鋼2を還流する処理(以降、脱炭処理とは別に溶鋼2を還流させる処理のことを、還流処理ということがある)を、不活性ガスの還流量が0.32〜0.64t/分・溶鋼2トンとなる範囲で、13分以上行う(S3)。不活性ガスの還流量は、式(1)で求めた値である。式(1)は、一般的なもので、二次精錬法(取鍋3精錬法)及びステンレス製鋼法、特殊鋼製鋼法に示される式(13.3)の右辺を溶鋼2量W(t:トン)で割ったものである。
Figure 0005314939
そして、還流処理にて溶鋼2の還流を13分以上行い、極低炭素鋼の製造が終了すると、極低炭素鋼向けの溶鋼2の取鍋3を搬出し、高合金極低炭素鋼の製造へ移行する(S4)。
まず、高合金極低炭素鋼の製造へあたっては、転炉から高合金極低炭素鋼向けの溶鋼2(例えば、キルド処理されていない溶鋼)が装入された取鍋3を真空脱ガス槽4の下方に設置する(S5)。そして、当該チャージにおいて、当該溶鋼2の炭素成分が0.0020質量%以下([C]≦0.0020質量%)となるまで脱炭処理(真空脱ガス槽4内の真空引きを行いつつ不活性ガスにより高合金炭素鋼向けの溶鋼2を還流する)を行う(S6)。脱炭処理後は、当業者常法より、合金添加などの成分調整を行って高合金極低炭素鋼を製造する(S7)。
本発明によれば、高合金極低炭素鋼をRH精錬装置1の精錬により製造するにあたり、まず、カーボンピックアップを考慮した上で、[C]の規格上限値が100ppm以下である極低炭素鋼に対して、前チャージにおいて[C]が20ppm以下となるように、当該極低炭素鋼用の溶鋼の過脱炭を意図的に行っている。そして、さらに、前チャージにおける脱炭処理後には、還流量が0.32〜0.64t/分・溶鋼2トンの範囲で13分以上の還流処理を行い、この処理によって地金を除去している。
このような精錬によって、真空脱ガス槽4内の上部に付着した地金8を十分に除去しながら極低炭素鋼をも製造することができる。そして、極低炭素鋼の製造後に、前チャージと同じ真空脱ガス槽4を用いて高合金極低炭素鋼を製造しても、真空脱ガス槽4内の上部に付着した地金8の影響により発生していたカーボンピックアップが非常に抑制されるものとなった。
一方で、前チャージにおいて、極低炭素鋼の[C]が20ppmよりも大きくなる精錬を行った場合は、その後に行われる高合金極低炭素鋼の製造において、カーボンピックアップの影響が大であり、[C]の調整が非常に難しいものとなった。また、還流処理の際に、還流量が0.32t/分・溶鋼2トン未満であると、極低炭素鋼(溶鋼2)によって真空脱ガス槽4内の上部に付着した地金8を十分に溶解することができず、高合金極低炭素鋼を製造した際のカーボンピックアップの影響が大であり、[C]の調整が非常に難しいものとなった。さらに、還流処理が13分未満であると、溶鋼2によって地金8を溶解する時間が短すぎるため同様に、高合金極低炭素鋼を製造した際のカーボンピックアップの影響が大であり、[C]の調整が非常に難しいものとなった。
表1は、転炉、二次精錬装置(RH精錬装置1)、連続鋳造装置を用いて高合金極低炭素鋼を製造した実施条件を示している。表2は、表1の実施条件に基づき、本発明の高合金極低炭素鋼の製造方法により製造を行った実施例をまとめたものである。また、表3及び表4は、表1の実施条件に基づき、本発明の高合金極低炭素鋼の製造方法とは異なる方法により製造を行った比較例をまとめたものである。
Figure 0005314939
実施条件について詳しく説明する。
表1に示すように、一次精錬は、250tonクラスの上底吹き転炉にて行った。この転炉に装入する溶銑は、[C]=4.0〜4.2質量%、且つ、[P]=0.005〜0.140質量%とした。溶製鋼種の規格上限値は、[C]=0.0020質量%とした。 即ち、真空脱ガス処理後(RH精錬装置1での処理後)の[C]の上限値を0.0020質量%とした。RH精錬装置1(二次精錬)は、極低炭素鋼及び高合金極低炭素鋼のための当業者常法通りRH処理を行った。連続鋳造は、極低炭素鋼スラブ製造のための当業者常法通り連続鋳造装置にて鋳造を実施した。
Figure 0005314939
Figure 0005314939
Figure 0005314939
表2〜表4の実施例及び比較例において、転炉から出鋼した溶鋼2は、[C]=0.020〜0.060質量%とし、溶鋼2の出鋼温度は1670〜1700℃とした。
実施例1〜実施例21では、RH精錬装置1の前チャージにおいて、極低炭素鋼の[C]を0.0020質量%(C≦20ppm)以下とし、還流量を0.32〜0.64t/分の範囲とし、且つ、還流処理の時間(前チャージの還流時間)を13分以上としているため、前チャージでの精錬によって真空脱ガス槽4内に付着していた地金8(特に上部の地金8)を極低炭素鋼用の溶鋼2に溶融させることによって、十分に除去することができた。
その結果、前チャージにおいてカーボンピックアップが生じても当該極低炭素鋼を製造することができると共に、当該チャージにおいて高合金極低炭素鋼の製造をしてもカーボンピックアップは、殆ど発生することがなく、[C]≦0.0020質量%となる高合金極低炭素鋼を製造することができるようになった(表2、当該チャージC≦20ppm、評価「○」)。言い換えれば、実施例1〜実施例21では、当該チャージにおけるカーボンピックアップが、非常に少ない0.0005質量%(5ppm)以下となり、その結果、当該チャージにおいて[C]を0.0020質量%以内(20ppm)に調整することが可能となった。
一方で、比較例22〜比較例119では、RH精錬装置1の前チャージにおいて、極低炭素鋼の[C]、還流量、還流処理の時間のいずれかが、本発明の条件から外れているために、前チャージの精錬によって真空脱ガス槽4内の地金8を十分に除去することができず、当該チャージにおいて高合金極低炭素鋼の製造した場合、当該高合金極低炭素鋼の[C]は、0.0020質量%よりも大きな値になった(表3〜表4、評価「×」)。言い換えれば、比較例13〜比較例119では、当該チャージにおけるカーボンピックアップが、0.0005質量%(5ppm)よりも大きく、その結果、当該チャージにおいて[C]を0.0020質量%以内(20ppm)に調整することができなかった。なお、比較例13〜比較例119においては、カーボンピックアップのバラツキも大きかった。
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
高合金極低炭素鋼をRH精錬装置での精錬で製造する工程を示した図である。 高合金極低炭素鋼の製造手順を示したフローチャートである。
符号の説明
1 RH精錬装置
2 溶鋼
3 取鍋
4 真空脱ガス槽
5 浸漬管
6 排気口

Claims (1)

  1. RH精錬装置を用いて[合金元素]≧1.5質量%、且つ、[C]≦0.0020質量%の高合金極低炭素鋼を精錬により製造する高合金極低炭素鋼の製造方法であって
    前記高合金極低炭素鋼を精錬する当該チャージの1つ前の前チャージで、[C]≦0.0020質量%となるように極低炭素鋼の脱炭処理を行うと共に、この脱炭処理後に還流量が0.32〜0.64t/分・溶鋼トンで、且つ、13分以上還流処理を行うことによって、前記RH精錬装置内に付着した地金を前記極低炭素鋼に溶融させて除去しておき、
    当該チャージで、前記高合金極低炭素鋼の製造を前記RH精錬装置で行うことを特徴とする高合金極低炭素鋼の製造方法。
JP2008151686A 2008-06-10 2008-06-10 高合金極低炭素鋼の製造方法 Expired - Fee Related JP5314939B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151686A JP5314939B2 (ja) 2008-06-10 2008-06-10 高合金極低炭素鋼の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151686A JP5314939B2 (ja) 2008-06-10 2008-06-10 高合金極低炭素鋼の製造方法

Publications (2)

Publication Number Publication Date
JP2009299087A JP2009299087A (ja) 2009-12-24
JP5314939B2 true JP5314939B2 (ja) 2013-10-16

Family

ID=41546282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151686A Expired - Fee Related JP5314939B2 (ja) 2008-06-10 2008-06-10 高合金極低炭素鋼の製造方法

Country Status (1)

Country Link
JP (1) JP5314939B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132710A (ja) * 1991-11-11 1993-05-28 Kobe Steel Ltd 極低炭素鋼の製造方法
JP3765266B2 (ja) * 2001-12-07 2006-04-12 Jfeスチール株式会社 真空脱ガス槽付着地金の除去方法
JP4207820B2 (ja) * 2004-03-25 2009-01-14 Jfeスチール株式会社 真空脱ガス装置の利用方法
JP4722772B2 (ja) * 2006-06-12 2011-07-13 株式会社神戸製鋼所 高清浄度鋼の製造方法

Also Published As

Publication number Publication date
JP2009299087A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5132177B2 (ja) 極低Si、極低C、極低Sの高Ni−Fe合金鋼の製造方法
JP5277556B2 (ja) 含Ti極低炭素鋼の溶製方法及び含Ti極低炭素鋼鋳片の製造方法
JP5910579B2 (ja) 極低窒素純鉄の溶製方法
JP6040957B2 (ja) 高s低n合金鋼の溶製方法
CN104046719A (zh) 一种控制转炉炼钢中钢水氮含量的方法
JP2017166026A (ja) 高清浄鋼の製造方法
JP6330707B2 (ja) 低窒素鋼の溶製方法
TWI593803B (zh) 高清淨度鋼的熔製方法
JP2009242912A (ja) 含Ti極低炭素鋼の溶製方法および含Ti極低炭素鋼鋳片の製造方法
JP5343305B2 (ja) Ti含有極低炭素鋼スラブの製造方法
JP4207820B2 (ja) 真空脱ガス装置の利用方法
JP5314939B2 (ja) 高合金極低炭素鋼の製造方法
JP5332568B2 (ja) 溶鋼の脱窒素方法
JP5217478B2 (ja) 極低炭素鋼の溶製方法
JP2003160838A (ja) 継目無鋼管とその製造方法
CN103305655A (zh) 通过使用真空脱气系统以熔炼技术来制造超低碳钢的方法
WO2022039036A1 (ja) 高マンガン鋼の溶製方法
JP2559692B2 (ja) 極低炭素冷延鋼板のフクレ欠陥防止方法
JP2017128751A (ja) 高清浄鋼の製造方法
JP4066674B2 (ja) 含マンガン極低炭素鋼の製造方法
JP4811018B2 (ja) 溶鋼の脱酸方法
JP3619283B2 (ja) 中炭素Alキルド鋼の製造方法
JPH10219337A (ja) 高清浄鋼の溶製方法
JP3765266B2 (ja) 真空脱ガス槽付着地金の除去方法
JP2006233254A (ja) 高清浄度鋼の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees