JP5311985B2 - Vapor deposition apparatus and organic light emitting device manufacturing method - Google Patents

Vapor deposition apparatus and organic light emitting device manufacturing method Download PDF

Info

Publication number
JP5311985B2
JP5311985B2 JP2008301211A JP2008301211A JP5311985B2 JP 5311985 B2 JP5311985 B2 JP 5311985B2 JP 2008301211 A JP2008301211 A JP 2008301211A JP 2008301211 A JP2008301211 A JP 2008301211A JP 5311985 B2 JP5311985 B2 JP 5311985B2
Authority
JP
Japan
Prior art keywords
vapor deposition
opening
discharge port
heat shield
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008301211A
Other languages
Japanese (ja)
Other versions
JP2010126753A (en
Inventor
恭英 小沼
信貴 浮ケ谷
清 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008301211A priority Critical patent/JP5311985B2/en
Publication of JP2010126753A publication Critical patent/JP2010126753A/en
Application granted granted Critical
Publication of JP5311985B2 publication Critical patent/JP5311985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、蒸発または昇華した材料を被成膜物上に堆積させる蒸着装置であり、特に有機発光装置の製造に用いる装置に関する。   The present invention relates to a vapor deposition apparatus for depositing evaporated or sublimated material on a film formation target, and more particularly to an apparatus used for manufacturing an organic light emitting device.

近年、有機発光表示パネルの製造において、製造コストを低減するために基板の大判化が求められている。特許文献1や特許文献2には、大判の基板上に均一な膜を形成する手段として、放出部に複数の放出口を有する蒸発源を用いた蒸着装置が提案されている。   In recent years, in the manufacture of an organic light emitting display panel, it is required to increase the size of a substrate in order to reduce the manufacturing cost. Patent Documents 1 and 2 propose a vapor deposition apparatus using an evaporation source having a plurality of discharge ports in a discharge part as means for forming a uniform film on a large substrate.

有機発光表示パネルの製造には、メタルマスク(以下、単にマスクと記述する。)を基板の被成膜面に配置して成膜する方法(マスク成膜法)が広く採用されている。高解像度の有機発光表示パネルを作製するためには、高精細なパターンを有するマスクが用いられる。   In manufacturing an organic light emitting display panel, a method of forming a film by placing a metal mask (hereinafter simply referred to as a mask) on a film forming surface of a substrate (mask forming method) is widely adopted. In order to manufacture a high-resolution organic light-emitting display panel, a mask having a high-definition pattern is used.

このような高精細マスクを用いて蒸着装置で成膜する際、熱源である蒸発源からの輻射熱により、基板やマスクが膨張する。基板とマスクは互いに材質が異なる、つまり熱膨張係数が異なる場合が多いため夫々の膨張量が異なり、基板とマスクとの相対位置がずれてしまう。その結果、マスクによる蒸着パターンの精度が低下するという問題がある。   When a high-definition mask is used to form a film with an evaporation apparatus, the substrate and the mask expand due to radiant heat from an evaporation source that is a heat source. Since the substrate and the mask are made of different materials, that is, often have different thermal expansion coefficients, the respective expansion amounts are different, and the relative positions of the substrate and the mask are shifted. As a result, there exists a problem that the precision of the vapor deposition pattern by a mask falls.

特に、特許文献1や特許文献2に記載の蒸発源は、放出口を備えた放出部の面積が広いために輻射熱量が大きく、基板とマスクとの相対位置のずれも大きくなってしまう。
特開2007−332458号公報 特開2002−249868号公報
In particular, the evaporation sources described in Patent Document 1 and Patent Document 2 have a large amount of radiant heat due to the large area of the discharge portion provided with the discharge port, and the displacement of the relative position between the substrate and the mask also increases.
JP 2007-332458 A JP 2002-249868 A

そこで、蒸着源からの輻射熱が基板やマスクへ届かないように、放出口に対応する位置に開口を設けた遮熱部材を設置すれば、基板とマスクとの相対位置ずれを低減することができる。遮熱部材に水冷機構を設けることにより、より高い効果を得ることができる。   Therefore, if a heat shield member having an opening at a position corresponding to the emission port is installed so that the radiant heat from the vapor deposition source does not reach the substrate or the mask, the relative positional deviation between the substrate and the mask can be reduced. . By providing a water cooling mechanism on the heat shield member, a higher effect can be obtained.

ところが、蒸着源よりも遮熱部材の方が温度が低いため、熱膨張で放出口の位置が大きく変動するのに対して遮熱部材の開口の位置はほとんど変動しない。その結果、放出口が遮熱部材にぶつかったり、遮熱部材で遮られてしまったりする恐れが生じる。   However, since the temperature of the heat shield member is lower than that of the vapor deposition source, the position of the opening of the heat shield member hardly fluctuates while the position of the discharge port greatly fluctuates due to thermal expansion. As a result, there is a risk that the discharge port may hit the heat shield member or be blocked by the heat shield member.

放出口が遮熱部材にぶつかると、放出口の基板に対する角度がずれて膜厚分布に影響を及ぼしたり、接触部からの伝熱により放出口の温度が低下して材料が堆積し、放出口を塞いだりしてしまう。また、放出口が遮熱部材で遮られると、材料の蒸気が基板へ届かず、所望の膜厚を得ることができなくなる。   When the discharge port collides with the heat shield member, the angle of the discharge port with respect to the substrate shifts and affects the film thickness distribution, or the temperature of the discharge port decreases due to heat transfer from the contact portion, and the material accumulates. Will be blocked. Further, when the discharge port is blocked by the heat shielding member, the vapor of the material does not reach the substrate, and a desired film thickness cannot be obtained.

特に、放出部の面積が大きい場合、放出部が固定されている箇所から離れて配置された放出口ほど熱膨張による変動量は大きく、このような問題も起こりやすい。   In particular, when the area of the discharge part is large, the amount of variation due to thermal expansion is larger in the discharge port arranged away from the place where the discharge part is fixed, and such a problem is likely to occur.

本発明は上記点を鑑みてなされたものであり、膜厚の均一性を保ちつつ、蒸着源から基板およびマスクへの輻射熱の量を最小限に抑えることが可能な蒸着装置を提供する。特に、高解像かつ品質ばらつきの少ない有機発光装置の製造に適した蒸着装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides a vapor deposition apparatus capable of minimizing the amount of radiant heat from a vapor deposition source to a substrate and a mask while maintaining film thickness uniformity. In particular, an object of the present invention is to provide a vapor deposition apparatus suitable for manufacturing an organic light emitting device with high resolution and little quality variation.

成膜材料を収容する材料収容部と、前記材料収容部を加熱する手段と、加熱により生じた成膜材料の蒸気を放出する複数の放出口と、前記材料収容部から前記各々の放出口へ成膜材料の蒸気を輸送する輸送管と、前記各々の放出口に対応する位置に開口を有する遮熱部材と、を備える蒸着装置であって、前記遮熱部材の各々の開口範囲は、対応する放出口が熱膨張により水平方向に変動する範囲を含んでいることを特徴とする。   A material accommodating portion for accommodating the film forming material, a means for heating the material accommodating portion, a plurality of discharge ports for discharging vapor of the film forming material generated by heating, and the material accommodating portion to the respective discharge ports A vapor deposition apparatus comprising: a transport pipe for transporting a vapor of a film forming material; and a heat shield member having an opening at a position corresponding to each of the discharge ports, wherein each opening range of the heat shield member corresponds to The discharge port includes a range that varies in the horizontal direction due to thermal expansion.

さらに、前記装置を用いた有機発光装置の製造方法であって、基板と複数の開口を有するマスクとの相対位置を決める工程と、前記蒸着源を加熱して前記基板上に前記マスクの開口に応じたパターンの膜を成膜する工程と、を有することを特徴とする。   Furthermore, a method of manufacturing an organic light emitting device using the device, the step of determining a relative position between a substrate and a mask having a plurality of openings, and heating the vapor deposition source to the openings of the mask on the substrate And a step of forming a film having a corresponding pattern.

本発明によれば、蒸着源から基板への輻射熱の量を低減するとともに、放出口が熱膨張して遮熱部材との接触によりその近傍の温度が低下して材料が堆積するのを防ぐことができる。また、放出口が遮熱部材によって遮られるのを防止することができる。これにより、安定して均一な膜厚を形成することができる。さらに本発明に係る蒸着装置を用いれば、高画質で品質バラツキのない有機発光素子の製造が可能となる。   According to the present invention, the amount of radiant heat from the vapor deposition source to the substrate is reduced, and the discharge port is thermally expanded to prevent the material from being deposited due to the temperature in the vicinity thereof being lowered due to contact with the heat shield member. Can do. Further, it is possible to prevent the discharge port from being blocked by the heat blocking member. Thereby, a stable and uniform film thickness can be formed. Furthermore, if the vapor deposition apparatus which concerns on this invention is used, manufacture of the organic light emitting element without a quality variation with high image quality will be attained.

まず、添付の図面を参照して本発明にかかる蒸着装置全体について説明する。   First, the whole vapor deposition apparatus according to the present invention will be described with reference to the accompanying drawings.

図1は本発明にかかる蒸着装置の一実施形態を示す模式図である。   FIG. 1 is a schematic view showing an embodiment of a vapor deposition apparatus according to the present invention.

基板101とマスク102は、不図示のアライメント室で位置あわせをした後、基板保持機構103によって保持されて成膜真空チャンバー104内へ搬送される。あらかじめアライメント室内と成膜真空チャンバー104とは同等の圧力まで減圧しておけば、アライメント位置のずれを防ぎ、タクトタイムも低減できる。   The substrate 101 and the mask 102 are aligned in an alignment chamber (not shown), held by the substrate holding mechanism 103, and transferred into the film forming vacuum chamber 104. If the alignment chamber and the film-forming vacuum chamber 104 are previously depressurized to the same pressure, the alignment position can be prevented from shifting and the tact time can be reduced.

成膜真空チャンバー104内には、成膜材料105が収容された材料収容部106、成膜材料105の蒸気を放出部108へ輸送する輸送管107、蒸気を放出する放出口109が配置されている。これらをまとめて蒸着源と呼ぶ。   In the film-forming vacuum chamber 104, there are arranged a material container 106 containing the film-forming material 105, a transport pipe 107 for transporting the vapor of the film-forming material 105 to the discharge unit 108, and a discharge port 109 for discharging the vapor. Yes. These are collectively referred to as a deposition source.

材料収容部106は、温度制御可能な不図示の加熱手段で加熱され、所望の蒸着速度を得るために温度調整される。放出口109とマスク102との間であって、放出口109から基板101の被成膜面へ向かう蒸着材料の蒸気の流れを遮らない位置に、膜厚モニター110が配置されている。この膜厚モニター110により計測された膜厚をもとに算出された蒸着速度の値が前記加熱手段の温度制御部へフィードバックされ、蒸着速度を一定に保つように、材料収容部106の温度が調整される。   The material container 106 is heated by a heating means (not shown) capable of controlling the temperature, and the temperature is adjusted to obtain a desired vapor deposition rate. A film thickness monitor 110 is disposed between the discharge port 109 and the mask 102 at a position that does not block the vapor flow of the vapor deposition material from the discharge port 109 toward the film formation surface of the substrate 101. The value of the vapor deposition rate calculated based on the film thickness measured by the film thickness monitor 110 is fed back to the temperature control unit of the heating means, and the temperature of the material container 106 is set so as to keep the vapor deposition rate constant. Adjusted.

また、成膜材料105の蒸気が内部を流れる輸送管107、放出部108、放出口109には、それぞれ過熱手段と熱電対(いずれも不図示)が設けられている。これらの加熱手段と熱電対より、蒸気が流れる経路は、蒸着源内部で成膜材料105の蒸気が冷えて凝集もしくは固化しないよう成膜材料の蒸発温度近傍に制御される。   The transport pipe 107, the discharge portion 108, and the discharge port 109 through which the vapor of the film forming material 105 flows are provided with a superheating means and a thermocouple (both not shown). By these heating means and thermocouple, the path through which the vapor flows is controlled in the vicinity of the evaporation temperature of the film forming material so that the vapor of the film forming material 105 does not cool and aggregate or solidify inside the vapor deposition source.

蒸着源の加熱手段には、蒸着源の材質により抵抗加熱ヒーターや誘導加熱コイル等を用いることができる。   As a heating means for the vapor deposition source, a resistance heater, an induction heating coil, or the like can be used depending on the material of the vapor deposition source.

放出口109と基板101およびマスク102との間には、蒸着源から基板への輻射熱を遮る遮熱部材111が設けられる。遮熱部材111は、遮熱効果を高めるために輻射率が0.1以下である金属材料で形成するのが望ましい。例えば、アルミニウムは輻射率が小さく、低コストで加工性が高い点で、遮熱部材111に好適な材料の一つである。さらに、遮熱部材111から基板101への輻射熱量をより低減するために、遮熱部材111に冷却機構を設けても良い。遮熱部材を冷却しすぎると、放出口の温度が低下して放出口に成膜材料が堆積してしまう。従って、遮熱部材は室温程度に冷却するのが好ましく、冷却機構としては、遮熱部材内部を室温程度の水を流す水冷管を好適に用いることができる。   Between the discharge port 109, the substrate 101, and the mask 102, a heat shield member 111 that blocks radiant heat from the vapor deposition source to the substrate is provided. The heat shield member 111 is preferably formed of a metal material having an emissivity of 0.1 or less in order to enhance the heat shield effect. For example, aluminum is one of the materials suitable for the heat shield member 111 in terms of low emissivity, low cost, and high workability. Furthermore, in order to further reduce the amount of radiant heat from the heat shield member 111 to the substrate 101, a cooling mechanism may be provided in the heat shield member 111. If the heat shield member is cooled too much, the temperature of the discharge port is lowered and the film forming material is deposited on the discharge port. Therefore, it is preferable to cool the heat shield member to about room temperature, and a water cooling pipe that allows water at about room temperature to flow through the heat shield member can be suitably used as the cooling mechanism.

次に、本発明にかかる蒸着装置の放出口と遮熱部材の配置関係について、詳細に説明する。   Next, the positional relationship between the discharge port of the vapor deposition apparatus according to the present invention and the heat shield member will be described in detail.

遮熱部材111は、材料を有効に利用すると共に、被成膜基板面内で均一な膜厚が得られるように配置する。すなわち、すべての放出口109から被成膜基板へ向かう蒸気の流れを遮らないように配置し、放出口109から放出された材料が遮熱部材に付着したり、付着した材料によって放出口109が塞がれないように配置する。そのため、遮熱部材111から放出口109の先端が突き出すように配置するのが好ましい。   The heat shielding member 111 is disposed so as to effectively use the material and obtain a uniform film thickness within the surface of the deposition target substrate. That is, it is arranged so as not to block the flow of vapor from all of the discharge ports 109 to the deposition target substrate, and the material discharged from the discharge ports 109 adheres to the heat shield member, or the discharge port 109 is caused by the adhered material. Arrange them so that they are not blocked. For this reason, it is preferable to dispose the tip of the discharge port 109 so as to protrude from the heat shield member 111.

遮熱部材111に設ける各開口112は、それぞれに対応する放出口109が熱膨張により水平方向に変動する範囲を含むように設定する。遮熱部材の材質、蒸着源の材質、それぞれの部材が達する温度等から、熱膨張により遮熱部材の各開口が変動する範囲、各放出口が変動する範囲を算出する。そして、遮熱部材の各開口範囲を、対応する放出口が水平方向に変動する範囲を含むように設定する。   Each opening 112 provided in the heat shield member 111 is set so as to include a range in which the corresponding discharge port 109 varies in the horizontal direction due to thermal expansion. From the material of the heat shield member, the material of the vapor deposition source, the temperature reached by each member, the range in which each opening of the heat shield member varies due to thermal expansion, and the range in which each discharge port varies. Then, each opening range of the heat shield member is set so as to include a range in which the corresponding discharge port varies in the horizontal direction.

このとき、余裕を見て遮熱部材111の開口範囲を大きく設定しすぎると、遮熱部材111が輻射熱を遮熱する効果が低下してしまう。そこで、放出口が水平方向に変動する範囲と開口範囲との差をできるだけ小さく設定するのが好ましいが、装置製作時の誤差や設計誤差、配管の歪みによる放出部全体の傾き等が発生しても対応できるようにしておく必要がある。従って、遮熱部材に設ける開口範囲は、放出口が変動する範囲に対して1〜5mmの余裕を設けておくのが好ましい。   At this time, if the opening range of the heat shield member 111 is set too large with an allowance, the effect of the heat shield member 111 blocking the radiant heat will be reduced. Therefore, it is preferable to set the difference between the range in which the discharge port fluctuates in the horizontal direction and the opening range as small as possible. However, errors in manufacturing the device, design errors, inclination of the entire discharge part due to piping distortion, etc. may occur. It is necessary to be able to cope with. Therefore, the opening range provided in the heat shield member is preferably provided with a margin of 1 to 5 mm with respect to the range in which the discharge port varies.

続いて、本発明の放出口109と遮熱部材111の配置について、具体例を挙げて説明する。   Next, the arrangement of the discharge port 109 and the heat shield member 111 according to the present invention will be described with specific examples.

図2は放出口109を放出部108の長尺方向に直線的に配置した蒸着源の例を示す概略図である。放出部108は中心で輸送管107に固定されている。   FIG. 2 is a schematic view showing an example of a vapor deposition source in which the discharge port 109 is linearly arranged in the longitudinal direction of the discharge unit 108. The discharge part 108 is fixed to the transport pipe 107 at the center.

放出口109は、基板上の膜厚分布が計算上±3%以下となるよう、放出部の中心を対称に6箇所に設けられている。   The discharge ports 109 are provided at six locations symmetrically about the center of the discharge portion so that the film thickness distribution on the substrate is ± 3% or less in the calculation.

遮熱部材111は、遮熱部材に設けられた開口内に放出口109が一つずつ含まれるように配置している。   The heat shield member 111 is disposed so that one opening 109 is included in each opening provided in the heat shield member.

放出口109の先端は、遮熱部材によって蒸気の流れが遮られることのないよう、遮熱部材111から突き出す様に配置されている。   The tip of the discharge port 109 is disposed so as to protrude from the heat shield member 111 so that the flow of steam is not blocked by the heat shield member.

遮熱部材111の開口112a、112b、112cは、放出口109が熱膨張によって水平方向に変動する範囲を含むように設定する。放出部が輸送管に固定されている放出部中心に最も近い2つの放出口109aは、熱による変動量が小さいため、109aに対応する開口112aの形状は略円形となる。   The openings 112a, 112b, and 112c of the heat shield member 111 are set so as to include a range in which the discharge port 109 varies in the horizontal direction due to thermal expansion. Since the two discharge ports 109a closest to the center of the discharge part, where the discharge part is fixed to the transport pipe, have a small amount of fluctuation due to heat, the shape of the opening 112a corresponding to 109a is substantially circular.

開口112aの次に放出部中心に近い2つの放出口109bの熱による変動量は、放出部の長尺方向に大きくなるため、対応する開口112bの形状も放出部の長尺方向に長い略楕円形となる。同様に、放出部の中心から最も離れた2つの開口112cの形状も放出部の長尺方向に長い略楕円形となる。   Since the amount of fluctuation due to heat at the two discharge ports 109b closest to the center of the discharge part next to the opening 112a increases in the longitudinal direction of the discharge part, the shape of the corresponding opening 112b is also substantially elliptical long in the long direction of the discharge part. It becomes a shape. Similarly, the shape of the two openings 112c farthest from the center of the discharge portion is also a substantially oval shape that is long in the longitudinal direction of the discharge portion.

このとき、放出口の熱膨張による変動が放出部中心から離れる方向であることを考慮し、常温時において、放出口109bおよび109cを、対応する開口112bおよび112cの中心より放出部中心側にずらして配置するとよい。このようにすれば、放出口が水平方向に変動する範囲と開口範囲との差をよりさらに小さく設定することができ、遮熱板の遮熱効果も高まる。   At this time, considering that the variation due to the thermal expansion of the discharge port is away from the center of the discharge portion, the discharge ports 109b and 109c are shifted from the center of the corresponding openings 112b and 112c toward the discharge portion center side at room temperature. Should be placed. In this way, the difference between the range in which the discharge port fluctuates in the horizontal direction and the opening range can be set even smaller, and the heat shield effect of the heat shield plate is also increased.

図3は、放出口を平面上に2次元的に配置した蒸着源の例を示す概略図である。(a)は蒸着源の斜視図、(b)は基板側から見た平面図である。   FIG. 3 is a schematic view showing an example of a vapor deposition source in which discharge ports are two-dimensionally arranged on a plane. (A) is a perspective view of a vapor deposition source, (b) is the top view seen from the board | substrate side.

基板上の膜厚分布が計算上±3%以下となるよう、放出口109が放出部108の中心を対称に10箇所に設けられている。   The discharge ports 109 are provided at 10 positions symmetrically about the center of the discharge portion 108 so that the film thickness distribution on the substrate is ± 3% or less in the calculation.

放出部108は、中心で輸送管107に固定されているため、各放出口112は、熱膨張によって放出部中心から離れる方向に放射状に位置変動する。従って、各開口112は、図3(b)に示すように放出部108の中心とそれぞれの開口112の中心とを結ぶ線が長径と重なる略楕円形となる。放出部の中心から離れて位置する放出口ほど熱による位置変動が大きいため、楕円形の長径は大きくなる。   Since the discharge part 108 is fixed to the transport pipe 107 at the center, the position of each discharge port 112 varies radially in a direction away from the center of the discharge part due to thermal expansion. Accordingly, each opening 112 has a substantially oval shape in which a line connecting the center of the emitting portion 108 and the center of each opening 112 overlaps the major axis as shown in FIG. Since the position variation due to heat is larger in the discharge port located away from the center of the discharge portion, the major axis of the ellipse becomes large.

また、図2の場合同様、放出口が熱膨張により変動する方向を考慮し、常温時において、放出口を、対応する開口の中心よりも放出部中心側にずらして配置すると、放出口が変動する範囲と開口範囲との差をより小さく設定することができる。   Similarly to the case of FIG. 2, considering the direction in which the discharge port fluctuates due to thermal expansion, the discharge port changes when the discharge port is shifted from the center of the corresponding opening toward the center of the discharge portion at room temperature. The difference between the opening range and the opening range can be set smaller.

以上、放出口の熱膨張による変動は、放出部中心で輸送管に固定されていることを前提として説明した。しかし、放出部中心以外の箇所で固定されている場合は、その固定箇所を基準として熱膨張による変動を考慮する。その場合も、実施例と同様に開口は放出部の固定箇所から近いほど小さく、離れるほど大きくすることにより、均一な膜厚を得ることができる。さらに基板、マスクの温度上昇を軽減し、高精度のパターニングが可能となる。   As described above, the variation due to the thermal expansion of the discharge port has been described on the assumption that the discharge port is fixed to the transport pipe at the center. However, when it is fixed at a location other than the center of the discharge part, the variation due to thermal expansion is taken into account with the fixed location as a reference. In this case as well, a uniform film thickness can be obtained by making the opening smaller as it is closer to the fixed portion of the emission part and larger as it is farther away as in the embodiment. Further, the temperature rise of the substrate and mask is reduced, and high-precision patterning is possible.

続いて、成膜方法について説明する。ここでは、図3に示した蒸着源の場合について説明する。全体の概略は図1と同様の構成を採用することができるため、図1を用いる。   Subsequently, a film forming method will be described. Here, the case of the vapor deposition source shown in FIG. 3 will be described. Since the entire configuration can adopt the same configuration as that in FIG. 1, FIG. 1 is used.

基板101は、不図示のアライメント室にてマスク102との相対位置を合わせた後、基板保持機構103によって保持され、成膜真空チャンバー104内に搬入される。アライメント室および成膜真空チャンバー104は、不図示の排気系により1×10−4〜1×10−5Pa程度に排気されている。 After the substrate 101 is aligned with the mask 102 in an alignment chamber (not shown), the substrate 101 is held by the substrate holding mechanism 103 and carried into the film formation vacuum chamber 104. The alignment chamber and the film formation vacuum chamber 104 are evacuated to about 1 × 10 −4 to 1 × 10 −5 Pa by an unillustrated exhaust system.

成膜真空チャンバー104内では、放出口109と基板101の被成膜面とが対向するように配置する。不図示の熱源により、材料収容部106内部で加熱され蒸気となった成膜材料は、輸送管107を経由して放出口109から放出され、マスク102の開口を通って基板101に堆積する。これにより、基板101にはマスク102の開口パターンに応じたパターンの膜を形成することができる。   In the film formation vacuum chamber 104, the discharge port 109 and the film formation surface of the substrate 101 are arranged to face each other. The film forming material heated to vapor inside the material container 106 by a heat source (not shown) is discharged from the discharge port 109 through the transport pipe 107 and is deposited on the substrate 101 through the opening of the mask 102. Thereby, a film having a pattern corresponding to the opening pattern of the mask 102 can be formed on the substrate 101.

放出口109とマスク102との間には、各放出口109から基板101の被成膜面へ向かう蒸気の流れを遮らない位置に配設された膜厚モニターにより、蒸着速度が算出される。蒸着速度は材料収容部106を加熱する不図示の加熱手段の温度制御部へフィードバックされ、加熱温度が調整される。これにより、蒸着速度をほぼ一定に保つことができる。   The deposition rate is calculated by a film thickness monitor disposed between the discharge port 109 and the mask 102 at a position that does not block the flow of vapor from each discharge port 109 toward the film formation surface of the substrate 101. The deposition rate is fed back to a temperature control unit of a heating means (not shown) that heats the material container 106, and the heating temperature is adjusted. Thereby, a vapor deposition rate can be kept substantially constant.

以下、有機発光表示パネルを例にとり、本発明にかかる蒸着装置を用いた製造方法の実施例を説明するが、本発明にかかる蒸着装置は本実施例に限られるものではなく、蒸着一般に広く用いることができる。   Hereinafter, an example of a manufacturing method using the vapor deposition apparatus according to the present invention will be described by taking an organic light emitting display panel as an example. However, the vapor deposition apparatus according to the present invention is not limited to this example, and is widely used in general vapor deposition. be able to.

(実施例)
図1に示す蒸着装置に図2に示す蒸着源を配置して有機発光表示パネルを作製した。有機化合物としてAlq3を用い、サイズが400mm×500mmの無アルカリガラス基板上に、発光領域サイズが30μm×120μm、表示領域が350mm×450mmの有機発光表示パネルを作製した。
(Example)
An organic light emitting display panel was manufactured by arranging the vapor deposition source shown in FIG. 2 in the vapor deposition apparatus shown in FIG. An organic light-emitting display panel having a light-emitting area size of 30 μm × 120 μm and a display area of 350 mm × 450 mm was prepared on a non-alkali glass substrate having a size of 400 mm × 500 mm using Alq3 as an organic compound.

本実施例では、Alq3を蒸着速度10[Å/s]、膜厚1000[Å]を目標にして成膜を行うため、蒸着源は330〜360℃に加熱する必要がある。そこで、蒸着源の到達温度を360℃に設定して遮熱部材の開口範囲を設定した。なお、蒸着源および輸送管は、ステンレスで作製し、遮熱部材111には水冷管を配置し、約26℃の水を流した。   In the present embodiment, the deposition source needs to be heated to 330 to 360 ° C. in order to deposit Alq3 with a deposition rate of 10 [Å / s] and a film thickness of 1000 [Å]. Therefore, the temperature reached by the vapor deposition source was set to 360 ° C. to set the opening range of the heat shield member. The vapor deposition source and the transport pipe were made of stainless steel, and a water-cooled pipe was placed on the heat shield member 111, and water at about 26 ° C. was allowed to flow.

放出口109は、基板上の膜厚分布が計算上±3%以下になる位置に6本、輸送管107に固定されている放出部の中心で対称となるように配置した。   Six discharge ports 109 are arranged at positions where the film thickness distribution on the substrate is ± 3% or less in the calculation so as to be symmetric with respect to the center of the discharge portion fixed to the transport pipe 107.

遮熱部材111は、放出口109の先端が遮熱部材から2mm突き出す位置に配置した。また、遮熱部材111には、放出口109が熱膨張によって水平方向に変動する範囲を含むように開口112a、112b、112cを設けた。   The heat shield member 111 was disposed at a position where the tip of the discharge port 109 protrudes 2 mm from the heat shield member. Further, the heat shield member 111 is provided with openings 112a, 112b, and 112c so as to include a range in which the discharge port 109 fluctuates in the horizontal direction due to thermal expansion.

輸送管107に最も近い2つの開口112aの形状は略円形であり、その径は放出口109の外径+2mmとした。開口112aの次に輸送管107に近い2つの開口112bの形状は略楕円形とし、長径が放出口109が配置されるラインに平行となるように配置した。開口112bの短径は放出口の外径+2mm、長径は外径+4mmとした。放出口109の中心は、開口112の中心から長径に沿っての輸送管側へ1mmずらして配置した。   The two openings 112a closest to the transport pipe 107 have a substantially circular shape, and the diameter thereof is the outer diameter of the discharge port 109 + 2 mm. The two openings 112b close to the transport pipe 107 next to the opening 112a have a substantially elliptical shape and are arranged so that the major axis is parallel to the line where the discharge port 109 is arranged. The short diameter of the opening 112b was the outer diameter of the discharge port +2 mm, and the long diameter was the outer diameter +4 mm. The center of the discharge port 109 was shifted from the center of the opening 112 by 1 mm toward the transport pipe along the major axis.

輸送管107から最も離れた2つの開口112cの形状も略楕円形とし、放出口109が配置されるラインに対して短径が垂直、長径が平行となるように配置した。短径は放出口の外径+2mmとし、長径は外径+5mmとした。放出口109の中心も、開口112の真ん中から長軸に沿って1.5[mm]ずらして配置した。   The two openings 112c farthest from the transport pipe 107 are also substantially elliptical in shape so that the minor axis is perpendicular to the line where the discharge port 109 is arranged and the major axis is parallel. The short diameter was the outer diameter of the discharge port + 2 mm, and the long diameter was the outer diameter + 5 mm. The center of the discharge port 109 is also shifted from the center of the opening 112 by 1.5 [mm] along the long axis.

まず、公知の手法を用いてガラス基板402上に、薄膜トランジスタ(TFT)からなる回路401と電極配線とをマトリクス状に形成した。回路401や配線の凹凸を緩和するために、アクリル樹脂をスピンコートし、ガラス基板402の回路401形成面全体に平坦化層403を形成した。平坦化層403には、回路401と後に形成する下部電極404とを電気的に接続するためのコンタクトホール405を複数形成した。   First, a circuit 401 made of a thin film transistor (TFT) and electrode wirings were formed in a matrix on a glass substrate 402 using a known method. In order to alleviate the unevenness of the circuit 401 and the wiring, an acrylic resin was spin-coated to form a planarization layer 403 over the entire surface of the glass substrate 402 where the circuit 401 was formed. A plurality of contact holes 405 for electrically connecting the circuit 401 and a lower electrode 404 to be formed later are formed in the planarization layer 403.

次に、AlとITOとの積層からなる下部電極404を形成した。まず、Alをスパッタリング法にて70nm堆積した後、フォトリソにてパターニングした。さらにITOをスパッタリング法にて70nm堆積し、フォトリソにてパターニングした。図4に示すように、下部電極404と回路401はコンタクトホール405を通して電気的に接続された。   Next, a lower electrode 404 made of a laminate of Al and ITO was formed. First, Al was deposited by sputtering to a thickness of 70 nm, and then patterned by photolithography. Further, ITO was deposited by sputtering to a thickness of 70 nm and patterned by photolithography. As shown in FIG. 4, the lower electrode 404 and the circuit 401 are electrically connected through the contact hole 405.

続いて、下部電極404が設けられた面にアクリル樹脂をスピンコートして約2μm厚のアクリル膜を形成した後、フォトリソにて発光領域となる30μm×120μmサイズの開口を複数設けた。基板上に残るアクリル膜はバンク406と呼ばれ、コンタクトホール405の孔と下部電極404の端部を覆い、後に積層する膜が段差部で不連続となるのを防止する。以下、バンクまでが設けられたガラス基板402を、基板101と記述する。   Subsequently, an acrylic resin was spin-coated on the surface provided with the lower electrode 404 to form an acrylic film having a thickness of about 2 μm, and a plurality of 30 μm × 120 μm size openings serving as light emitting regions were formed by photolithography. The acrylic film remaining on the substrate is called a bank 406, covers the hole of the contact hole 405 and the end of the lower electrode 404, and prevents a film to be stacked later from becoming discontinuous at the stepped portion. Hereinafter, the glass substrate 402 provided up to the bank is referred to as a substrate 101.

次に、アライメント室内で発光領域に対応する開口が複数設けられたマスク102と基板101のバンクの開口とを位置合わせした後、基板保持機構にてマスク102と基板101とを保持した。   Next, after aligning the mask 102 provided with a plurality of openings corresponding to the light emitting regions in the alignment chamber and the opening of the bank of the substrate 101, the mask 102 and the substrate 101 were held by the substrate holding mechanism.

基板保持機能にて保持されたマスク102と基板101とを、図2の蒸着装置の成膜真空チャンバー104内へ搬送した。成膜真空チャンバー内では、ライン状に配置された放出口109との距離が300[mm]となるように水平に保ちながら一定速度4[mm/sec]で搬送した。基板の搬送方向は、図2の蒸着源の長尺と垂直な方向である。   The mask 102 and the substrate 101 held by the substrate holding function were transferred into the film forming vacuum chamber 104 of the vapor deposition apparatus of FIG. In the film forming vacuum chamber, the film was transported at a constant speed of 4 [mm / sec] while being kept horizontal so that the distance from the discharge port 109 arranged in a line was 300 [mm]. The conveyance direction of the substrate is a direction perpendicular to the length of the vapor deposition source in FIG.

蒸着速度10[Å/s]、膜厚1000[Å]を目標としてAlq3の成膜を行った。蒸着速度は膜厚モニター110によってモニタリングし、材料収容部106を加熱する不図示のヒーター制御部にフィードバックし、ヒーターの温度制御を行った。   The Alq3 film was formed with a target of a deposition rate of 10 [s / s] and a film thickness of 1000 [Å]. The deposition rate was monitored by the film thickness monitor 110 and fed back to a heater control unit (not shown) that heats the material container 106 to control the heater temperature.

このとき、材料収容部105の温度は約340℃でほぼ一定となった。また、輸送流路107から放出口109までは、不図示のヒーターと熱電対により、ほぼ330℃で一定となるように制御した。   At this time, the temperature of the material accommodating part 105 became substantially constant at about 340 degreeC. Further, the transport channel 107 to the discharge port 109 were controlled to be constant at about 330 ° C. by a heater and a thermocouple (not shown).

最後に、ITOをスパッタリング法により30nm堆積して上部電極とし、有機発光表示パネルを形成した。   Finally, ITO was deposited by sputtering to a thickness of 30 nm to form an upper electrode, thereby forming an organic light emitting display panel.

前述のように、有機発光表示パネルの形成に本発明にかかる蒸着装置を用いたところ、放出口と遮熱部材が接触することなく、蒸着源からの輻射熱を遮熱部材で遮断して蒸着を終えることができた。その結果、有機発光表示パネルは、発光層の膜厚分布が約±2.0%以内で、輝度のバラツキや画素欠陥の少ない有機発光表示パネルを作成することができた。   As described above, when the vapor deposition apparatus according to the present invention is used to form the organic light emitting display panel, the radiation heat from the vapor deposition source is blocked by the heat shield member without contacting the discharge port and the heat shield member. I was able to finish. As a result, the organic light-emitting display panel was able to produce an organic light-emitting display panel having a light-emitting layer thickness distribution of about ± 2.0% and less variation in luminance and pixel defects.

本発明にかかる蒸着装置の概略構成の一例を示す図。The figure which shows an example of schematic structure of the vapor deposition apparatus concerning this invention. 本発明にかかる装置装置に用いる蒸着源の一構成例を示す概略図。Schematic which shows one structural example of the vapor deposition source used for the apparatus apparatus concerning this invention. 本発明にかかる装置装置に用いる蒸着源の一構成例を示す概略図。Schematic which shows one structural example of the vapor deposition source used for the apparatus apparatus concerning this invention. 本発明にかかる蒸着装置を用いて製造する有機発光表示パネルの一例を示す概略断面図。The schematic sectional drawing which shows an example of the organic light emission display panel manufactured using the vapor deposition apparatus concerning this invention.

符号の説明Explanation of symbols

101 基板
102 マスク
103 基板保持機構
104 成膜真空チャンバー
105 成膜材料
106 材料収容部
107 輸送管
108 放出部
109 放出口
110 膜厚モニター
111 遮熱部材
112 開口
401 回路
402 ガラス基板
403 平坦化層
404 下部電極
405 コンタクトホール
406 バンク
407 発光層
408 電子輸送層
409 電子注入層
410 上部電極
DESCRIPTION OF SYMBOLS 101 Substrate 102 Mask 103 Substrate holding mechanism 104 Film-forming vacuum chamber 105 Film-forming material 106 Material housing part 107 Transport pipe 108 Release part 109 Release port 110 Film thickness monitor 111 Heat shield member 112 Opening 401 Circuit 402 Glass substrate 403 Flattening layer 404 Lower electrode 405 Contact hole 406 Bank 407 Light emitting layer 408 Electron transport layer 409 Electron injection layer 410 Upper electrode

Claims (5)

成膜材料を収容する材料収容部と、前記材料収容部を加熱する手段と、加熱により生じた成膜材料の蒸気を放出する複数の放出口を有する放出部と、前記放出部に固定部にて固定され、前記材料収容部から前記各々の放出口へ成膜材料の蒸気を輸送する輸送管と、前記各々の放出口に対応する位置に開口を有する遮熱部材と、を備える蒸着装置であって、
前記遮熱部材の各々の開口範囲が、対応する放出口が到達する温度にて熱膨張により水平方向に変動する範囲を含んでおり、前記固定部から離れるほど大きいことを特徴とする蒸着装置。
A material accommodating portion for accommodating a film forming material, a means for heating the material accommodating portion , a discharge portion having a plurality of discharge ports for discharging vapor of the film forming material generated by heating , and a fixing portion on the discharge portion A vapor deposition apparatus comprising: a transport pipe that transports vapor of the film forming material from the material accommodating portion to each of the discharge ports; and a heat shield member that has an opening at a position corresponding to each of the discharge ports. There,
The vapor deposition apparatus characterized in that each opening range of the heat shield member includes a range that fluctuates in a horizontal direction due to thermal expansion at a temperature reached by a corresponding discharge port, and is larger as the distance from the fixing portion increases .
前記開口範囲の前記開口の中心と前記固定部とを結ぶ線に沿った長さが、開口の中心と前記固定部とが離れるほど長くなることを特徴とする請求項1に記載の蒸着装置。The vapor deposition apparatus according to claim 1, wherein a length along a line connecting the center of the opening and the fixing portion in the opening range becomes longer as the center of the opening and the fixing portion are separated from each other. 前記放出口が、常温時において、対応する開口の開口範囲の前記固定部寄りに配置されていることを特徴とする請求項1または2に記載の蒸着装置。The vapor deposition apparatus according to claim 1, wherein the discharge port is disposed near the fixed portion of the opening range of the corresponding opening at normal temperature. 前記放出口の先端が、前記遮熱部材から突き出すように設けられていることを特徴とする請求項1乃至3のいずれか一項に記載の蒸着装置。The vapor deposition apparatus according to any one of claims 1 to 3, wherein a tip of the discharge port is provided so as to protrude from the heat shield member. 請求項1乃至4のいずれか1項に記載の装置を用いた有機発光装置の製造方法であって、基板と複数の開口を有するマスクとの相対位置を決める工程と、前記材料収容部を加熱して前記基板上に前記マスクの開口に応じたパターンの膜を成膜する工程と、を有することを特徴とする有機発光装置の製造方法。 A method for manufacturing an organic light emitting device using the device according to claim 1, wherein a relative position between a substrate and a mask having a plurality of openings is determined, and the material container is heated. Forming a film having a pattern corresponding to the opening of the mask on the substrate.
JP2008301211A 2008-11-26 2008-11-26 Vapor deposition apparatus and organic light emitting device manufacturing method Expired - Fee Related JP5311985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301211A JP5311985B2 (en) 2008-11-26 2008-11-26 Vapor deposition apparatus and organic light emitting device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301211A JP5311985B2 (en) 2008-11-26 2008-11-26 Vapor deposition apparatus and organic light emitting device manufacturing method

Publications (2)

Publication Number Publication Date
JP2010126753A JP2010126753A (en) 2010-06-10
JP5311985B2 true JP5311985B2 (en) 2013-10-09

Family

ID=42327348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301211A Expired - Fee Related JP5311985B2 (en) 2008-11-26 2008-11-26 Vapor deposition apparatus and organic light emitting device manufacturing method

Country Status (1)

Country Link
JP (1) JP5311985B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026009A (en) * 2010-07-26 2012-02-09 Ulvac Japan Ltd Thin film deposition device
JP2014005478A (en) * 2010-10-08 2014-01-16 Kaneka Corp Vapor deposition apparatus
KR101599505B1 (en) * 2014-01-07 2016-03-03 주식회사 선익시스템 Evaporation source for deposition apparatus
JP7141793B2 (en) * 2018-03-23 2022-09-26 株式会社アルバック Evaporation source for vacuum deposition apparatus and vacuum deposition method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705237B2 (en) * 2001-09-05 2005-10-12 ソニー株式会社 Display device manufacturing system and method using organic electroluminescent element
JP4380319B2 (en) * 2002-12-19 2009-12-09 ソニー株式会社 Vapor deposition apparatus and organic electroluminescence element manufacturing method
JP4458932B2 (en) * 2004-05-26 2010-04-28 日立造船株式会社 Vapor deposition equipment
JP4557170B2 (en) * 2004-11-26 2010-10-06 三星モバイルディスプレイ株式會社 Evaporation source
JP2008108480A (en) * 2006-10-24 2008-05-08 Sony Corp Holder of boat for vapor deposition, and vapor deposition device

Also Published As

Publication number Publication date
JP2010126753A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
US7964037B2 (en) Deposition apparatus
KR101359066B1 (en) Vacuum vapor deposition method
US9873937B2 (en) Thin film deposition apparatus
US20060162662A1 (en) Vacuum vapor deposition apparatus
US20080173241A1 (en) Vapor deposition sources and methods
KR101084333B1 (en) Deposition source for manufacturing organic electroluminescence display panel and deposition apparatus having the same
JP2017509796A5 (en)
JP5311985B2 (en) Vapor deposition apparatus and organic light emitting device manufacturing method
US20100154710A1 (en) In-vacuum deposition of organic materials
JP2009228091A (en) Vapor deposition apparatus
TW201829808A (en) Measurement assembly for measuring a deposition rate, evaporation source, deposition apparatus, and method therefor
JP4685404B2 (en) Organic electroluminescent element vertical vapor deposition method, apparatus thereof, and vapor deposition source used in organic electroluminescent element vertical vapor deposition apparatus
JP2011162846A (en) Vacuum evaporation source
JP6640879B2 (en) Measuring assembly and method for measuring deposition rate
KR101456252B1 (en) A Thin Film Deposition Apparatus
JP2004158337A (en) Vapor deposition device
JP2005325425A (en) Organic vapor deposition method and organic vapor deposition system
JP5796168B2 (en) In-line type vapor deposition equipment
JP5127372B2 (en) Vapor deposition equipment
JP2017025355A (en) Vapor deposition apparatus, and vapor deposition method
JP2009057614A5 (en)
KR102616039B1 (en) Thin film deposition apparatus for forming patterned organic thin film
JP2013237915A (en) Evaporation source and vacuum vapor deposition apparatus
JP2014107037A (en) Vapor deposition device and evaporation source for use therein
JP2020193360A (en) Evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

LAPS Cancellation because of no payment of annual fees