JP4458932B2 - Vapor deposition equipment - Google Patents

Vapor deposition equipment Download PDF

Info

Publication number
JP4458932B2
JP4458932B2 JP2004155383A JP2004155383A JP4458932B2 JP 4458932 B2 JP4458932 B2 JP 4458932B2 JP 2004155383 A JP2004155383 A JP 2004155383A JP 2004155383 A JP2004155383 A JP 2004155383A JP 4458932 B2 JP4458932 B2 JP 4458932B2
Authority
JP
Japan
Prior art keywords
discharge
vapor deposition
evaporation
container
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004155383A
Other languages
Japanese (ja)
Other versions
JP2005336527A (en
Inventor
鉄也 井上
博之 大工
和人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2004155383A priority Critical patent/JP4458932B2/en
Publication of JP2005336527A publication Critical patent/JP2005336527A/en
Application granted granted Critical
Publication of JP4458932B2 publication Critical patent/JP4458932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機ELディスプレイなどの画像表示部を製造するための蒸着装置に関するものである。   The present invention relates to a vapor deposition apparatus for manufacturing an image display unit such as an organic EL display.

近年、ディスプレイの薄型化が進み、この種のディスプレイとしては、液晶ディスプレイの実用化が非常に進んでいる。
この液晶画面については、バックライトを必要とするもので、視野範囲、消費電力などの点で難点があり、最近、自発光性の有機EL方式のディスプレイが注目されている。
In recent years, thinning of displays has progressed, and as this type of display, liquid crystal displays have been put to practical use.
This liquid crystal screen requires a backlight and has difficulties in view range, power consumption, etc. Recently, a self-luminous organic EL display has been attracting attention.

ところで、有機ELディスプレイの基本構造は、ガラス基板上に、陽極(透明電極)を配置し、この上に、ホール輸送層および発光層が順番に配置され、さらに陰極が配置されたものであり、少なくとも、上記発光層については、有機材料が蒸着により形成されている。   By the way, the basic structure of the organic EL display is an arrangement in which an anode (transparent electrode) is arranged on a glass substrate, a hole transport layer and a light emitting layer are arranged in this order, and a cathode is further arranged. At least for the light emitting layer, an organic material is formed by vapor deposition.

そして、基板上に、蒸着により薄膜を形成する場合、真空容器内に有機材料の蒸発源を配置しておき、真空状態で蒸発源を加熱し、その蒸気を同じく真空容器内に配置された基板の表面に付着させることにより薄膜が形成されていた。   When a thin film is formed on the substrate by vapor deposition, an organic material evaporation source is placed in the vacuum vessel, the evaporation source is heated in a vacuum state, and the vapor is also placed in the vacuum vessel. A thin film was formed by adhering to the surface.

ところで、有機材料を蒸着させる際に、主成分に微量成分を混合させる場合があり、2つの異なる材料を異なる割合で且つ均一にガラス基板上に蒸着させる必要がある。
このような異種材料を蒸着させる装置、方法等としては、下記に示すようなものがある。
By the way, when vapor-depositing an organic material, a trace component may be mixed with a main component, and it is necessary to vapor-deposit two different materials on a glass substrate in a different ratio and uniformly.
Examples of apparatuses and methods for depositing such different materials include the following.

すなわち、特許文献1に示すように、真空チャンバー内の被蒸着部材に対向する下部位置に2個のセルを配置して、それぞれの放出孔から蒸発材料を放出するようにしたものがある。   That is, as shown in Patent Document 1, there is one in which two cells are arranged in a lower position facing a member to be vapor-deposited in a vacuum chamber and the evaporation material is discharged from each discharge hole.

また、特許文献2に示すように、別個に設けられた蒸発源で発生した蒸発材料を、バルブおよび移送部を介してそれぞれ放出部に導き、多数の放出孔から被成膜基板に蒸着させるようにしたものがある。   Further, as shown in Patent Document 2, the evaporation material generated in a separately provided evaporation source is led to the discharge part through a valve and a transfer part, and is vapor-deposited on the deposition target substrate from a number of discharge holes. There is something that was made.

さらに、特許文献3に示すように、別個に設けられた坩堝にて蒸発された蒸発材料をそれぞれ流入口から混合室に導き、ここで混合された蒸発材料を放出孔を介して成膜対象物に蒸着させるようにしたものがある。
特開2003−297565 特開2002−30418 特開2003−155555
Furthermore, as shown in Patent Document 3, evaporating materials evaporated in crucibles provided separately are led from the inflow port to the mixing chamber, and the evaporating materials mixed here are formed into the film formation objects through the discharge holes. There is something that was made to vapor-deposit.
JP 2003-297565 A JP2002-30418 JP2003-155555A

ところで、被蒸着部材に堆積した蒸発材料の膜厚については、所謂、コサイン則による分布を示すことが知られているが、特許文献1に示すように、異種材料を別のセル室に入れて同時に蒸着させようとする場合、その放出孔の位置が離れているため、それぞれのコサイン則による膜厚分布の位置が異なる。したがって、被蒸着部材の表面に堆積した異種材料の成分量比が一定にならないため、品質が一定であるとはいえない。   By the way, it is known that the film thickness of the evaporation material deposited on the member to be vapor-deposited shows a distribution according to a so-called cosine law. However, as shown in Patent Document 1, a different material is put in another cell chamber. When vapor deposition is attempted at the same time, the positions of the discharge holes are separated from each other, and therefore the film thickness distribution positions according to the respective cosine rules are different. Therefore, since the component amount ratio of different kinds of materials deposited on the surface of the member to be deposited is not constant, it cannot be said that the quality is constant.

さらに、放出孔については、被蒸着部材との距離にもよるが、蒸発材料の飛来方向が同じと見なせない場合があり、マスクを用いて被蒸着部材の表面にパターンを形成する場合については、マスクの厚み等の影響を受けて同じパターン上でも、マスクに近い程、その成分量比にムラが出る。   Furthermore, for the discharge hole, although depending on the distance to the vapor deposition member, there are cases where the direction of the evaporation material cannot be regarded as the same, and when a pattern is formed on the surface of the vapor deposition member using a mask, Even if the same pattern is affected by the thickness of the mask, the component amount ratio becomes more uneven as it is closer to the mask.

詳しく説明すると、パターンを回路のような細い配線とした場合、配線幅方向の両側のマスク部分のうち、放出孔に近い部分についてはマスクの陰になるため蒸着厚さが不十分となる。したがって、異なる材料の放出孔同士の位置が離れていれば、パターンをなす配線上の幅方向においても異種材料の成分量比が顕著に異なってしまう。   More specifically, when the pattern is a thin wiring such as a circuit, among the mask portions on both sides in the wiring width direction, the portion close to the discharge hole is behind the mask, so the deposition thickness becomes insufficient. Therefore, if the positions of the discharge holes of different materials are separated from each other, the component amount ratios of the different materials are significantly different in the width direction on the wiring forming the pattern.

このことを改善する、つまり成分量比を一定にさせ、しかも膜厚分布をより一定となるようにするには、被蒸着部材から十分な距離を設ける必要があるが、そうすると蒸着容器の容積が大きくなり減圧するための時間を要するばかりか、被蒸着部材以外への表面にも多くの蒸発材料が付着することになる。すなわち、蒸着材料の利用効率が低下し、これは所定の膜厚を得るまでに長い時間を要することになる。整理すると、成分量比と膜厚分布の均一性を向上させる代わりに、蒸着させるための準備時間(減圧時間)、材料利用効率および成膜速度を犠牲にすることになる。   In order to improve this, that is, to keep the component ratio constant and to make the film thickness distribution more constant, it is necessary to provide a sufficient distance from the member to be deposited. Not only does it take a long time to increase the pressure, but a lot of evaporation material adheres to the surface other than the member to be deposited. That is, the utilization efficiency of the vapor deposition material is lowered, and this takes a long time to obtain a predetermined film thickness. In summary, instead of improving the uniformity of the component amount ratio and the film thickness distribution, the preparation time (decompression time) for vapor deposition, the material utilization efficiency, and the film formation speed are sacrificed.

これらの点からすると、異種材料の放出孔同士が大きく離れた位置にある特許文献1に示すようなものよりは、特許文献2および特許文献3に示すように、同一の位置から放出されるものの方が望ましい。   In view of these points, it is possible to discharge from the same position as shown in Patent Document 2 and Patent Document 3, rather than the one shown in Patent Document 1 where the discharge holes of different materials are located far away from each other. Is preferable.

特に、特許文献2に示すように、混合後の蒸発材料を、互いに距離を離した多くの放出孔から放出させることで、被蒸着部材と放出孔との間の距離を短くすることができるので、特許文献1で犠牲にした点を改善することができる。   In particular, as shown in Patent Document 2, the distance between the vapor deposition member and the discharge hole can be shortened by discharging the mixed evaporation material from many discharge holes spaced apart from each other. The point sacrificed in Patent Document 1 can be improved.

しかしながら、特許文献2および特許文献3に示すように、異なる蒸発材料が混合された後で放出される場合は、温度差の異なる異種材料を取り扱うことが困難になる。
これは、有機ELディスプレイの表示部を製造する場合に用いられる有機材料のような安定性の低い材料について言えることであるが、異種材料間で蒸発温度が異なるとともに分解してその性能を失う分解温度(蒸発温度より高い)も異なることに起因する。それぞれの坩堝での加熱については、収納された材料の蒸発温度以上分解温度未満に設定するだけでよいため、比較的制約は小さいが、坩堝と被蒸着部材への放出孔との間に位置し且つ両蒸発材料を混合している部分においては、混合される材料の全ての蒸発温度以上であって、混合される材料の分解温度未満に保持して、ここでの蒸着と分解とによる材料の劣化を防ぐ必要が生じるため、坩堝にて個別に加熱する場合に比べて制約が大きくなる。
However, as shown in Patent Document 2 and Patent Document 3, when different evaporating materials are released after being mixed, it is difficult to handle dissimilar materials having different temperature differences.
This is true for materials with low stability, such as organic materials used when manufacturing the display part of an organic EL display. However, the decomposition temperature differs between different materials and decomposes to lose its performance. This is due to the difference in temperature (higher than the evaporation temperature). The heating in each crucible only needs to be set to the evaporation temperature of the stored material or more and less than the decomposition temperature, so there are relatively few restrictions, but it is located between the crucible and the discharge hole to the vapor deposition member. And in the part where both evaporation materials are mixed, it is kept above the evaporation temperature of all the materials to be mixed and below the decomposition temperature of the materials to be mixed. Since it becomes necessary to prevent the deterioration, the restriction becomes larger than in the case of heating individually in a crucible.

有機ELディスプレイなどは一部製品が出回っているが、確立された分野とはいえず、特に、その材料においてはこれからどのようなものが出てくるかも知れず、蒸発温度と分解温度による制約を装置が大きく受ける構成は望ましいとはいえない。   Some products such as organic EL displays are on the market, but it is not an established field. Especially, what kind of materials may appear in the future, and there are restrictions due to evaporation temperature and decomposition temperature. A configuration in which the apparatus receives a large amount is not desirable.

また、放出孔から蒸発材料を放出する前に異種材料を混合してしまうと、個別にその放出量を検出することができず、計画どおりの成分量比で被蒸着部材に蒸着できているのかが分からなくなるという問題がある。すなわち、放出量を材料ごとにコントロールして、基板の品質を一定に維持するのが困難になってしまう。   Also, if different materials are mixed before the evaporation material is discharged from the discharge hole, the discharge amount cannot be detected individually, and can it be deposited on the deposition target member at the planned component amount ratio? There is a problem that you will not understand. That is, it becomes difficult to control the release amount for each material and maintain the substrate quality constant.

そこで、本発明の蒸着装置は、異種材料の放出量を個別に温度管理し得るとともに被蒸着部材に形成された膜厚の成分量比を略均一にし得ることを第1の目的とし、また異種材料の放出量を個別に検出し得ることを第2の目的とする。   Therefore, the first object of the vapor deposition apparatus of the present invention is to be able to individually control the temperature of the discharge amount of different materials and to make the ratio of the component amounts of the film thickness formed on the vapor deposition member substantially uniform. A second object is to be able to individually detect the amount of material released.

上記課題を解決するため、本発明の請求項1に係る蒸着装置は、蒸発材料を蒸着用容器内で保持された被蒸着部材に蒸着させる蒸着装置であって、
上記蒸着用容器内で且つ互いに上下に配置されるとともに第1および第2蒸着材料が蒸発されてなる第1および第2蒸発材料を放出させる第1および第2放出用容器と、互いに種類が異なる第1および第2蒸着材料を加熱して蒸発させる第1および第2蒸発用容器と、これら各蒸発用容器で蒸発された第1および第2蒸発材料を上記第1および第2放出用容器にそれぞれ導く第1および第2蒸発材料誘導管とを具備し、
上記上方に配置される第1放出用容器の上面に、第1蒸発材料の放出孔を所定間隔おきに複数個形成するとともに、第2放出用容器の上面に、第2蒸発材料の放出孔を有する放出ノズルを、その上端が上記第1放出用容器における各放出孔内に位置するように且つ同心状にそれぞれ突設したものである。
In order to solve the above-mentioned problem, a vapor deposition apparatus according to claim 1 of the present invention is a vapor deposition apparatus for vapor-depositing an evaporation material on a vapor-deposited member held in a vapor deposition vessel,
The first and second discharge containers, which are disposed in the vapor deposition container and are disposed one above the other and discharge the first and second vapor deposition materials, are different from each other. First and second evaporation containers for heating and evaporating the first and second vapor deposition materials, and the first and second evaporation materials evaporated in the respective evaporation containers are supplied to the first and second discharge containers. Comprising first and second evaporating material guide pipes, respectively leading;
A plurality of discharge holes for the first evaporation material are formed at predetermined intervals on the upper surface of the first discharge container disposed above, and the discharge holes for the second evaporation material are formed on the upper surface of the second discharge container. The discharge nozzles having the upper ends thereof are located in the discharge holes of the first discharge container and are concentrically provided .

また、請求項2に係る蒸着装置は、請求項1に記載の蒸着装置における材料放出用の放出孔における各蒸発材料の開口面積を、蒸発材料の種類に応じて決定したものである。 Further, vapor deposition apparatus according to claim 2, in which the opening area of each evaporation material in the release holes for put that wood charge release to the deposition apparatus of claim 1, was determined according to the type of evaporation material .

また、請求項に係る蒸着装置は、請求項1または2に記載の蒸着装置における各蒸発材料誘導管および各放出用容器を加熱する加熱手段を設けるとともに、
第1放出用容器への放出ノズルの挿入部分と当該第1放出用容器における拡散空間内の蒸発材料との間で熱が伝わるのを防止するための減熱部材または断熱部材を第1放出用容器側に取り付けたものである。
Further, the vapor deposition apparatus according to claim 3 is provided with a heating means for heating each evaporation material induction tube and each discharge container in the vapor deposition apparatus according to claim 1 or 2 ,
A heat reducing member or a heat insulating member for preventing heat from being transferred between the insertion portion of the discharge nozzle into the first discharge container and the evaporation material in the diffusion space in the first discharge container is used for the first discharge. It is attached to the container side .

また、請求項に係る蒸着装置は、請求項1乃至のいずれかに記載の蒸着装置における材料放出用の各放出孔とは異なる位置に、蒸発材料の放出量を検出するための放出量検出孔をそれぞれ設けるとともに、これら各放出量検出孔に対応する位置に、当該検出孔から放出される蒸発材料の放出量を検出する放出量検出手段を設け、
さらに上記放出量検出手段からの検出信号を入力して各蒸発材料の放出量の比率を求める放出量比検出手段を設けたものである。
Further, the vapor deposition apparatus according to claim 4 is a discharge amount for detecting the discharge amount of the evaporation material at a position different from each discharge hole for material discharge in the vapor deposition apparatus according to any one of claims 1 to 3. Each of the detection holes is provided, and at a position corresponding to each of the discharge amount detection holes , a discharge amount detection means for detecting the discharge amount of the evaporated material discharged from the detection holes is provided,
Furthermore, a discharge amount ratio detection means is provided for inputting a detection signal from the discharge amount detection means to obtain the ratio of the discharge amount of each evaporation material.

さらに、請求項に係る蒸着装置は、請求項に記載の蒸着装置における各蒸発材料誘導の途中に蒸発材料の放出量を調節する放出量調節手段を設けるとともに、各蒸発材料の放出量の比率を求める放出量比検出手段により、上記放出量調節手段を制御するようにしたものである。 Furthermore, the vapor deposition apparatus according to claim 5 is provided with a discharge amount adjusting means for adjusting the discharge amount of the evaporation material in the middle of each evaporation material guide tube in the vapor deposition apparatus according to claim 4, and the discharge amount of each evaporation material. The discharge amount adjusting means is controlled by the discharge amount ratio detecting means for obtaining the ratio.

上記の構成によると、蒸着用容器内に、2個の蒸着源にて蒸発された第1および第2蒸発材料を導き放出させる第1および第2放出用容器を上下に配置するとともに、上方に配置される第1放出用容器の上面に、第1蒸発材料の放出孔を所定間隔おきに複数個形成するとともに、第2放出用容器の上面に、第2蒸発材料の放出孔を有する放出ノズルを、その上端が第1放出用容器における各放出孔内に位置するように且つ同心状にそれぞれ突設したので、例えば異なる箇所に放出孔を配置したものに比べて、異なる種類の蒸発材料をできるだけ均一な共在状態で被蒸着部材の表面に蒸着させることができ、しかも、放出孔を異なる位置に配置した場合に、両放出孔からの蒸発材料をできるだけ均一な混在状態にさせようとすると、被蒸着部材と放出孔との距離を大きくする必要があるのに対し、放出孔と被蒸着部材とを接近させることができるので、蒸着装置の小型化にも繋がる。 According to the above configuration, the first and second discharge containers for guiding and releasing the first and second evaporation materials evaporated by the two vapor deposition sources are vertically arranged in the vapor deposition container, and upward. A discharge nozzle having a plurality of discharge holes for the first evaporating material formed at predetermined intervals on the upper surface of the first discharge container disposed, and having a discharge hole for the second evaporating material on the upper surface of the second discharge container. Since the upper ends thereof are located in the respective discharge holes in the first discharge container and are concentrically projected , for example, different types of evaporating materials can be used as compared with those in which the discharge holes are arranged at different locations. It is possible to deposit on the surface of the member to be vapor-deposited in as uniform a coexistence state as possible, and when the emission holes are arranged at different positions, the vaporized material from both emission holes will be mixed as uniformly as possible. , Evaporation target A relative discharge hole distance there must be increased with, since it is possible to approximate the discharge hole and the deposited member, leading to miniaturization of the vapor deposition apparatus.

また、各蒸発材料誘導路の先端部に拡散空間を有する拡散用部材を設けるとともに、この拡散用部材に蒸発材料を放出する開口部を設けたので、開口部が複数箇所に配置される場合でも、蒸発材料は拡散空間にて拡散し均一にされるため、それぞれの開口部から放出される蒸発材料の放出量はそれぞれの開口面積に対応した量となり、したがって放出量の制御を容易に且つ正確に行うことができる。   In addition, since a diffusion member having a diffusion space is provided at the tip of each evaporation material guiding path, and an opening for discharging the evaporation material is provided in the diffusion member, even when the openings are arranged at a plurality of locations. Since the evaporation material is diffused and made uniform in the diffusion space, the amount of the evaporation material released from each opening is an amount corresponding to each opening area, and thus the emission amount can be easily and accurately controlled. Can be done.

また、放出量検出用開口部を、材料放出用開口部とは異なる位置に設けるとともに、各蒸発材料の放出量の比率を求める放出量比検出手段を設けたので、各蒸発材料の放出量を検出することができ、したがって成膜状態を監視することができる。   In addition, the discharge amount detection opening is provided at a position different from the material discharge opening, and the discharge amount ratio detecting means for determining the ratio of the discharge amount of each evaporation material is provided. Therefore, the film formation state can be monitored.

また、各蒸発材料誘導路については、それぞれを加熱する加熱手段および両誘導路同士が接近する部分に減熱部材または断熱部材を配置したので、両者は熱的に独立した状態になっているため、各蒸着材料同士の温度特性が異なっている場合でも、それぞれの温度管理を最適に行うことができ、したがって蒸着膜の品質を損なうことがない。   Moreover, about each evaporation material induction path, since the heat-reduction member or the heat insulation member was arrange | positioned in the part to which the heating means which heats each, and both induction paths approach, both are in the thermally independent state. Even when the temperature characteristics of the respective vapor deposition materials are different, the respective temperature management can be performed optimally, and therefore the quality of the vapor deposition film is not impaired.

さらに、各蒸発材料誘導路の途中に蒸発材料の放出量を調節する放出量調節手段を設けるとともに、この放出量調節手段を放出量比検出手段から入力された放出量の比率に基づき制御するようにしたので、異なる蒸着源からの蒸発材料であっても、常に、所定の比率でもって蒸発材料を放出させることができ、したがって蒸発源の温度管理が容易となる。   Further, a discharge amount adjusting means for adjusting the discharge amount of the evaporation material is provided in the middle of each evaporation material guiding path, and the discharge amount adjusting means is controlled based on the ratio of the discharge amount inputted from the discharge amount ratio detection means. Therefore, even if the evaporation material is from a different evaporation source, the evaporation material can always be released at a predetermined ratio, so that the temperature control of the evaporation source is facilitated.

[実施の形態]
以下、本発明の実施の形態に係る蒸着装置を、図1〜図6に基づき説明する。
本実施の形態においては、有機ELディスプレイの表示部を製造する場合、すなわち有機材料をガラス基板の表面に蒸着させる場合で、且つ異なる2種類の蒸着材料(有機材料である)を蒸着させる場合について説明する。なお、異なる蒸着材料のうち、主成分である材料を第1蒸着材料(ホストともいう)と称するとともに、微量材料を第2蒸着材料(ドーパントともいう)と称し、さらに各蒸着材料を加熱して蒸発させたものを第1および第2蒸発材料と称して説明を行う。
[Embodiment]
Hereinafter, the vapor deposition apparatus which concerns on embodiment of this invention is demonstrated based on FIGS.
In this embodiment, when manufacturing a display unit of an organic EL display, that is, when an organic material is vapor-deposited on the surface of a glass substrate, and when two different kinds of vapor deposition materials (which are organic materials) are vapor-deposited. explain. Of the different vapor deposition materials, the main component material is referred to as a first vapor deposition material (also referred to as a host), the trace material is referred to as a second vapor deposition material (also referred to as a dopant), and each vapor deposition material is further heated. The evaporated material will be referred to as first and second evaporation materials.

この蒸着装置は、図1に示すように、ガラス基板(被蒸着部材)1が、その蒸着面が下方となるように水平方向で挿入されるとともに保持具2により保持される蒸着用容器(蒸着室ともいう)3と、この蒸着用容器3内の下部で且つ互いに上下に配置されて第1および第2蒸着材料A,Bが蒸発されてなる蒸発材料を放出させる第1および第2放出用容器(拡散用部材の一例)4,5と、上記蒸着用容器3の外部に配置されて互いに種類が異なる第1および第2蒸着材料を加熱して蒸発させる2個の第1および第2蒸発用容器(蒸発源、蒸発室ともいう)6,7と、これら各蒸発用容器6,7で蒸発された蒸発材料を蒸着用容器3内に配置された各放出用容器4,5に導く第1および第2蒸発材料誘導管(蒸発材料誘導路の一例で、放出用容器も蒸発材料誘導路の一部を構成するものである)8,9と、蒸発材料の放出量、ガラス基板1の表面に形成される蒸着膜の厚さ(以下、膜厚という)などの蒸着状態を監視する監視制御装置10とから構成されている。   In this vapor deposition apparatus, as shown in FIG. 1, a glass substrate (vapor deposition member) 1 is inserted in a horizontal direction so that its vapor deposition surface is downward, and is held by a holder 2 (vapor deposition). (Also referred to as a chamber) 3 and the first and second discharge chambers for releasing the evaporation material formed by evaporating the first and second vapor deposition materials A and B at the lower part of the vapor deposition container 3 and above and below each other. Two first and second evaporations for heating and evaporating the containers (one example of the diffusion member) 4 and 5 and the first and second vapor deposition materials disposed outside the vapor deposition container 3 and having different types from each other Containers (also referred to as evaporation sources or evaporation chambers) 6, 7, and evaporation materials evaporated in the respective evaporation containers 6, 7 are guided to discharge containers 4, 5 disposed in the evaporation container 3. 1 and 2 evaporating material guide pipes (an example of evaporating material guiding paths, Are also part of the evaporating material guiding path) 8, 9 and the amount of evaporating material released and the thickness of the evaporating film formed on the surface of the glass substrate 1 (hereinafter referred to as film thickness). It is comprised from the monitoring control apparatus 10 which monitors a state.

次に、上記各放出用容器4,5について説明する。
これら各放出用容器4,5は所定厚さで且つ平面視が矩形状(勿論、円形、多角形などであってもよい)にされるとともに内部にそれぞれ拡散空間(バッファ空間ともいい、蒸発材料の濃度の均一化を図り得る)4a,5aを有する箱形状の容器にされている。
Next, the discharge containers 4 and 5 will be described.
Each of these discharge containers 4 and 5 has a predetermined thickness and a rectangular shape in plan view (of course, it may be circular or polygonal), and each has a diffusion space (also referred to as a buffer space, evaporating material). In a box-like container having 4a and 5a.

そして、第1蒸発材料Aを放出する方の第1放出用容器4が上方に配置されるとともに、第2蒸発材料Bを放出する第2放出用容器5が下方に配置されている。
また、図2〜図4に示すように、第1放出用容器4の上面には、第1蒸発材料の放出孔(開口部)4bが所定間隔おきに例えば縦横に複数列でもって複数個形成されるとともに、第2放出用容器5の上面には、第2蒸発材料の放出孔(開口部)5bを有する放出ノズル5cが上記第1放出用容器4における放出孔4b内に位置するように複数個突設されている。
The first discharge container 4 that discharges the first evaporation material A is disposed above, and the second discharge container 5 that discharges the second evaporation material B is disposed below.
As shown in FIGS. 2 to 4, a plurality of first evaporation material discharge holes (openings) 4 b are formed on the upper surface of the first discharge container 4 at predetermined intervals, for example, in a plurality of rows vertically and horizontally. At the same time, a discharge nozzle 5c having a discharge hole (opening) 5b for the second evaporation material is located in the discharge hole 4b of the first discharge container 4 on the upper surface of the second discharge container 5. A plurality of protrusions are provided.

詳しく説明すれば、図5および図6に示すように、第1放出用容器4の表面に形成される放出孔4bについては、円形状の開口部にされるとともに、第2放出用容器5の上面に突設された放出ノズル5cは、第1放出用容器4の底壁部を貫通して且つその先端の放出孔5bが第1放出用容器4の放出孔4bの中心(同心位置)でしかも当該放出孔4bと面一となるように設けられている。なお、これら両放出孔4b,5bにおける放出用開口面積比(すなわち、放出孔4bの環状開口面積と、放出孔5bの円形開口面積との比)については、当然に、膜を構成する両者の成分比率に応じて決められている。   More specifically, as shown in FIGS. 5 and 6, the discharge hole 4 b formed on the surface of the first discharge container 4 is formed into a circular opening and the second discharge container 5. The discharge nozzle 5c projecting from the upper surface penetrates the bottom wall of the first discharge container 4 and the discharge hole 5b at the tip thereof is the center (concentric position) of the discharge hole 4b of the first discharge container 4. Moreover, it is provided so as to be flush with the discharge hole 4b. Of course, the ratio of the opening area for discharge in both of the discharge holes 4b and 5b (that is, the ratio of the annular opening area of the discharge hole 4b to the circular opening area of the discharge hole 5b) is naturally determined between the two constituting the film. It is determined according to the component ratio.

また、上記各放出用容器4,5の端縁側には、図1に示すように、各放出用容器4,5から放出される蒸発材料の放出量を検出(測定)するための放出量検出孔(放出量検出用開口部)4c,5dがそれぞれ形成されるとともに、その検出に際し、当該放出量検出孔4c,5dからの放出量だけを検出するための隔離板11,12がそれぞれ設けられている。   Further, as shown in FIG. 1, the discharge amount detection for detecting (measuring) the discharge amount of the evaporation material discharged from each discharge container 4, 5 is provided on the edge side of each discharge container 4, 5. Holes (opening amount detection openings) 4c and 5d are formed, and separators 11 and 12 are provided for detecting only the discharge amount from the discharge amount detection holes 4c and 5d, respectively. ing.

上記第1蒸発材料誘導管8は第1蒸発用容器6内で蒸発された第1蒸発材料Aを第1放出用容器4に導くためのもので、また第2蒸発材料誘導管9は第2蒸発用容器7内で蒸発された第2蒸発材料Bを第2放出用容器5に導くためのものであり、さらにそれぞれの途中には、蒸発材料の移送量すなわち放出量の調節および開閉を行い得る流量制御弁(放出量調節手段の一例で、例えば開度の調節機能を有する開閉弁でもよい)13,14が設けられている。   The first evaporating material guiding tube 8 is for guiding the first evaporating material A evaporated in the first evaporating vessel 6 to the first discharging vessel 4, and the second evaporating material guiding tube 9 is the second evaporating material guiding tube 9. The second evaporating material B evaporated in the evaporating container 7 is guided to the second releasing container 5, and the transfer amount of the evaporating material, that is, the releasing amount is adjusted and opened and closed in the middle of each. Flow rate control valves (an example of a discharge amount adjusting means, which may be, for example, an opening / closing valve having an opening adjusting function) 13 and 14 are provided.

また、図2および図3に示すように、各放出用容器4,5および各蒸発材料誘導管8,9の表面の略全体に亘って、保温のための加熱手段(保温手段ともいえる)として例えばシースヒータ15が配置されており、各蒸発材料をそれぞれ最適な温度に保持(維持)するように考慮されている(なお、図2および図3には、放出用容器4,5に設けた場合についてだけ図示している)。   Further, as shown in FIGS. 2 and 3, as a heating means (also referred to as a heat retaining means) for keeping the temperature over substantially the entire surface of each of the discharge containers 4 and 5 and each of the evaporation material guide pipes 8 and 9. For example, a sheath heater 15 is arranged, and each evaporation material is considered to be maintained (maintained) at an optimum temperature (in FIGS. 2 and 3, the discharge containers 4 and 5 are provided). Only illustrated).

同様に、上記放出ノズル4cについても、図3に示すように、シースヒータ15が設けられるとともに、第1放出用容器4への放出ノズル5cの挿入部分と当該第1放出用容器4の拡散空間4a内の蒸発材料との間で相手の分解温度以上の熱が伝わるのを防止するために、筒状減熱材(減熱部材の一例、または筒状断熱材(断熱部材の一例)でもよい)16が第1放出用容器4側に取り付けられている。   Similarly, the discharge nozzle 4c is also provided with a sheath heater 15 as shown in FIG. 3, and the insertion portion of the discharge nozzle 5c into the first discharge container 4 and the diffusion space 4a of the first discharge container 4 are also provided. In order to prevent heat above the other decomposition temperature from being transmitted to the evaporation material in the inside, a cylindrical heat reducing material (an example of a heat reducing member or a cylindrical heat insulating material (an example of a heat insulating member) may be used) 16 is attached to the first discharge container 4 side.

さらに、上記放出ノズル5c以外の部分においても、両蒸発材料同士間で熱が伝わる部分があれば、その部分についても減熱材(または断熱材)が設けられて、各蒸発材料の最適温度が保持されている。   Furthermore, if there is a part where heat is transmitted between the two evaporation materials in the part other than the discharge nozzle 5c, a heat reducing material (or a heat insulating material) is provided also in that part, and the optimum temperature of each evaporation material is set. Is retained.

なお、上記各蒸発用容器6,7内には、図示しないが、蒸着材料を収納する材料収納容器がそれぞれ配置されるとともに、これら各材料収納容器を加熱して蒸着材料を蒸発させるための加熱手段(例えば、電熱ヒータが用いられる)が配置され、さらに個別に容器内の空気を排出可能(真空可能)にされている。   Although not shown, each of the evaporation containers 6 and 7 is provided with a material storage container for storing a vapor deposition material, and heating for evaporating the vapor deposition material by heating each of the material storage containers. Means (for example, an electric heater is used) are arranged, and the air in the container can be discharged individually (vacuumable).

次に、上記監視制御装置10について説明する。
この監視制御装置10は、図1に示すように、各放出用容器4,5の表面の端縁部に形成された放出量検出孔4c,5dから放出された蒸発材料の放出量を検出し得る放出量検出用センサ(放出量検出手段の一例で、放出量測定手段ともいう)21,22と、ガラス基板1の直ぐ傍の位置に配置されて蒸発材料が付着した膜厚を検出するための膜厚検出用センサ23と、上記両放出量検出用センサ21,22からの検出信号を入力して両蒸発材料の放出量の比率を求めるための放出量比検出手段24と、上記膜厚検出用センサ23からの検出信号を入力してガラス基板1に蒸着された膜厚を求める膜厚検出手段25と、上記放出量比検出手段24および膜厚検出手段25からの検出値(測定値である)を入力して各蒸発材料誘導管8,9に設けられた流量制御弁13,14の開度を調節する開度調節手段26と、同じく上記放出量比検出手段24および膜厚検出手段25からの検出値を入力して放出量比および膜厚を表示するモニター(出力手段の一例で、例えばプリンターでもよい)27とから構成されている。なお、上記各検出用センサ21〜23としては、例えば水晶振動子を利用したものが用いられる。
Next, the monitoring control device 10 will be described.
As shown in FIG. 1, the monitoring and control device 10 detects the discharge amount of the evaporated material discharged from the discharge amount detection holes 4c and 5d formed at the edge of the surface of each discharge container 4 and 5. In order to detect the film thickness to which the evaporative material adheres by being disposed at a position immediately adjacent to the glass substrate 1 and the obtained release amount detection sensors (also referred to as discharge amount measuring means, which is an example of the discharge amount detecting means). Film thickness detection sensor 23, a discharge amount ratio detecting means 24 for inputting a detection signal from both of the discharge amount detection sensors 21 and 22, and obtaining a ratio of the discharge amounts of both evaporation materials, and the film thickness A film thickness detection means 25 for obtaining a film thickness deposited on the glass substrate 1 by inputting a detection signal from the detection sensor 23, and a detection value (measurement value) from the emission amount ratio detection means 24 and the film thickness detection means 25. Are installed in each evaporative material guide tube 8 and 9. The opening degree adjusting means 26 for adjusting the opening degree of the flow rate control valves 13 and 14 and the detected values from the discharge amount ratio detecting means 24 and the film thickness detecting means 25 are inputted, and the discharge amount ratio and the film thickness are set. And a monitor 27 (an example of output means, which may be a printer, for example). In addition, as each said detection sensors 21-23, what utilized the crystal oscillator, for example is used.

上記構成において、2種類の蒸着材料すなわちホストおよびドーパントを、ガラス基板1に蒸着させる場合について説明する。
すなわち、第1蒸発用容器4および第2蒸発用容器5を、それぞれ所定温度に加熱して、第1蒸着材料であるホストおよび第2蒸着材料であるドーパントを蒸発させ、それぞれ蒸発材料誘導管8,9を介して第1放出用容器4および第2放出用容器5内の拡散空間4a,5aに導く。このとき、蒸発材料誘導管8,9および放出用容器4,5は、シースヒータ15によりそれぞれ最適な温度に保持されている。なお、蒸発材料をガラス基板1に蒸着させる蒸着用容器3内および各容器4〜7および各誘導管8,9は所定の真空度にされている。
In the above configuration, a case where two kinds of vapor deposition materials, that is, a host and a dopant are vapor-deposited on the glass substrate 1 will be described.
That is, the first evaporation container 4 and the second evaporation container 5 are each heated to a predetermined temperature to evaporate the host as the first vapor deposition material and the dopant as the second vapor deposition material, respectively. , 9 are led to diffusion spaces 4a, 5a in the first discharge container 4 and the second discharge container 5. At this time, the evaporating material guide tubes 8 and 9 and the discharge containers 4 and 5 are respectively held at optimum temperatures by the sheath heater 15. In addition, the inside of the vapor deposition container 3 for vapor-depositing the evaporation material on the glass substrate 1, the containers 4 to 7, and the induction tubes 8 and 9 are set to a predetermined degree of vacuum.

そして、ホストAは第1放出用容器4の放出孔4bから放出されるとともにその中心に配置された第2放出用容器5の放出ノズル5c先端の放出孔5bからドーパントが放出され、したがってこれら両蒸発材料は均一な混在状態でガラス基板1の表面に付着して有機材料の膜が形成される。   Then, the host A is discharged from the discharge hole 4b of the first discharge container 4 and the dopant is discharged from the discharge hole 5b at the tip of the discharge nozzle 5c of the second discharge container 5 arranged at the center thereof. The evaporation material adheres to the surface of the glass substrate 1 in a uniform mixed state, and an organic material film is formed.

この膜形成時においては、各検出用センサ21,22からの検出信号が放出量比検出手段24に入力されてホストおよびドーパントの放出量比が求められるとともに、この放出量比が開度調節手段26に入力されて、この放出量比が所定の値に維持されるように各流量制御弁13,14に制御信号が出力される。   At the time of forming the film, detection signals from the detection sensors 21 and 22 are input to the emission amount detection unit 24 to obtain the emission amount ratio of the host and the dopant, and the emission amount ratio is determined by the opening degree adjustment unit. 26, and a control signal is output to each of the flow control valves 13, 14 so that the discharge ratio is maintained at a predetermined value.

また、膜厚検出用センサ23からの検出信号が膜厚検出手段25に入力されてガラス基板1の表面に形成された膜厚が求められており、所定の膜厚に達した場合には、開度調節手段26から両流量制御弁13,14に閉鎖信号が出力されて、ホストおよびドーパントの放出が停止される。   In addition, when a detection signal from the film thickness detection sensor 23 is input to the film thickness detection means 25 and the film thickness formed on the surface of the glass substrate 1 is obtained, and when a predetermined film thickness is reached, A closing signal is output from the opening degree adjusting means 26 to both flow rate control valves 13 and 14, and the emission of the host and the dopant is stopped.

勿論、上記膜形成時においては、ホストおよびドーパントの放出量比並びにガラス基板1の表面に形成される膜厚が、モニター27に表示されている。
上述したように、蒸着用容器3内に2種類の蒸発材料の放出用容器4,5を配置するとともに、それぞれ蒸発材料を放出させる放出孔4b,5bを同心状に配置したので、両蒸発材料をできるだけ均一な共在状態でガラス基板1の表面に蒸着させることができる。
Of course, when the film is formed, the ratio of the emission amount of the host and the dopant and the film thickness formed on the surface of the glass substrate 1 are displayed on the monitor 27.
As described above, the two evaporation materials discharging containers 4 and 5 are disposed in the vapor deposition container 3, and the discharge holes 4b and 5b for discharging the evaporation materials are disposed concentrically. Can be vapor-deposited on the surface of the glass substrate 1 in as uniform a coexistence state as possible.

例えば、両放出孔4b,5bを異なる位置に配置した場合で且つ両蒸発材料をできるだけ均一な混在状態にさせようとすると、どうしてもその放出孔とガラス基板との距離を大きくする必要があるのに対して、上述した実施の形態の構成によると、放出孔とガラス基板とを接近させることができるので、蒸着装置の小型化を図ることができる。   For example, when both the discharge holes 4b and 5b are arranged at different positions and when both evaporation materials are to be mixed as uniformly as possible, it is necessary to increase the distance between the discharge holes and the glass substrate. On the other hand, according to the configuration of the above-described embodiment, since the discharge hole and the glass substrate can be brought close to each other, the vapor deposition apparatus can be downsized.

また、各蒸発材料誘導管8,9については、それぞれを加熱するシースヒータ15および両蒸発材料誘導管8,9同士(正確には、蒸発材料誘導路同士)が接近する部分に減熱材(例えば、16)を配置したので、両者は熱的に独立した状態になっているため、各蒸着材料同士の温度特性が異なっている場合でも、それぞれの温度管理を最適に行うことができ、したがって蒸着膜の品質を損なうことがない。   Further, for each of the evaporative material guide tubes 8 and 9, a heat reducing material (for example, a sheath heater 15 for heating each of the evaporative material guide tubes 8 and 9 and a portion where both the evaporative material guide tubes 8 and 9 (more precisely, the evaporative material guide paths) approach each other. 16) are arranged so that they are in a thermally independent state, so that even when the temperature characteristics of the respective vapor deposition materials are different, the respective temperature management can be optimally performed. There is no loss of film quality.

また、各蒸発材料誘導管8,9の途中に蒸発材料の放出量を調節する流量制御弁13,14を設けるとともに、この流量制御弁13,14を放出量比検出手段24から入力された放出量の比率に基づき制御するようにしたので、異なる蒸発用容器6,7からの蒸発材料であっても、常に、所定の比率でもって蒸発材料を放出させることができ、したがって蒸発用容器6,7での温度管理が容易となる。   Further, flow control valves 13 and 14 for adjusting the amount of evaporating material released are provided in the middle of each evaporating material guide pipe 8 and 9, and the flow rate control valves 13 and 14 are discharged from the discharge amount ratio detecting means 24. Since the amount is controlled based on the ratio of the amounts, the evaporation material from the different evaporation containers 6 and 7 can always be discharged at a predetermined ratio. 7 is easy to manage the temperature.

また、蒸着用容器3内に、拡散空間4a,5aを有する放出用容器4,5を配置することにより、蒸発用容器6,7からの蒸発材料誘導管8,9よりもその断面積が十分大きい空間を設けることにより、放出孔が複数箇所に設けられている場合でも、拡散空間4a,5aで蒸発材料の分布が均一にされるため、それぞれの放出孔4b,5bから放出される蒸発材料の放出量は各放出孔4b,5bの開口面積に対応した量となり、放出量の制御を容易に且つ正確に行うことができる。   Further, by disposing the discharge containers 4 and 5 having the diffusion spaces 4a and 5a in the vapor deposition container 3, the cross-sectional area thereof is more sufficient than the evaporation material guide pipes 8 and 9 from the evaporation containers 6 and 7. By providing a large space, even when the discharge holes are provided at a plurality of locations, the distribution of the evaporation material is made uniform in the diffusion spaces 4a and 5a. Therefore, the evaporation material discharged from the discharge holes 4b and 5b, respectively. The amount of released gas is an amount corresponding to the opening area of each of the discharge holes 4b and 5b, and the amount of discharged gas can be controlled easily and accurately.

さらに、放出量検出孔4c,5dについては、膜形成用の放出孔4b,5bとは別個に設けられているため、放出孔4b,5bの開口面積に比べて十分に小さい面積でよく、したがって膜形成に寄与しない放出量検出用の蒸発材料の放出をできるだけ少なくすることができる。   Furthermore, since the discharge amount detection holes 4c and 5d are provided separately from the film formation discharge holes 4b and 5b, the area may be sufficiently smaller than the opening area of the discharge holes 4b and 5b. Release of the evaporation material for detecting the release amount that does not contribute to film formation can be minimized.

ところで、上記実施の形態においては、各放出用容器4,5の表面に設けられる放出孔4b,5bを、縦横に、すなわち二次元的に配置したが、例えば一列(一次元的)に配置してもよい。   In the above embodiment, the discharge holes 4b and 5b provided on the surfaces of the discharge containers 4 and 5 are arranged vertically and horizontally, that is, two-dimensionally. For example, they are arranged in one row (one-dimensionally). May be.

また、上記実施の形態においては、放出孔4b,5bを箱型状の容器の表面に二次元的に設けたものとして説明したが、例えば図7に示すように、それぞれの蒸発材料誘導管8,9を用いて、それぞれの放出孔8a,9a(4b,5bに相当)を同心状に配置したものでもよい。   In the above embodiment, the discharge holes 4b and 5b are described as two-dimensionally provided on the surface of the box-shaped container. However, for example, as shown in FIG. , 9 may be used, and the discharge holes 8a, 9a (corresponding to 4b, 5b) may be arranged concentrically.

この場合、各蒸発材料の蒸発材料誘導管8,9については、途中から二重管構造にする必要があるが、その二重管構造にする範囲は、できる限り、放出孔8a,9a寄りの方が好ましい。例えば、二重管構造の部分が長いと、構造が複雑になるとともに断熱構造とする部分も長くなり、全体として製造コストが高くなってしまう。つまり、蒸発材料誘導管(蒸発材料誘導路)としては、できるだけ放出孔(放出部分)の近傍まで別個に設け、その放出孔の近傍にて、一方の蒸発材料誘導管に他方の蒸発材料誘導管を挿通させるのが好ましい。   In this case, the evaporating material guide pipes 8 and 9 of the evaporating materials need to have a double pipe structure from the middle, but the range of the double pipe structure is as close to the discharge holes 8a and 9a as possible. Is preferred. For example, if the part of the double tube structure is long, the structure becomes complicated and the part of the heat insulating structure becomes long, and the manufacturing cost as a whole becomes high. That is, as the evaporating material guiding pipe (evaporating material guiding path), the evaporating material guiding pipe is provided as close as possible to the vicinity of the discharging hole (discharging part), and in the vicinity of the discharging hole, one evaporating material guiding pipe is connected to the other evaporating material guiding pipe Is preferably inserted.

また、上記実施の形態においては、各放出量検出孔の近傍に、隔離板を配置したが、隔離板の替わりに、各放出量検出孔からの蒸発材料だけを導出する管状のガイド部材を配置してもよい。なお、これら各放出量検出孔から放出される蒸発材料が他の放出孔から放出される蒸発材料に量的に影響を与えない場合には、隔離板またはガイド部材を設ける必要はない。   Further, in the above embodiment, the separator is arranged in the vicinity of each discharge amount detection hole, but instead of the separator, a tubular guide member for deriving only the evaporation material from each discharge amount detection hole is arranged. May be. In addition, when the evaporation material discharged from each of the discharge amount detection holes does not quantitatively affect the evaporation material discharged from the other discharge holes, it is not necessary to provide a separator or a guide member.

さらに、上記実施の形態においては、第1および第2蒸発用容器6,7を蒸着用容器3の外方に配置したが、これら蒸発用容器6,7を、蒸発材料誘導管8,9を含めて蒸着用容器3内に配置してもよい。   Further, in the above-described embodiment, the first and second evaporation containers 6 and 7 are disposed outside the evaporation container 3, but the evaporation containers 6 and 7 are connected to the evaporation material guide tubes 8 and 9, respectively. You may arrange | position in the container 3 for vapor deposition.

本発明の実施の形態に係る蒸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vapor deposition apparatus which concerns on embodiment of this invention. 同蒸着装置における要部斜視図である。It is a principal part perspective view in the vapor deposition apparatus. 図2のC−C断面図である。It is CC sectional drawing of FIG. 同蒸着装置の第2放出用容器の斜視図である。It is a perspective view of the 2nd discharge container of the vapor deposition apparatus. 同蒸着装置の放出用容器の要部断面図である。It is principal part sectional drawing of the container for discharge | emission of the vapor deposition apparatus. 図5のD−D断面図である。It is DD sectional drawing of FIG. 同蒸着装置の放出用容器の変形例を示す斜視図である。It is a perspective view which shows the modification of the container for discharge | emission of the vapor deposition apparatus.

符号の説明Explanation of symbols

1 ガラス基板
3 蒸着用容器
4 第1放出用容器
4a 拡散空間
4b 放出孔
4c 放出量検出孔
5 第2放出用容器
5a 拡散空間
5b 放出孔
5c 放出ノズル
5d 放出量検出孔
6 第1蒸発用容器
7 第2蒸発用容器
8 第1蒸発材料誘導管
9 第2蒸発材料誘導管
10 監視制御装置
11 隔離板
12 隔離板
13 流量制御弁
14 流量制御弁
15 シースヒータ
16 筒状減熱材
21 放出量検出用センサ
22 放出量検出用センサ
23 膜厚検出用センサ
24 放出量比検出手段
25 膜厚検出手段
26 開度調節手段
27 モニター
DESCRIPTION OF SYMBOLS 1 Glass substrate 3 Vapor deposition container 4 1st discharge | emission container 4a Diffusion space 4b Emission hole 4c Emission amount detection hole 5 2nd emission container 5a Diffusion space 5b Emission hole 5c Emission nozzle 5d Emission amount detection hole 6 1st Evaporation container 7 Second Evaporation Container 8 First Evaporation Material Guide Tube 9 Second Evaporation Material Guide Tube 10 Monitoring Controller 11 Separation Plate 12 Separation Plate 13 Flow Control Valve 14 Flow Control Valve 15 Sheath Heater 16 Cylindrical Heat Reduction Material 21 Release Amount Detection Sensor 22 Release amount detection sensor 23 Film thickness detection sensor 24 Release amount ratio detection means 25 Film thickness detection means 26 Opening adjustment means 27 Monitor

Claims (5)

蒸発材料を蒸着用容器内で保持された被蒸着部材に蒸着させる蒸着装置であって、
上記蒸着用容器内で且つ互いに上下に配置されるとともに第1および第2蒸着材料が蒸発されてなる第1および第2蒸発材料を放出させる第1および第2放出用容器と、互いに種類が異なる第1および第2蒸着材料を加熱して蒸発させる第1および第2蒸発用容器と、これら各蒸発用容器で蒸発された第1および第2蒸発材料を上記第1および第2放出用容器にそれぞれ導く第1および第2蒸発材料誘導管とを具備し、
上記上方に配置される第1放出用容器の上面に、第1蒸発材料の放出孔を所定間隔おきに複数個形成するとともに、第2放出用容器の上面に、第2蒸発材料の放出孔を有する放出ノズルを、その上端が上記第1放出用容器における各放出孔内に位置するように且つ同心状にそれぞれ突設したことを特徴とする蒸着装置。
A vapor deposition apparatus for vapor-depositing an evaporation material on a member to be vapor-deposited held in a vapor deposition container,
The first and second discharge containers, which are disposed in the vapor deposition container and are disposed one above the other and discharge the first and second vapor deposition materials, are different from each other. First and second evaporation containers for heating and evaporating the first and second vapor deposition materials, and the first and second evaporation materials evaporated in the respective evaporation containers are supplied to the first and second discharge containers. Comprising first and second evaporating material guide pipes, respectively leading;
A plurality of discharge holes for the first evaporation material are formed at predetermined intervals on the upper surface of the first discharge container disposed above, and the discharge holes for the second evaporation material are formed on the upper surface of the second discharge container. A vapor deposition apparatus characterized in that a discharge nozzle having a plurality of discharge nozzles is concentrically provided so that an upper end thereof is positioned in each discharge hole in the first discharge container .
材料放出用の放出孔における各蒸発材料の開口面積を、蒸発材料の種類に応じて決定したことを特徴とする請求項に記載の蒸着装置。 The vapor deposition apparatus according to claim 1 , wherein an opening area of each evaporation material in the discharge hole for material release is determined according to a type of the evaporation material. 各蒸発材料誘導管および各放出用容器を加熱する加熱手段を設けるとともに、
第1放出用容器への放出ノズルの挿入部分と当該第1放出用容器における拡散空間内の蒸発材料との間で熱が伝わるのを防止するための減熱部材または断熱部材を第1放出用容器側に取り付けたことを特徴とする請求項1または2に記載の蒸着装置。
While providing heating means for heating each evaporating material induction tube and each discharge container ,
A heat reducing member or a heat insulating member for preventing heat from being transferred between the insertion portion of the discharge nozzle into the first discharge container and the evaporation material in the diffusion space in the first discharge container is used for the first discharge. vapor deposition apparatus according to claim 1 or 2, characterized in that attached to the container side.
材料放出用の各放出孔とは異なる位置に、蒸発材料の放出量を検出するための放出量検出孔をそれぞれ設けるとともに、これら各放出量検出孔に対応する位置に、当該検出孔から放出される蒸発材料の放出量を検出する放出量検出手段を設け、
さらに上記放出量検出手段からの検出信号を入力して各蒸発材料の放出量の比率を求める放出量比検出手段を設けたことを特徴とする請求項1乃至のいずれかに記載の蒸着装置。
A position different from the respective discharge holes for material release, the release amount detection hole for detecting the emission amount of the evaporation material provided with respectively, at positions corresponding to the respective emission detection hole is released from the detection hole Provided with a discharge amount detecting means for detecting the discharge amount of the evaporation material
Further deposition apparatus according to any one of claims 1 to 3, characterized in that the provided emission ratio detection means for entering a detection signal determining the ratio of the emission of the evaporation material from said emission detector .
各蒸発材料誘導の途中に蒸発材料の放出量を調節する放出量調節手段を設けるとともに、各蒸発材料の放出量の比率を求める放出量比検出手段により、上記放出量調節手段を制御するようにしたことを特徴とする請求項に記載の蒸着装置。 A discharge amount adjusting means for adjusting the discharge amount of the evaporating material is provided in the middle of each evaporating material guide tube , and the discharge amount adjusting means is controlled by a discharge amount ratio detecting means for obtaining a ratio of the discharge amount of each evaporating material. The vapor deposition apparatus according to claim 4 , wherein the vapor deposition apparatus is formed.
JP2004155383A 2004-05-26 2004-05-26 Vapor deposition equipment Expired - Fee Related JP4458932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155383A JP4458932B2 (en) 2004-05-26 2004-05-26 Vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155383A JP4458932B2 (en) 2004-05-26 2004-05-26 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JP2005336527A JP2005336527A (en) 2005-12-08
JP4458932B2 true JP4458932B2 (en) 2010-04-28

Family

ID=35490415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155383A Expired - Fee Related JP4458932B2 (en) 2004-05-26 2004-05-26 Vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP4458932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127684A1 (en) * 2017-12-28 2019-07-04 深圳市华星光电半导体显示技术有限公司 Evaporation source and evaporation apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057173A (en) * 2004-08-24 2006-03-02 Tohoku Pioneer Corp Film deposition source, vacuum film deposition apparatus and method for producing organic el panel
JP4767000B2 (en) * 2005-11-28 2011-09-07 日立造船株式会社 Vacuum deposition equipment
JP2007227086A (en) * 2006-02-22 2007-09-06 Tokyo Electron Ltd Deposition apparatus and method of manufacturing light emitting element
JP2007224394A (en) * 2006-02-27 2007-09-06 Hitachi Zosen Corp Method for vaporizing vapor-deposition material, vaporizing apparatus therefor, and vacuum vapor-depositing apparatus
JP5179739B2 (en) * 2006-09-27 2013-04-10 東京エレクトロン株式会社 Vapor deposition apparatus, vapor deposition apparatus control apparatus, vapor deposition apparatus control method, and vapor deposition apparatus usage method
JP5063969B2 (en) * 2006-09-29 2012-10-31 東京エレクトロン株式会社 Vapor deposition apparatus, vapor deposition apparatus control apparatus, vapor deposition apparatus control method, and vapor deposition apparatus usage method
JP4840150B2 (en) * 2007-01-15 2011-12-21 パナソニック電工株式会社 Vacuum deposition equipment
KR101200357B1 (en) 2007-12-31 2012-11-12 (주)에이디에스 Gas injection apparatus and film depositing system having the same
JP5311985B2 (en) * 2008-11-26 2013-10-09 キヤノン株式会社 Vapor deposition apparatus and organic light emitting device manufacturing method
US20100247809A1 (en) * 2009-03-31 2010-09-30 Neal James W Electron beam vapor deposition apparatus for depositing multi-layer coating
JP4831841B2 (en) * 2009-07-10 2011-12-07 三菱重工業株式会社 Vacuum deposition apparatus and method
JP5685433B2 (en) * 2010-12-15 2015-03-18 株式会社アルバック Vapor deposition apparatus and vapor deposition method
TW201243083A (en) * 2011-03-16 2012-11-01 Panasonic Corp Vacuum evaporator
JP6013077B2 (en) * 2012-08-13 2016-10-25 株式会社カネカ Vacuum deposition apparatus and organic EL device manufacturing method
KR101446232B1 (en) 2012-10-19 2014-10-01 주식회사 선익시스템 Apparatus for Measuring Thickness of Deposited Film Having Shield
JP2014141714A (en) * 2013-01-24 2014-08-07 Kaneka Corp Manufacturing method of vacuum evaporation system and organic el apparatus
CN107058973A (en) * 2017-03-10 2017-08-18 常州大学 The Preparation equipment of large area perovskite thin film
KR20210093863A (en) * 2018-11-28 2021-07-28 어플라이드 머티어리얼스, 인코포레이티드 A deposition source, deposition apparatus, and methods for depositing an evaporation material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127684A1 (en) * 2017-12-28 2019-07-04 深圳市华星光电半导体显示技术有限公司 Evaporation source and evaporation apparatus

Also Published As

Publication number Publication date
JP2005336527A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4458932B2 (en) Vapor deposition equipment
JP4996430B2 (en) Vapor generation apparatus, vapor deposition apparatus, and film formation method
JP4767000B2 (en) Vacuum deposition equipment
JP5358778B2 (en) Film forming apparatus, evaporation jig, and measuring method
KR100823508B1 (en) Evaporation source and organic matter sputtering apparatus with the same
CN101622372B (en) Deposition source, deposition apparatus and method for forming organic thin film
JP5081899B2 (en) Vapor deposition source, vapor deposition apparatus, film formation method
US20070231460A1 (en) Film formation method
JP4545010B2 (en) Vapor deposition equipment
JP2008075095A (en) Vacuum deposition system and vacuum deposition method
KR20110002790A (en) Vacuum vapor deposition apparatus
JP2007186787A (en) Vapor deposition pot, thin-film forming apparatus provided therewith and method for producing display device
KR101084275B1 (en) Source gas supplying unit, deposition device having the same and method thereof
WO2013132794A1 (en) Vapor deposition device
JP3756458B2 (en) Molecular beam source cell for thin film deposition
JP2006111926A (en) Vapor deposition system
JP2003301255A (en) Molecular beam source cell for depositing thin film and method for thin film deposition
KR101191690B1 (en) Deposition source, deposition apparatus and method for forming organic thin film
KR100684739B1 (en) Apparatus for sputtering organic matter
JP2009228090A (en) Vapor deposition apparatus and vapor deposition source
KR100647585B1 (en) Effusion cell and method for depositing substrate with the effusion cell
KR100647578B1 (en) Apparatus and Method for evaporation
KR20070082699A (en) Array method of linear type crucible with multi nozzles for large-size oled deposition
JP6117509B2 (en) Vapor deposition equipment
KR100705348B1 (en) Apparatus for fabricating organic electro luminescence display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R151 Written notification of patent or utility model registration

Ref document number: 4458932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees