JP2006111926A - Vapor deposition system - Google Patents

Vapor deposition system Download PDF

Info

Publication number
JP2006111926A
JP2006111926A JP2004300838A JP2004300838A JP2006111926A JP 2006111926 A JP2006111926 A JP 2006111926A JP 2004300838 A JP2004300838 A JP 2004300838A JP 2004300838 A JP2004300838 A JP 2004300838A JP 2006111926 A JP2006111926 A JP 2006111926A
Authority
JP
Japan
Prior art keywords
vapor deposition
evaporation
discharge
temperature
evaporation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300838A
Other languages
Japanese (ja)
Inventor
Tetsuya Inoue
鉄也 井上
Hiroyuki Daiku
博之 大工
Kazuto Suzuki
和人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2004300838A priority Critical patent/JP2006111926A/en
Publication of JP2006111926A publication Critical patent/JP2006111926A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition system capable of measuring the amount of a vapor deposition material to be released over a long period even in the vicinity of a release port for the evaporation material where the release concentration of the evaporation material is high. <P>SOLUTION: The vapor deposition system is provided with: a thermocouple 21a (21b) provided at the edge part of a hole part 4a (5c) for discharging an evaporation material; and a monitoring controller 11 of calculating a temperature deviation between a heating set temperature in a vessel 4 (5) for release and a measured temperature detected by the thermocouple 21a (21b), and, based on the temperature deviation, the release rate, i.e., the proportion of the evaporation material to be released is obtained. Thus, differently from the case where a film thickness gauge on which the evaporation material is deposited is installed at a place in which the release concentration of the evaporation material is extremely high, and the proportion to be released is detected as shown in the conventional quartz resonator type, there is no problem on the deposition of the evaporation material and continuous use over a long period is possible, thus the reduction in the working ratio of the vapor deposition system can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被蒸着部材に蒸発させた材料を蒸着させる装置に関し、例えば有機ELディスプレイなどの画像表示部を製造するための蒸着装置などにも適用可能な技術に関するものである。   The present invention relates to an apparatus for depositing evaporated material on a member to be deposited, and relates to a technique applicable to, for example, a deposition apparatus for manufacturing an image display unit such as an organic EL display.

近年、ディスプレイの薄型化が進み、この種のディスプレイとしては、液晶ディスプレイの実用化が非常に進んでいる。この液晶画面については、バックライトを必要とするもので、視野範囲、消費電力などの点で難点があり、最近、自発光性の有機EL方式のディスプレイが注目されている。   In recent years, thinning of displays has progressed, and as this type of display, liquid crystal displays have been put to practical use. This liquid crystal screen requires a backlight and has difficulties in view range, power consumption, etc. Recently, a self-luminous organic EL display has been attracting attention.

ところで、有機ELディスプレイの基本構造は、ガラス基板上に、陽極(透明電極)を配置し、この上に、ホール輸送層および発光層が順番に配置され、さらに陰極が配置されたものであり、少なくとも、前記発光層については、有機材料が蒸着により形成されている。   By the way, the basic structure of the organic EL display is an arrangement in which an anode (transparent electrode) is arranged on a glass substrate, a hole transport layer and a light emitting layer are arranged in this order, and a cathode is further arranged. At least for the light emitting layer, an organic material is formed by vapor deposition.

そして、基板上に、蒸着により薄膜を形成する場合、真空容器内に有機材料の蒸発源を配置しておき、真空状態で蒸発源を加熱し、その蒸気(以下、蒸発材料という)を同じく真空容器内に配置された基板の表面に付着させることにより薄膜が形成されていた。   When a thin film is formed on a substrate by vapor deposition, an organic material evaporation source is placed in a vacuum vessel, the evaporation source is heated in a vacuum state, and the vapor (hereinafter referred to as evaporation material) is vacuumed. The thin film was formed by making it adhere to the surface of the board | substrate arrange | positioned in a container.

ところで、上述した蒸着装置には、通常、上記基板に蒸着される蒸着膜の膜厚を検出し監視を行うための膜厚計が基板のそばに備えられており、この膜厚計には、例えば水晶振動子が用いられたものがある。そして、この水晶振動子式の膜厚計により基板に成膜される膜厚の測定を行い、蒸着材料の蒸発量を制御することにより、蒸着膜の品質の向上がはかられていた(例えば、特許文献1参照)。   By the way, in the above-described vapor deposition apparatus, a film thickness meter for detecting and monitoring the film thickness of the vapor deposited film deposited on the substrate is usually provided near the substrate. For example, there is one using a crystal resonator. And, by measuring the film thickness formed on the substrate with this crystal oscillator type film thickness meter and controlling the evaporation amount of the vapor deposition material, the quality of the vapor deposition film has been improved (for example, , See Patent Document 1).

なお、従来、複数の蒸着材料を基板に蒸着させる際は、蒸発した蒸着材料である蒸発材料の混合比により蒸着膜の品質が変わるため、各蒸発材料を個別に放出してその放出レートを計測し、各蒸発材料の放出量を制御する必要がある。
特開平7−331421号公報
Conventionally, when depositing multiple vapor deposition materials on a substrate, the quality of the vapor deposition film changes depending on the mixing ratio of the vaporized vaporized material, so each vaporized material is released individually and its release rate is measured. Therefore, it is necessary to control the discharge amount of each evaporation material.
JP-A-7-331421

しかし、各蒸発材料の放出量の検出を行う際、上記特許文献1に示すように水晶振動子式の膜厚計が真空容器の上部に設けられていると、混合後の蒸発材料の放出量しか検出することができないという問題がある。   However, when detecting the release amount of each evaporation material, as shown in Patent Document 1, if the quartz vibrator type film thickness meter is provided on the upper part of the vacuum container, the release amount of the evaporation material after mixing There is a problem that it can only be detected.

また、各蒸発材料の放出量を検出するために各蒸発材料の放出口付近に前記膜厚計を設けた場合、水晶振動子の表面に蒸発材料が付着し、測定精度が徐々に低下することとなるため、定期的に膜厚計を交換しなければならず、長期間使用することができないという問題がある。なお、前記放出口付近は基板付近よりもはるかに蒸発材料の放出濃度が高いため、前記膜厚計を基板付近に設けた場合に比べて、前記膜厚計の交換頻度はさらに高くなる。   In addition, when the film thickness meter is provided near the outlet of each evaporation material to detect the amount of each evaporation material released, the evaporation material adheres to the surface of the crystal unit, and the measurement accuracy gradually decreases. Therefore, there is a problem that the film thickness meter must be replaced periodically and cannot be used for a long time. In addition, since the concentration of the evaporated material is much higher in the vicinity of the discharge port than in the vicinity of the substrate, the replacement frequency of the film thickness meter is further increased as compared with the case where the film thickness meter is provided in the vicinity of the substrate.

また、水晶振動子を交換する際、蒸着装置を停止させなければならないため、装置の稼働率が低下するという問題がある。
そこで本発明は、蒸発材料の放出濃度が高い蒸発材料の放出口付近であっても蒸発材料の放出量を長期間測定することができる蒸着装置を提供することを目的としたものである。
In addition, when replacing the crystal resonator, the vapor deposition apparatus must be stopped, which causes a problem that the operating rate of the apparatus is reduced.
Accordingly, an object of the present invention is to provide a vapor deposition apparatus capable of measuring the amount of evaporating material released for a long period of time even in the vicinity of the evaporating material emitting port where the evaporating material emission concentration is high.

前記した目的を達成するために、本発明の請求項1に記載の発明は、蒸発された蒸着材料である蒸発材料を被蒸着部材に付着させて蒸着を行う蒸着装置であって、前記蒸着材料を加熱する蒸発用加熱手段を有し前記蒸着材料を蒸発させる蒸発源と、前記蒸発源からの前記蒸発材料が放出される蒸発材料取出用開口部とを有する蒸着手段を備え、且つ前記蒸発材料取出用開口部の縁部に設けられた温度検出手段と、前記蒸発材料の加熱設定温度と前記温度検出手段により検出された測定温度との温度偏差を算出する制御手段とを具備し、前記制御手段は前記温度偏差に基づいて前記蒸発源より蒸発される前記蒸発材料の放出量を制御することを特徴としたものである。   In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is a vapor deposition apparatus for performing vapor deposition by attaching an evaporated material, which is an evaporated vapor deposition material, to a member to be vapor-deposited. An evaporation source having an evaporation heating means for evaporating the evaporation material, and an evaporation material extraction opening through which the evaporation material is discharged from the evaporation source, and the evaporation material Temperature control means provided at the edge of the extraction opening, and control means for calculating a temperature deviation between the heating set temperature of the evaporating material and the measured temperature detected by the temperature detection means, and the control The means controls the discharge amount of the evaporating material evaporated from the evaporation source based on the temperature deviation.

また、請求項2に記載の発明は、蒸発された蒸着材料である蒸発材料を被蒸着部材に付着させて蒸着を行う蒸着装置であって、前記蒸着材料を加熱する蒸発用加熱手段を有し前記蒸着材料を蒸発させる蒸発源と、前記蒸発源で蒸発された蒸発材料を導く蒸発材料誘導路と、蒸発材料取出用開口部が形成され前記蒸発材料誘導路から導かれた前記蒸発材料を放出させる拡散用部材とを有する蒸着手段を備え、且つ前記蒸発材料取出用開口部の縁部に設けられた温度検出手段と、前記拡散用部材の加熱設定温度と前記温度検出手段により検出された測定温度との温度偏差を算出する制御手段とを具備し、前記制御手段は前記温度偏差に基づいて前記蒸発源より蒸発される前記蒸発材料の放出量を制御することを特徴としたものである。   The invention according to claim 2 is a vapor deposition apparatus that performs vapor deposition by attaching an evaporated material, which is an evaporated vapor deposition material, to a member to be vapor-deposited, and has a heating means for evaporation that heats the vapor deposition material. An evaporation source for evaporating the deposition material, an evaporation material guiding path for guiding the evaporation material evaporated by the evaporation source, and an evaporation material extraction opening formed to release the evaporation material guided from the evaporation material guiding path A temperature detecting means provided at an edge of the evaporating material extraction opening, a heating set temperature of the diffusion member, and a measurement detected by the temperature detecting means. Control means for calculating a temperature deviation with respect to the temperature, and the control means controls the discharge amount of the evaporating material evaporated from the evaporation source based on the temperature deviation.

そして、請求項3に記載の発明は、請求項1または請求項2に記載の発明であって、前記蒸発材料誘導路に前記蒸発材料の放出量の調整を行う放出量調節手段が設けられ、前記制御手段は、前記温度偏差に基づいて前記放出量調節手段を制御することを特徴としたものである。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein a discharge amount adjusting means for adjusting a discharge amount of the evaporation material is provided in the evaporation material guiding path, The control means controls the discharge amount adjusting means based on the temperature deviation.

さらに、請求項4に記載の発明は、請求項1から請求項3のいずれか1項に記載の発明であって、前記制御手段は、前記温度偏差に基づいて前記蒸発用加熱手段を制御することを特徴としたものである。   Furthermore, the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the control means controls the heating means for evaporation based on the temperature deviation. It is characterized by that.

しかも、請求項5に記載の発明は、請求項1から請求項4のいずれか1項に記載の発明であって、前記蒸着手段を複数備えたことを特徴としたものである。
また、請求項6に記載の発明は、請求項1から請求項5のいずれか1項に記載の発明であって、前記蒸着手段と前記被蒸着部材の間で且つ被蒸着部材へ向かう蒸発材料の放出経路に、高密度な微細孔を有する均等放出手段を配置したことを特徴としたものである。
In addition, the invention described in claim 5 is the invention described in any one of claims 1 to 4, characterized in that a plurality of the vapor deposition means are provided.
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the evaporation material is directed between the vapor deposition means and the vapor deposition member and toward the vapor deposition member. This is characterized in that uniform discharge means having high-density fine holes are arranged in the discharge path.

本発明の蒸着装置は、蒸発材料取出用開口部の縁部に設けられた温度検出手段により検出された測定温度と拡散用部材の加熱設定温度との温度偏差に基づき、蒸発材料の放出量割合を求めるようにしたので、従来の水晶振動子式のように蒸発材料が堆積する膜厚計を蒸発材料の放出濃度が非常に高い場所に設置して放出量割合を検出する場合とは異なり、蒸発材料が堆積する問題がなく連続して長期間使用することができ、したがって蒸着装置の稼働率が低下することを防止することができる。   The vapor deposition apparatus of the present invention is based on the temperature deviation between the measured temperature detected by the temperature detection means provided at the edge of the evaporating material extraction opening and the heating set temperature of the diffusion member, and the evaporating material release rate ratio Unlike the case where the film thickness meter on which the evaporation material is deposited is installed in a place where the emission concentration of the evaporation material is very high and the emission amount ratio is detected as in the conventional quartz oscillator type, It can be used continuously for a long time without a problem of evaporation material being deposited, and therefore it is possible to prevent the operating rate of the vapor deposition apparatus from being lowered.

以下に、本発明の実施の形態に係る蒸着装置について、図面を参照しながら説明する。
本実施の形態においては、有機ELディスプレイの表示部を製造する場合、すなわち有機材料をガラス基板の表面に蒸着させる場合で、且つ異なる2種類の蒸着材料(有機材料である)を蒸着させる場合について説明する。なお、異なる蒸着材料のうち、主成分である材料を第1蒸着材料(以下、ホストという)と称するとともに、微量材料を第2蒸着材料(以下、ドーパントという)と称し、さらに各蒸着材料を加熱して蒸発させたものを第1および第2蒸発材料と称して説明を行う。
Below, the vapor deposition apparatus which concerns on embodiment of this invention is demonstrated, referring drawings.
In this embodiment, when manufacturing a display unit of an organic EL display, that is, when an organic material is vapor-deposited on the surface of a glass substrate, and when two different kinds of vapor deposition materials (which are organic materials) are vapor-deposited. explain. Of the different vapor deposition materials, the main component material is referred to as a first vapor deposition material (hereinafter referred to as host), the trace material is referred to as a second vapor deposition material (hereinafter referred to as dopant), and each vapor deposition material is further heated. The evaporated materials are referred to as first and second evaporation materials for explanation.

この蒸着装置は、図1に示すように、ガラス基板(被蒸着部材の一例)1が、その蒸着面が下方となるように水平方向で挿入されるとともに保持具2により保持される蒸着用容器(蒸着室ともいう)3と、この蒸着用容器3内の下部で且つ互いに上下に配置されて第1および第2蒸着材料A,Bが蒸発されてなる蒸発材料を放出させる第1および第2放出用容器(拡散用部材の一例)4,5と、第1放出用容器4の上方に配置されて第1および第2放出用容器4,5から放出される蒸発材料を導入して混合させる混合用部材である第3放出用容器6と、上記蒸着用容器3の外部に配置されて互いに種類が異なる第1および第2蒸着材料を加熱して蒸発させる2個の第1および第2蒸発用容器(蒸発源の一例、蒸発室ともいう)7,8と、これら各蒸発用容器7,8で蒸発された蒸発材料を蒸着用容器3内に配置された各放出用容器4,5に導く第1および第2蒸発材料誘導管(蒸発材料誘導路の一例)9,10と、各放出用容器4,5の第1および第2蒸発材料の放出量を検出するとともに、ガラス基板1の表面に形成される蒸着膜の厚さ(以下、膜厚という)などの蒸着状態を監視する監視制御装置(制御手段の一例)11とから構成されている。なお、第1および第2放出用容器4,5と第1および第2蒸発用容器7,8と、第1および第2蒸発材料誘導管9,10と、第1および第2蒸発材料誘導管9,10の途中に設けられ流路の開度を調整する流量制御弁14,15などにより蒸着手段が形成されている。   In this vapor deposition apparatus, as shown in FIG. 1, a glass substrate (an example of a member to be vapor-deposited) 1 is inserted in a horizontal direction so that its vapor deposition surface is downward, and is held by a holder 2. (Also referred to as a vapor deposition chamber) 3 and first and second components that are disposed in the lower part of the vapor deposition container 3 and above and below each other to release the vaporized material obtained by evaporating the first and second vapor deposition materials A and B. Discharge containers (an example of a diffusion member) 4 and 5 and evaporating material disposed above the first discharge container 4 and discharged from the first and second discharge containers 4 and 5 are introduced and mixed. Two first and second evaporations for heating and evaporating the third discharge container 6 as a mixing member and the first and second vapor deposition materials disposed outside the vapor deposition container 3 and having different types from each other. Container (an example of evaporation source, also called evaporation chamber) 7, 8 First and second evaporating material guide pipes (an example of evaporating material guiding path) 9 for guiding the evaporating material evaporated in each evaporating container 7, 8 to each discharging container 4, 5 disposed in the evaporating container 3 , 10 and the discharge amounts of the first and second evaporation materials in the respective discharge containers 4 and 5, and the thickness of the vapor deposition film formed on the surface of the glass substrate 1 (hereinafter referred to as film thickness) It is comprised from the monitoring control apparatus (an example of a control means) 11 which monitors a vapor deposition state. The first and second discharge containers 4 and 5, the first and second evaporation containers 7 and 8, the first and second evaporation material guide tubes 9 and 10, and the first and second evaporation material guide tubes. The vapor deposition means is formed by flow control valves 14 and 15 provided in the middle of 9, 10 for adjusting the opening of the flow path.

次に、上記各放出用容器4,5,6について説明する。
これら各放出用容器4,5,6は所定厚さで且つ平面視が矩形状(勿論、円形、多角形などであってもよい)にされるとともに内部にそれぞれ拡散空間(バッファ空間ともいい、蒸発材料の濃度の均一化を図り得る)4a,5a,6aを有する箱形状の容器にされている。
Next, the discharge containers 4, 5, 6 will be described.
Each of these discharge containers 4, 5, 6 has a predetermined thickness and a rectangular shape in plan view (of course, it may be a circle, a polygon, etc.) and each has a diffusion space (also referred to as a buffer space) It is a box-shaped container having 4a, 5a and 6a (which can make the concentration of the evaporation material uniform).

そして、ガラス基板1へ第1蒸発材料および第2蒸発材料を放出する第3放出用容器6が上方に配置され、第3放出用容器6へ第1蒸発材料を放出する第1放出用容器4が第3放出用容器6の下方に配置され、第3放出用容器6へ第2蒸発材料を放出する第2放出用容器5が第1放出用容器4の下方に配置されている。   A third discharge container 6 that discharges the first evaporation material and the second evaporation material to the glass substrate 1 is disposed above, and the first discharge container 4 that discharges the first evaporation material to the third discharge container 6. Is disposed below the third discharge container 6, and a second discharge container 5 that discharges the second evaporation material to the third discharge container 6 is disposed below the first discharge container 4.

また、図1および図2に示すように、第1放出用容器4の上面には、第1蒸発材料の放出ノズル4bが所定間隔おきに例えば縦横に複数列でもって複数個形成されるとともに、第2放出用容器5の上面には、第2蒸発材料の放出ノズル5bが所定間隔おきに例えば縦横に複数列でもって複数個形成されている。なお、第1蒸発材料の放出ノズル4bと第2蒸発材料の放出ノズル5bはそれぞれ交互に配置されており、これら放出ノズル4b,5bは第3放出用容器6の下面に接続されている。   Further, as shown in FIGS. 1 and 2, a plurality of discharge nozzles 4b of the first evaporation material are formed on the upper surface of the first discharge container 4 in a plurality of rows, for example, vertically and horizontally at predetermined intervals. On the upper surface of the second discharge container 5, a plurality of second evaporation material discharge nozzles 5b are formed in a plurality of rows, for example, vertically and horizontally at predetermined intervals. The first evaporation material discharge nozzles 4 b and the second evaporation material discharge nozzles 5 b are alternately arranged, and these discharge nozzles 4 b and 5 b are connected to the lower surface of the third discharge container 6.

図1に示すように、第1および第2蒸発材料が放出される際の各放出用容器4,5の温度を検出(測定)するために、上記各放出用容器4,5の端縁側には蒸発材料取出用孔部(蒸発材料取出用開口部の一例)4c,5cがそれぞれ形成されており、その検出に際し、当該蒸発材料取出用孔部4c,5cから放出される測定用の第1および第2蒸発材料が第3放出用容器6から放出される第1および第2蒸発材料と混ざることを阻止するための隔離板12,13がそれぞれ設けられている。   As shown in FIG. 1, in order to detect (measure) the temperature of each of the discharge containers 4 and 5 when the first and second evaporating materials are discharged, on the edge side of each of the discharge containers 4 and 5. Are formed with evaporating material take-out holes (an example of evaporating material take-out openings) 4c and 5c, respectively, and in the detection thereof, the first measurement material discharged from the evaporating material take-out holes 4c and 5c. Separator plates 12 and 13 for preventing the second evaporating material from being mixed with the first and second evaporating materials discharged from the third discharge container 6 are provided.

また、図3に示すように、上記第3放出用容器6の上部には、金属部材により形成され高密度な微細孔を有する放出板であるメッシュ板(均等放出手段の一例)19a,19bが複数枚(実施の形態では2枚)設けられており、また第3放出用容器6の外側面には、上下に配置され、第3放出用容器6自体を加熱し所定温度に維持するための温度維持手段であるパイプ20が設けられている。なお、このパイプ20は高周波誘導加熱用電極であり、パイプ20の内部に冷却水供給部(図示せず)から供給された冷却水を循環させることにより第3放出用容器6の冷却が行われる。そして、このパイプ20から流出した冷却水の温度を測定することにより、高周波電源(図示せず)のパワーが調整される。   Further, as shown in FIG. 3, mesh plates (an example of uniform discharge means) 19a and 19b, which are discharge plates formed of metal members and having high-density fine holes, are provided on the upper part of the third discharge container 6. A plurality of sheets (two in the embodiment) are provided, and arranged on the outer surface of the third discharge container 6 so as to heat and maintain the third discharge container 6 itself at a predetermined temperature. A pipe 20 serving as a temperature maintaining means is provided. The pipe 20 is a high-frequency induction heating electrode, and cooling of the third discharge container 6 is performed by circulating cooling water supplied from a cooling water supply unit (not shown) inside the pipe 20. . And the power of a high frequency power supply (not shown) is adjusted by measuring the temperature of the cooling water flowing out from the pipe 20.

上記第1蒸発材料誘導管9は第1蒸発用容器7内で蒸発された第1蒸発材料を第1放出用容器4に導くためのもので、また第2蒸発材料誘導管10は第2蒸発用容器8内で蒸発された第2蒸発材料を第2放出用容器5に導くためのものであり、さらにそれぞれの途中には、蒸発材料の移送量すなわち放出量の調節および開閉を行い得る流量制御弁(放出量調節手段の一例で、例えば開度の調節機能を有する開閉弁でもよい)14,15が設けられている。   The first evaporating material guide tube 9 is for guiding the first evaporating material evaporated in the first evaporating vessel 7 to the first releasing vessel 4, and the second evaporating material guiding tube 10 is used for the second evaporation. The second evaporating material evaporated in the container 8 is guided to the second discharging container 5. Further, in the middle of each, a flow rate at which the transfer amount of the evaporating material, that is, the discharge amount can be adjusted and opened and closed. Control valves (an example of the discharge amount adjusting means, which may be, for example, an opening / closing valve having an opening adjusting function) 14 and 15 are provided.

また、各放出用容器4,5および各蒸発材料誘導管9,10の表面の略全体に亘って、保温のための放出用加熱手段であるシースヒータ16(保温手段ともいえる)が配置されており、各蒸発材料をそれぞれ最適な温度に保持(維持)するように考慮されている(なお、図2には、放出用容器5に設けた場合についてだけ図示している)。   In addition, a sheath heater 16 (also referred to as a heat retaining means), which is a heating means for heat retention, is disposed over substantially the entire surface of each of the discharge containers 4 and 5 and each of the evaporation material guide tubes 9 and 10. Each evaporation material is considered to be held (maintained) at an optimum temperature (note that FIG. 2 shows only the case where it is provided in the discharge container 5).

なお、上記各蒸発用容器7,8には、各蒸発用容器7,8を加熱して蒸着材料を蒸発させるための電熱ヒータ(蒸発用加熱手段の一例)17,18が設けられている。
次に、上記監視制御装置11について説明する。
The evaporation containers 7 and 8 are provided with electric heaters (an example of evaporation heating means) 17 and 18 for heating the evaporation containers 7 and 8 to evaporate the vapor deposition material.
Next, the monitoring control device 11 will be described.

この監視制御装置11は、図1に示すように、各放出用容器4(5)が各蒸発材料を放出する際の蒸発材料取出用孔部4c,5cの縁部における温度を検出し得る熱電対(温度検出手段の一例で、温度測定手段ともいう)21a,21bと、ガラス基板1の直ぐ傍の位置に配置されて蒸発材料が付着した膜厚を検出するための膜厚計である膜厚検出用センサ22と、上記熱電対21a(21b)により検出された測定温度と放出用容器4(5)の加熱設定温度とより放出用容器4(5)からの各蒸発材料の放出量割合を示す放出レートX(Y)(単位時間あたりに放出される蒸発材料量)を求めてこの放出レートX(Y)が予め設定された放出レートX´(Y´)(後述する)に維持されるように制御するための放出レート維持手段23と、上記膜厚検出用センサ22からの検出信号を入力してガラス基板1に蒸着された膜厚を求める膜厚検出手段24と、放出レート維持手段23から入力された制御信号(後述する)に基づいて蒸発材料誘導管9(10)に設けられた流量制御弁14(15)の開度調節を行う開度調節手段25と、同じく放出レート維持手段23から入力された制御信号に基づいて電熱ヒータ17(18)の加熱調節を行う加熱調節手段26と、放出レートX(Y)と放出レートX´(Y´)との偏差値および膜厚を表示する表示手段であるモニター(プリンターなどでもよい)27とから構成されている。なお、上記膜厚検出用センサ22としては、水晶振動子からなるものや蒸着膜の厚さを光学的に読み取る光学膜厚計などが用いられる。   As shown in FIG. 1, the monitoring control device 11 is a thermoelectric device that can detect the temperature at the edge of the evaporating material extraction holes 4c, 5c when each emissive container 4 (5) releases the evaporating material. A pair of film thickness gauges 21a and 21b (which are an example of temperature detection means, also referred to as temperature measurement means) and a film thickness meter for detecting the film thickness to which the evaporation material is attached, located at a position immediately adjacent to the glass substrate Discharge amount ratio of each evaporation material from the discharge container 4 (5) based on the thickness detection sensor 22, the measured temperature detected by the thermocouple 21a (21b), the heating set temperature of the discharge container 4 (5) The release rate X (Y) (the amount of evaporated material released per unit time) is obtained, and this release rate X (Y) is maintained at a preset release rate X ′ (Y ′) (described later). Release rate maintaining means 23 for controlling Based on a film thickness detecting means 24 for obtaining a film thickness deposited on the glass substrate 1 by inputting a detection signal from the film thickness detecting sensor 22 and a control signal (described later) input from the discharge rate maintaining means 23. The opening degree adjusting means 25 for adjusting the opening degree of the flow rate control valve 14 (15) provided in the evaporating material guiding pipe 9 (10), and the electric heater based on the control signal similarly inputted from the discharge rate maintaining means 23 17 (18) heating adjustment means 26 for adjusting the heating, and a monitor (printer or the like) which is a display means for displaying the deviation value and film thickness between the release rate X (Y) and the release rate X ′ (Y ′). 27). As the film thickness detection sensor 22, an optical film thickness meter or the like that optically reads the thickness of a vapor deposition film or a crystal oscillator is used.

上記放出レート維持手段23は、熱電対21a(21b)が検出した測定温度を入力して膜形成時における放出レートX(Y)を求める放出レート演算部23aと、各放出用容器4,5での所望の放出レートX´(Y´)を設定する放出レート設定部23bと、放出レート検出部23aで検出された放出レートX(Y)を入力するとともに放出レート設定部23bに設定された放出レートX´(Y´)を入力して放出レートX(Y)と放出レートX´(Y´)との偏差(値)を算出し、この偏差に基づいて生成された制御信号を開度調節手段25と加熱調節手段26へ出力するとともに、上記偏差値をモニター27へ出力する放出レート制御部23cとから構成されている。   The release rate maintaining means 23 includes a release rate calculation unit 23a for inputting a measured temperature detected by the thermocouple 21a (21b) to obtain a release rate X (Y) at the time of film formation, and each of the discharge containers 4 and 5. A release rate setting unit 23b for setting a desired release rate X ′ (Y ′) and a release rate X (Y) detected by the release rate detection unit 23a and a release set in the release rate setting unit 23b The rate X ′ (Y ′) is inputted to calculate the deviation (value) between the release rate X (Y) and the release rate X ′ (Y ′), and the opening degree of the control signal generated based on this deviation is adjusted. The discharge rate control unit 23c outputs the deviation value to the monitor 27 as well as the means 25 and the heating adjustment means 26.

上記放出レート演算部23aは、放出用容器4(5)の加熱設定温度から熱電対21a(21b)により検出された測定温度を減算することにより求められる温度偏差ΔT(℃)と放出レート(Å/s)との関係を示す基準データ(図4)を有している。そして、膜形成時において上記温度偏差ΔTが算出されることにより、上記基準データから放出用容器4(5)の膜形成中の放出レートX(Y)が求められる。   The release rate calculation unit 23a calculates the temperature deviation ΔT (° C.) and the release rate (Å) determined by subtracting the measured temperature detected by the thermocouple 21a (21b) from the heating set temperature of the discharge container 4 (5). / S) has reference data (FIG. 4) showing the relationship. Then, by calculating the temperature deviation ΔT during film formation, the release rate X (Y) during film formation of the discharge container 4 (5) is obtained from the reference data.

上記基準データは、図5に示す実験装置31により事前に求められており、実験装置31は、蒸着材料を加熱して蒸発させる蒸発用容器32と接続部材33を介して接続され、複数のノズル部34aが形成されている放出用容器34と、いずれか1つのノズル部34aの縁部に設けられ、ノズル部34aの縁部における温度すなわち放出用容器34自体の局部的な温度を検出する熱電対35と、ノズル部34aの上部に配置され、当該ノズル部34aからの放出量を膜厚として測定する膜厚計36を備えている。なお、上記実験装置31は、蒸着用容器内に配置され、蒸着用容器内の空気を排出可能(真空可能)にされている。また、ノズル部34aは蒸発材料との熱交換が行われやすいため、温度を計測する際はノズル部34aの温度を計測する。   The reference data is obtained in advance by the experimental device 31 shown in FIG. 5, and the experimental device 31 is connected via an evaporating container 32 for heating and evaporating the vapor deposition material through a connecting member 33, and includes a plurality of nozzles. The thermoelectric device is provided at the edge of the discharge container 34 formed with the part 34a and one of the nozzle parts 34a, and detects the temperature at the edge of the nozzle part 34a, that is, the local temperature of the discharge container 34 itself. A film thickness meter 36 is provided which is disposed above the pair 35 and the nozzle portion 34a and measures the amount of discharge from the nozzle portion 34a as the film thickness. The experimental apparatus 31 is arranged in a vapor deposition container so that the air in the vapor deposition container can be discharged (vacuumable). Moreover, since the nozzle part 34a is easily subjected to heat exchange with the evaporation material, the temperature of the nozzle part 34a is measured when measuring the temperature.

上記実験装置31による実験に際しては、上記放出用容器34の設定温度を340℃に維持し、熱電対35により蒸発用容器32のノズル部34aの温度を検出するとともに膜厚計36によりノズル部34aから放出される蒸発材料の単位時間あたりの放出量を求め、そして上記設定温度と熱電対35により検出された測定温度との温度偏差ΔTと、上記単位時間あたりの放出量割合である放出レートとの関係を求めることにより、上記基準データが得られる。   In the experiment by the experimental apparatus 31, the set temperature of the discharge container 34 is maintained at 340 ° C., the temperature of the nozzle part 34 a of the evaporation container 32 is detected by the thermocouple 35, and the nozzle part 34 a is detected by the film thickness meter 36. The amount of the evaporated material released from the unit is calculated, and the temperature deviation ΔT between the set temperature and the measured temperature detected by the thermocouple 35, and the release rate that is the ratio of the amount released per unit time, By obtaining the relationship, the reference data is obtained.

上記構成において、2種類の蒸着材料すなわちホストおよびドーパントを、ガラス基板1に蒸着させる場合について説明する。
すなわち、第1蒸発用容器7および第2蒸発用容器8を、それぞれ加熱設定温度に加熱して、第1蒸着材料であるホストおよび第2蒸着材料であるドーパントを蒸発させ、それぞれ蒸発材料誘導管9,10を介して第1放出用容器4および第2放出用容器5内の拡散空間4a,5aに導き、そして、第1放出用容器4の各放出ノズル4bおよび第2放出用容器5の各放出ノズル5bを介して第3放出用容器6へ導く。このとき、蒸発材料誘導管9,10および放出用容器4,5はシースヒータ16により、また放出用容器6は誘導加熱によりそれぞれ最適な温度に維持されている。なお、蒸発材料をガラス基板1に蒸着させる蒸着用容器3内および各容器4〜8および各誘導管9,10は所定の真空度にされている。
In the above configuration, a case where two kinds of vapor deposition materials, that is, a host and a dopant are vapor-deposited on the glass substrate 1 will be described.
That is, the first evaporation container 7 and the second evaporation container 8 are respectively heated to the heating set temperature to evaporate the host as the first vapor deposition material and the dopant as the second vapor deposition material, respectively. 9 and 10 to the diffusion spaces 4a and 5a in the first discharge container 4 and the second discharge container 5, and the discharge nozzles 4b of the first discharge container 4 and the second discharge container 5 It guides to the 3rd container 6 for discharge via each discharge nozzle 5b. At this time, the evaporating material induction tubes 9 and 10 and the discharge containers 4 and 5 are maintained at optimum temperatures by the sheath heater 16, and the discharge container 6 is maintained at an optimum temperature by induction heating. In addition, the inside of the container 3 for vapor deposition which vapor-deposits evaporation material on the glass substrate 1, each container 4-8, and each induction | guidance | derivation tube 9, 10 is made into the predetermined vacuum degree.

そして、第3放出用容器6の拡散空間6aに導かれたホストおよびドーパントは、両メッシュ板19a,19bの網目から放出され、したがってこれら両蒸発材料は均一な混合状態且つ均一分布でガラス基板1の表面に付着して有機材料の膜が形成される。   Then, the host and dopant introduced into the diffusion space 6a of the third release container 6 are released from the meshes of both mesh plates 19a and 19b, so that these two evaporation materials are uniformly mixed and distributed in a uniform manner. A film of an organic material is formed on the surface.

この膜形成時において、放出レート演算部23aは、熱電対21a(21b)により検出された測定温度を入力して、放出用容器4(5)の加熱設定温度から測定温度を減算することにより温度偏差ΔTを算出し、この温度偏差ΔTと実験装置31により予め求められた基準データから放出用容器4(5)の膜形成中の放出レートX(Y)を求める。そして、この放出レートX(Y)と放出レート設定部23bから入力した放出レートX´(Y´)との偏差を算出し、この偏差を解消するように制御をおこなうための制御信号を開度調節手段25へ出力して、蒸発用容器7(8)から放出される各蒸発材料の放出量を制御する。なお、開度調節手段25のみで蒸発材料の放出量の制御が困難である場合は、上記制御信号を加熱調節手段26にも出力して、開度調節手段25とともに放出量の制御を行う。   At the time of this film formation, the discharge rate calculation unit 23a inputs the measured temperature detected by the thermocouple 21a (21b), and subtracts the measured temperature from the heating set temperature of the discharge container 4 (5). A deviation ΔT is calculated, and a release rate X (Y) during film formation of the discharge container 4 (5) is obtained from the temperature deviation ΔT and reference data obtained in advance by the experimental apparatus 31. Then, a deviation between the release rate X (Y) and the release rate X ′ (Y ′) input from the release rate setting unit 23b is calculated, and a control signal for performing control so as to eliminate this deviation is opened. It outputs to the adjustment means 25 and controls the discharge | release amount of each evaporation material discharge | released from the container 7 (8) for evaporation. When it is difficult to control the release amount of the evaporation material only by the opening adjustment means 25, the control signal is also output to the heating adjustment means 26, and the release amount is controlled together with the opening adjustment means 25.

制御信号を入力した開度調節手段25は各流量制御弁14(15)へ開信号または閉信号を出力し、この開信号または閉信号を入力した流量制御弁14(15)により蒸発材料の放出量が調節され、蒸発用容器7(8)から放出される各蒸発材料の放出量が制御される。   The opening degree adjusting means 25 to which the control signal is input outputs an open signal or a close signal to each flow control valve 14 (15), and the evaporative material is released by the flow control valve 14 (15) to which this open signal or close signal is input. The amount is adjusted, and the discharge amount of each evaporation material discharged from the evaporation container 7 (8) is controlled.

また、加熱調節手段26にも同様に制御信号が入力された場合、加熱調節手段26は電熱ヒータ17(18)へ加熱信号または減熱信号を出力し、この加熱信号または減熱信号を入力した電熱ヒータ17(18)により蒸発用容器7,8の加熱調節が行われ、蒸発用容器7(8)から放出される各蒸発材料の放出量が制御される。   Similarly, when a control signal is also input to the heating adjustment means 26, the heating adjustment means 26 outputs a heating signal or a heat reduction signal to the electric heater 17 (18), and inputs this heating signal or a heat reduction signal. The heating of the evaporation containers 7 and 8 is adjusted by the electric heater 17 (18), and the discharge amount of each evaporation material discharged from the evaporation container 7 (8) is controlled.

また、膜厚検出用センサ24からの検出信号が膜厚検出手段24に入力されてガラス基板1の表面に形成された膜厚が求められており、ガラス基板1が所定の膜厚に達した場合、膜厚検出手段24は少なくとも開度調節手段25へ強制停止信号を出力し、この強制停止信号を入力した開度調節手段25は両流量制御弁14,15へ閉鎖信号を出力してホストおよびドーパントの放出を停止させる。   Further, a detection signal from the film thickness detection sensor 24 is input to the film thickness detection means 24 to determine the film thickness formed on the surface of the glass substrate 1, and the glass substrate 1 has reached a predetermined film thickness. In this case, the film thickness detecting means 24 outputs a forced stop signal to at least the opening degree adjusting means 25, and the opening degree adjusting means 25 receiving the forced stop signal outputs a closing signal to both flow rate control valves 14 and 15 to provide a host. And stop the emission of dopants.

勿論、上記膜形成時においては、上記偏差値並びにガラス基板1の表面に形成される膜厚が、モニター27に表示されている。
このように、蒸発材料取出用孔部4c(5c)の縁部に設けられている熱電対21a(21b)により検出された測定温度と放出用容器4(5)の加熱設定温度との温度偏差ΔTが算出され、この温度偏差ΔTと上記基準データから放出用容器4(5)の膜形成中の放出レートX(Y)が求められ、この放出レートX(Y)と放出レート設定部23bに予め設定されている放出レートX´(Y´)との偏差が算出され、この偏差を解消するように制御が行われる制御信号が生成される。そして、この制御信号に基づいて流量制御弁14(15)の開度調節を行い、開度調節手段25のみで蒸発材料の放出量の制御が困難である場合は電熱ヒータ17(18)の加熱調節も行うことにより、蒸発用容器7(8)から放出される各蒸発材料の放出量が制御される。
Of course, when the film is formed, the deviation value and the film thickness formed on the surface of the glass substrate 1 are displayed on the monitor 27.
Thus, the temperature deviation between the measured temperature detected by the thermocouple 21a (21b) provided at the edge of the evaporating material extraction hole 4c (5c) and the heating set temperature of the discharge container 4 (5). ΔT is calculated, and the release rate X (Y) during film formation of the release container 4 (5) is obtained from the temperature deviation ΔT and the reference data. The release rate X (Y) and the release rate setting unit 23b A deviation from a preset release rate X ′ (Y ′) is calculated, and a control signal is generated that is controlled to eliminate this deviation. Then, the opening degree of the flow rate control valve 14 (15) is adjusted based on this control signal, and when it is difficult to control the amount of evaporating material released only by the opening degree adjusting means 25, the electric heater 17 (18) is heated. By performing the adjustment, the discharge amount of each evaporation material discharged from the evaporation container 7 (8) is controlled.

なお、2種類の蒸着材料、すなわちホストとドーパントとの混合比が、例えばホスト:ドーパント=100:1などの場合、上記流量制御弁14,15のみでの制御が困難となるため、事前に、上記第1および第2蒸発材料誘導管9,10の径の大きさを変えることにより、例えば割合の低いドーパントが通過する蒸発材料誘導管の径を小さくすることにより、放出量の制御を容易に行うことができる。   In addition, when the mixing ratio of two kinds of vapor deposition materials, that is, a host and a dopant is, for example, host: dopant = 100: 1, it becomes difficult to control only with the flow rate control valves 14 and 15. By changing the size of the diameters of the first and second evaporating material guiding tubes 9 and 10, for example, by reducing the diameter of the evaporating material guiding tube through which a low proportion of the dopant passes, the emission amount can be easily controlled. It can be carried out.

以上のように実施の形態によれば、蒸発材料取出用孔部4c(5c)の縁部に設けられた熱電対21a(21b)により検出された測定温度と放出用容器4(5)の加熱設定温度との温度偏差ΔTに基づき、放出レートすなわち蒸発材料の放出量割合を求めるようにしたので、従来の水晶振動子式のように蒸発材料が堆積する膜厚計を蒸発材料の放出濃度が非常に高い場所に設置して放出量割合を検出する場合とは異なり、蒸発材料が堆積する問題がなく連続して長期間使用することができ、したがって蒸着装置の稼働率が低下することを防止することができる。   As described above, according to the embodiment, the measured temperature detected by the thermocouple 21a (21b) provided at the edge of the evaporating material extraction hole 4c (5c) and the heating of the discharge container 4 (5). Based on the temperature deviation ΔT with respect to the set temperature, the release rate, that is, the ratio of the amount of evaporative material released, is determined. Unlike the case where the emission rate is detected by installing in a very high place, it can be used continuously for a long time without the problem of evaporating material accumulation, thus preventing the operating rate of the vapor deposition system from being lowered. can do.

なお、上記実施の形態では、各蒸発材料取出用孔部4c,5cの近傍に、隔離板12,13を配置したが、隔離板12,13の替わりに、各蒸発材料取出用孔部からの蒸発材料だけを導出する管状のガイド部材を配置し、このガイド部材の縁部に熱電対を設けてもよい。なお、これら各蒸発材料取出用孔部から放出される蒸発材料が第3放出用容器から放出される蒸発材料に量的に影響を与えない場合には、隔離板またはガイド部材を設ける必要はない。   In the above embodiment, the separators 12 and 13 are disposed in the vicinity of the evaporating material take-out holes 4c and 5c. However, instead of the separators 12 and 13, the evaporating material take-out holes are provided from the evaporating material take-out holes. A tubular guide member that guides only the evaporation material may be arranged, and a thermocouple may be provided at the edge of the guide member. In addition, when the evaporation material discharged from each of these evaporation material extraction holes does not affect the evaporation material discharged from the third discharge container quantitatively, it is not necessary to provide a separator or a guide member. .

また、上記実施の形態では、第1および第2蒸発用容器7,8を蒸着用容器3の外方に配置したが、これら蒸発用容器7,8を、蒸発材料誘導管9,10を含めて蒸着用容器3内に配置してもよい。   In the above embodiment, the first and second evaporation containers 7 and 8 are disposed outside the evaporation container 3. However, the evaporation containers 7 and 8 include the evaporation material guide pipes 9 and 10. May be disposed in the deposition container 3.

さらに、上記実施の形態では、放出用容器4,5の間に、熱輻射を遮蔽する部材を設けていなかったが、熱輻射を遮蔽するための遮蔽版であるアイソレータ用プレート(波板等を重ねたものであってもよい)を設けてもよい。   Furthermore, in the above embodiment, no member that shields heat radiation is provided between the discharge containers 4 and 5, but an isolator plate (corrugated plate or the like) that is a shielding plate for shielding heat radiation. May be provided).

加えて、上記実施の形態では、監視制御装置11には、蒸発用容器7(8)から放出される第1および第2蒸発材料の放出量を制御するために、流量制御弁14,15を制御するための開度調節手段25と、電熱ヒータ17,18を制御するための加熱調節手段26が設けられていたが、開度調節手段25もしくは加熱調節手段26のいずれか一方を備えるだけでもよい。   In addition, in the above embodiment, the monitoring control device 11 includes the flow control valves 14 and 15 in order to control the discharge amounts of the first and second evaporation materials released from the evaporation container 7 (8). The opening adjusting means 25 for controlling and the heating adjusting means 26 for controlling the electric heaters 17 and 18 are provided. However, only one of the opening adjusting means 25 or the heating adjusting means 26 is provided. Good.

また、上記実施の形態では、均等放出手段として、第3放出用容器6の上部にメッシュ板19a,19bが2枚設けられていたが、微細孔を均一かつ高密度に配したパンチングメタル板等を1枚または複数枚設けてもよい。   In the above embodiment, two mesh plates 19a and 19b are provided on the upper part of the third discharge container 6 as the uniform discharge means. However, a punching metal plate having fine holes arranged uniformly and with high density, etc. One or more may be provided.

さらに、上記実施の形態では、第1放出用容器4および第2放出用容器5の端縁部に形成されている蒸発材料取出用孔部4c,5cの温度を検出していたが、例えば上記第1および第2放出用容器4,5のような容器を持つことがない場合には、蒸発材料との熱交換がよく行われる場所に形成されているノズル部の縁部の温度を測定すればよい。この範ちゅうには、例えば設定温度で加熱(保温)するマニホールド(多岐管ともいう)を平面内に配置し、マニホールドの各管に放出孔を複数設けて二次元的に放出孔を並べた状態において、計測したい放出孔の縁部の温度を計測し、放出量を制御することも含まれる。なお、これらの放出孔上に上記メッシュ板または上記パンチングメタル板等の均等放出手段を備え、これを通過した蒸発材料が基板へ向かうようにしてもよい。   Further, in the above embodiment, the temperature of the evaporating material extraction holes 4c and 5c formed at the edge portions of the first discharge container 4 and the second discharge container 5 is detected. If there is no container such as the first and second discharge containers 4 and 5, the temperature of the edge of the nozzle formed at a place where heat exchange with the evaporation material is often performed is measured. That's fine. In this category, for example, a manifold (also referred to as a manifold) that is heated (heated) at a set temperature is arranged in a plane, and a plurality of discharge holes are provided in each pipe of the manifold so that the discharge holes are arranged two-dimensionally. The method includes measuring the temperature of the edge of the discharge hole to be measured and controlling the discharge amount. In addition, an equal discharge means such as the mesh plate or the punching metal plate may be provided on these discharge holes, and the evaporated material that has passed through the discharge plate may be directed toward the substrate.

本発明の実施の形態に係る蒸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vapor deposition apparatus which concerns on embodiment of this invention. 同蒸着装置の第2放出用容器の斜視図である。It is a perspective view of the 2nd discharge container of the vapor deposition apparatus. 同蒸着装置の第3放出用容器の斜視図である。It is a perspective view of the 3rd container for discharge of the vapor deposition apparatus. 同蒸着装置の放出レートと温度偏差の関係を示すグラフである。It is a graph which shows the relationship between the discharge | release rate of the vapor deposition apparatus, and a temperature deviation. 同蒸着装置の実験装置の斜視図である。It is a perspective view of the experimental apparatus of the vapor deposition apparatus.

符号の説明Explanation of symbols

1 ガラス基板
4 第1放出用容器
4c 蒸発材料取出用孔部
5 第2放出用容器
5c 蒸発材料取出用孔部
7 第1蒸発用容器
8 第2蒸発用容器
9 第1蒸発材料誘導管
10 第2蒸発材料誘導管
11 監視制御装置
14,15 流量制御弁
17,18 電熱ヒータ
21a 熱電対
21b 熱電対
ΔT 温度偏差
DESCRIPTION OF SYMBOLS 1 Glass substrate 4 1st discharge | emission container 4c Evaporation material extraction hole 5 2nd release container 5c Evaporation material extraction hole 7 1st evaporation container 8 2nd evaporation container 9 1st evaporation material induction tube 10 1st 2 Evaporating material guide tube 11 Monitoring and control devices 14, 15 Flow rate control valves 17, 18 Electric heater 21a Thermocouple 21b Thermocouple ΔT Temperature deviation

Claims (6)

蒸発された蒸着材料である蒸発材料を被蒸着部材に付着させて蒸着を行う蒸着装置であって、
前記蒸着材料を加熱する蒸発用加熱手段を有し前記蒸着材料を蒸発させる蒸発源と、
前記蒸発源からの前記蒸発材料が放出される蒸発材料取出用開口部と
を有する蒸着手段を備え、
且つ前記蒸発材料取出用開口部の縁部に設けられた温度検出手段と、前記蒸発材料の加熱設定温度と前記温度検出手段により検出された測定温度との温度偏差を算出する制御手段とを具備し、前記制御手段は前記温度偏差に基づいて前記蒸発源より蒸発される前記蒸発材料の放出量を制御すること
を特徴とする蒸着装置。
A vapor deposition apparatus for performing vapor deposition by attaching an evaporation material, which is an evaporated vapor deposition material, to a member to be vapor-deposited,
An evaporation source having evaporation heating means for heating the evaporation material, and evaporating the evaporation material;
An evaporation means having an evaporation material extraction opening from which the evaporation material is released from the evaporation source;
And a temperature detecting means provided at an edge of the evaporating material extraction opening, and a control means for calculating a temperature deviation between the heating set temperature of the evaporating material and the measured temperature detected by the temperature detecting means. And the said control means controls the discharge | release amount of the said evaporation material evaporated from the said evaporation source based on the said temperature deviation, The vapor deposition apparatus characterized by the above-mentioned.
蒸発された蒸着材料である蒸発材料を被蒸着部材に付着させて蒸着を行う蒸着装置であって、
前記蒸着材料を加熱する蒸発用加熱手段を有し前記蒸着材料を蒸発させる蒸発源と、
前記蒸発源で蒸発された蒸発材料を導く蒸発材料誘導路と、
蒸発材料取出用開口部が形成され前記蒸発材料誘導路から導かれた前記蒸発材料を放出させる拡散用部材と
を有する蒸着手段を備え、
且つ前記蒸発材料取出用開口部の縁部に設けられた温度検出手段と、前記拡散用部材の加熱設定温度と前記温度検出手段により検出された測定温度との温度偏差を算出する制御手段とを具備し、前記制御手段は前記温度偏差に基づいて前記蒸発源より蒸発される前記蒸発材料の放出量を制御すること
を特徴とする蒸着装置。
A vapor deposition apparatus for performing vapor deposition by attaching an evaporation material, which is an evaporated vapor deposition material, to a member to be vapor-deposited,
An evaporation source having evaporation heating means for heating the evaporation material, and evaporating the evaporation material;
An evaporating material guiding path for guiding evaporating material evaporated by the evaporation source;
A vapor deposition means having a vaporization material extraction opening formed and a diffusion member for discharging the vaporization material guided from the vaporization material guide path;
And a temperature detection means provided at an edge of the evaporative material extraction opening, and a control means for calculating a temperature deviation between the heating setting temperature of the diffusion member and the measured temperature detected by the temperature detection means. The vapor deposition apparatus according to claim 1, wherein the control means controls a discharge amount of the evaporation material evaporated from the evaporation source based on the temperature deviation.
前記蒸発材料誘導路に前記蒸発材料の放出量の調整を行う放出量調節手段が設けられ、
前記制御手段は、前記温度偏差に基づいて前記放出量調節手段を制御すること
を特徴とする請求項1または請求項2に記載の蒸着装置。
A discharge amount adjusting means for adjusting the discharge amount of the evaporation material is provided in the evaporation material guiding path,
The vapor deposition apparatus according to claim 1, wherein the control unit controls the discharge amount adjusting unit based on the temperature deviation.
前記制御手段は、前記温度偏差に基づいて前記蒸発用加熱手段を制御すること
を特徴とする請求項1から請求項3のいずれか1項に記載の蒸着装置。
4. The vapor deposition apparatus according to claim 1, wherein the control unit controls the evaporation heating unit based on the temperature deviation. 5.
前記蒸着手段を複数備えたこと
を特徴とする請求項1から請求項4のいずれか1項に記載の蒸着装置。
The vapor deposition apparatus according to claim 1, comprising a plurality of the vapor deposition means.
前記蒸着手段と前記被蒸着部材の間で且つ被蒸着部材へ向かう蒸発材料の放出経路に、高密度な微細孔を有する均等放出手段を配置したこと
を特徴とする請求項1から請求項5のいずれか1項に記載の蒸着装置。
6. The uniform discharge means having high-density fine holes is arranged between the vapor deposition means and the vapor deposition member and in the vaporization material discharge path toward the vapor deposition member. The vapor deposition apparatus of any one of Claims.
JP2004300838A 2004-10-15 2004-10-15 Vapor deposition system Pending JP2006111926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300838A JP2006111926A (en) 2004-10-15 2004-10-15 Vapor deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300838A JP2006111926A (en) 2004-10-15 2004-10-15 Vapor deposition system

Publications (1)

Publication Number Publication Date
JP2006111926A true JP2006111926A (en) 2006-04-27

Family

ID=36380691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300838A Pending JP2006111926A (en) 2004-10-15 2004-10-15 Vapor deposition system

Country Status (1)

Country Link
JP (1) JP2006111926A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075095A (en) * 2006-09-19 2008-04-03 Hitachi Zosen Corp Vacuum deposition system and vacuum deposition method
JP2008169457A (en) * 2007-01-15 2008-07-24 Matsushita Electric Works Ltd Vacuum deposition system
JP2009097044A (en) * 2007-10-18 2009-05-07 Canon Inc Film deposition apparatus and film deposition method
JP2009108375A (en) * 2007-10-31 2009-05-21 Canon Inc Vapor deposition apparatus and vapor deposition source
JP2009299115A (en) * 2008-06-12 2009-12-24 Hitachi Zosen Corp Vapor deposition apparatus
WO2011081368A3 (en) * 2009-12-31 2011-10-27 Snu Precision Co., Ltd Vaporization apparatus and method for controlling the same
JP2012021209A (en) * 2010-07-16 2012-02-02 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
JP2012052195A (en) * 2010-09-02 2012-03-15 Ulvac Japan Ltd Thin film deposition system and thin film deposition method
WO2012081738A1 (en) * 2010-12-13 2012-06-21 Posco Continuous coating apparatus
JP2012144811A (en) * 2012-04-23 2012-08-02 Canon Inc Film deposition apparatus, and film deposition method
JP2013204101A (en) * 2012-03-29 2013-10-07 Hitachi Zosen Corp Vapor deposition apparatus
KR101320434B1 (en) 2011-05-12 2013-10-23 에스엔유 프리시젼 주식회사 Apparatus for controlling supply of materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125866A (en) * 1988-11-04 1990-05-14 Kobe Steel Ltd Device for applying alloy plating by vapor deposition
JPH04225153A (en) * 1990-12-27 1992-08-14 Ulvac Japan Ltd Evaporation rate monitor
JPH04236769A (en) * 1991-01-17 1992-08-25 Ulvac Japan Ltd Film forming device
JPH05222534A (en) * 1992-02-14 1993-08-31 Anelva Corp Vapor deposition device
JPH0635656B2 (en) * 1986-10-03 1994-05-11 三菱重工業株式会社 Vacuum deposition equipment
JP2003277913A (en) * 2002-03-26 2003-10-02 Eiko Engineering Co Ltd Molecular beam source cell for depositing thin film
JP2003317948A (en) * 2002-04-23 2003-11-07 Ulvac Japan Ltd Evaporation source and thin film formation device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635656B2 (en) * 1986-10-03 1994-05-11 三菱重工業株式会社 Vacuum deposition equipment
JPH02125866A (en) * 1988-11-04 1990-05-14 Kobe Steel Ltd Device for applying alloy plating by vapor deposition
JPH04225153A (en) * 1990-12-27 1992-08-14 Ulvac Japan Ltd Evaporation rate monitor
JPH04236769A (en) * 1991-01-17 1992-08-25 Ulvac Japan Ltd Film forming device
JPH05222534A (en) * 1992-02-14 1993-08-31 Anelva Corp Vapor deposition device
JP2003277913A (en) * 2002-03-26 2003-10-02 Eiko Engineering Co Ltd Molecular beam source cell for depositing thin film
JP2003317948A (en) * 2002-04-23 2003-11-07 Ulvac Japan Ltd Evaporation source and thin film formation device using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075095A (en) * 2006-09-19 2008-04-03 Hitachi Zosen Corp Vacuum deposition system and vacuum deposition method
JP2008169457A (en) * 2007-01-15 2008-07-24 Matsushita Electric Works Ltd Vacuum deposition system
JP2009097044A (en) * 2007-10-18 2009-05-07 Canon Inc Film deposition apparatus and film deposition method
JP2009108375A (en) * 2007-10-31 2009-05-21 Canon Inc Vapor deposition apparatus and vapor deposition source
JP2009299115A (en) * 2008-06-12 2009-12-24 Hitachi Zosen Corp Vapor deposition apparatus
CN102712994A (en) * 2009-12-31 2012-10-03 韩商Snu精密股份有限公司 Vaporization apparatus and method for controlling the same
WO2011081368A3 (en) * 2009-12-31 2011-10-27 Snu Precision Co., Ltd Vaporization apparatus and method for controlling the same
CN102712994B (en) * 2009-12-31 2014-08-20 韩商Snu精密股份有限公司 Vaporization apparatus and method for controlling the same
JP2012021209A (en) * 2010-07-16 2012-02-02 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
JP2012052195A (en) * 2010-09-02 2012-03-15 Ulvac Japan Ltd Thin film deposition system and thin film deposition method
WO2012081738A1 (en) * 2010-12-13 2012-06-21 Posco Continuous coating apparatus
JP2013545900A (en) * 2010-12-13 2013-12-26 ポスコ Continuous coating equipment
US9267203B2 (en) 2010-12-13 2016-02-23 Posco Continuous coating apparatus
KR101320434B1 (en) 2011-05-12 2013-10-23 에스엔유 프리시젼 주식회사 Apparatus for controlling supply of materials
JP2013204101A (en) * 2012-03-29 2013-10-07 Hitachi Zosen Corp Vapor deposition apparatus
JP2012144811A (en) * 2012-04-23 2012-08-02 Canon Inc Film deposition apparatus, and film deposition method

Similar Documents

Publication Publication Date Title
JP4782219B2 (en) Vacuum deposition equipment
JP4767000B2 (en) Vacuum deposition equipment
CN101041891B (en) Vapor deposition source and vapor deposition apparatus
JP2006111926A (en) Vapor deposition system
JP4458932B2 (en) Vapor deposition equipment
CN101182627A (en) Evaporation source and vacuum evaporator using the same
TWI596224B (en) Apparatus of vacuum evaporating
KR101084275B1 (en) Source gas supplying unit, deposition device having the same and method thereof
KR20130105349A (en) Evaporation source apparatus, vacuum deposition apparatus, and method of manufacturing organic el display device
KR20180067463A (en) A measurement assembly for measuring a deposition rate, an evaporation source, a deposition apparatus, and a method therefor
KR102137181B1 (en) Depositing arrangement, deposition apparatus and methods of operation thereof
KR101131960B1 (en) Organic thin film deposition system
KR102082193B1 (en) Measuring assembly for measuring deposition rate and method therefor
JP6207319B2 (en) Vacuum deposition equipment
KR101981752B1 (en) Diffusion barriers for oscillation corrections, measurement assemblies for measuring deposition rates and methods therefor
JP6411675B2 (en) Method for measuring deposition rate and deposition rate control system
KR102337249B1 (en) an evaporation source for depositing the evaporated material on a substrate, a deposition apparatus, a method for measuring the vapor pressure of the evaporated material, and a method for determining an evaporation rate of the evaporated material
KR102123824B1 (en) Thin Film deposition apparatus and control method therefor
JP2006225706A (en) Vapor deposition apparatus
CN112703269A (en) Pretreatment method for pretreating oscillation crystal for measuring deposition rate, deposition rate measuring device, evaporation source, and deposition apparatus
KR20070082699A (en) Array method of linear type crucible with multi nozzles for large-size oled deposition
KR20160023000A (en) Linear Deposition Apparatus and Equipment Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406