JP2009097044A - Film deposition apparatus and film deposition method - Google Patents

Film deposition apparatus and film deposition method Download PDF

Info

Publication number
JP2009097044A
JP2009097044A JP2007270867A JP2007270867A JP2009097044A JP 2009097044 A JP2009097044 A JP 2009097044A JP 2007270867 A JP2007270867 A JP 2007270867A JP 2007270867 A JP2007270867 A JP 2007270867A JP 2009097044 A JP2009097044 A JP 2009097044A
Authority
JP
Japan
Prior art keywords
film forming
film
substrate
connection space
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007270867A
Other languages
Japanese (ja)
Other versions
JP5506147B2 (en
JP2009097044A5 (en
Inventor
Nobutaka Ukigaya
信貴 浮ケ谷
Takehiko Soda
岳彦 曽田
Kyoei Konuma
恭英 小沼
Kiyoshi Kuramochi
清 倉持
Tomokazu Sushigen
友和 須志原
Naohiro Nakane
直広 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007270867A priority Critical patent/JP5506147B2/en
Publication of JP2009097044A publication Critical patent/JP2009097044A/en
Publication of JP2009097044A5 publication Critical patent/JP2009097044A5/ja
Application granted granted Critical
Publication of JP5506147B2 publication Critical patent/JP5506147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably perform a film deposition operation for a long time at a high deposition rate so as to increase productivity of organic EL displays, and to achieve a uniform film thickness distribution. <P>SOLUTION: A film deposition apparatus deposits a sublimed or evaporated deposition material on a substrate W in a deposition chamber. In the apparatus, a linkage space 14 is disposed between a plurality of material-containing parts 10 equipped with heating units 11 and discharge outlets 13 for discharging the deposition material toward the substrate W. A high deposition rate can be achieved by using the plurality of material-containing parts 10. The deposition materials sublimed or evaporated from the individual material-containing parts 10 are mixed in the linkage space 14 and discharged toward the substrate W from the plurality of discharge outlets 13 as vapor, which realizes a uniform film thickness distribution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機発光素子の有機化合物層等を成膜するための成膜装置及び成膜方法に関するものである。   The present invention relates to a film forming apparatus and a film forming method for forming an organic compound layer or the like of an organic light emitting element.

フルカラーフラットパネルディスプレイに対応した表示素子として、有機発光素子(有機電界発光素子)が注目されている。有機発光素子は、蛍光性あるいは燐光性を有する有機化合物層を電気的に励起して発光させる自発光型素子であり、高輝度、高視野角、面発光、薄型で多色発光が可能である、などの特徴を有している。有機発光素子は数nm〜数100nmの厚さで形成される薄膜を複数積層させることにより、所望の機能を発揮するデバイスである。このような有機発光素子を基板面内に配列させて形成されるフラットパネルディスプレイにおいては、素子を構成する複数の薄い有機化合物層の膜厚そのものの精度を高めるとともに、その基板面内での膜厚分布を一定にすることが、製造上の重要な課題となる。   As a display element corresponding to a full-color flat panel display, an organic light emitting element (organic electroluminescent element) has attracted attention. An organic light-emitting element is a self-luminous element that emits light by electrically exciting an organic compound layer having fluorescence or phosphorescence, and is capable of high luminance, high viewing angle, surface emission, thinness, and multicolor emission. , Etc. An organic light emitting element is a device that exhibits a desired function by laminating a plurality of thin films formed with a thickness of several nanometers to several hundred nanometers. In a flat panel display formed by arranging such organic light emitting elements in the substrate plane, the accuracy of the film thickness itself of the plurality of thin organic compound layers constituting the element is increased, and the film in the substrate plane is increased. Making the thickness distribution constant is an important manufacturing issue.

有機発光素子を作製するための成膜装置として、特許文献1に開示された成膜装置が知られている。この装置は、成膜室内にて基板と対向する位置に成膜材料を気体分子として放出する放出口を配置し、放出口と連通した材料収容部を成膜室の外に配置している。そして、放出口と材料収容部を連通した供給路上に設けられた流量規制バルブ(流量調整機構)を閉じることで、成膜室の真空を破ることなく、材料収容部を交換する材料供給作業を実施することが可能である。   As a film forming apparatus for manufacturing an organic light emitting element, a film forming apparatus disclosed in Patent Document 1 is known. In this apparatus, a discharge port that discharges a film forming material as a gas molecule is disposed at a position facing the substrate in the film forming chamber, and a material container that communicates with the discharge port is disposed outside the film forming chamber. Then, by closing the flow rate regulating valve (flow rate adjusting mechanism) provided on the supply path that connects the discharge port and the material storage unit, the material supply operation for replacing the material storage unit without breaking the vacuum of the film forming chamber is performed. It is possible to implement.

したがって、材料交換時にも成膜工程を停止する必要性はなくなり、効率的に作業を進められる。これにより有機発光素子を搭載したフラットパネルディスプレイ(有機ELディスプレイ)の大量生産の生産効率を一段と高めることができる。   Therefore, it is not necessary to stop the film forming process even when the material is changed, and the work can be efficiently performed. Thereby, the production efficiency of mass production of a flat panel display (organic EL display) equipped with an organic light emitting element can be further enhanced.

特開2005−281808号公報JP 2005-281808 A

しかしながら、上記従来技術においても、有機ELディスプレイの大量生産での低コスト化を追求する場合、生産数を増加させるために各層の成膜時間を短縮することが課題となる。   However, also in the above prior art, when pursuing cost reduction in mass production of organic EL displays, it is a problem to shorten the film formation time of each layer in order to increase the number of production.

成膜装置においては、有機発光素子を構成するすべての有機層において、高い成膜速度を達成することが必要となるが、特許文献1には、成膜速度を高めるための具体的な記載はない。   In the film forming apparatus, it is necessary to achieve a high film forming speed in all the organic layers constituting the organic light emitting element. However, Patent Document 1 discloses a specific description for increasing the film forming speed. Absent.

一方で、成膜速度を高めるには下記に示すような手段が知られており、これらを上記成膜装置と併用することも可能ではあるが、それぞれの方法にも以下のような未解決の課題がある。   On the other hand, the following means are known to increase the film formation rate, and these can be used in combination with the film formation apparatus, but each method has the following unsolved problems. There are challenges.

(1)温度を高くする方法
飽和蒸気圧曲線に従えば、材料収容部に充填される成膜材料に加える温度を高くすれば、成膜速度は指数的に上昇することが知られている。しかし有機発光素子を構成する成膜材料には、蒸発あるいは昇華温度と材料分解温度との温度差が非常に狭いものを含むことが多い。このため、実用的な成膜速度(0.1〜100Å/sec)での温度範囲において、温度のみの調整で高い成膜速度を達成することは困難である。
(1) Method of Increasing Temperature It is known that if the temperature applied to the film forming material filled in the material container is increased, the film forming rate increases exponentially according to the saturation vapor pressure curve. However, in many cases, the film forming material constituting the organic light emitting element includes a material having a very narrow temperature difference between the evaporation or sublimation temperature and the material decomposition temperature. For this reason, it is difficult to achieve a high film formation rate by adjusting only the temperature in a temperature range at a practical film formation rate (0.1 to 100 Å / sec).

(2)気化する表面積を増やす方法
材料収容部内で成膜材料が気化する表面積を増やすことで、成膜速度を増加させられることが知られている。ただし、有機発光素子を構成する有機材料の熱伝導性が低いため、広い表面全体で均一温度を達成することは困難であり、通常は温度分布が形成されてしまう。一方で、上記(1)にも記載したように、実用的な成膜速度での許容温度範囲が狭いことから、形成される温度分布によっては、材料収容部に接触する高温部分での材料分解が懸念される。このような課題によって、成膜速度を高めるために表面積を広げる方法は、有機発光素子を構成している有機材料に適用することが難しい。
(2) Method of Increasing the Surface Area to Evaporate It is known that the film formation rate can be increased by increasing the surface area of the film forming material that evaporates in the material container. However, since the organic material constituting the organic light emitting element has low thermal conductivity, it is difficult to achieve a uniform temperature over the entire wide surface, and a temperature distribution is usually formed. On the other hand, as described in (1) above, since the allowable temperature range at a practical film formation rate is narrow, depending on the temperature distribution to be formed, the material decomposition at the high temperature portion in contact with the material accommodating portion Is concerned. Due to such problems, it is difficult to apply the method of increasing the surface area in order to increase the deposition rate to the organic material constituting the organic light emitting element.

また、材料収容部を成膜室の外に配置する都合で放出口や供給路等の構造が必須であることを前提とした場合には、材料収容部内が飽和蒸気圧に近い状態になると、表面積の増加分に対する成膜速度の上昇率が飽和に近づく。このため、高い成膜速度では表面積を増やすことで成膜速度を高める効率は小さくなってしまうという課題もある。   In addition, when it is assumed that the structure of the discharge port, the supply path, etc. is essential for the convenience of disposing the material container outside the film forming chamber, the inside of the material container is close to the saturated vapor pressure, The rate of increase of the film formation rate relative to the increase in surface area approaches saturation. For this reason, there is a problem that, at a high film formation rate, the efficiency of increasing the film formation rate is reduced by increasing the surface area.

(3)材料収容部を増やす方法
ひとつの基板に対して材料収容部の数を増やすと、その積分効果により成膜速度を高めることが可能である。ただし、個々の材料収容部で制御される成膜速度にはばらつきがあり、材料収容部の数を増やすことで基板面内での膜厚分布の誤差が増えてしまう。
(3) Method of Increasing Material Storage Units When the number of material storage units is increased with respect to one substrate, the film formation rate can be increased by the integration effect. However, there is a variation in the film formation rate controlled by each material container, and increasing the number of material containers increases the error in the film thickness distribution in the substrate surface.

本発明は、有機ELディスプレイの生産性をより一層高めるため、複数の材料収容部を用いて高い成膜速度で長時間安定した成膜作業を実施可能であり、しかも均一な膜厚分布を達成することのできる成膜装置及び成膜方法を提供することを目的とするものである。   In order to further increase the productivity of the organic EL display according to the present invention, it is possible to perform a stable film forming operation at a high film forming speed for a long time using a plurality of material accommodating portions, and achieve a uniform film thickness distribution. An object of the present invention is to provide a film forming apparatus and a film forming method capable of performing the above.

上記目的を達成するため、本発明の成膜装置は、真空又は減圧状態で、昇華又は蒸発した成膜材料を基板に成膜する成膜室と、それぞれ成膜材料を収容し、加熱手段によって昇華又は蒸発させる複数の材料収容部と、前記複数の材料収容部から供給される成膜材料を、前記成膜室において基板に向けて放出させる放出口と、前記複数の材料収容部と前記放出口との間で、前記複数の材料収容部を互に連結する連結空間と、を有し、前記複数の材料収容部から供給される成膜材料を前記連結空間を介して前記放出口から放出させることを特徴とする。   In order to achieve the above object, a film forming apparatus of the present invention contains a film forming chamber for forming a film of sublimated or evaporated film forming material on a substrate in a vacuum or a reduced pressure state, and a film forming material. A plurality of material containing portions to be sublimated or evaporated; a discharge port for releasing the film forming material supplied from the plurality of material containing portions toward the substrate in the film forming chamber; the plurality of material containing portions; A connection space connecting the plurality of material storage portions to each other between the outlet and the film forming material supplied from the plurality of material storage portions is discharged from the discharge port through the connection space It is characterized by making it.

本発明の成膜方法は、真空又は減圧状態の成膜室に配置した基板に放出口を対向させ、複数の材料収容部を加熱して昇華又は蒸発させた成膜材料を、供給路を経由して前記放出口から放出して基板に成膜する成膜方法において、前記複数の材料収容部から供給される成膜材料を、前記複数の材料収容部を互に連結する連結空間において混合する工程と、前記連結空間において混合した成膜材料を前記放出口から放出し、基板に成膜する工程と、を有することを特徴とする。   In the film forming method of the present invention, a film forming material obtained by sublimating or evaporating by heating a plurality of material containing portions through a supply path is provided with a discharge port facing a substrate placed in a vacuum or reduced pressure film forming chamber. Then, in the film forming method for forming a film on the substrate by discharging from the discharge port, the film forming material supplied from the plurality of material accommodating portions is mixed in a connection space connecting the plurality of material accommodating portions to each other. And a step of discharging a film forming material mixed in the connection space from the discharge port and forming a film on the substrate.

成膜材料への熱ダメージを抑えた状態で高い成膜速度を得られるように複数の材料収容部を用いる。そして、各材料収容部から昇華又は蒸発させた成膜材料を連結空間において混合することで、膜厚分布を均一にする。   A plurality of material accommodating portions are used so that a high film formation rate can be obtained while suppressing thermal damage to the film formation material. And the film-thickness distribution is made uniform by mixing the film-forming material sublimated or evaporated from each material accommodating part in a connection space.

大判基板において、高い成膜速度で長時間成膜を続ける場合においても、成膜材料の熱ダメージを抑制し、かつ膜厚の不均一を抑制し、高精度な膜厚制御を実現することができる。   Even when film formation is continued for a long time at a high film formation speed on a large substrate, it is possible to suppress thermal damage of the film forming material and to suppress film thickness non-uniformity, thereby realizing highly accurate film thickness control. it can.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、基板Wに有機発光素子の有機化合物層を成膜するために、複数の材料収容部10において成膜材料を加熱機構(加熱手段)11によってそれぞれ加熱し、昇華又は蒸発した成膜材料を供給路12を経由して成膜室内の放出口13へ導く。真空又は減圧状態の成膜室内の基板Wと対向させた位置に、成膜材料Pを放出する複数の放出口13が配置される。   As shown in FIG. 1, in order to form an organic compound layer of an organic light emitting device on a substrate W, the film forming materials are heated by a heating mechanism (heating means) 11 in a plurality of material accommodating portions 10 to be sublimated or evaporated. The formed film forming material is guided to the discharge port 13 in the film forming chamber via the supply path 12. A plurality of discharge ports 13 for discharging the film forming material P are arranged at positions facing the substrate W in the film forming chamber in a vacuum or reduced pressure state.

すなわち、それぞれ供給路12(12−a、12−b、12−c)を介して連結空間14と連通する3つの材料収容部10(10−a、10−b、10−c)は、互に独立して制御可能な加熱機構11(11−a、11−b、11−c)に囲まれている。3つの材料収容部10(10−a、10−b、10−c)には同じ成膜材料を充填してある。   That is, the three material accommodating portions 10 (10-a, 10-b, 10-c) communicating with the connection space 14 via the supply paths 12 (12-a, 12-b, 12-c) are respectively connected to each other. Are surrounded by a heating mechanism 11 (11-a, 11-b, 11-c) that can be controlled independently. Three material accommodating portions 10 (10-a, 10-b, 10-c) are filled with the same film forming material.

このように、同じ材料を充填した複数の材料収容部から蒸発あるいは昇華した成膜材料を、連結空間を介して放出させることで、各材料収容部での成膜速度差を緩和することができる。   As described above, the film forming material evaporated or sublimated from the plurality of material containing portions filled with the same material is discharged through the connection space, so that the difference in film forming speed in each material containing portion can be reduced. .

連結空間において気体として存在する成膜材料が衝突を繰り返し、拡散及び混合することで空間密度を均一化できように、連結空間の大きさは成膜材料の平均自由工程以上に設定しておくことが好ましい。有機発光素子を構成する有機材料の場合、その実用的な範囲において短辺の長さを5mm以上とするのがよい。   The size of the connected space should be set to be equal to or greater than the average free process of the film forming material so that the film density existing as a gas in the connected space repeatedly collides, diffuses and mixes to make the spatial density uniform. Is preferred. In the case of an organic material that constitutes an organic light emitting element, the length of the short side is preferably 5 mm or more within the practical range.

図1の装置における成膜速度を制御する手段は、材料収容部の加熱機構である。たとえば、所定の規格から逸脱して成膜速度あるいはその分布が低下した場合には、各加熱機構を互に独立して制御し、各材料収容部に印加する温度をその誤差を補正するために必要な分上昇させればよい。   The means for controlling the deposition rate in the apparatus of FIG. 1 is a heating mechanism for the material container. For example, in the case where the film formation rate or its distribution is reduced outside the predetermined standard, each heating mechanism is controlled independently of each other, and the temperature applied to each material container is corrected to correct the error. Raise as much as you need.

同じ成膜材料が充填された3つの材料収容部を同時に利用することで、基板面での成膜速度は3つの材料収容部の成膜速度を合成成分とすることができる。その結果、高い成膜速度を達成できるようになる。このことは、成膜速度の高速化において、個々の材料収容部での成膜速度を軽減でき、材料への熱ダメージを抑制できるようになることを意味している。   By simultaneously using the three material storage portions filled with the same film formation material, the film formation speed on the substrate surface can be the composite component of the film formation speed of the three material storage portions. As a result, a high film formation rate can be achieved. This means that in increasing the film forming speed, the film forming speed in each material container can be reduced, and thermal damage to the material can be suppressed.

次に、図1の装置と、同じ構成で材料収容部10を一つしか持たない図6に示す比較例とを用いて、それぞれの成膜速度の違いを導き、本実施形態によれば各材料収容部に必要な成膜速度を軽減できる効果について説明する。   Next, by using the apparatus of FIG. 1 and the comparative example shown in FIG. 6 having the same configuration and only one material container 10, the difference in film forming speed is derived. The effect of reducing the film forming speed necessary for the material container will be described.

なお下記式では、材料収容部で蒸発あるいは昇華した成膜材料が、供給路、連結空間、そして放出口に至る連通空間で分子流として存在するものとして扱う。   In the following formula, the film-forming material evaporated or sublimated in the material container is treated as a molecular flow in the communication space reaching the supply path, the connection space, and the discharge port.

一般に分子流領域での成膜速度は、下記の(式1)に従うことが知られている。なお、成膜速度はQ、コンダクタンスをC、系内の圧力差をΔPとする。   In general, it is known that the deposition rate in the molecular flow region follows the following (Equation 1). The deposition rate is Q, the conductance is C, and the pressure difference in the system is ΔP.

Q=CΔP (式1)
ここでは大量生産時のことを考慮して、材料収容部をある一定温度で加熱しつづける場合、又は材料収容部内が飽和蒸気圧近傍に到達している場合を前提とし、圧力差ΔPはコンダクタンスに依存しないものとして扱う。
Q = CΔP (Formula 1)
Here, in consideration of mass production, it is assumed that the material container is continuously heated at a certain temperature, or the case where the material container reaches the vicinity of the saturated vapor pressure. Treat as independent.

本実施形態による図1の装置と比較例の成膜速度比は(式2)のようになる。なお本実施形態の成膜速度及び合成コンダクタンスをQ1、C1とし、比較例ではQref.、Cref.とした。   The deposition rate ratio between the apparatus of FIG. 1 according to the present embodiment and the comparative example is as shown in (Formula 2). In this embodiment, the film formation rate and the synthetic conductance are Q1 and C1, and in the comparative example, Qref. , Cref. It was.

成膜速度比:Q1/Qref.=C1/Cref. (式2)
一般的に、並列及び直列の合成コンダクタンスは(式3)、(式4)で表せることが知られている。
Deposition rate ratio: Q1 / Qref. = C1 / Cref. (Formula 2)
In general, it is known that the combined conductance in parallel and in series can be expressed by (Expression 3) and (Expression 4).

並列接続の合成コンダクタンス:C=C1+C2+C3+・・・ (式3)
直列接続の合成コンダクタンス:C=(1/C1+1/C2+1/C3+・・・)− 1
(式4)
Composite conductance in parallel connection: C = C1 + C2 + C3 + (Equation 3)
Combined conductance in series: C = (1 / C1 + 1 / C2 + 1 / C3 +...) −1
(Formula 4)

これらにより本実施形態と比較例の合成コンダクタンスは(式5)、(式6)のようになる。なお、各材料収容部とそれに繋がる供給路のコンダクタンスをCa、Cb、Ccとし、連結空間及び放出口のコンダクタンスをCmとする。   As a result, the combined conductance of the present embodiment and the comparative example is expressed by (Equation 5) and (Equation 6). In addition, conductance of each material accommodating part and the supply path connected to it is set to Ca, Cb, Cc, and conductance of a connection space and a discharge port is set to Cm.

本実施形態の合成コンダクタンス:C1=(Cm×(Ca+Cb+Cc))/(Cm+Ca+Cb+Cc) (式5)
比較例の合成コンダクタンス:Cref.=(Cm×Ca)/(Cm+Ca) (式6)
Synthetic conductance of this embodiment: C1 = (Cm × (Ca + Cb + Cc)) / (Cm + Ca + Cb + Cc) (Formula 5)
Synthetic conductance of comparative example: Cref. = (Cm × Ca) / (Cm + Ca) (Formula 6)

たとえば、ここでCm=Ca=Cb=Cc=Aとすると、各合成コンダクタンスは次のように表せる。   For example, if Cm = Ca = Cb = Cc = A, each combined conductance can be expressed as follows.

本実施形態の合成コンダクタンス:C1=(3/4)×A (式7)
比較例の合成コンダクタンス:Cref.=(1/2)×A (式8)
合成コンダクタンス比:C1/Cref.=3/2>1 (式9)
∴C1>Cref. (式10)
Synthetic conductance of the present embodiment: C1 = (3/4) × A (Expression 7)
Synthetic conductance of comparative example: Cref. = (1/2) × A (Formula 8)
Composite conductance ratio: C1 / Cref. = 3/2> 1 (Formula 9)
∴ C1> Cref. (Formula 10)

したがって、すべての材料収容部の温度を揃えた場合、あるいは材料収容部内が飽和蒸気圧近傍の状態である場合には、比較例よりも本実施形態の成膜速度のほうが高い。   Therefore, when the temperatures of all the material accommodating portions are made uniform, or when the inside of the material accommodating portion is in a state near the saturated vapor pressure, the film forming speed of the present embodiment is higher than that of the comparative example.

なお、(式10)の関係は、連結空間及び放出口のコンダクタンスCmが、各材料収容部とそれに繋がる供給路のコンダクタンスCa、Cb、Ccと同等あるいはそれ以上の場合に常に成立する。   The relationship of (Equation 10) is always established when the conductance Cm of the connection space and the discharge port is equal to or greater than the conductances Ca, Cb, and Cc of the material accommodating portions and the supply paths connected thereto.

また、各材料収容部10と供給路12との連結部にはゲートバルブ部15が設けられている。成膜中に材料供給のために所定の材料収容部10を取り外して交換する際には、それに対応したゲートバルブ15を閉じることで、成膜室と材料収容部10との連通を遮断した状態で作業を行うことができる。   Further, a gate valve portion 15 is provided at a connection portion between each material storage portion 10 and the supply path 12. When a predetermined material container 10 is removed and replaced for material supply during film formation, the communication between the film formation chamber and the material container 10 is blocked by closing the corresponding gate valve 15 Can do the work.

成膜工程においては、同じ種類の材料を充填した材料収容部10のうちの2つを同時に利用し、残りの1つを準備用として利用することもできる。つまり成膜中に、順次材料収容部の交換をすることができる。これにより材料供給にともなう稼働率の低下を低減することが可能となる。   In the film forming process, two of the material accommodating portions 10 filled with the same type of material can be used at the same time, and the remaining one can be used for preparation. That is, the material container can be sequentially replaced during film formation. As a result, it is possible to reduce a reduction in operating rate accompanying the material supply.

たとえば、事前に準備用の材料収容部10が所定の成膜速度に到達するように加熱機構11により温度調整をしておき、交換すべき材料収容部10のゲートバルブ15を閉状態にした後、準備用のゲートバルブ15を開状態とする。このようにして、連結空間14に必要量の成膜材料を流し込むことができる。   For example, after the temperature is adjusted by the heating mechanism 11 in advance so that the preparation material container 10 reaches a predetermined film formation speed, and the gate valve 15 of the material container 10 to be replaced is closed. Then, the preparation gate valve 15 is opened. In this way, a necessary amount of film forming material can be poured into the connecting space 14.

また、複数の加熱機構11の温度の調整は互に独立して行うことが可能である。このため必要な合成成膜速度や膜厚分布、また、各材料収容部10内に充填されている材料量等に応じて、各加熱機構11の設定温度を調整すればよい。   Further, the temperature of the plurality of heating mechanisms 11 can be adjusted independently of each other. For this reason, what is necessary is just to adjust the preset temperature of each heating mechanism 11 according to the required synthetic | combination film-forming speed | rate, film thickness distribution, the material quantity etc. with which each material accommodating part 10 is filled.

図示はしていないが、材料収容部10以外、たとえば供給路12、連結空間14、放出口13等の成膜材料が通過する部材には加熱手段がそれぞれ設けられており、成膜材料の付着による不具合を防止するために適宜温度を調整できるようになっている。   Although not shown, heating means are provided for members through which the film forming material passes, such as the supply path 12, the connection space 14, and the discharge port 13, other than the material container 10. The temperature can be adjusted as appropriate to prevent problems caused by the above.

図2に示すように、連結空間14は、基板Wに成膜するための成膜室1内に放出口13とともに配置してもよいし、図3に示すように、成膜室1の外に連結空間14を配置して、放出口13のみを成膜室1に開口させる構成でもよい。   As shown in FIG. 2, the connection space 14 may be disposed together with the discharge port 13 in the film formation chamber 1 for forming a film on the substrate W, or as shown in FIG. Alternatively, the connecting space 14 may be disposed in the film forming chamber 1 so that only the discharge port 13 is opened in the film forming chamber 1.

また、図3〜5に示したように、各供給路12に流量を変化させる流量調整機構20を備えている場合には、成膜速度の制御を温度で制御するのではなく、流量調整機構20を利用するのがより好ましい。その理由は、特に有機発光素子に用いられている有機材料は熱伝導性が低く、加熱手段による温度制御では時間応答が遅いため、調整作業に時間を要するからである。   In addition, as shown in FIGS. 3 to 5, in the case where each supply path 12 is provided with a flow rate adjusting mechanism 20 that changes the flow rate, the flow rate adjusting mechanism is not controlled by the temperature, but the film forming speed is controlled. More preferably, 20 is used. This is because the organic material used in the organic light emitting device has low thermal conductivity, and the temperature control by the heating means has a slow time response, so that adjustment work takes time.

流量調整機構20としては、たとえばニードルバルブ、バタフライバルブ、ゲートバルブのバルブ類あるいはシャッター等の成膜材料(気体分子)の流れを調整あるいは開放、遮断できる機構の中かから、成膜装置の構造や適応範囲に応じて選択することができる。必要に応じて、複数のバルブやシャッターを組み合わせて利用することも可能である。   As the flow rate adjusting mechanism 20, the structure of the film forming apparatus can be selected from a mechanism capable of adjusting, opening, or blocking the flow of film forming materials (gas molecules) such as needle valves, butterfly valves, gate valves or shutters. And can be selected according to the applicable range. If necessary, a combination of a plurality of valves and shutters can be used.

また、図5に示すように、連結空間14に複数の圧力検出器16を配置して、成膜速度と相関をもつ連結空間14での成膜材料の気体分子密度及びその空間分布を検知するとよい。そして、成膜速度制御装置30の成膜速度設定部31に設定された成膜速度と比較する。   Further, as shown in FIG. 5, when a plurality of pressure detectors 16 are arranged in the connection space 14 to detect the gas molecule density of the film forming material and its spatial distribution in the connection space 14 having a correlation with the film formation speed. Good. And it compares with the film-forming speed set to the film-forming speed setting part 31 of the film-forming speed control apparatus 30. FIG.

すなわち、圧力検出器16からの検出データをもとに、圧力分布検出手段32を介し、所定の成膜速度及びその分布と実際に成膜している成膜速度及び分布との乖離を成膜速度制御手段33で分析する。そして、差分許容値を考慮した補正値を流量調整機構20の開度調整にフィードバックする。なお、圧力検出器16を加熱して成膜材料の付着を防止しておくことが、安定なモニタリングのために好ましい。   That is, based on the detection data from the pressure detector 16, the pressure distribution detection means 32 is used to form a predetermined film formation speed and the difference between the distribution and the film formation speed and distribution actually formed. Analysis is performed by the speed control means 33. Then, a correction value in consideration of the difference allowance value is fed back to the opening degree adjustment of the flow rate adjustment mechanism 20. Note that it is preferable for stable monitoring that the pressure detector 16 is heated to prevent adhesion of the film forming material.

また、図示はしていないが、放出口13から飛翔する成膜材料の成膜速度を検出するための成膜速度検出器を、放出口13と基板Wとの間の空間で、基板Wへの成膜の邪魔にならない場所に設けてもよい。成膜速度検出器は、上記の位置に限定されることはなく成膜材料の流れがある場所であればどこでもよい。たとえば、供給路の途中に分岐路を設けて、その分岐路の先端に成膜速度検出器を設けてもよいし、成膜装置の大きさによっては複数の個所で検出するようにしてもよい。   Although not shown, a film formation speed detector for detecting the film formation speed of the film forming material flying from the discharge port 13 is provided to the substrate W in the space between the discharge port 13 and the substrate W. It may be provided in a place that does not interfere with the film formation. The film forming speed detector is not limited to the above position, and may be any place where there is a flow of film forming material. For example, a branch path may be provided in the middle of the supply path, and a film formation speed detector may be provided at the tip of the branch path, or may be detected at a plurality of locations depending on the size of the film formation apparatus. .

本実施形態では、成膜室の上方に基板を、その下方に放出口を配置しているが、基板の姿勢はこれに限定されるものではなく、縦配置あるいは基板と放出口の上下関係を逆転し、基板を下方に配置してもよい。   In this embodiment, the substrate is disposed above the film formation chamber and the discharge port is disposed below the film formation chamber. However, the posture of the substrate is not limited to this, and the vertical arrangement or the vertical relationship between the substrate and the discharge port is determined. The substrate may be reversed and placed below.

さらに、基板と放出口の相対位置は、成膜期間において一定であってもよいが、基板サイズや必要な成膜時間等の要件に応じて回転や移動をさせても構わない。   Further, the relative position of the substrate and the discharge port may be constant during the film formation period, but may be rotated or moved according to requirements such as the substrate size and the required film formation time.

図3〜5では流量調整機構を成膜室の外に配置しているが、これに限定するものではなく、制御性を考慮して適宜配置場所を選択することができる。   3 to 5, the flow rate adjusting mechanism is arranged outside the film formation chamber, but the present invention is not limited to this, and the arrangement location can be appropriately selected in consideration of controllability.

また、図3に示したように、連結空間は成膜室の外に配置してもよい。連結空間を加熱する場合には、連結空間から基板への熱輻射を低減することができる。これは、たとえば高精細なシャドウマスクを用いたパターニングをするときに、基板とマスクとの相対的な位置誤差を低減する効果がある。   Further, as shown in FIG. 3, the connection space may be disposed outside the film formation chamber. When heating the connection space, heat radiation from the connection space to the substrate can be reduced. This has the effect of reducing the relative positional error between the substrate and the mask, for example, when patterning using a high-definition shadow mask.

本実施態様によれば、同一の材料を充填した複数の材料収容部を設けて材料温度を高めることなく成膜速度を高め、かつ材料収容部から気化した成膜材料の成膜速度誤差を連結空間で緩和することで、高い成膜速度で長時間成膜を続けることが可能となる。したがって大判基板を用いた大量生産システムにおいても、短いタクトタイムであっても、成膜材料の熱ダメージを抑制し、かつ所望の膜厚及び膜厚分布を達成することができる。   According to this embodiment, a plurality of material storage portions filled with the same material are provided to increase the film formation speed without increasing the material temperature, and the film formation speed error of the film formation material vaporized from the material storage portion is connected. By relaxing in space, it is possible to continue film formation for a long time at a high film formation speed. Therefore, even in a mass production system using a large substrate, thermal damage of the film forming material can be suppressed and a desired film thickness and film thickness distribution can be achieved even with a short tact time.

本実施例では図4の装置を用いて、有機ELディスプレイを構成する複数の有機化合物層のうちの1つを成膜する。   In this embodiment, one of a plurality of organic compound layers constituting an organic EL display is formed using the apparatus of FIG.

成膜室1となる真空チャンバー内の上方部には、400mmx500mmのガラス製の基板Wを配置し、基板Wの被成膜面(表面)側に対向するように成膜材料を放出する放出口13を設けた。   A 400 mm × 500 mm glass substrate W is disposed in the upper part of the vacuum chamber serving as the film forming chamber 1, and an outlet for discharging the film forming material so as to face the film formation surface (front surface) side of the substrate W. 13 was provided.

ここで説明する成膜装置は、基板Wを搬送式の基板保持機構により保持し、5mm/sec移動させて、基板全面に成膜を行うものである。なお、基板上に堆積させる到達膜厚は1000Åを目標として設定した。   In the film forming apparatus described here, the substrate W is held by a transport type substrate holding mechanism and moved by 5 mm / sec to form a film on the entire surface of the substrate. The ultimate film thickness to be deposited on the substrate was set at 1000 mm as a target.

成膜室内に配置された基板Wは、放出口13と200mm離間した位置に配置した。また複数の煙突形状の放出口13は連結空間14上に等間隔に設けられ、この連結空間14が成膜室1の外に伸びる3つの供給路12を介して同一の成膜材料を充填した3つの材料収容部10と連通している。放出口13の開口径はそれぞれφ15mmとし、連結空間上に50mmピッチで10本並べた。また連結空間14は幅600mm×30mm、高さ50mmとした。   The substrate W arranged in the film forming chamber was arranged at a position separated from the discharge port 13 by 200 mm. A plurality of chimney-shaped discharge ports 13 are provided at equal intervals on the connection space 14, and the connection space 14 is filled with the same film forming material through three supply paths 12 extending outside the film formation chamber 1. The three material storage portions 10 communicate with each other. The opening diameters of the discharge ports 13 were each 15 mm, and 10 lines were arranged on the connection space at a pitch of 50 mm. The connecting space 14 was 600 mm wide × 30 mm wide and 50 mm high.

3つの供給路12には、それぞれ成膜材料の流れを遮断、開放又は流量を可変調整する流量調整機構20を設けてあり、これらは独立に制御することが可能である。流路調整機構20には、ニードルバルブを用いている。   The three supply paths 12 are each provided with a flow rate adjusting mechanism 20 that blocks, opens, or variably adjusts the flow rate of the film forming material, and these can be controlled independently. The flow path adjusting mechanism 20 uses a needle valve.

各材料収容部10は必要な温度に制御できるよう、加熱機構11であるヒーターで囲んである。   Each material accommodating part 10 is enclosed with the heater which is the heating mechanism 11 so that it can control to required temperature.

放出口13、連結空間14、供給路12、流量調整機構20の周囲にも加熱のためのヒーター(図示なし)が配置されており、各部で温調が可能となっている。   A heater (not shown) for heating is also disposed around the discharge port 13, the connection space 14, the supply path 12, and the flow rate adjusting mechanism 20, and temperature control is possible at each part.

また流量調整機構20により成膜材料の流れを遮断し、かつ材料収容部10内での成膜材料の蒸発あるいは昇華を停止させた状態において、材料収容部10のみを別の材料収容部と交換することが可能となっている。   Further, in a state where the flow of the film forming material is blocked by the flow rate adjusting mechanism 20 and evaporation or sublimation of the film forming material in the material containing portion 10 is stopped, only the material containing portion 10 is replaced with another material containing portion. It is possible to do.

なお図示はしないが、この成膜装置には、放出口13から飛翔する成膜材料の成膜速度を検知するための手段を放出口近傍に配置してあり、検知手段からの出力信号に応じて流量調整機構20の開度を制御することができる。検知手段は水晶振動子を用いた膜厚モニターである。   Although not shown, in this film forming apparatus, means for detecting the film forming speed of the film forming material flying from the discharge port 13 is arranged in the vicinity of the discharge port, and according to the output signal from the detecting means. Thus, the opening degree of the flow rate adjusting mechanism 20 can be controlled. The detecting means is a film thickness monitor using a crystal resonator.

このような成膜装置において、適宜材料収容部10を交換して成膜材料を供給しながら、装置に準備した100枚の基板を連続して移動させ、合計約200分(約3日間)成膜を続けた。なお、口径50mm、深さ100mmの3つの材料収容部10にそれぞれアルミキノリノール錯体(Alq3)を100g充填し、材料収容部10の温度を350℃として材料を昇華させた。Alq3は一般にキャリア輸送層として用いられる有機材料で、昇華性を有することが知られている。また成膜期間中には3つのニードルバルブを開放状態とし、放出口直上において成膜速度20Å/secを維持した。   In such a film forming apparatus, while replacing the material container 10 as appropriate and supplying the film forming material, the 100 substrates prepared in the apparatus are continuously moved to form a total of about 200 minutes (about 3 days). Continued the membrane. In addition, 100 g of aluminum quinolinol complex (Alq3) was filled in each of the three material accommodating portions 10 having a diameter of 50 mm and a depth of 100 mm, and the material was sublimated at a temperature of 350 ° C. Alq3 is an organic material generally used as a carrier transport layer, and is known to have sublimation properties. Also, during the film formation period, the three needle valves were opened, and the film formation rate of 20 Å / sec was maintained immediately above the discharge port.

上記成膜後、各基板に堆積させた膜の厚さを測定したところ、膜厚は目標とした到達膜厚に対して誤差は4%以下であり、かつ基板面内での膜厚分布は搬送方向及びそれと直交する両方向で非常に均一で、その誤差が3%以下であった。   When the thickness of the film deposited on each substrate was measured after the film formation, the film thickness was less than 4% of the target film thickness, and the film thickness distribution in the substrate surface was It was very uniform in the conveyance direction and in both directions orthogonal to it, and the error was 3% or less.

また上記条件のもとで長時間の成膜をした後で、基板に堆積された膜及び材料収容部において材料分解検査をしたところ、分解材料は検出されなかった。   Further, after film formation for a long time under the above conditions, a material decomposition inspection was performed on the film deposited on the substrate and the material container. As a result, no decomposed material was detected.

(比較例1)
図6に示す従来型の成膜装置を用いて、実施例1と同様に、基板上に堆積した膜の厚さを計測した。なお実施例1と同じ成膜速度20Å/secを達成するために、材料収容部の温度を390℃が必要であった。
(Comparative Example 1)
The thickness of the film deposited on the substrate was measured using the conventional film forming apparatus shown in FIG. In order to achieve the same film formation rate of 20 Å / sec as in Example 1, the temperature of the material container was required to be 390 ° C.

上記成膜後、各基板に堆積させた膜の厚さを測定したところ、膜厚は目標とした到達膜厚に対して誤差は9%以下であり、かつ基板面内での膜厚分布は搬送方向及びそれと直交する両方向で、その誤差が6%以下であった。   After the above film formation, the thickness of the film deposited on each substrate was measured. As a result, the error was 9% or less with respect to the target film thickness, and the film thickness distribution in the substrate surface was The error was 6% or less in both the transport direction and the direction orthogonal thereto.

実施例1よりも誤差が大きくなった原因として、非常に高い温度となったために温度誤差に対する成膜速度誤差の効き率が大きくなった点が上げられる。また、昇華性材料は熱伝導性が低いことから、材料収容部内での温度分布も誤差原因となったと想定される。   The reason why the error is larger than in Example 1 is that the rate of film formation rate error to temperature error is increased because the temperature is very high. In addition, since the sublimable material has low thermal conductivity, it is assumed that the temperature distribution in the material container also caused an error.

また実施例1と同様に材料分解検査をしたところ、一部で分解材料が検出された。なお、Alq3の分解温度が390℃〜400℃の範囲にあることが知られている。   Moreover, when the material decomposition | disassembly inspection was carried out similarly to Example 1, the decomposition material was partially detected. It is known that the decomposition temperature of Alq3 is in the range of 390 ° C to 400 ° C.

本実施例では図5の装置を用いて、有機発光素子を構成する有機化合物層を成膜する。   In this embodiment, the organic compound layer constituting the organic light emitting element is formed using the apparatus of FIG.

図5に示した成膜装置は、図4に示した成膜装置に加え、連結空間14の圧力分布(成膜材料の気体分子の密度分布)を検出するため、連結空間内に圧力検出器16を3箇所配置した。流量調整機構20は成膜速度制御装置30からの信号を受けて駆動する構造を備えており、成膜速度設定部31で入力された成膜速度を維持するように流量調整機構20の開度を調整する。   In addition to the film forming apparatus shown in FIG. 4, the film forming apparatus shown in FIG. 5 detects a pressure distribution (density distribution of gas molecules of the film forming material) in the connected space 14. 16 were arranged in three places. The flow rate adjustment mechanism 20 has a structure that is driven by receiving a signal from the film formation rate control device 30, and the opening degree of the flow rate adjustment mechanism 20 is maintained so as to maintain the film formation rate input by the film formation rate setting unit 31. Adjust.

より詳細に調整の流れを説明する。まず圧力検出器16を通じて取得された連結空間14での圧力分布データは、圧力分布検出手段32を介して、成膜速度制御手段33に送られる。成膜速度制御手段33では、事前に成膜速度設定部31で決められた成膜速度変動の許容値と実測した圧力分布に基づいて算出される成膜速度変動を比較して、所定の許容値を逸脱しないように補正すべき成膜速度を算出し、開度調整手段34に補正値を送る。その後、開度調整手段34では、補正値に応じた開度を算出し、各流量調整機構20の開度を適宜制御する。   The flow of adjustment will be described in more detail. First, the pressure distribution data in the connection space 14 acquired through the pressure detector 16 is sent to the film formation speed control means 33 via the pressure distribution detection means 32. The film forming speed control means 33 compares the film forming speed fluctuation calculated based on the actually measured pressure distribution with the allowable value of the film forming speed fluctuation determined in advance by the film forming speed setting unit 31 to obtain a predetermined allowable value. The film formation speed to be corrected so as not to deviate from the value is calculated, and the correction value is sent to the opening degree adjusting means 34. Thereafter, the opening adjustment means 34 calculates the opening according to the correction value, and appropriately controls the opening of each flow rate adjustment mechanism 20.

上記システムを用い、実施例1と同じ条件で成膜した後、各基板に堆積させた膜の厚さを測定したところ、膜厚は目標とした到達膜厚に対して誤差は3%以下であった。また、基板面内での膜厚分布は搬送方向及びそれと直交する両方向で非常に均一で、その誤差が2%以下であった。   Using the above system, after forming a film under the same conditions as in Example 1, the thickness of the film deposited on each substrate was measured. The film thickness was less than 3% of the target film thickness. there were. Further, the film thickness distribution in the substrate plane was very uniform in the transport direction and in both directions orthogonal thereto, and the error was 2% or less.

上記条件のもとで長時間の成膜をした後で、基板に堆積された膜及び材料収容部において材料分解検査をしたところ、分解材料は検出されなかった。   After film formation for a long time under the above conditions, when a material decomposition inspection was performed on the film deposited on the substrate and the material container, no decomposition material was detected.

一実施形態による成膜装置を説明する図である。It is a figure explaining the film-forming apparatus by one Embodiment. 図1の装置の全体構成を示す図である。It is a figure which shows the whole structure of the apparatus of FIG. 一変形例を示す図である。It is a figure which shows one modification. 実施例1による成膜装置を示す図である。1 is a diagram illustrating a film forming apparatus according to Example 1. FIG. 実施例2による成膜装置を示す図である。6 is a diagram illustrating a film forming apparatus according to Example 2. FIG. 比較例による成膜装置を示す図である。It is a figure which shows the film-forming apparatus by a comparative example.

符号の説明Explanation of symbols

1 成膜室
10 材料収容部
11 加熱機構
12 供給路
13 放出口
14 連結空間
15 ゲートバルブ
16 圧力検出器
20 流量調整機構
30 膜厚速度制御装置
31 成膜速度設定部
32 圧力分布検出手段
33 成膜速度制御手段
34 開度調整手段
DESCRIPTION OF SYMBOLS 1 Deposition chamber 10 Material accommodating part 11 Heating mechanism 12 Supply path 13 Release port 14 Connection space 15 Gate valve 16 Pressure detector 20 Flow rate adjustment mechanism 30 Film thickness rate control apparatus 31 Film formation rate setting part 32 Pressure distribution detection means 33 Formation Membrane speed control means 34 Opening adjustment means

Claims (14)

真空又は減圧状態で、昇華又は蒸発した成膜材料を基板に成膜する成膜室と、
それぞれ成膜材料を収容し、加熱手段によって昇華又は蒸発させる複数の材料収容部と、
前記複数の材料収容部から供給される成膜材料を、前記成膜室において基板に向けて放出させる放出口と、
前記複数の材料収容部と前記放出口との間で、前記複数の材料収容部を互に連結する連結空間と、を有し、
前記複数の材料収容部から供給される成膜材料を前記連結空間を介して前記放出口から放出させることを特徴とする成膜装置。
A film formation chamber for forming a film of a sublimated or evaporated film formation material on a substrate in a vacuum or reduced pressure; and
A plurality of material containing portions each containing a film forming material and sublimated or evaporated by a heating means;
A discharge port for discharging the film forming material supplied from the plurality of material accommodating portions toward the substrate in the film forming chamber;
A connection space for connecting the plurality of material storage portions to each other between the plurality of material storage portions and the discharge port;
A film forming apparatus that discharges the film forming material supplied from the plurality of material accommodating portions from the discharge port through the connection space.
前記複数の材料収容部と前記連結空間との間に、成膜材料の流量を遮断、開放又は可変調整する複数の流量調整機構を備えたことを特徴とする請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, further comprising: a plurality of flow rate adjusting mechanisms configured to block, open, or variably adjust a flow rate of the film forming material between the plurality of material accommodating portions and the connection space. . 前記複数の材料収容部が前記成膜室の外に配置されていることを特徴とする請求項1又は2に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the plurality of material accommodating portions are disposed outside the film forming chamber. 前記複数の材料収容部にそれぞれ設けられた前記加熱手段は、互に独立して制御が可能であることを特徴とする請求項1ないし3のいずれかに記載の成膜装置。   4. The film forming apparatus according to claim 1, wherein the heating means provided in each of the plurality of material accommodating portions can be controlled independently of each other. 5. 前記複数の流量調整機構は、互に独立して制御が可能であることを特徴とする請求項1ないし4のいずれかに記載の成膜装置。   The film forming apparatus according to claim 1, wherein the plurality of flow rate adjusting mechanisms can be controlled independently of each other. 前記連結空間には複数の圧力検出器が接続されていることを特徴とする請求項1ないし5のいずれかに記載の成膜装置。   The film forming apparatus according to claim 1, wherein a plurality of pressure detectors are connected to the connection space. 真空又は減圧状態の成膜室に配置した基板に放出口を対向させ、複数の材料収容部を加熱して昇華又は蒸発させた成膜材料を、供給路を経由して前記放出口から放出して基板に成膜する成膜方法において、
前記複数の材料収容部から供給される成膜材料を、前記複数の材料収容部を互に連結する連結空間において混合する工程と、
前記連結空間において混合した成膜材料を前記放出口から放出し、基板に成膜する工程と、を有することを特徴とする成膜方法。
A discharge port is made to face a substrate placed in a vacuum or reduced pressure film formation chamber, and a plurality of material storage portions are heated and sublimated or evaporated to release the film formation material from the discharge port via a supply path. In a film forming method for forming a film on a substrate,
Mixing the film forming material supplied from the plurality of material storage portions in a connection space connecting the plurality of material storage portions to each other;
And a step of discharging a film forming material mixed in the connection space from the discharge port and forming a film on the substrate.
前記複数の材料収容部の前記供給路に設けられた複数の流量調整機構により、前記連結空間に供給される成膜材料の流量を制御することを特徴とする請求項7に記載の成膜方法。   The film forming method according to claim 7, wherein a flow rate of the film forming material supplied to the connection space is controlled by a plurality of flow rate adjusting mechanisms provided in the supply paths of the plurality of material accommodating portions. . 前記成膜室の外に配置された前記複数の材料収容部を加熱することにより、成膜材料を昇華又は蒸発させることを特徴とする請求項7又は8に記載の成膜方法。   The film forming method according to claim 7 or 8, wherein the film forming material is sublimated or evaporated by heating the plurality of material accommodating portions arranged outside the film forming chamber. 前記複数の材料収容部の温度を互に独立して調整することを特徴とする請求項7ないし9のいずれかに記載の成膜方法。   The film forming method according to claim 7, wherein the temperatures of the plurality of material accommodating portions are adjusted independently of each other. 前記複数の流量調整機構の流量を互に独立して調整することを特徴とする請求項8ないし10のいずれかに記載の成膜方法。   The film forming method according to claim 8, wherein the flow rates of the plurality of flow rate adjusting mechanisms are adjusted independently of each other. 前記連結空間に接続された複数の圧力検出器により検出された圧力差を低減するように前記複数の流量調整機構の流量を調整することを特徴とする請求項11に記載の成膜方法。   The film forming method according to claim 11, wherein the flow rates of the plurality of flow rate adjusting mechanisms are adjusted so as to reduce pressure differences detected by a plurality of pressure detectors connected to the connection space. 前記材料収容部の取り外し又は交換を、成膜中に行うことを特徴とする請求項7ないし12のいずれかに記載の成膜方法。   The film forming method according to claim 7, wherein the material container is removed or replaced during film formation. 請求項7ないし13のいずれかに記載の成膜方法によって有機化合物層を成膜する工程を有することを特徴とする有機ELディスプレイの製造方法。   14. A method of manufacturing an organic EL display, comprising a step of forming an organic compound layer by the film forming method according to claim 7.
JP2007270867A 2007-10-18 2007-10-18 Film forming apparatus and film forming method Expired - Fee Related JP5506147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270867A JP5506147B2 (en) 2007-10-18 2007-10-18 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270867A JP5506147B2 (en) 2007-10-18 2007-10-18 Film forming apparatus and film forming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012097539A Division JP5460773B2 (en) 2012-04-23 2012-04-23 Film forming apparatus and film forming method

Publications (3)

Publication Number Publication Date
JP2009097044A true JP2009097044A (en) 2009-05-07
JP2009097044A5 JP2009097044A5 (en) 2010-12-02
JP5506147B2 JP5506147B2 (en) 2014-05-28

Family

ID=40700325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270867A Expired - Fee Related JP5506147B2 (en) 2007-10-18 2007-10-18 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP5506147B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074551A1 (en) * 2009-12-18 2011-06-23 平田機工株式会社 Vacuum deposition method and vacuum deposition apparatus
JP2011179073A (en) * 2010-03-01 2011-09-15 Ulvac Japan Ltd Thin film deposition device
JP2012504188A (en) * 2008-09-29 2012-02-16 アプライド マテリアルズ インコーポレイテッド Vaporizer for organic materials
WO2012086568A1 (en) * 2010-12-24 2012-06-28 シャープ株式会社 Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
KR101232910B1 (en) 2010-10-06 2013-02-13 엘아이지에이디피 주식회사 apparatus for supplying organic matter, Apparatus and method for depositing organic matter using the same
CN103074578A (en) * 2011-10-26 2013-05-01 塔工程有限公司 Rotary deposition apparatus
CN103305797A (en) * 2012-03-14 2013-09-18 日立造船株式会社 Evaporation apparatus
JP2014037564A (en) * 2012-08-13 2014-02-27 Kaneka Corp Vacuum vapor-deposition device and manufacturing method of organic el device
JP2014136804A (en) * 2013-01-15 2014-07-28 Hitachi Zosen Corp Vacuum vapor deposition apparatus
JP2014201833A (en) * 2013-04-01 2014-10-27 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited Evaporation source assembly
JP2016017204A (en) * 2014-07-08 2016-02-01 長州産業株式会社 Ring type vapor deposition source
JP2016125135A (en) * 2014-12-26 2016-07-11 株式会社オプトラン Film deposition method and film deposition apparatus
CN107893212A (en) * 2017-12-18 2018-04-10 信利(惠州)智能显示有限公司 A kind of continuous evaporation apparatus
EP3604609A3 (en) * 2018-07-30 2020-06-03 Samsung Display Co., Ltd. Apparatus for manufacturing display apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321056A (en) * 1994-05-20 1995-12-08 Sony Corp Horizontal vapor growth device
JP2002184571A (en) * 2000-12-15 2002-06-28 Denso Corp Manufacturing method of organic el element
JP2003155555A (en) * 2001-11-15 2003-05-30 Eiko Engineering Co Ltd Multiple molecular beam source cell for thin film deposition
JP2005154262A (en) * 2003-10-30 2005-06-16 Kyocera Corp Discharge generating member
JP2005281808A (en) * 2004-03-30 2005-10-13 Tohoku Pioneer Corp Film deposition source, film deposition apparatus, film deposition method, organic el panel manufacturing method, and organic el panel
JP2005330551A (en) * 2004-05-20 2005-12-02 Tohoku Pioneer Corp Film deposition source, vacuum film deposition system, method for producing organic el device and organic el device
JP2006111926A (en) * 2004-10-15 2006-04-27 Hitachi Zosen Corp Vapor deposition system
JP2006120822A (en) * 2004-10-21 2006-05-11 Tokyo Electron Ltd Substrate treatment device and pressure control method thereof
JP2007027661A (en) * 2005-07-21 2007-02-01 Tokyo Electron Ltd Plasma processing apparatus and control method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321056A (en) * 1994-05-20 1995-12-08 Sony Corp Horizontal vapor growth device
JP2002184571A (en) * 2000-12-15 2002-06-28 Denso Corp Manufacturing method of organic el element
JP2003155555A (en) * 2001-11-15 2003-05-30 Eiko Engineering Co Ltd Multiple molecular beam source cell for thin film deposition
JP2005154262A (en) * 2003-10-30 2005-06-16 Kyocera Corp Discharge generating member
JP2005281808A (en) * 2004-03-30 2005-10-13 Tohoku Pioneer Corp Film deposition source, film deposition apparatus, film deposition method, organic el panel manufacturing method, and organic el panel
JP2005330551A (en) * 2004-05-20 2005-12-02 Tohoku Pioneer Corp Film deposition source, vacuum film deposition system, method for producing organic el device and organic el device
JP2006111926A (en) * 2004-10-15 2006-04-27 Hitachi Zosen Corp Vapor deposition system
JP2006120822A (en) * 2004-10-21 2006-05-11 Tokyo Electron Ltd Substrate treatment device and pressure control method thereof
JP2007027661A (en) * 2005-07-21 2007-02-01 Tokyo Electron Ltd Plasma processing apparatus and control method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504188A (en) * 2008-09-29 2012-02-16 アプライド マテリアルズ インコーポレイテッド Vaporizer for organic materials
JP5298189B2 (en) * 2009-12-18 2013-09-25 平田機工株式会社 Vacuum deposition method and apparatus
WO2011074551A1 (en) * 2009-12-18 2011-06-23 平田機工株式会社 Vacuum deposition method and vacuum deposition apparatus
JP2011179073A (en) * 2010-03-01 2011-09-15 Ulvac Japan Ltd Thin film deposition device
KR101232910B1 (en) 2010-10-06 2013-02-13 엘아이지에이디피 주식회사 apparatus for supplying organic matter, Apparatus and method for depositing organic matter using the same
US9714466B2 (en) 2010-12-24 2017-07-25 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
US8845808B2 (en) 2010-12-24 2014-09-30 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
WO2012086568A1 (en) * 2010-12-24 2012-06-28 シャープ株式会社 Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
CN103270189A (en) * 2010-12-24 2013-08-28 夏普株式会社 Vapor deposition device, vapor deposition method, and method of manufacturing organic electroluminescent display device
JPWO2012086568A1 (en) * 2010-12-24 2014-05-22 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and manufacturing method of organic electroluminescence display apparatus
JP2013249541A (en) * 2010-12-24 2013-12-12 Sharp Corp Vapor deposition device
JP5330608B2 (en) * 2010-12-24 2013-10-30 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, and manufacturing method of organic electroluminescence display apparatus
CN103074578A (en) * 2011-10-26 2013-05-01 塔工程有限公司 Rotary deposition apparatus
TWI568872B (en) * 2012-03-14 2017-02-01 日立造船股份有限公司 Evaporation apparatus
JP2013189678A (en) * 2012-03-14 2013-09-26 Hitachi Zosen Corp Vapor deposition apparatus
KR102062224B1 (en) * 2012-03-14 2020-01-03 히다치 조센 가부시키가이샤 Vacuum evaporation apparatus
KR20130105352A (en) * 2012-03-14 2013-09-25 히다치 조센 가부시키가이샤 Vacuum evaporation apparatus
CN103305797A (en) * 2012-03-14 2013-09-18 日立造船株式会社 Evaporation apparatus
JP2014037564A (en) * 2012-08-13 2014-02-27 Kaneka Corp Vacuum vapor-deposition device and manufacturing method of organic el device
TWI596224B (en) * 2013-01-15 2017-08-21 日立造船股份有限公司 Apparatus of vacuum evaporating
JP2014136804A (en) * 2013-01-15 2014-07-28 Hitachi Zosen Corp Vacuum vapor deposition apparatus
JP2014201833A (en) * 2013-04-01 2014-10-27 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited Evaporation source assembly
JP2016017204A (en) * 2014-07-08 2016-02-01 長州産業株式会社 Ring type vapor deposition source
JP2016125135A (en) * 2014-12-26 2016-07-11 株式会社オプトラン Film deposition method and film deposition apparatus
CN107893212A (en) * 2017-12-18 2018-04-10 信利(惠州)智能显示有限公司 A kind of continuous evaporation apparatus
CN107893212B (en) * 2017-12-18 2019-12-20 信利(惠州)智能显示有限公司 Continuous evaporation equipment
EP3604609A3 (en) * 2018-07-30 2020-06-03 Samsung Display Co., Ltd. Apparatus for manufacturing display apparatus
US10854815B2 (en) 2018-07-30 2020-12-01 Samsung Display Co., Ltd. Method and apparatus for manufacturing display apparatus

Also Published As

Publication number Publication date
JP5506147B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5506147B2 (en) Film forming apparatus and film forming method
US11534790B2 (en) Apparatus and method of manufacturing display apparatus
US20220231259A1 (en) Atomic layer deposition apparatus and atomic layer deposition method
EP2187708B1 (en) Film deposition apparatus with organic-material vapor generator
US8420169B2 (en) Method of manufacturing organic thin film
JP4074574B2 (en) Organic vapor deposition equipment
JP5091678B2 (en) Deposition material estimation method, analysis method, and film formation method
US20100259162A1 (en) Film forming device control method, film forming method, film forming device, organic el electronic device, and recording medium storing its control program
JP2006152326A (en) Vapor deposition apparatus
JP5460773B2 (en) Film forming apparatus and film forming method
JP5328134B2 (en) Vapor deposition apparatus and organic electroluminescence element manufacturing method
JP2005520687A (en) Thin film deposition process and apparatus on a substrate
JP3684343B2 (en) Molecular beam source cell for thin film deposition
JP4551465B2 (en) Vapor deposition source, film forming apparatus, and film forming method
WO2013122059A1 (en) Film forming apparatus
JP2004022401A (en) Apparatus and method for forming organic film
KR100753145B1 (en) Deposition of Organic for Light Emitting Diodes
WO2012127982A1 (en) Film forming apparatus, film forming method, method for manufacturing organic light emitting element, and organic light emitting element
KR20140055721A (en) Evaporation source and apparatus for deposition having the same
JP2004014311A (en) Forming method of organic thin film
JP5127372B2 (en) Vapor deposition equipment
JP2005029885A (en) Thin film deposition method, thin film deposition system and semiconductor device
JP2009057614A5 (en)
CN113853449B (en) Method and system for forming film on substrate
JP2004022400A (en) Apparatus and method for forming organic film

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

LAPS Cancellation because of no payment of annual fees