JP2008075095A - Vacuum deposition system and vacuum deposition method - Google Patents

Vacuum deposition system and vacuum deposition method Download PDF

Info

Publication number
JP2008075095A
JP2008075095A JP2006251981A JP2006251981A JP2008075095A JP 2008075095 A JP2008075095 A JP 2008075095A JP 2006251981 A JP2006251981 A JP 2006251981A JP 2006251981 A JP2006251981 A JP 2006251981A JP 2008075095 A JP2008075095 A JP 2008075095A
Authority
JP
Japan
Prior art keywords
dispersion
container
temperature
deposition
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251981A
Other languages
Japanese (ja)
Other versions
JP5036264B2 (en
Inventor
Yuji Matsumoto
祐司 松本
Yoshiyasu Maehane
良保 前羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2006251981A priority Critical patent/JP5036264B2/en
Publication of JP2008075095A publication Critical patent/JP2008075095A/en
Application granted granted Critical
Publication of JP5036264B2 publication Critical patent/JP5036264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a film of a plurality of layers on the member to be vapor-deposited in a short vapor deposition time in one film deposition chamber. <P>SOLUTION: In a film deposition chamber 4, a material release part 11 arranged so as to be confronted with a substrate B is provided with first to third dispersion vessels 12A to 12C each having a release port for releasing materials. First and third evaporation cells 32A, 32C for evaporating materials and the first and third dispersion vessels 12A, 12C are connected via first and third stop valves 34A, 34C. Further, a plurality of second-1 to second-3 evaporation cells 32Ba to 32Bc for evaporating materials in which a temperature range between the evaporation temperature and thermal decomposition temperature of the materials is common, and the second dispersion vessel 12B are connected via second-1 to second-3 stop valves 34Ba to 34Bc, respectively. The first to third dispersion vessels 12A to 12C are provided with vessel heating apparatuses 17A to 17C for performing heating to a prescribed temperature between the evaporation temperature and thermal decomposition temperature of the materials to be released, respectively, and a shutter device 20 for selectively opening/closing the first to third release ports is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1つの成膜室内で、複数の材料を被蒸着部材に蒸着して複数層の膜を形成する真空蒸着装置および真空蒸着方法に関する。   The present invention relates to a vacuum deposition apparatus and a vacuum deposition method in which a plurality of materials are deposited on a deposition target member to form a plurality of layers in one deposition chamber.

たとえば有機EL素子は、ガラス基板上に透明電極を形成し、この透明電極上に発光層などの複数の有機材料膜を形成し、これら有機材料膜上に背面電極を形成する。この有機EL素子の製造装置として、たとえば特許文献1が開示されている。この製造装置は、受け渡し室を介して複数の真空輸送室を設け、これら真空輸送室に基板を搬送する搬送ロボットを配置し、各真空輸送室の周囲に複数の成膜室を設けたもので、搬送ロボットにより基板を順次成膜室に出し入れしつつ、各成膜室で基板に一層ずつの膜を形成するものである。
特開2004−6311
For example, in an organic EL element, a transparent electrode is formed on a glass substrate, a plurality of organic material films such as a light emitting layer are formed on the transparent electrode, and a back electrode is formed on these organic material films. For example, Patent Document 1 is disclosed as an apparatus for manufacturing this organic EL element. In this manufacturing apparatus, a plurality of vacuum transport chambers are provided via a delivery chamber, a transport robot for transporting a substrate is disposed in these vacuum transport chambers, and a plurality of film forming chambers are provided around each vacuum transport chamber. A film is formed on the substrate in each film formation chamber while the substrate is sequentially taken in and out by the transfer robot.
JP20046311

しかしながら、1層の膜を形成するごとに、搬送ロボットによりガラス基板を成膜室から取り出し、次の成膜室に入れ替える作業が必要なことから、全体の作業工程は、蒸着時間が一番長い成膜工程に制約され、また移し替え時間も必要なことから、タクトタイムを短縮できないという問題があった。   However, every time a single layer film is formed, it is necessary to take out the glass substrate from the film formation chamber by the transfer robot and replace it with the next film formation chamber. There is a problem that the tact time cannot be shortened because it is restricted by the film forming process and also requires a transfer time.

本発明は上記問題点を解決して、1つの成膜室で被蒸着部材に複数層の膜を効率よく形成することができ、タクトタイムを短縮できる真空蒸着装置および真空蒸着方法を提供することを目的とする。   The present invention solves the above problems and provides a vacuum deposition apparatus and a vacuum deposition method that can efficiently form a plurality of layers of films on a member to be deposited in one deposition chamber, and that can shorten the tact time. With the goal.

請求項1記載の発明は、1つの成膜室内で、複数の材料を被蒸着部材に蒸着して複数層の膜を形成する真空蒸着装置であって、成膜室に、被蒸着部材の蒸着面に対向して配置されて材料を放出する材料放出部を設け、前記材料放出部に、材料を放出する放出口を有する複数の分散容器を設け、材料を蒸発させる蒸発セルと前記分散容器とを開閉手段を介して接続するとともに、少なくとも前記分散容器のうちの1つに、材料の蒸発温度と熱分解温度の間の温度範囲が共通する材料を蒸発する複数の蒸発セルをそれぞれ開閉手段を介して接続し、前記各分散容器に、放出する材料の蒸発温度と熱分解温度の間の所定温度に加熱する容器加熱装置をそれぞれ設けたものである。   The invention according to claim 1 is a vacuum vapor deposition apparatus that forms a plurality of layers of films by vapor-depositing a plurality of materials on a vapor deposition member in a single film deposition chamber. An evaporation cell for disposing a material discharge portion disposed opposite to a surface and providing a material discharge portion for discharging the material, a plurality of dispersion containers having discharge ports for discharging the material provided in the material discharge portion, and the dispersion container, A plurality of evaporation cells for evaporating the material having a common temperature range between the evaporation temperature of the material and the thermal decomposition temperature in at least one of the dispersion containers. Each of the dispersion containers is provided with a container heating device for heating to a predetermined temperature between the evaporation temperature and the thermal decomposition temperature of the material to be released.

請求項2記載の発明は、請求項1記載の構成において、被蒸着部材をホルダーに固定して配置し、複数の分散容器を、被蒸着部材の蒸着面に対して接近離間する方向に重ねて配置し、被蒸着部材に最も接近する最前段の分散容器で被蒸着部材の蒸着面に対向する表面側に、当該最前段の分散容器の材料を放出する複数の放出口を所定間隔をあけて開口するとともに、前記最前段の分散容器よりも離間する側の分散容器に、前段側の分散容器を貫通して前記最前段の分散容器の表面側に放出口を開口する複数の放出ノズルを設けたものである。   According to a second aspect of the present invention, in the configuration of the first aspect, the vapor deposition member is fixedly disposed on the holder, and the plurality of dispersion containers are stacked in a direction approaching and separating from the vapor deposition surface of the vapor deposition member. A plurality of discharge ports for discharging the material of the foremost stage dispersion container are provided at predetermined intervals on the surface side facing the vapor deposition surface of the foremost deposition member in the foremost stage dispersion container closest to the deposition target member. A plurality of discharge nozzles that open and have a discharge port open on the surface side of the frontmost dispersion container are provided in the dispersion container on the side farther than the frontmost dispersion container. It is a thing.

請求項3記載の発明は、請求項1または2記載の構成において、容器加熱装置の加熱温度が低い分散容器ほど前段側に配置したものである。
請求項4記載の発明は、請求項1乃至3のいずれかに記載の構成において、ホスト材料を放出する分散容器と、ドーパント材料を放出する分散容器とを設け、2つの前記分散容器からホスト材料とドーパント材料とを同時に放出するように構成したものである。
A third aspect of the present invention is the arrangement according to the first or second aspect, wherein the dispersion container having a lower heating temperature of the container heating device is arranged on the front side.
According to a fourth aspect of the present invention, in the configuration according to any one of the first to third aspects, a dispersion container for releasing the host material and a dispersion container for discharging the dopant material are provided, and the host material is supplied from the two dispersion containers. And the dopant material are emitted at the same time.

請求項5記載の発明は、請求項1乃至4のいずれかに記載の構成において、各分散容器の放出口を選択的に開閉自在なシャッター装置を設け、前記シャッター装置に、最前段の分散容器の表面で放出口の蒸着面側に、分散容器の表面に沿ってスライド自在で、かつ放出口を選択的に開放可能な開閉用開口部が形成されたシャッター板を設けたものである。   According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, a shutter device capable of selectively opening and closing the discharge port of each dispersion container is provided, and the first dispersion container is provided in the shutter device. A shutter plate having an opening for opening and closing that is slidable along the surface of the dispersion container and can selectively open the discharge port is provided on the vapor deposition surface side of the discharge port.

請求項6記載の発明は、複数の分散容器を具備した1つの成膜室で、単数または複数の前記分散容器の放出口から材料を放出して被蒸着部材に蒸着させる複数の蒸着工程を行い、被蒸着部材に複数層の膜を形成するに際し、少なくとも1つの前記分散容器から、蒸発温度と分解温度の間で共通する温度範囲を有する複数の材料を複数の蒸着工程で放出させ、前記分散容器を、放出する材料の蒸発温度と熱分解温度の間の所定温度に加熱するものである。   According to a sixth aspect of the present invention, in one film forming chamber having a plurality of dispersion containers, a plurality of vapor deposition steps are performed in which a material is discharged from a discharge port of one or a plurality of the dispersion containers and vapor-deposited on a deposition target member. When forming a multi-layered film on a member to be vapor-deposited, a plurality of materials having a common temperature range between an evaporation temperature and a decomposition temperature are discharged from at least one of the dispersion containers in a plurality of vapor deposition steps, and the dispersion is performed. The container is heated to a predetermined temperature between the evaporation temperature and the pyrolysis temperature of the material to be released.

請求項1記載の発明によれば、容器加熱装置により、分散容器をそれぞれ材料の蒸発温度から分解温度の間の所定加熱温度に加熱しつつ、単数または複数の分散容器を選択的に使用して、その放出口から材料を被蒸着部材に放出し、これを繰り返すことにより被蒸着部材の蒸着面に複数層の膜を形成することができる。したがって、一層の膜ごとに成膜室を入れ替える従来構成に比較して、成膜室への移し替え時間も不要で作業時間を大幅に短縮することができ、1つの成膜室で被蒸着部材に複数層の膜を効率よく形成することができる。また、1つの分散容器で複数の材料を共用することで、分散容器の数を削減することができて構造を簡易化でき、成膜室をコンパクト化することができる。さらに、複数の材料を共用する分散容器を、各材料の蒸発温度から分解温度の間で共通する所定の加熱温度に加熱することで、材料に応じた温度変更制御が不要になり、各層ごとの材料の変更を短時間で行うことができ、タクトタイムを減少させることができる。   According to the first aspect of the present invention, one or a plurality of dispersion containers are selectively used while the dispersion container is heated to a predetermined heating temperature between the evaporation temperature and the decomposition temperature of the material by the container heating device. By discharging the material from the discharge port to the member to be vapor-deposited and repeating this, a plurality of layers of films can be formed on the vapor deposition surface of the member to be vapor-deposited. Therefore, compared with the conventional configuration in which the film formation chamber is replaced for each layer of film, the transfer time to the film formation chamber is not required, and the working time can be greatly shortened. In addition, it is possible to efficiently form a multi-layer film. In addition, by sharing a plurality of materials in one dispersion container, the number of dispersion containers can be reduced, the structure can be simplified, and the film formation chamber can be made compact. Furthermore, by heating a dispersion container that shares a plurality of materials to a predetermined heating temperature that is common between the evaporation temperature and the decomposition temperature of each material, temperature change control according to the material becomes unnecessary, and The material can be changed in a short time, and the tact time can be reduced.

請求項2記載の発明によれば、被蒸着部材と放出口とを固定状態で配置し、分散容器を複数段に配置して、被蒸着部材から離間する側(後段側)の分散容器の放出ノズルを、前段側の分散容器を貫通して、最前段側の分散容器の表面に開口させることにより、各分散容器の放出口を適正位置に配置して、均一な膜を形成することができる。   According to the second aspect of the present invention, the vapor deposition member and the discharge port are arranged in a fixed state, the dispersion containers are arranged in a plurality of stages, and the discharge of the dispersion container on the side separated from the vapor deposition member (the rear stage side) is performed. By opening the nozzle through the front-side dispersion container and opening the surface of the front-most dispersion container, the discharge ports of the respective dispersion containers can be arranged at appropriate positions to form a uniform film. .

請求項3記載の発明によれば、加熱温度が低い分散容器を、被蒸着部材に接近する側に配置したので、被蒸着部材側への輻射熱を軽減することができ、被蒸着部材の前面に配置されるマスクの熱変形、膨張、伸びを未然に防止できるとともに、被蒸着部材の蒸着膜の変質劣化を防止できるという効果を奏することができる。   According to invention of Claim 3, since the dispersion container with low heating temperature was arrange | positioned at the side which approaches a vapor deposition member, the radiant heat to the vapor deposition member side can be reduced, and it is on the front surface of a vapor deposition member. In addition to being able to prevent thermal deformation, expansion, and elongation of the mask to be disposed, it is possible to achieve an effect of preventing deterioration of the deposited film of the deposition target member.

請求項4記載の発明によれば、1つの膜に対して複数の分散容器から同時にホスト材料とドーパント材料とをそれぞれ放出して被蒸着部材に膜を形成することができる。
請求項5記載の発明によれば、開閉用開口部を有するシャッター板をスライドさせることにより、放出口を選択的に開閉して、選択された材料を放出することができる。
According to the fourth aspect of the present invention, the film can be formed on the deposition target member by simultaneously releasing the host material and the dopant material from a plurality of dispersion containers with respect to one film.
According to the fifth aspect of the present invention, the selected material can be discharged by selectively opening and closing the discharge port by sliding the shutter plate having the opening / closing opening.

請求項6記載の発明によれば、蒸発温度と分解温度の間で共通する加熱温度範囲を有する複数の材料を1つの分散容器を使用して、分散容器の加熱温度を変更制御することなく所定の加熱温度で加熱しつつ、複数の材料を複数の蒸着工程で放出する。これにより、材料に応じた加熱温度の変更制御によるタクトタイムの増加を防止して効率のよい成膜作業ができ、また分散容器の数を削減することができて構造を簡易化でき、成膜室をコンパクト化することができる。   According to the sixth aspect of the present invention, a plurality of materials having a common heating temperature range between the evaporation temperature and the decomposition temperature are used in a single dispersion container, and the predetermined temperature is determined without changing and controlling the heating temperature of the dispersion container. A plurality of materials are released in a plurality of vapor deposition steps while heating at the heating temperature. This prevents an increase in tact time due to the change control of the heating temperature according to the material, enables efficient film forming work, reduces the number of dispersion vessels, simplifies the structure, and forms the film. The chamber can be made compact.

以下、本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
この真空蒸着装置は、図1に示すように、材料を下部から上方に放出し、上部に配置されたたとえばガラス製の基板(被蒸着部材)Bに蒸着するアップデポジションタイプのもので、1つの成膜室4で、たとえば図2に示すように有機EL素子Aの複数の有機EL層を順次形成するものである。有機EL素子Aは、基板Bに形成された透明電極Cと背面電極Eとの間に、複数の有機EL層D1〜D4を形成したもので、有機EL層D1〜D4は、たとえば透明電極C側からホール注入層D1とホール輸送層D2と発光層D3と電子輸送層D4が積層形成されている。なお、電子輸送層D4と背面電極Eの間に電子注入層が形成されることもある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
As shown in FIG. 1, this vacuum deposition apparatus is an up-deposition type device that discharges a material upward from the lower part and deposits it on, for example, a glass substrate (deposition member) B disposed on the upper part. In the film forming chamber 4, for example, a plurality of organic EL layers of the organic EL element A are sequentially formed as shown in FIG. The organic EL element A is obtained by forming a plurality of organic EL layers D1 to D4 between a transparent electrode C and a back electrode E formed on a substrate B. The organic EL layers D1 to D4 are, for example, transparent electrodes C A hole injection layer D1, a hole transport layer D2, a light emitting layer D3, and an electron transport layer D4 are stacked from the side. An electron injection layer may be formed between the electron transport layer D4 and the back electrode E.

この有機EL素子Aを製造するための製造装置は、図3に示すように、所定の真空仕様の真空輸送室1と、真空輸送室1の一端部に設けられて基板Bを搬入する搬入室(ロード・ロック室)2と、他端部に設けられて基板Bを搬出する基板搬出室(アンロード・ロック室)3と、真空輸送室1の搬入室2側の両側部に設けられた有機EL層形成用の成膜室4,4と、真空輸送室1の搬出室3側の両側部に設けられて電極を形成する電極形成室5,5とで構成されている。そして真空輸送室1には、基板Bを出し入れするための搬送ロボット6が配置されている。   As shown in FIG. 3, a manufacturing apparatus for manufacturing the organic EL element A includes a vacuum transport chamber 1 having a predetermined vacuum specification, and a carry-in chamber that is provided at one end of the vacuum transport chamber 1 and carries a substrate B therein. (Load / lock chamber) 2, a substrate unloading chamber (unload / lock chamber) 3 provided at the other end for unloading the substrate B, and both sides of the vacuum transport chamber 1 on the loading chamber 2 side. The film forming chambers 4 and 4 for forming the organic EL layer and the electrode forming chambers 5 and 5 that are provided on both sides of the vacuum transport chamber 1 on the side of the unloading chamber 3 to form electrodes. In the vacuum transport chamber 1, a transfer robot 6 for taking in and out the substrate B is disposed.

図1に示すように、前記成膜室4は所定の真空状態に保持され、蒸着面(下面)に透明電極Cが形成された基板Bを固定した状態で保持する基板ホルダー(ホルダー)7が上部に設けられ、基板ホルダー7に保持された基板Bの蒸着面にマスク8が設けられている。   As shown in FIG. 1, the film forming chamber 4 is held in a predetermined vacuum state, and a substrate holder (holder) 7 for holding the substrate B on which the transparent electrode C is formed on the deposition surface (lower surface) is fixed. A mask 8 is provided on the vapor deposition surface of the substrate B provided on the upper portion and held by the substrate holder 7.

図1と図4,図5に示すように、成膜室4の下部には、基板Bの蒸着面に対向して材料放出部11が設けられ、この材料放出部11には、材料を均等に分散(希薄化)して放出するための第1〜第3分散容器12A〜12Cが所定空間をあけ基板Bに対して接近離間する上下方向に重ねて配置されている。そして最上段の第1分散容器(最前段の分散容器)12Aには、上面に複数の第1放出ノズル13Aが所定間隔をあけて突設され第1放出口13aが開口されている。また中段の第2分散容器12Bの上面に複数の第2放出ノズル13Bが突設され、これら第2放出ノズル13Bは、第1分散容器12Aに上下方向に貫通された貫通部14Aから第1分散容器12Aの上面に突出され、その第2放出口(放出口)13bが第1放出ノズル13Aの近傍位置で第1放出口13aと同一平面上に開口されている。さらに最下段の第3分散容器(後段側であって最後段の分散容器)12Cの上面に複数の第3放出ノズル13Cが突設され、これら第3放出ノズル13Cは、第1分散容器12Aおよび第2分散容器12Bの貫通部14A,14Bから第1分散容器12Aの上面に突出され、第1放出ノズル13Aおよび第2放出ノズル13Bの近傍位置で第1放出口13aおよび第2放出口13bと同一平面上に第3放出口13cが開口されている。これにより、第1分散容器12Aの上面に、第1〜第3放出口13a〜13cからなる放出口群15が所定間隔をあけて配設される。   As shown in FIGS. 1, 4, and 5, a material discharge portion 11 is provided at the lower portion of the film forming chamber 4 so as to face the vapor deposition surface of the substrate B. The first to third dispersion containers 12A to 12C for dispersing (diluting) and releasing them are disposed so as to overlap each other in a vertical direction that opens a predetermined space and approaches and separates from the substrate B. In the uppermost first dispersion container (frontmost dispersion container) 12A, a plurality of first discharge nozzles 13A project from the upper surface with a predetermined interval and a first discharge port 13a is opened. In addition, a plurality of second discharge nozzles 13B project from the upper surface of the second dispersion container 12B in the middle stage, and these second discharge nozzles 13B are provided with a first dispersion from a penetrating portion 14A penetrating vertically through the first dispersion container 12A. It protrudes from the upper surface of the container 12A, and its second discharge port (discharge port) 13b is opened on the same plane as the first discharge port 13a in the vicinity of the first discharge nozzle 13A. Further, a plurality of third discharge nozzles 13C project from the upper surface of the lowermost third dispersion container (the rear-stage and last-stage dispersion container) 12C, and these third discharge nozzles 13C are connected to the first dispersion container 12A and the first dispersion container 12A. The first discharge port 13a and the second discharge port 13b are protruded from the through portions 14A and 14B of the second distribution vessel 12B to the upper surface of the first distribution vessel 12A and in the vicinity of the first discharge nozzle 13A and the second discharge nozzle 13B. A third discharge port 13c is opened on the same plane. Accordingly, the discharge port group 15 including the first to third discharge ports 13a to 13c is disposed on the upper surface of the first dispersion container 12A with a predetermined interval.

なお、第1分散容器12Aの上面に第1放出ノズル13Aを突設したが、第1放出ノズル13Aを設けずに、直接第1分散容器12Aの上面板に第1放出口を形成してもよく、この場合には、第2,第3放出ノズル13B,13Cの上端面が、第1分散容器12Aの上面に面一状となって第2,第3放出口13b,13cが開口される。   Although the first discharge nozzle 13A protrudes from the upper surface of the first dispersion container 12A, the first discharge port may be formed directly on the upper surface plate of the first dispersion container 12A without providing the first discharge nozzle 13A. In this case, the upper end surfaces of the second and third discharge nozzles 13B and 13C are flush with the upper surface of the first dispersion vessel 12A, and the second and third discharge ports 13b and 13c are opened. .

また図4に示すように、前記第2,第3分散容器12B,12Cの貫通部14A,14Bには、筒材部材14a,14bが固定され、筒材部材14a,14bと第2,第3放出ノズル13B,13Cの間に断熱部材16が挿入されている。   Further, as shown in FIG. 4, tubular members 14a and 14b are fixed to the through portions 14A and 14B of the second and third dispersion containers 12B and 12C, and the tubular members 14a and 14b are connected to the second and third portions. A heat insulating member 16 is inserted between the discharge nozzles 13B and 13C.

さらに第1〜第3分散容器12A〜12Cの外面には、第1〜第3分散容器12A〜12Cを後述する所定の加熱温度に加熱して材料の凝固や付着を防止するために、たとえばシースヒータからなる容器加熱装置17A〜17Cがそれぞれ取り付けられている。さらに第1分散容器12Aの上面、第1分散容器12Aと第2分散容器12Bの空間および第2分散容器12Bと第3分散容器12Cの空間には、熱伝導や輻射熱を防ぐ断熱板18がそれぞれ配置されている。   Further, on the outer surfaces of the first to third dispersion containers 12A to 12C, for example, a sheath heater is used to prevent the material from solidifying and adhering by heating the first to third dispersion containers 12A to 12C to a predetermined heating temperature described later. The container heating devices 17A to 17C are respectively attached. Further, heat insulating plates 18 for preventing heat conduction and radiant heat are respectively provided on the upper surface of the first dispersion container 12A, the space of the first dispersion container 12A and the second dispersion container 12B, and the space of the second dispersion container 12B and the third dispersion container 12C. Has been placed.

材料放出部11の上面部には、第1〜第3放出口13a〜13cを選択的に開閉自在なシャッター装置20が設けられている。このシャッター装置20は、図6,図7に示すように、第1分散容器12Aの上面で第1〜第3放出口13a〜13cに近接して水平方向にスライド自在なシャッター板21と、このシャッター板21を水平面に沿って矢印方向に移動させるシャッター作動装置22と、図示しないが、使用する全ての材料の蒸発温度未満にシャッター板21を冷却することにより、第1〜第3放出口13a〜13cからの蒸発材料を付着させて基板B側への流れを阻害するとともに、第1分散容器12Aからの放熱を遮断するシャッター冷却手段とで構成されている。前記シャッター作動装置22はシャッター板21を直線方向にi〜viの6段階にスライドして、第1〜第3放出口13a〜13cを選択的に開放・閉鎖するもので、シャッター板21には、各ノズル群15ごとにたとえば階段状の開閉用開口部21aが形成されている。   A shutter device 20 that can selectively open and close the first to third discharge ports 13 a to 13 c is provided on the upper surface of the material discharge unit 11. As shown in FIGS. 6 and 7, the shutter device 20 includes a shutter plate 21 that is slidable in the horizontal direction in the vicinity of the first to third discharge ports 13a to 13c on the upper surface of the first dispersion container 12A. The shutter operating device 22 that moves the shutter plate 21 along the horizontal plane in the direction of the arrow, and although not shown, the first to third discharge ports 13a are cooled by cooling the shutter plate 21 below the evaporation temperature of all the materials used. The evaporation material from ˜13c is attached to block the flow to the substrate B side, and the shutter cooling means blocks heat radiation from the first dispersion vessel 12A. The shutter operating device 22 slides the shutter plate 21 in six steps i to vi in a linear direction to selectively open and close the first to third discharge ports 13a to 13c. For example, a step-like opening / closing opening 21 a is formed for each nozzle group 15.

この開閉用開口部21aは、図7(a)に示すように、i位置で第1〜第3放出口13a〜13cをすべて閉鎖する。図7(b)に示すように、ii位置で第1放出口13aを開放して第2,第3放出口13b,13cを閉鎖する。図7(c)に示すように、iii位置で第1放出口13aと第2放出口13bを開放して第3放出口13cを閉鎖する。図7(d)に示すように、iv位置で第2放出口13bを開放して第1放出口13aと第3放出口13cを閉鎖し、図7(e)に示すように、v位置で第2放出口13bと第3放出口13cを開放して第1放出口13aを閉鎖する。また図7(f)に示すように、vi位置で第3放出口13cを開放して第1放出口13aと第2放出口13bを閉鎖する。もちろん、第1〜第3放出口13a〜13cをすべて開放するように開閉用開口部21aを形成することもできる。   As shown in FIG. 7A, the opening / closing opening 21a closes all the first to third discharge ports 13a to 13c at the i position. As shown in FIG. 7B, the first discharge port 13a is opened and the second and third discharge ports 13b and 13c are closed at the position ii. As shown in FIG. 7C, the first discharge port 13a and the second discharge port 13b are opened at the position iii, and the third discharge port 13c is closed. As shown in FIG. 7 (d), the second discharge port 13b is opened at the iv position and the first discharge port 13a and the third discharge port 13c are closed, and as shown in FIG. 7 (e), at the v position. The second discharge port 13b and the third discharge port 13c are opened and the first discharge port 13a is closed. Further, as shown in FIG. 7F, the third discharge port 13c is opened at the vi position, and the first discharge port 13a and the second discharge port 13b are closed. Of course, the opening / closing opening 21a can be formed so as to open all of the first to third discharge ports 13a to 13c.

成膜室4の室外には、材料を蒸発させる材料供給部31が設けられている。この材料供給部31は、異種材料または同種材料をそれぞれ蒸発させて第1〜第3分散容器12A〜12Cのいずれかに供給する第1〜第3蒸発セル32A〜32Cが具備されている。そして出口端が第1,第3分散容器12A,12Cにそれぞれ接続されて成膜室4の底壁を貫通する第1,第3材料導入管33A,33Cが、第1,第3開閉弁(開閉手段)34A,34Cを介して第1,第3蒸発セル32A,32Cにそれぞれ接続されている。また出口端が第2分散容器12Bに接続されて成膜室4の底壁を貫通する第2材料導入管33Bが、第2−1〜第2−3開閉弁(開閉手段)34Ba〜34Bcが介在された第1〜第3枝管35a〜35cを介して第2−1〜第2−3蒸発セル32Ba〜32Bcにそれぞれ接続されている。なお、仮想線で示すように、第1材料導入管33Aや第3材料導入管33Cに、開閉弁が介在された枝管を介して他の蒸発セルを設けることもできる。   A material supply unit 31 that evaporates the material is provided outside the film formation chamber 4. The material supply unit 31 includes first to third evaporation cells 32A to 32C that evaporate different materials or the same material and supply them to any of the first to third dispersion vessels 12A to 12C. The first and third material introduction pipes 33A and 33C, whose outlet ends are connected to the first and third dispersion vessels 12A and 12C, respectively, and penetrate the bottom wall of the film forming chamber 4, are connected to the first and third on-off valves ( Opening / closing means) are connected to the first and third evaporation cells 32A and 32C via 34A and 34C, respectively. In addition, the second material introduction pipe 33B whose outlet end is connected to the second dispersion vessel 12B and penetrates the bottom wall of the film forming chamber 4 is provided with the 2-1 to 2-3 open / close valves (open / close means) 34Ba to 34Bc. The first to third branch pipes 35a to 35c interposed are connected to the 2-1 to 2-3 evaporation cells 32Ba to 32Bc, respectively. As indicated by phantom lines, the first material introduction pipe 33A or the third material introduction pipe 33C can be provided with another evaporation cell via a branch pipe in which an on-off valve is interposed.

また第1〜第3開閉弁34A〜34Cおよび第1〜第3枝管35a〜35cならびに第1〜第3材料導入管33A〜33Cには、材料の凝固、付着を防止する加熱装置(図示せず)がそれぞれ設けられている。   The first to third on-off valves 34A to 34C, the first to third branch pipes 35a to 35c, and the first to third material introduction pipes 33A to 33C have heating devices (not shown) that prevent the material from solidifying and adhering. Each) is provided.

前記成膜室4内には、基板ホルダー7の側部近傍に蒸着レート検出用の水晶振動子41Aが配置され、水晶振動子41Aの検出値が膜厚センサ42に出力されて基板Bに蒸着された膜厚を検出する。また第1〜第3分散容器12A〜12Cの側部に設けられて材料の一部を放出する検出ノズル12a〜12cに対向して、蒸着レート検出用の第1〜第3水晶振動子41B〜41Dが配置され、第1〜第3水晶振動子41B〜41Dの検出値をそれぞれ前記膜厚センサ42に出力して第1〜第3分散容器12A〜12Cにおける蒸着レートを検出するように構成されている。   In the film forming chamber 4, a crystal resonator 41 </ b> A for detecting a deposition rate is disposed near the side of the substrate holder 7, and the detection value of the crystal resonator 41 </ b> A is output to the film thickness sensor 42 and evaporated on the substrate B. The film thickness is detected. Further, the first to third quartz resonators 41B to 41a for detecting the deposition rate are provided facing the detection nozzles 12a to 12c that are provided on the side portions of the first to third dispersion containers 12A to 12C and discharge a part of the material. 41D is arranged, and the detection values of the first to third crystal resonators 41B to 41D are output to the film thickness sensor 42 to detect the deposition rate in the first to third dispersion vessels 12A to 12C. ing.

したがって、蒸着制御装置43により、第1〜第3開閉弁34A〜34Cを開放して第1〜第3分散容器12A〜12C内に材料が導入され、検出ノズル12a〜12cから放出される材料を第1〜第3水晶振動子41B〜41Dにより検出し、前記膜厚センサ42から出力された第1〜第3分散容器12A〜12Cの蒸着レートが目標値になるように、蒸着制御装置43により第1〜第3開閉弁34A〜34Cの開度が制御される。さらに第1〜第3分散容器12A〜12Cの蒸着レートが目標値になると、蒸着制御装置43により、シャッター作動装置22により第1〜第3放出口13a〜13cが選択式に開放されて材料が第1〜第3分散容器12A〜12Cから放出され、基板Bに有機EL層D1〜D4が形成される。そして、基板ホルダー7の側部近傍の水晶振動子41Aにより基板Bの膜厚が膜厚センサ42を介して検出されており、この膜厚が所定厚になると、蒸着制御装置43により、シャッター作動装置22が駆動されて第1〜第3放出口13a〜13cを閉じ、第1〜第3開閉弁34A〜34Cが閉じられる。   Therefore, the vapor deposition controller 43 opens the first to third on-off valves 34A to 34C, introduces the material into the first to third dispersion vessels 12A to 12C, and discharges the material released from the detection nozzles 12a to 12c. The vapor deposition control device 43 detects the vapor deposition rates of the first to third dispersion vessels 12A to 12C detected by the first to third crystal resonators 41B to 41D and output from the film thickness sensor 42 by the vapor deposition control device 43. The opening degree of the first to third on-off valves 34A to 34C is controlled. Furthermore, when the vapor deposition rate of the first to third dispersion vessels 12A to 12C reaches the target value, the vapor deposition control device 43 opens the first to third discharge ports 13a to 13c selectively by the shutter operating device 22, and the material is changed. The organic EL layers D1 to D4 are formed on the substrate B by being discharged from the first to third dispersion containers 12A to 12C. Then, the film thickness of the substrate B is detected by the crystal oscillator 41A in the vicinity of the side portion of the substrate holder 7 via the film thickness sensor 42. When this film thickness reaches a predetermined thickness, the deposition controller 43 operates the shutter. The device 22 is driven to close the first to third discharge ports 13a to 13c, and the first to third on-off valves 34A to 34C are closed.

ここで、第1〜第3分散容器12A〜12Cの数と、蒸着する材料との関係を説明する。この真空蒸着装置では、使用する材料に対応して、第1〜第3開閉弁34A〜34C、第1〜第3枝管35a〜35c、第1〜第3材料導入管33A〜33Cおよび第1〜第3分散容器12A〜12Cが、それぞれ材料の凝固や固化を防止しつつ、材料が劣化しない適正な加熱温度(蒸発温度+所定温度)〜(分解温度−所定温度)を保持するように加熱される。ここで、使用する材料ごとにそれぞれ分散容器を設けると、分散容器の数が多くなって成膜室が大型化し、かつ材料放出部の構造が複雑になる。これに対して、単数の分散容器を共用して異種材料を順次放出する場合、使用する材料ごとに、材料に対応する適正な加熱温度に、材料導入管や分散容器などをそれぞれ温度制御する必要がある。このように材料を変更するごとに、加熱温度を制御すると、材料の切り換えに時間がかかり、タクトタイムが長くなるという問題がある。   Here, the relationship between the number of 1st-3rd dispersion | distribution containers 12A-12C and the material to vapor-deposit is demonstrated. In this vacuum deposition apparatus, the first to third on-off valves 34A to 34C, the first to third branch pipes 35a to 35c, the first to third material introduction pipes 33A to 33C, and the first corresponding to the materials to be used. The third dispersion containers 12A to 12C are heated so as to maintain appropriate heating temperatures (evaporation temperature + predetermined temperature) to (decomposition temperature-predetermined temperature) at which the material does not deteriorate while preventing the solidification and solidification of the material, respectively. Is done. Here, if a dispersion container is provided for each material to be used, the number of dispersion containers is increased, the film forming chamber is enlarged, and the structure of the material discharge part is complicated. On the other hand, when dissimilar materials are sequentially released by sharing a single dispersion container, it is necessary to control the temperature of the material introduction tube, dispersion container, etc. to the appropriate heating temperature for each material used. There is. When the heating temperature is controlled each time the material is changed in this way, there is a problem that it takes time to switch the material and the tact time becomes long.

したがって、本発明では、材料ごとの第1〜第3開閉弁34A〜34C、第1〜第3枝管35a〜35c、第1〜第3材料導入管33A〜33Cおよび第1〜第3分散容器12A〜12Cの加熱温度の変更は行わずに一定とし、かつ分散容器の個数をできるだけ少なくするため、蒸発温度と分解温度の間で適正な加熱温度が共通する複数の材料または単数の材料を選択してグループ分けし、これらグループを各分散容器に振り分けている。   Accordingly, in the present invention, the first to third on-off valves 34A to 34C, the first to third branch pipes 35a to 35c, the first to third material introduction pipes 33A to 33C, and the first to third dispersion containers for each material. In order to keep the heating temperatures of 12A to 12C constant without changing the number of dispersion vessels, select a plurality of materials or a single material with an appropriate heating temperature between the evaporation temperature and the decomposition temperature. Grouped, and these groups are distributed to each dispersing container.

すなわち、図8(a)に示すように、この真空蒸着装置で使用するたとえば5つの材料a〜eの適正な加熱温度範囲[蒸発状態を維持し、熱分解しない温度(蒸発温度+所定温度)〜(分解温度−所定温度)]を列記すると、材料aが210℃〜260℃、材料bが300℃〜340℃、材料cおよび材料d(使用量が多くなるので層別に同一材料を使用している)が270℃〜340℃、材料eが390℃〜450℃である。この場合、5つの材料a〜eをグループ分けすると、材料aは蒸発温度および分解温度が他の材料b〜eに比較して低いため、単独で1グループとする。また材料b〜dは、300−340℃の温度範囲が共通しているため、3つの材料b〜dを1グループとする。さらに材料eは蒸発温度および分解温度が他の材料a〜dに比較して高いため、単独で1グループとする。そして材料aを第1分散容器12Aに、材料b〜dを第2分散容器12Bに、材料eを第3分散容器12Cにそれぞれ振り分けて使用する。   That is, as shown in FIG. 8 (a), for example, an appropriate heating temperature range of five materials a to e used in this vacuum vapor deposition apparatus [a temperature that maintains an evaporation state and does not thermally decompose (evaporation temperature + predetermined temperature) ~ (Decomposition temperature-Predetermined temperature)], the material a is 210 ° C to 260 ° C, the material b is 300 ° C to 340 ° C, the material c and the material d (the amount of use increases, so the same material is used for each layer) Is 270 ° C. to 340 ° C., and the material e is 390 ° C. to 450 ° C. In this case, when the five materials a to e are grouped, the material a has a lower evaporation temperature and decomposition temperature than the other materials b to e. Further, since the materials b to d have a common temperature range of 300 to 340 ° C., the three materials b to d are grouped. Furthermore, since the evaporating temperature and the decomposition temperature of the material e are higher than those of the other materials a to d, the material e is grouped independently. The material a is distributed to the first dispersion container 12A, the materials b to d are distributed to the second dispersion container 12B, and the material e is distributed to the third dispersion container 12C.

この実施の形態1では、第1蒸発セル32Aで220℃に加熱して材料aを蒸発する。そして第1材料導入管33Aおよび第1開閉弁34Aを240℃に加熱し、さらに容器加熱装置17Aにより第1分散容器12Aを250℃に加熱して材料aを第1放出口13aから放出する。また第2−1蒸発セル32Baで310℃に加熱して材料bを蒸発する。そして第2−2蒸発セル32Bbおよび第2−3蒸発セル32Bcでそれぞれ280℃に加熱して材料c〜dを蒸発する。さらに第2材料導入管33Bおよび第2−1〜第2−3開閉弁34Ba〜34Bcならびに第1〜第3枝管35a〜35cを320℃に加熱し、さらに容器加熱装置17Bにより第2分散容器12Bを330℃に加熱して材料b〜dを第2放出口13bからそれぞれ放出する。さらに第3蒸発セル32Cで400℃に加熱して材料eを蒸発する。そして第3材料導入管33Cおよび第3開閉弁34Cを410℃に加熱し、さらに容器加熱装置17Cにより第3分散容器12Cを420℃に加熱して材料eを第3放出口13cから放出する。   In the first embodiment, the material a is evaporated by heating to 220 ° C. in the first evaporation cell 32A. Then, the first material introduction pipe 33A and the first on-off valve 34A are heated to 240 ° C., and further, the first dispersion container 12A is heated to 250 ° C. by the container heating device 17A to discharge the material a from the first discharge port 13a. Further, the material b is evaporated by heating to 310 ° C. in the 2-1 evaporation cell 32Ba. Then, the materials cd are evaporated by heating to 280 ° C. in the 2-2 evaporation cell 32Bb and the 2-3 evaporation cell 32Bc, respectively. Further, the second material introduction pipe 33B, the 2-1 to 2-3 open / close valves 34Ba to 34Bc, and the first to third branch pipes 35a to 35c are heated to 320 ° C., and further, the second dispersion container is provided by the container heating device 17B. 12B is heated to 330 ° C., and materials b to d are discharged from the second discharge port 13b. Further, the material e is evaporated by heating to 400 ° C. in the third evaporation cell 32C. Then, the third material introduction pipe 33C and the third on-off valve 34C are heated to 410 ° C., and the third dispersion container 12C is heated to 420 ° C. by the container heating device 17C to discharge the material e from the third discharge port 13c.

ここで、材料aはたとえばCoumarin C545Tで、発光層D3を形成するドーパント材料であり、また材料bはたとえばα−NPDで、ホール輸送層D2を形成する材料である。また材料cおよびdはたとえばAlq3で、発光層D3を形成するホスト材料および電子輸送層D4を形成する材料であり、さらに材料eはたとえばCuPcで、ホール注入層D1を形成する材料である。   Here, the material a is, for example, Coumarin C545T, a dopant material that forms the light emitting layer D3, and the material b is, for example, α-NPD, a material that forms the hole transport layer D2. Materials c and d are, for example, Alq3, a host material for forming the light emitting layer D3, and a material for forming the electron transport layer D4, and a material e is, for example, CuPc, a material for forming the hole injection layer D1.

またここでは、第1〜第3分散容器12A〜12Cのうち、容器加熱装置17A〜17Cにより加熱される加熱温度の低いものを基板Bに接近する最上段に配置している。これは、材料放出部11から基板Bに放射される輻射熱が大きいと、基板Bの保持部(アライメント)でマスクを高精度で配置しても、熱膨張によりマスクによる蒸着位置の精度を低下させるとともに、蒸着膜が輻射熱を受けて加熱され変質劣化するという問題が生じるためである。また、基板Bに対面し最も接近した第1分散容器12Aは温度が低いほうが望ましく、またこれに隣接する第2分散容器12Bとの温度差は小さい方が温度の影響を受けにくい。したがって、実施の形態1では、加熱温度が一番低い材料aが基板Bに対面し最も接近した第1分散容器12Aに、加熱温度が次に低い材料b〜dが第2分散容器12Bに、加熱温度が最も高い材料eが基板Bに最も離間した第3分散容器12Cにそれぞれ振り分けられる。   Here, among the first to third dispersion containers 12A to 12C, the one having a low heating temperature heated by the container heating devices 17A to 17C is arranged at the uppermost stage approaching the substrate B. This is because if the radiant heat radiated from the material emitting unit 11 to the substrate B is large, the accuracy of the deposition position by the mask is reduced due to thermal expansion even if the mask is arranged with high accuracy by the holding unit (alignment) of the substrate B. At the same time, the deposited film is heated by receiving radiant heat and deteriorates. Further, it is desirable that the temperature of the first dispersion container 12A that faces the substrate B and is closest to the substrate B is lower, and the temperature difference between the first dispersion container 12A and the second dispersion container 12B adjacent to the first dispersion container 12A is less affected by the temperature. Therefore, in the first embodiment, the material a having the lowest heating temperature faces the substrate B and is closest to the first dispersion vessel 12A, and the materials b to d having the next lowest heating temperature are the second dispersion vessel 12B. The material e having the highest heating temperature is distributed to the third dispersion containers 12C that are the farthest from the substrate B.

次に蒸着作業を説明する。
1.(蒸着準備工程)蒸着面に透明電極Cが形成された基板Bを、搬送ロボット6により成膜室4に搬入して、基板ホルダー7に固定する。さらに基板Bの蒸着面にマスク8を取り付け、成膜室4を閉じる。
Next, the vapor deposition operation will be described.
1. (Deposition preparation step) The substrate B on which the transparent electrode C is formed on the deposition surface is carried into the film formation chamber 4 by the transfer robot 6 and fixed to the substrate holder 7. Further, a mask 8 is attached to the vapor deposition surface of the substrate B, and the film forming chamber 4 is closed.

ここで第1〜第3枝管35a〜35c、第1〜第3材料導入管33A〜33C、第1〜第3開閉弁34A〜34Cおよび第1〜第3分散容器12A〜12Cはそれぞれ適正な加熱温度に加熱される。   Here, the first to third branch pipes 35a to 35c, the first to third material introduction pipes 33A to 33C, the first to third on-off valves 34A to 34C, and the first to third dispersion containers 12A to 12C are respectively appropriate. Heated to heating temperature.

2.(ホール注入層蒸着工程)第3蒸発セル32Cにおいて、ホール注入層D1の材料eを蒸発温度まで加熱して蒸発させる。そして蒸着制御装置43により、第3開閉弁34Cを開けて、材料eを第3材料導入管33Cから第3分散容器12Cに導入する。さらに第3検出管12cから放出される材料eを、蒸着レート検出用の第3水晶振動子41Dを介して膜厚センサ42により検出し、第3分散容器12C内の材料eの蒸着レートが所定値になると、蒸着制御装置43により、シャッター装置20のシャッター作動装置22を駆動し、シャッター板21をi位置からvi位置にスライドさせて第3放出口13cを開放し、第3放出口13cから材料eを基板Bに向かって放出して、ホール注入層D1の蒸着を開始する。   2. (Hole Injection Layer Deposition Step) In the third evaporation cell 32C, the material e of the hole injection layer D1 is heated to the evaporation temperature and evaporated. Then, the vapor deposition controller 43 opens the third on-off valve 34C and introduces the material e into the third dispersion container 12C from the third material introduction pipe 33C. Further, the material e emitted from the third detection tube 12c is detected by the film thickness sensor 42 via the third quartz oscillator 41D for detecting the deposition rate, and the deposition rate of the material e in the third dispersion vessel 12C is predetermined. When the value is reached, the vapor deposition control device 43 drives the shutter actuating device 22 of the shutter device 20, slides the shutter plate 21 from the i position to the vi position to open the third discharge port 13c, and from the third discharge port 13c. The material e is discharged toward the substrate B, and deposition of the hole injection layer D1 is started.

膜厚検出用の水晶振動子41Aにより膜厚センサ42で検出されるホール注入層D1の膜厚が所定の厚みになると、蒸着制御装置43により、シャッター板21をi位置に戻して第3放出口13cを閉じるとともに、第3開閉弁34Cを閉じ、第3蒸発セル32Cの加熱温度を材料eの蒸発温度より下げる。さらに、引き続き加熱が維持される第3材料導入管33C内と第3分散容器12C内に残存した材料eが、第3検出管12cと、第3放出口13cとシャッター板21の隙間から放出され、材料eが無くなったのが、第3水晶振動子41Dを介して膜厚センサ42により確認された後に、次の工程に移る。   When the film thickness of the hole injection layer D1 detected by the film thickness sensor 42 by the crystal oscillator 41A for film thickness detection reaches a predetermined thickness, the deposition control device 43 returns the shutter plate 21 to the i position and releases the third release. The outlet 13c is closed, the third on-off valve 34C is closed, and the heating temperature of the third evaporation cell 32C is lowered below the evaporation temperature of the material e. Further, the material e remaining in the third material introduction pipe 33C and the third dispersion container 12C that is continuously heated is discharged from the gap between the third detection pipe 12c, the third discharge port 13c, and the shutter plate 21. After confirming that the material e has been lost by the film thickness sensor 42 via the third crystal unit 41D, the process proceeds to the next step.

なお、成膜室4では、常時真空ポンプ(図示せず)により吸引されており、第3検出管12cから排出された余剰の材料eは、防着部材(図示せず)により基板B側に流れず、吸引ポンプにより成膜室4から排出される。これは、3〜5の工程も同様である。   Note that, in the film forming chamber 4, suction is always performed by a vacuum pump (not shown), and surplus material e discharged from the third detection tube 12 c is moved to the substrate B side by an adhesion preventing member (not shown). It does not flow and is discharged from the film forming chamber 4 by the suction pump. The same applies to the steps 3 to 5.

3.(ホール輸送層蒸着工程)第2−1蒸発セル32Baにおいて、ホール輸送層D2の材料bを蒸発温度まで加熱して蒸発させる。そして蒸着制御装置43により、第2−1開閉弁34Baを開けて、材料bを第1枝管35aおよび第2材料導入管33Bを介して第2分散容器12Bに導入する。さらに第2検出管12bから放出される材料bを、蒸着レート検出用の第2水晶振動子41Cを介して膜厚センサ42で検出し、第2分散容器12B内の材料bの蒸着レートが所定値になると、蒸着制御装置43により、シャッター板21をi位置からiv位置にスライドさせて第2放出口13bを開放し、第2放出口13bから材料bを基板Bに向かって放出して、ホール輸送層D2の蒸着を開始する。   3. (Hole Transport Layer Deposition Step) In the 2-1 evaporation cell 32Ba, the material b of the hole transport layer D2 is heated to the evaporation temperature and evaporated. Then, the vapor deposition control device 43 opens the 2-1 on-off valve 34Ba and introduces the material b into the second dispersion vessel 12B through the first branch pipe 35a and the second material introduction pipe 33B. Further, the material b emitted from the second detection tube 12b is detected by the film thickness sensor 42 via the second quartz oscillator 41C for detecting the deposition rate, and the deposition rate of the material b in the second dispersion vessel 12B is predetermined. When the value is reached, the deposition control device 43 slides the shutter plate 21 from the i position to the iv position to open the second discharge port 13b, and discharges the material b from the second discharge port 13b toward the substrate B. Deposition of the hole transport layer D2 is started.

膜厚検出用の水晶振動子41Aにより膜厚センサ42で検出されるホール輸送層D2の膜厚が所定の厚みになると、蒸着制御装置43により、シャッター板21をi位置に戻して第2放出口13bを閉じるとともに、第2−1開閉弁34Baを閉じ、第2−1蒸発セル32Baの加熱温度を材料bの蒸発温度より下げる。さらに、引き続き加熱が維持される第2材料導入管33B内と第2分散容器12B内に残存した材料bが、第2検出管12bと、第2放出口13bとシャッター板21の隙間から放出され、材料bが無くなったのが第2水晶振動子41Cを介して膜厚センサ42により確認された後に、次の工程に移る。   When the film thickness of the hole transport layer D2 detected by the film thickness sensor 42 by the crystal oscillator 41A for film thickness detection reaches a predetermined thickness, the vapor deposition control device 43 returns the shutter plate 21 to the i position and releases the second release. The outlet 13b is closed, the 2-1 on-off valve 34Ba is closed, and the heating temperature of the 2-1 evaporation cell 32Ba is lowered below the evaporation temperature of the material b. Furthermore, the material b remaining in the second material introduction tube 33B and the second dispersion vessel 12B that are continuously heated is discharged from the gap between the second detection tube 12b, the second discharge port 13b, and the shutter plate 21. After the material b is confirmed by the film thickness sensor 42 via the second crystal unit 41C, the process proceeds to the next step.

4.(発光層蒸着工程)第1蒸発セル32Aにおいて、発光層D3のドーパント材料である材料aを蒸発温度まで加熱して蒸発させるとともに、第2−2蒸発セル32Bbにおいて、発光層D3のホスト材料である材料cを蒸発温度まで加熱して蒸発させる。そして蒸着制御装置43により、第1開閉弁34Aを開けて、蒸発した材料aを第1材料導入管33Aから第1分散容器12Aに導入する。同時に第2−2開閉弁34Bbを開けて材料cを第2枝管35bおよび第2材料導入管33Bを介して第2分散容器12Bに導入する。さらに、第1検出管12aから放出される材料aを、蒸着レート検出用の第1水晶振動子41Bを介して膜厚センサ42で検出するとともに、第2検出管12bから放出される材料cを、蒸着レート検出用の第2水晶振動子41Cを介して膜厚センサ42で検出する。そして第1,第2分散容器12A,12B内の材料a,cの蒸着レートがそれぞれ所定値になると、蒸着制御装置43により、シャッター板21をi位置からiii位置にスライドさせて第1放出口13aおよび第2放出口13bをそれぞれ開放し、第1放出口13aから材料aを基板Bに向かって放出すると同時に、第2放出口13bから材料cを基板Bに向かって放出し、発光層D3の蒸着を開始する。   4). (Light-Emitting Layer Evaporation Step) In the first evaporation cell 32A, the material a that is the dopant material of the light-emitting layer D3 is heated to the evaporation temperature to evaporate, and in the 2-2 evaporation cell 32Bb, the host material of the light-emitting layer D3 is used. A material c is heated to the evaporation temperature and evaporated. Then, the vapor deposition controller 43 opens the first on-off valve 34A, and introduces the evaporated material a into the first dispersion vessel 12A from the first material introduction tube 33A. At the same time, the 2-2 on-off valve 34Bb is opened to introduce the material c into the second dispersion vessel 12B through the second branch pipe 35b and the second material introduction pipe 33B. Further, the material a released from the first detection tube 12a is detected by the film thickness sensor 42 via the first quartz oscillator 41B for vapor deposition rate detection, and the material c released from the second detection tube 12b is detected. The film thickness is detected by the film thickness sensor 42 through the second crystal oscillator 41C for detecting the deposition rate. When the vapor deposition rates of the materials a and c in the first and second dispersion vessels 12A and 12B reach predetermined values, the vapor deposition control device 43 slides the shutter plate 21 from the i position to the iii position to form the first discharge port. 13a and the second discharge port 13b are opened, and the material a is discharged from the first discharge port 13a toward the substrate B. At the same time, the material c is discharged from the second discharge port 13b toward the substrate B, and the light emitting layer D3 Start vapor deposition.

膜厚検出用の水晶振動子41Aにより膜厚センサ42で検出される発光層D3の膜厚が所定の厚みになると、蒸着制御装置43により、シャッター板21をi位置に戻して第1放出口13aおよび第2放出口13bを閉じ、さらに第1開閉弁34Aおよび第2−2開閉弁34Bbを閉じ、第1蒸発セル32Aおよび第2−2蒸発セル32Bbの加熱温度をそれぞれ材料aおよびcの蒸発温度より下げる。   When the film thickness of the light emitting layer D3 detected by the film thickness sensor 42 by the crystal oscillator 41A for film thickness detection reaches a predetermined thickness, the vapor deposition control device 43 returns the shutter plate 21 to the i position and the first discharge port. 13a and the second discharge port 13b are closed, the first on-off valve 34A and the 2-2 on-off valve 34Bb are closed, and the heating temperatures of the first evaporating cell 32A and the 2-2 evaporating cell 32Bb are made of the materials a and c, respectively. Lower than the evaporation temperature.

ここで、この工程の材料cと、次の工程の材料dが同一であるため、第1材料導入管33Aおよび第1分散容器12Aに残存した材料cを放出させるための時間が不要となり、短時間で次の工程を開始できるので、タクトタイムの短縮に貢献することができる。また同一の材料を同一の蒸発セルで使用することにより、蒸発セルの加熱温度を同一に保持して次の工程に移ることができ、これもタクトタイムの短縮に貢献できる。   Here, since the material c in this step and the material d in the next step are the same, the time for discharging the material c remaining in the first material introduction tube 33A and the first dispersion vessel 12A is unnecessary, and the time is short. Since the next process can be started in time, the tact time can be reduced. Further, by using the same material in the same evaporation cell, the heating temperature of the evaporation cell can be kept the same and the next process can be performed, which can also contribute to shortening the tact time.

5.(電子輸送層蒸着工程)第2−3蒸発セル32Bcにおいて、電子輸送層D4の材料dを蒸発温度まで加熱して蒸発させる。そして蒸着制御装置43により、第2−3開閉弁32Bcを開けて、蒸発した材料dを第3枝管35cおよび第2材料導入管33Bを介して第2分散容器12Bに導入する。さらに第2検出管12bから放出される材料dを、蒸着レート検出用の第2水晶振動子41Cを介して膜厚センサ42で検出し、第2分散容器12B内の材料dの蒸着レートが所定値になると、蒸着制御装置43により、シャッター板21をi位置からiv位置にスライドさせて第2放出口13bを開放し、第2放出口13bから材料dを基板Bに向かって放出して、電子輸送層D4の蒸着を開始する。   5. (Electron Transport Layer Deposition Step) In the 2-3 evaporation cell 32Bc, the material d of the electron transport layer D4 is heated to the evaporation temperature and evaporated. Then, the vapor deposition control device 43 opens the 2-3 open / close valve 32Bc and introduces the evaporated material d into the second dispersion vessel 12B through the third branch pipe 35c and the second material introduction pipe 33B. Further, the material d emitted from the second detection tube 12b is detected by the film thickness sensor 42 via the second quartz oscillator 41C for detecting the deposition rate, and the deposition rate of the material d in the second dispersion vessel 12B is predetermined. When the value is reached, the deposition control device 43 slides the shutter plate 21 from the i position to the iv position to open the second discharge port 13b, and discharges the material d from the second discharge port 13b toward the substrate B. Deposition of the electron transport layer D4 is started.

膜厚検出用の水晶振動子41Aにより膜厚センサ42で検出される電子輸送層D4の膜厚が所定の厚みになると、シャッター板21をi位置に戻して第2放出口13bを閉じるとともに、第2−3開閉弁34Bcを閉じ、第2−3蒸発セル32Bcの加熱温度を材料dの蒸発温度より下げる。   When the film thickness of the electron transport layer D4 detected by the film thickness sensor 42 by the crystal oscillator 41A for film thickness detection reaches a predetermined thickness, the shutter plate 21 is returned to the i position and the second discharge port 13b is closed. The 2-3 open / close valve 34Bc is closed, and the heating temperature of the 2-3 evaporation cell 32Bc is lowered below the evaporation temperature of the material d.

以上により、1つの成膜室4で4つの有機EL層D1〜D4を積層する。
次に搬送ロボット6により、基板Bを成膜室4から真空輸送室1を介して電極形成室5に移送し、電極形成室5で電子輸送層D4上に背面電極Eを形成する(背面電極形成工程)。そして、洗浄や検査(仕上げ工程)を行った後、有機EL素子Aの製造が完了する。
As described above, four organic EL layers D1 to D4 are stacked in one film forming chamber 4.
Next, the substrate B is transferred from the film forming chamber 4 to the electrode forming chamber 5 by the transfer robot 6 through the vacuum transport chamber 1, and the back electrode E is formed on the electron transport layer D 4 in the electrode forming chamber 5 (back electrode). Forming step). And after washing | cleaning and test | inspection (finishing process), manufacture of the organic EL element A is completed.

上記実施の形態によれば、容器加熱装置17A,17Cにより、第1,第3分散容器12A,12Cをそれぞれ材料a,eの蒸発温度から分解温度の間の適正な加熱温度に加熱し、さらに容器加熱装置17Bにより、第2分散容器12Bをそれぞれ材料b〜dの蒸発温度から分解温度の間で共通する適正な加熱温度に加熱し、単数または複数の第1〜第3分散容器12A〜12Cを選択的に使用して、材料a〜eを第1〜第3放出口13a〜13cから選択的に基板Bに放出し、これを繰り返すことにより基板Bに複数の有機EL層D1〜D4を積層形成することができる。したがって、従来構成に比較して、搬送ロボット6による次工程の成膜室4への基板Bの移し替え時間も不要で、作業時間を大幅に短縮することができ、1つの成膜室4で基板Bに複数の有機EL層D1〜D4を形成することができる。また第2分散容器12Bで複数の材料b〜dを共用することで、分散容器の数を削減することができて構造を簡易化でき、成膜室4をコンパクトに構成することができる。さらに複数の材料b〜dを共用する第2分散容器12Bを、各材料b〜dの蒸発温度から分解温度の間で共通する適正な加熱温度に加熱することで、第2分散容器12Bの材料変更ごとの加熱温度の変更制御が不要になり、タクトタイムが増加することがない。   According to the above embodiment, the container heating devices 17A and 17C heat the first and third dispersion containers 12A and 12C to appropriate heating temperatures between the evaporation temperatures of the materials a and e, respectively, and the decomposition temperature. The container heating device 17B heats the second dispersion container 12B to an appropriate heating temperature common between the evaporation temperature and the decomposition temperature of the materials b to d, respectively, and one or a plurality of first to third dispersion containers 12A to 12C. The materials a to e are selectively discharged from the first to third discharge ports 13a to 13c to the substrate B, and a plurality of organic EL layers D1 to D4 are formed on the substrate B by repeating this. Stacking can be performed. Therefore, compared with the conventional configuration, the transfer time of the substrate B to the film forming chamber 4 of the next process by the transfer robot 6 is not required, and the working time can be greatly shortened. A plurality of organic EL layers D1 to D4 can be formed on the substrate B. Further, by sharing the plurality of materials b to d in the second dispersion container 12B, the number of dispersion containers can be reduced, the structure can be simplified, and the film formation chamber 4 can be configured compactly. Furthermore, the material of the second dispersion container 12B is heated by heating the second dispersion container 12B sharing the plurality of materials b to d to an appropriate heating temperature common to the decomposition temperature from the evaporation temperature of each material b to d. The heating temperature change control for each change becomes unnecessary, and the tact time does not increase.

また、成膜室4内で、基板Bを基板ホルダー7により固定状態で配置するとともに、第1〜第3放出口13a〜13cからなる放出口群15を所定間隔をあけて固定状態で配置し、さらに第1〜第3分散容器12A〜12Cを上下に複数段に配置して、下段側の第2,第3分散容器12B,12Cの第2,第3放出ノズル13B,13Cを、上段側の第1,第2分散容器12A,12Bの貫通部14A,14Bを介して最上段の第1分散容器12Aの表面にそれぞれ開口させることにより、放出口群15を適正位置に配置して、基板Bに均一な膜を形成することができる。   Further, in the film forming chamber 4, the substrate B is disposed in a fixed state by the substrate holder 7, and the discharge port group 15 including the first to third discharge ports 13 a to 13 c is disposed in a fixed state at a predetermined interval. Further, the first to third dispersion containers 12A to 12C are arranged in a plurality of stages in the vertical direction, and the second and third discharge nozzles 13B and 13C of the second and third dispersion containers 12B and 12C on the lower stage side are arranged on the upper stage side. The first and second dispersion containers 12A and 12B are opened through the through-holes 14A and 14B on the top surface of the first dispersion container 12A, thereby disposing the discharge port group 15 at an appropriate position and A uniform film can be formed on B.

さらに、蒸発温度−分解温度が低い材料aを放出し、かつ加熱温度が低い第1分散容器12Aを最上段に配置したので、基板Bへの輻射熱を軽減することができ、マスクの熱膨張による蒸着位置の精度の低下と蒸着膜の変質劣化を防止することができるという効果を奏することができる。   Furthermore, since the first dispersion container 12A that releases the material a having a low evaporation temperature-decomposition temperature and has a low heating temperature is disposed at the uppermost stage, the radiant heat to the substrate B can be reduced, and due to the thermal expansion of the mask. The effect that the fall of the precision of a vapor deposition position and the quality change of a vapor deposition film can be prevented can be show | played.

さらにまた、放出口群15の配置に対応して形成された開閉用開口部21aを有するシャッター板21を、シャッター作動装置22によりスライドさせることにより、第1〜第3放出口13a〜13cを選択的に開閉することができ、単数または複数の材料a〜eを任意に選択して放出することができる。   Furthermore, the first to third discharge ports 13a to 13c are selected by sliding the shutter plate 21 having the opening / closing opening 21a formed corresponding to the arrangement of the discharge port group 15 by the shutter operating device 22. It can be opened and closed automatically, and one or more materials a to e can be arbitrarily selected and released.

また各成膜室4を上記構成とすることにより、1つの成膜室4が故障した場合でも、正常な側の成膜室4を使用することができ、製造ライン全体を停止させる必要がない。また従来のように、1つの成膜ごとに成膜室と真空輸送室との間で基板Bを出し入れすることがないので、真空輸送室1がパーティクルなどで汚染されにくく、真空輸送室1の汚染リスクを軽減することができる。   Further, by forming each film forming chamber 4 as described above, even when one film forming chamber 4 fails, the film forming chamber 4 on the normal side can be used, and it is not necessary to stop the entire production line. . Further, unlike the prior art, since the substrate B is not taken in and out between the film formation chamber and the vacuum transport chamber for each film formation, the vacuum transport chamber 1 is hardly contaminated with particles or the like. The risk of contamination can be reduced.

なお、実施の形態1では、アップデポジションタイプのものを説明したが、図9に示すように、一側部に基板Bを配置し、他側部に材料放出部11を配置し、材料放出部11から側方の基板Bに向かって材料を放出するサイドデポジションタイプのものでも、同一の作用効果を奏することができる。   In the first embodiment, the up-deposition type has been described. However, as shown in FIG. 9, the substrate B is disposed on one side, the material discharge portion 11 is disposed on the other side, and the material discharge portion. Even the side deposition type that releases the material from 11 toward the side substrate B can achieve the same effects.

[実施の形態2]
実施の形態2を図8(b)および図10を参照して説明する。この実施の形態2は、実施の形態1において、第3分散容器12Cに供給していた材料eのCuPcを2TNATAに変更し、第2−4蒸発セル32Bdから第4枝管35dおよび第2−4開閉弁34Bdならびに第2材料導入管33Bを介して第2分散容器12Bに供給するように構成し、さらに第3分散容器12Cを削除したものである。また、前記材料eである2TNATAの適正な加熱温度範囲は300℃〜360℃である。ここで、実施の形態1と同一部材には同一符号を付して説明を省略する。
[Embodiment 2]
The second embodiment will be described with reference to FIG. 8B and FIG. In the second embodiment, the CuPc of the material e supplied to the third dispersion vessel 12C in the first embodiment is changed to 2TNATA, and the second to fourth evaporation pipes 32Bd to the second branch pipe 35d and the second It is configured to be supplied to the second dispersion vessel 12B via the 4 on-off valve 34Bd and the second material introduction pipe 33B, and the third dispersion vessel 12C is further omitted. Moreover, the suitable heating temperature range of 2TNATA which is the said material e is 300 degreeC-360 degreeC. Here, the same members as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

材料b〜eの適正な加熱温度範囲を300℃〜340℃とし、第2−1蒸発セル32Baで310℃に加熱して材料eを蒸発させ、そして第2材料導入管33Bおよび第2−1〜第2−4開閉弁34Ba〜34Bdならびに第1〜第4枝管35a〜35dを320℃に加熱し、容器加熱装置17Bにより第2分散容器12Bを330℃に加熱する。   The appropriate heating temperature range of the materials b to e is set to 300 ° C. to 340 ° C., the material e is evaporated by heating to 310 ° C. in the 2-1 evaporation cell 32Ba, and the second material introduction pipe 33B and the second 2-1 The second to fourth on-off valves 34Ba to 34Bd and the first to fourth branch pipes 35a to 35d are heated to 320 ° C., and the second dispersion container 12B is heated to 330 ° C. by the container heating device 17B.

上記実施の形態3によれば、実施の形態1に比較して、3つの分散容器の数を第1,第2分散容器12A,12Bの2つとし、1つを削減することができるほか、実施の形態1と同様の作用効果を奏することができる。   According to the third embodiment, compared to the first embodiment, the number of three dispersion containers can be two, the first and second dispersion containers 12A and 12B, and one can be reduced. The same effects as those of the first embodiment can be achieved.

[実施の形態3]
実施の形態3を図11および図12を参照して説明する。
上記実施の形態1,2では、第1〜第3分散容器12A〜12Cを重ねて配置したが、この実施の形態3では、ダクト状の第1〜第3分散容器52A〜52Cを複数組(図では4組)並設したものである。なお、実施の形態1と同一部材には同一符号を付して説明を省略する。
[Embodiment 3]
A third embodiment will be described with reference to FIG. 11 and FIG.
In the first and second embodiments, the first to third dispersion containers 12A to 12C are arranged so as to overlap each other. In the third embodiment, a plurality of duct-shaped first to third dispersion containers 52A to 52C ( 4 sets in the figure). The same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

すなわち、材料放出部51には、複数の第1〜第3放出ノズル53A〜53Cを有するダクト状の第1〜第3分散容器52A〜52Cが複数組(図では4組)略同一平面状に並設されている。もちろん、第1〜第3分散容器52A〜52Cを上下に位置ずれして配置してもよい。また図示しないが、第1〜第3分散容器52A〜52Cにはそれぞれ容器加熱装置が設けられ、また第1〜第3分散容器52A〜52Cの間の空間には断熱板が設置されている。   That is, in the material discharge portion 51, a plurality of sets (four sets in the figure) of duct-shaped first to third dispersion containers 52A to 52C having a plurality of first to third discharge nozzles 53A to 53C are formed in substantially the same plane. It is installed side by side. Of course, you may arrange | position the 1st-3rd dispersion | distribution container 52A-52C to position shifting up and down. Moreover, although not shown in figure, the 1st-3rd dispersion | distribution container 52A-52C is each provided with a container heating apparatus, and the heat insulation board is installed in the space between 1st-3rd dispersion | distribution container 52A-52C.

上記実施の形態3によれば、実施の形態1と同様の作用効果を奏することができる。
なお、上記各実施の形態では、基板ホルダー7に基板Bを固定した状態で保持したが、基板Bを垂直軸心周りに回転させたり、あるいは基板Bを直線方向に移動させる基板ホルダーを設けてもよい。
According to the third embodiment, the same effects as those of the first embodiment can be achieved.
In each of the above embodiments, the substrate B is held in a fixed state on the substrate holder 7, but a substrate holder that rotates the substrate B around a vertical axis or moves the substrate B in a linear direction is provided. Also good.

また、有機EL層D1〜D4を形成する真空蒸着装置を示したが、他の真空蒸着装置であってもよく、これに限るものではない。   Moreover, although the vacuum evaporation apparatus which forms the organic EL layers D1-D4 was shown, another vacuum evaporation apparatus may be sufficient and it does not restrict to this.

本発明に係る真空蒸着装置の実施の形態1を示すアップデポジションタイプの成膜室の正面視の断面図である。It is sectional drawing of the front view of the up-deposition type film-forming chamber which shows Embodiment 1 of the vacuum evaporation system which concerns on this invention. 有機EL素子を示す部分拡大断面図である。It is a partial expanded sectional view which shows an organic EL element. 有機EL素子の製造装置を説明する概略平面図である。It is a schematic plan view explaining the manufacturing apparatus of an organic EL element. 分散容器の放出ノズルの貫通部を示す拡大断面図である。It is an expanded sectional view which shows the penetration part of the discharge nozzle of a dispersion container. 分散容器と放出ノズルの配置を示す平面図である。It is a top view which shows arrangement | positioning of a dispersion | distribution container and a discharge nozzle. シャッター板を示す平面図である。It is a top view which shows a shutter board | plate. シャッター板の開放用開口部と第1〜第3放出口の位置関係を示す部分拡大平面図で、(a)は第1〜第3放出口の全閉状態を示し、(b)は第1放出口の開放状態を示し、(c)は第1,第2放出口の開放状態を示し、(d)は第2放出口の開放状態を示し、(e)は第3,第4放出口の開放状態を示し、(f)は第3放出口の開放状態を示す。It is the elements on larger scale which show the positional relationship of the opening part for opening of a shutter plate, and the 1st-3rd discharge port, (a) shows the fully closed state of the 1st-3rd discharge port, (b) is the 1st. (C) shows the open state of the first and second discharge ports, (d) shows the open state of the second discharge port, and (e) shows the third and fourth discharge ports. (F) shows the open state of the third discharge port. 材料の適正な加熱温度範囲を示し、(a)は実施の形態1の材料を示し、(b)は実施の形態2の材料を示す。An appropriate heating temperature range of the material is shown, (a) shows the material of the first embodiment, and (b) shows the material of the second embodiment. 真空蒸着装置の変形例を示すサイドデポジションタイプの成膜室の正面視の断面図である。It is sectional drawing of the front view of the side deposition type film-forming chamber which shows the modification of a vacuum evaporation system. 本発明に係る真空蒸着装置の実施の形態2を示すアップデポジションタイプの成膜室の正面視の断面図である。It is sectional drawing of the front view of the up-deposition type film-forming chamber which shows Embodiment 2 of the vacuum evaporation system which concerns on this invention. 本発明に係る真空蒸着装置の実施の形態3を示すアップデポジションタイプの成膜室の正面視の断面図である。It is sectional drawing of the front view of the up-deposition type film-forming chamber which shows Embodiment 3 of the vacuum evaporation system which concerns on this invention. 材料放出部における分散容器の配置を示す平面図である。It is a top view which shows arrangement | positioning of the dispersion | distribution container in a material discharge | release part.

符号の説明Explanation of symbols

A 有機EL素子
B 基板
C 透明電極
D1 ホール注入層
D2 ホール輸送層
D3 発光層
D4 電子輸送層
E 背面電極
1 真空輸送室
2 搬入室
3 搬出室
4 成膜室
5 電極形成室
6 搬送ロボット
7 基板ホルダー
8 マスク
11,51 材料放出部
12A〜12C,52A〜52C 第1A〜第3分散容器
12a〜12c 第1〜第3検出管
13A〜13C,53A〜53C 第1A〜第3放出ノズル
13a〜13c 第1〜第3放出口
14A,14B 貫通部
15 放出口群
16 断熱部材
17A〜17C 容器加熱装置
18 断熱板
20 シャッター装置
21 シャッター板
21a 開閉用開口部
22 シャッター作動装置
31 材料供給部
32A 第1蒸発セル
32Ba 第2−1蒸発セル
32Bb 第2−2蒸発セル
32Bc 第2−3蒸発セル
32Bd 第2−4蒸発セル
32C 第3蒸発セル
33A〜33C 第1〜第3材料導入管
34A 第1開閉弁(開閉手段)
34Ba〜34Bd 第2−1〜第2−4開閉弁(開閉手段)
34C 第3開閉弁(開閉手段)
35a〜35d 第1〜第4枝管
41A 水晶振動子
41B〜41D 第1〜第3水晶振動子
42 膜厚センサ
43 蒸着制御装置
A organic EL element B substrate C transparent electrode D1 hole injection layer D2 hole transport layer D3 light emitting layer D4 electron transport layer E back electrode 1 vacuum transport chamber 2 carry-in chamber 3 carry-out chamber 4 film formation chamber 5 electrode formation chamber 6 transport robot 7 substrate Holder 8 Mask 11, 51 Material discharge parts 12A to 12C, 52A to 52C 1A to 3rd dispersion containers 12a to 12c 1st to 3rd detection tubes 13A to 13C, 53A to 53C 1A to 3rd discharge nozzles 13a to 13c 1st-3rd discharge port 14A, 14B Through part 15 Release port group 16 Heat insulation member 17A-17C Container heating device 18 Heat insulation plate 20 Shutter device 21 Shutter plate 21a Opening and closing part 22 Shutter actuator 31 Material supply part 32A 1st Evaporation cell 32Ba 2-1 evaporation cell 32Bb 2-2 evaporation cell 32Bc 2-3 evaporation cell 32Bd second 4 evaporation cell 32C third evaporation cell 33A~33C first to third material introduction pipe 34A first on-off valve (switching means)
34Ba to 34Bd 2-1 to 2-4 open / close valve (open / close means)
34C Third open / close valve (open / close means)
35a-35d 1st-4th branch pipe 41A Crystal oscillator 41B-41D 1st-3rd crystal oscillator 42 Film thickness sensor 43 Deposition control apparatus

Claims (6)

1つの成膜室内で、複数の材料を被蒸着部材に蒸着して複数層の膜を形成する真空蒸着装置であって、
成膜室に、被蒸着部材の蒸着面に対向して配置されて材料を放出する材料放出部を設け、
前記材料放出部に、材料を放出する放出口を有する複数の分散容器を設け、
材料を蒸発させる蒸発セルと分散容器とを開閉手段を介して接続するとともに、少なくとも前記分散容器のうちの1つに、材料の蒸発温度と熱分解温度の間の温度範囲が共通する材料を蒸発する複数の蒸発セルをそれぞれ開閉手段を介して接続し、
各分散容器に、放出する材料の蒸発温度と熱分解温度の間の所定温度に加熱する容器加熱装置をそれぞれ設けた
真空蒸着装置。
A vacuum deposition apparatus that forms a plurality of layers of films by depositing a plurality of materials on a deposition target member in one deposition chamber,
The film forming chamber is provided with a material discharge portion disposed opposite to the vapor deposition surface of the vapor deposition member to discharge the material,
A plurality of dispersion containers having discharge ports for discharging material are provided in the material discharge part,
The evaporation cell for evaporating the material and the dispersion container are connected via an opening / closing means, and at least one of the dispersion containers evaporates the material having a common temperature range between the evaporation temperature of the material and the thermal decomposition temperature. A plurality of evaporating cells connected to each other via an opening / closing means,
A vacuum deposition apparatus in which each dispersion container is provided with a container heating device for heating to a predetermined temperature between the evaporation temperature and the pyrolysis temperature of the material to be released.
被蒸着部材をホルダーに固定して配置し、
複数の分散容器を、被蒸着部材の蒸着面に対して接近離間する方向に重ねて配置し、
被蒸着部材に最も接近する最前段の分散容器で被蒸着部材の蒸着面に対向する表面側に、当該最前段の分散容器の材料を放出する複数の放出口を所定間隔をあけて開口するとともに、前記最前段の分散容器よりも離間する側の分散容器に、前段側の分散容器を貫通して前記最前段の分散容器の表面側に放出口を開口する複数の放出ノズルを設けた
請求項1記載の真空蒸着装置。
Place the member to be deposited fixed to the holder,
Arranging a plurality of dispersion containers in a direction to approach and separate from the vapor deposition surface of the vapor deposition member,
In the foremost stage dispersion container closest to the deposition target member, a plurality of discharge ports for discharging the material of the foremost stage dispersion container are opened at predetermined intervals on the surface side facing the deposition surface of the deposition target member. A plurality of discharge nozzles that pass through the front-stage dispersion container and open discharge ports on the surface side of the front-stage dispersion container are provided in the dispersion container on the side farther than the front-stage dispersion container. The vacuum evaporation apparatus according to 1.
容器加熱装置の加熱温度が低い分散容器ほど前段側に配置した
請求項1または2記載の真空蒸着装置。
The vacuum evaporation apparatus according to claim 1 or 2, wherein a dispersion container having a lower heating temperature of the container heating apparatus is disposed on the front side.
ホスト材料を放出する分散容器と、ドーパント材料を放出する分散容器とを設け、
2つの前記分散容器からホスト材料とドーパント材料とを同時に放出するように構成した
請求項1乃至3のいずれかに記載の真空蒸着装置。
A dispersion vessel for releasing the host material and a dispersion vessel for releasing the dopant material;
The vacuum evaporation apparatus according to any one of claims 1 to 3, wherein the host material and the dopant material are simultaneously released from the two dispersion containers.
各分散容器の放出口を選択的に開閉自在なシャッター装置を設け、
前記シャッター装置に、最前段の分散容器の表面で放出口の蒸着面側に、分散容器の表面に沿ってスライド自在で、かつ放出口を選択的に開放可能な開閉用開口部が形成されたシャッター板を設けた
請求項1乃至4のいずれかに記載の真空蒸着装置。
Provide a shutter device that can selectively open and close the discharge port of each dispersion container,
The shutter device is provided with an opening / closing opening that is slidable along the surface of the dispersion container and selectively openable on the vapor deposition surface side of the discharge port on the surface of the dispersion container in the foremost stage. The vacuum deposition apparatus according to claim 1, further comprising a shutter plate.
複数の分散容器を具備した1つの成膜室で、単数または複数の前記分散容器の放出口から材料を放出して被蒸着部材に蒸着させる複数の蒸着工程を行い、被蒸着部材に複数層の膜を形成するに際し、
少なくとも1つの前記分散容器から、蒸発温度と分解温度の間で共通する温度範囲を有する複数の材料を複数の蒸着工程で放出させ、
前記分散容器を、放出する材料の蒸発温度と熱分解温度の間の所定温度に加熱する
真空蒸着方法。
In one film forming chamber equipped with a plurality of dispersion containers, a plurality of deposition steps are performed in which a material is discharged from the discharge port of one or a plurality of the dispersion containers and deposited on the deposition target member, and a plurality of layers are formed on the deposition target member. In forming the film,
Releasing a plurality of materials having a common temperature range between the evaporation temperature and the decomposition temperature from the at least one dispersion vessel in a plurality of vapor deposition steps;
A vacuum deposition method in which the dispersion container is heated to a predetermined temperature between an evaporation temperature and a thermal decomposition temperature of a material to be released.
JP2006251981A 2006-09-19 2006-09-19 Vacuum deposition equipment Active JP5036264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251981A JP5036264B2 (en) 2006-09-19 2006-09-19 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251981A JP5036264B2 (en) 2006-09-19 2006-09-19 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2008075095A true JP2008075095A (en) 2008-04-03
JP5036264B2 JP5036264B2 (en) 2012-09-26

Family

ID=39347452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251981A Active JP5036264B2 (en) 2006-09-19 2006-09-19 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP5036264B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256705A (en) * 2008-04-15 2009-11-05 Hitachi Zosen Corp Vacuum vapor deposition apparatus
JP2010242202A (en) * 2009-04-10 2010-10-28 Hitachi Zosen Corp Vapor deposition apparatus
JP2011117073A (en) * 2009-11-30 2011-06-16 Samsung Mobile Display Co Ltd Vapor deposition source, vapor deposition apparatus equipped with the same, and thin film deposition method
JP2011179073A (en) * 2010-03-01 2011-09-15 Ulvac Japan Ltd Thin film deposition device
JP2011225940A (en) * 2010-04-20 2011-11-10 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
CN102373434A (en) * 2010-08-20 2012-03-14 日立造船株式会社 Vapor deposition device
JP2012087387A (en) * 2010-10-21 2012-05-10 Ulvac Japan Ltd Thin film deposition device and thin film deposition method
JP2012169128A (en) * 2011-02-14 2012-09-06 Ulvac Japan Ltd Thin film manufacturing apparatus
WO2012141151A1 (en) * 2011-04-11 2012-10-18 東京エレクトロン株式会社 Film-forming apparatus and film-forming method
CN102877031A (en) * 2012-10-26 2013-01-16 四川大学 Array design for large-area co-evaporation sources
JP2013519788A (en) * 2010-02-16 2013-05-30 アストロン フィアム セーフティー Constant volume closure valve for vapor deposition source
WO2013125598A1 (en) * 2012-02-23 2013-08-29 旭硝子株式会社 Device and method for producing fluorine-containing organosilicon compound thin film
JP2013204073A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Vacuum deposition device and crucible replacement method therein
WO2014027578A1 (en) 2012-08-13 2014-02-20 株式会社カネカ Vacuum deposition device and method for manufacturing organic el device
JP2014031581A (en) * 2012-07-31 2014-02-20 Samsung Display Co Ltd Vapor deposition apparatus and method for measuring deposition volume using the same
JP2014037564A (en) * 2012-08-13 2014-02-27 Kaneka Corp Vacuum vapor-deposition device and manufacturing method of organic el device
JP2014037565A (en) * 2012-08-13 2014-02-27 Kaneka Corp Method for manufacturing vacuum deposition apparatus and organic el apparatus
CN112877646A (en) * 2021-01-13 2021-06-01 嘉讯科技(深圳)有限公司 High-efficient vacuum plating device with mix and plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009107A (en) * 2004-06-28 2006-01-12 Hitachi Zosen Corp Evaporation apparatus, vapor deposition apparatus and method for switching evaporation apparatus in vapor deposition apparatus
JP2006057173A (en) * 2004-08-24 2006-03-02 Tohoku Pioneer Corp Film deposition source, vacuum film deposition apparatus and method for producing organic el panel
JP2006111926A (en) * 2004-10-15 2006-04-27 Hitachi Zosen Corp Vapor deposition system
JP2006225725A (en) * 2005-02-18 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009107A (en) * 2004-06-28 2006-01-12 Hitachi Zosen Corp Evaporation apparatus, vapor deposition apparatus and method for switching evaporation apparatus in vapor deposition apparatus
JP2006057173A (en) * 2004-08-24 2006-03-02 Tohoku Pioneer Corp Film deposition source, vacuum film deposition apparatus and method for producing organic el panel
JP2006111926A (en) * 2004-10-15 2006-04-27 Hitachi Zosen Corp Vapor deposition system
JP2006225725A (en) * 2005-02-18 2006-08-31 Hitachi Zosen Corp Vapor deposition apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256705A (en) * 2008-04-15 2009-11-05 Hitachi Zosen Corp Vacuum vapor deposition apparatus
JP2010242202A (en) * 2009-04-10 2010-10-28 Hitachi Zosen Corp Vapor deposition apparatus
JP2011117073A (en) * 2009-11-30 2011-06-16 Samsung Mobile Display Co Ltd Vapor deposition source, vapor deposition apparatus equipped with the same, and thin film deposition method
US8986783B2 (en) 2009-11-30 2015-03-24 Samsung Display Co., Ltd. Method of forming thin film from multiple deposition sources
JP2013519788A (en) * 2010-02-16 2013-05-30 アストロン フィアム セーフティー Constant volume closure valve for vapor deposition source
JP2011179073A (en) * 2010-03-01 2011-09-15 Ulvac Japan Ltd Thin film deposition device
JP2011225940A (en) * 2010-04-20 2011-11-10 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
CN102373434A (en) * 2010-08-20 2012-03-14 日立造船株式会社 Vapor deposition device
JP2012087387A (en) * 2010-10-21 2012-05-10 Ulvac Japan Ltd Thin film deposition device and thin film deposition method
JP2012169128A (en) * 2011-02-14 2012-09-06 Ulvac Japan Ltd Thin film manufacturing apparatus
WO2012141151A1 (en) * 2011-04-11 2012-10-18 東京エレクトロン株式会社 Film-forming apparatus and film-forming method
WO2013125598A1 (en) * 2012-02-23 2013-08-29 旭硝子株式会社 Device and method for producing fluorine-containing organosilicon compound thin film
JP2013204073A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Vacuum deposition device and crucible replacement method therein
KR20130110015A (en) * 2012-03-28 2013-10-08 히다치 조센 가부시키가이샤 Vacuum evaporation apparatus and method for replacing crucibles in vacuum evaporation apparatus
KR101971033B1 (en) * 2012-03-28 2019-04-22 히다치 조센 가부시키가이샤 Vacuum evaporation apparatus and method for replacing crucibles in vacuum evaporation apparatus
US10596582B2 (en) 2012-07-31 2020-03-24 Samsung Display Co., Ltd. Depositing apparatus and method for measuring deposition quantity using the same
JP2014031581A (en) * 2012-07-31 2014-02-20 Samsung Display Co Ltd Vapor deposition apparatus and method for measuring deposition volume using the same
US9724715B2 (en) 2012-07-31 2017-08-08 Samsung Display Co., Ltd Depositing apparatus and method for measuring deposition quantity using the same
JP2014037565A (en) * 2012-08-13 2014-02-27 Kaneka Corp Method for manufacturing vacuum deposition apparatus and organic el apparatus
CN104540975A (en) * 2012-08-13 2015-04-22 株式会社钟化 Vacuum deposition device and method for manufacturing organic el device
JPWO2014027578A1 (en) * 2012-08-13 2016-07-25 株式会社カネカ Vacuum deposition apparatus and organic EL device manufacturing method
US9496527B2 (en) 2012-08-13 2016-11-15 Kaneka Corporation Vacuum deposition device and method of manufacturing organic EL device
JP2014037564A (en) * 2012-08-13 2014-02-27 Kaneka Corp Vacuum vapor-deposition device and manufacturing method of organic el device
WO2014027578A1 (en) 2012-08-13 2014-02-20 株式会社カネカ Vacuum deposition device and method for manufacturing organic el device
CN102877031A (en) * 2012-10-26 2013-01-16 四川大学 Array design for large-area co-evaporation sources
CN112877646A (en) * 2021-01-13 2021-06-01 嘉讯科技(深圳)有限公司 High-efficient vacuum plating device with mix and plate

Also Published As

Publication number Publication date
JP5036264B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5036264B2 (en) Vacuum deposition equipment
KR100990060B1 (en) Film forming apparatus, film forming system, film forming method, and method for manufacturing electronic device or organic electroluminescence element
JP5008527B2 (en) Vapor deposition apparatus and film formation method
JP5282038B2 (en) Vapor deposition equipment
JP4402016B2 (en) Vapor deposition apparatus and vapor deposition method
JP5373221B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
TW200837206A (en) Vapor deposition apparatus, device for controlling vapor deposition apparatus, method for controlling vapor deposition apparatus, and method for operating vapor deposition apparatus
JP5506147B2 (en) Film forming apparatus and film forming method
JP2000223269A (en) Organic thin film forming device
JP2012211352A (en) Evaporation source, organic el-device manufacturing device and organic el-device manufacturing method
JP4458932B2 (en) Vapor deposition equipment
KR101431415B1 (en) Film material and method for prediction of film material
WO2005107392A2 (en) System for vaporizing materials onto substrate surface
JP2013189701A (en) Film forming apparatus
JP5940460B2 (en) Organic EL device manufacturing method, organic EL device manufacturing device, photoelectric conversion device manufacturing method, and photoelectric conversion device manufacturing device
KR20070109408A (en) Apparatus of thin film evaporation and method for thin film evaporation using the same
JP5460773B2 (en) Film forming apparatus and film forming method
JP2014019883A (en) Vacuum deposition and vacuum deposition method
WO2013005781A1 (en) Film formation device
JP2012052187A (en) Vapor deposition apparatus, film deposition method, and method for manufacturing organic el device
KR102567009B1 (en) Apparatus Restraining from Thermal Interference for Multi Source Co-Deposition
JP2003193224A (en) Thin film manufacturing apparatus, thin film multiple layer apparatus using the same, and thin film manufacturing method
JP2003308967A (en) Vacuum evaporation system for thin film deposition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5036264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250