WO2012141151A1 - Film-forming apparatus and film-forming method - Google Patents

Film-forming apparatus and film-forming method Download PDF

Info

Publication number
WO2012141151A1
WO2012141151A1 PCT/JP2012/059730 JP2012059730W WO2012141151A1 WO 2012141151 A1 WO2012141151 A1 WO 2012141151A1 JP 2012059730 W JP2012059730 W JP 2012059730W WO 2012141151 A1 WO2012141151 A1 WO 2012141151A1
Authority
WO
WIPO (PCT)
Prior art keywords
shutter
film forming
vapor deposition
gas
forming apparatus
Prior art date
Application number
PCT/JP2012/059730
Other languages
French (fr)
Japanese (ja)
Inventor
裕是 金子
小野 裕司
林 輝幸
拓岳 桑田
澄美 大島
景一 山口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2012141151A1 publication Critical patent/WO2012141151A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • Embodiments of the present invention relate to a film forming apparatus and a film forming method.
  • Patent Document 1 describes an organic material film forming apparatus.
  • the apparatus described in Patent Document 1 includes a vapor deposition head that ejects a gas containing gas molecules of an organic material.
  • a vapor deposition head that ejects a gas containing gas molecules of an organic material.
  • an organic material is deposited on the substrate to be processed by the gas sprayed from the vapor deposition head adhering to the substrate to be processed.
  • the inventor of the present application has studied a film forming apparatus provided with a shutter in order to block the gas injected before the film forming process. In this research, the present inventor has found a problem that it takes time until the gas injection state is stabilized after the shutter is opened.
  • an object of one aspect of the present invention is to provide a film forming apparatus capable of shortening a period until the gas injection state is stabilized after the shutter is opened.
  • Another object of the present invention is to provide a film forming method capable of shortening a period until the gas injection state is stabilized after the shutter is opened.
  • the inventor of the present application has found that the cause of the above-described problem is that the pressure increases between the shutter and the ejection port while the shutter is closed. This increase in pressure is presumed to have occurred because the gas reflected by the shutter collides with the gas injected from the injection port.
  • a film forming apparatus includes a vapor deposition head and a shutter.
  • the vapor deposition head has an ejection port that ejects a gas containing gas molecules of the vapor deposition material.
  • the shutter can be arranged at a position (hereinafter referred to as “closed position”) that blocks gas from the ejection port of the vapor deposition head.
  • the shutter has a cooling unit for cooling the shutter.
  • the film forming apparatus may further include a stage on which the substrate to be processed is mounted, and a moving mechanism that moves the stage in a direction that intersects with the gas injection direction from the injection port of the vapor deposition head.
  • the vapor deposition head may have a plurality of injection ports, and the plurality of injection ports may be arranged in a direction that intersects the moving direction of the stage.
  • the vapor deposition head of this embodiment has a jet port arranged in one direction, and is a so-called linear source type vapor deposition head.
  • the distance between the linear source type vapor deposition head and the substrate to be processed is generally set shorter than the distance between the point source type vapor deposition head and the substrate to be processed. Therefore, the distance between the linear source type vapor deposition head and the shutter is inevitably shortened. Therefore, the shutter having the cooling part is effective for the linear source type vapor deposition head.
  • the cooling unit when the shutter is disposed at the closed position, the cooling unit may be interposed between the vapor deposition head and the space for forming the substrate to be processed. Generally, the vapor deposition head is heated during use. According to this embodiment, the influence on the space due to the heat radiated from the vapor deposition head can be reduced.
  • the cooling unit may include a refrigerant flow path.
  • the film forming apparatus may further include means for switching the direction in which the refrigerant flows in the flow path between one direction and another direction opposite to the one direction. According to this embodiment, the shutter can be cooled more uniformly.
  • the shutter may further include a heating unit for heating the shutter.
  • a heating unit for heating the shutter.
  • the shutter may have a comb-tooth structure in a portion where gas is sprayed. According to this embodiment, it is possible to adsorb gas molecules more efficiently by the comb-tooth structure.
  • the shutter may include a surface inclined with respect to the center line of the injection port in a portion where the gas is blown. According to this embodiment, for example, it becomes possible to reflect a carrier gas such as argon gas mixed with the gas together with gas molecules of the vapor deposition material in a direction different from the direction toward the injection port.
  • the inclined surface may include a wavy surface.
  • the tip portion of the vapor deposition head provided with the injection port may be configured with a tapered surface. According to this form, even if the gas reflected from the shutter is reflected in the direction of the tip portion of the vapor deposition head, the gas is deflected by the tapered surface. Therefore, further reflection of the gas in the direction of the shutter can be reduced.
  • a film forming method comprising: (a) a position where a gas containing gas molecules of a vapor deposition material from an ejection port of a vapor deposition head is blocked (hereinafter referred to as “closed position”) A step of cooling the shutter, (b) a step of retracting the shutter from the closed position, and (c) a step of forming a vapor deposition material on the substrate to be processed by a gas from the vapor deposition head. Then, during the period when the shutter is in the closed position, the shutter is cooled, and gas molecules of the vapor deposition material are adsorbed in the shutter, so that an increase in pressure between the shutter and the injection port can be reduced. According to the film forming method, it is possible to shorten the period until the gas injection state is stabilized after the shutter is opened.
  • the film forming method may further include a step of heating the shutter after the step of forming the film. According to the film formation method of this embodiment, it is possible to remove the vapor deposition material attached to the shutter by heating the shutter during a period different from the period of the film formation process.
  • a film forming apparatus and a film forming method capable of shortening the period until the gas injection state is stabilized after the shutter is opened.
  • FIG. 1 is a diagram illustrating an example of a film forming system including a film forming apparatus according to an embodiment.
  • a film forming system 100 illustrated in FIG. 1 includes a film forming apparatus 10 according to an embodiment.
  • the film forming system 100 can be used, for example, as a system for manufacturing an organic EL (Electro Luminescence) element shown in FIG.
  • FIG. 2 is a diagram illustrating an example of an organic EL element that can be manufactured by a film forming system according to an embodiment.
  • the organic EL element D shown in FIG. 2 may include a substrate Sub, a first layer D1, a second layer D2, a third layer D3, a fourth layer D4, and a fifth layer D5.
  • the substrate Sub is an optically transparent substrate such as a glass substrate.
  • a first layer D1 is provided on one main surface of the substrate Sub.
  • the first layer D1 can be used as an anode layer.
  • the first layer D1 is an optically transparent electrode layer, and may be formed of a conductive material such as ITO (Indium Tin Oxide).
  • the first layer D1 is formed by, for example, a sputtering method.
  • the second layer D2, the third layer D3, and the fourth layer D4 are sequentially stacked on the first layer D1.
  • the second layer D2, the third layer D3, and the fourth layer D4 are organic layers.
  • the second layer D2 can be a hole transport layer.
  • the third layer D3 is a light emitting layer, and may include, for example, a non-light emitting layer D3a, a blue light emitting layer D3b, a red light emitting layer D3c, and a green light emitting layer D3d.
  • the fourth layer D4 may be an electron transport layer.
  • the fifth layer D5 is provided on the fourth layer D4.
  • the fifth layer D5 is a cathode layer and can be made of, for example, Ag, Al, or the like.
  • the fifth layer D5 can be formed by a sputtering method or the like.
  • the element D having such a configuration can be further sealed with an insulating sealing film made of a material such as SiN formed by microwave plasma CVD or the like.
  • the film forming system 100 capable of manufacturing such an organic EL element D may further include a loader 102, a transfer chamber 104, and a mask stocker 106.
  • a gate valve G is provided between the modules. Thereby, the space in each module is sealed.
  • the film forming system 100 is not limited to the gate valve G, and can include any isolation means as long as it is a means capable of isolating the space in each module.
  • the substrate to be processed can be processed as described below. That is, first, the substrate Sub is mounted on the loader 102. Then, the substrate Sub is transferred as a substrate to be processed to a sputtering apparatus (not shown), and a patterned first layer D1 is formed on the substrate Sub in the sputtering apparatus. Thereby, the to-be-processed base
  • the substrate to be processed is transferred into the film forming chamber of the film forming apparatus 10 through the transfer chamber 104, and the second layer D2 and the third layer D3, which are organic layers, are formed on the first layer D1 in the film forming chamber. , And a fourth layer D4 are sequentially formed. Thereby, the to-be-processed base
  • the substrate to be processed is transferred to another sputtering apparatus (not shown), and the fifth layer D5 is formed on the fourth layer D4 in the sputtering apparatus.
  • substrate which has the 5th layer D5 on the 4th layer D4 is produced.
  • the substrate to be processed is transferred to a plasma CVD apparatus, and a sealing film is formed in the plasma CVD apparatus.
  • the film-forming system 100 is not limited to the organic EL element D shown in FIG. 2, and can be used to generate any organic element such as a solar cell element including an organic layer or an organic semiconductor element.
  • FIGS. 3 and 4 are diagrams schematically showing a film forming apparatus according to an embodiment.
  • FIG. 3 schematically shows a film forming apparatus according to an embodiment as viewed from a direction (side) perpendicular to the moving direction of the stage
  • FIG. 4 shows a structure of the embodiment as viewed from the moving direction of the stage.
  • 1 schematically shows a membrane device.
  • a film forming apparatus 10 that performs film formation in the face-up state will be described. That is, in the film forming apparatus 10, gas is injected from above onto the film forming surface of the substrate W to be processed with the film forming surface facing upward. Note that the idea of the present invention can also be applied to a film forming apparatus that performs film formation in a face-down state or in a state where the substrate is vertically set up.
  • the film forming apparatus 10 includes one or more vapor deposition heads 12 and one or more shutters 14. Each of the one or more shutters 14 can be arranged to block gas from the corresponding vapor deposition head 12. In one embodiment, the film forming apparatus 10 may further include a chamber wall 16 and a chamber wall 18.
  • the chamber wall 16 defines the film forming chamber C1 described above, and the chamber wall 18 defines the chamber C2.
  • An exhaust device P1 is connected to the film forming chamber C1 through a pipe d1.
  • the pipe d1 is provided with a valve V1.
  • the exhaust device P1 exhausts the gas in the film formation chamber C1, and maintains the film formation chamber C1 in a substantially vacuum.
  • One or more vapor deposition heads 12 are provided so as to straddle the film forming chamber C1 and the chamber C2.
  • six vapor deposition heads 12 are provided for the film formation chamber C1.
  • the number of the vapor deposition heads 12 can be arbitrarily changed according to the number of organic layers of the element to be manufactured.
  • One or more arbitrary number of vapor deposition heads 12 may be provided in one film formation chamber.
  • the six vapor deposition heads 12 have substantially the same configuration, in the following description, the configuration of one vapor deposition head 12 will be described.
  • the vapor deposition head 12 injects the gas containing the gas molecule of vapor deposition material.
  • a vapor deposition gas supply source 20 is connected to the vapor deposition head 12 via a pipe d2.
  • a valve V2 is provided in the pipe d2. The valve V2 switches between supply and stop of gas supply from the vapor deposition gas supply source 20 to the vapor deposition head 12.
  • the gas generated and supplied by the deposition gas supply source 20 includes gas molecules of a deposition material (organic material) and a carrier gas. An inert gas such as Ar is used as the carrier gas.
  • the vapor deposition head 12 is connected to the exhaust device P2 through the pipe d3.
  • the pipe d3 is provided with a valve v3.
  • the valve V3 switches exhaust of the gas in the vapor deposition head 12 and exhaust stop.
  • a pipe d4 is branched from the pipe d2 described above between the valve V2 and the vapor deposition gas supply source 20, and the pipe d4 is connected to the pipe d3 between the valve V3 and the exhaust device P2. .
  • the pipe d4 is provided with a valve V4.
  • the pipe d4 constitutes a path for bypassing the gas to the exhaust device P2 when the gas from the vapor deposition gas supply source 20 is not supplied to the vapor deposition head 12. That is, when the gas is not supplied to the vapor deposition head 12, the valves V2 and V3 are closed and the valve V4 is opened. Thereby, the gas from the vapor deposition gas supply source 20 is exhausted through the pipe d4. On the other hand, when the gas is supplied to the vapor deposition head 12, the valve V4 is closed and the valve V2 is opened. As a result, gas is supplied from the vapor deposition gas supply source 20 to the vapor deposition head 12.
  • valve V2, the valve V3, and the valve V4 are provided in the chamber C2 defined by the chamber wall 18. Further, the pipe d2, the pipe d3, and the pipe d4 are partially provided in the chamber C2. The inside of the chamber C2 can be exhausted by the exhaust device P2.
  • the film forming apparatus 10 may further include a stage S and a moving mechanism 22.
  • a stage S On the stage S, the substrate W to be processed transported by the transport device in the transport chamber 104 is placed.
  • the stage S has, for example, an electrostatic chuck and can attract the substrate W to be processed by an electrostatic force generated by the electrostatic chuck.
  • the stage S is supported by a moving mechanism 22 so as to be movable in a predetermined direction.
  • the moving mechanism 22 moves the stage S in the X direction in the space in the film forming chamber C1. This space is located below the vapor deposition head 12 in the gas ejection direction (Y direction) of the vapor deposition head 12. Further, the X direction is a direction that intersects with the gas injection direction (Y direction) from the vapor deposition head 12, and is, for example, a direction orthogonal to the Y direction.
  • the stage S is moved in the X direction by the moving mechanism 22, the substrate W to be processed placed on the stage S passes under the vapor deposition head 12. As a result, an organic layer is formed on the substrate W by vapor deposition.
  • a linear stage using a linear motor can be adopted as the moving mechanism 22. Further, any mechanism can be used as the moving mechanism 22 as long as the mechanism moves the stage S in the X direction.
  • the film forming apparatus 10 may further include a mask aligner 24.
  • the mask M stored in the mask stocker 106 is transported into the film forming chamber C1 by the transport device in the mask stocker 106.
  • the mask M transferred by the film forming chamber C1 is aligned on the substrate W to be processed by the mask aligner 24.
  • the organic layer described above can be formed on the substrate W to be processed in a pattern corresponding to the mask M.
  • FIG. 5 is a perspective view showing a vapor deposition head, a shutter, and a shutter moving mechanism according to an embodiment.
  • the vapor deposition head 12 and the shutter 14 are shown in a positional relationship inverted from the positional relationship in the Y direction between the vapor deposition head 12 and the shutter 14 shown in FIGS. 3 and 4.
  • FIG. 6 is a plan view showing a vapor deposition head and a shutter according to an embodiment as viewed from the side (Z direction).
  • the vapor deposition head 12 may have a plurality of injection ports 12a in one embodiment. From the plurality of injection ports 12a, the gas supplied by the vapor deposition gas supply source 20 is injected around the Y-direction axis. These injection ports 12a may be arranged in a direction that intersects the moving direction (X direction) of the stage S. For example, the plurality of injection ports 12a can be arranged in the Z direction orthogonal to the X direction and the Y direction.
  • the shutter 14 extends in the direction (Z direction) in which the plurality of injection ports 12a are arranged.
  • the shutter 14 can be arranged at a position (hereinafter referred to as “closed position”) that blocks gas from the ejection port 12 a of the vapor deposition head 12. Further, the shutter 14 is retracted from the open position and can be moved to a position where the gas from the ejection port 12a of the vapor deposition head 12 is not blocked (hereinafter referred to as “open position”).
  • each shutter 14 is moved in the Y direction by a corresponding shutter moving mechanism 28 as shown in FIGS.
  • the shutter moving mechanism 28 includes a rail 28a and a driving device 28b.
  • the rail 28a extends in the X direction so as to support both edges of the shutter 14 in the Z direction, and guides the shutter 14 in the X direction.
  • the driving device 28b generates a driving force for moving the shutter 14 in the X direction.
  • the driving device 28b may be an air cylinder that is coupled to the shutter 14 and applies a driving force in the X direction to the shutter 14.
  • the shutter 14 includes a facing portion 14a and a cooling portion 14b.
  • the facing portion 14a is a portion facing the ejection port 12a when the shutter 14 is located at the closed position.
  • the gas from the injection port 12a is mainly applied to the facing portion 14a and is blocked by the facing portion.
  • the opposing part 14a has a comb-tooth structure, as shown in FIG.
  • the facing portion 14a may include, for example, a plurality of fins 14f extending from the cooling portion 14b toward the vapor deposition head 12, that is, extending along the Y direction and the Z direction, as a comb-tooth structure. This comb structure increases the adsorption efficiency of the vapor deposition material by the shutter 14.
  • the shutter 14 can be comprised by the member excellent in thermal conductivity, such as stainless steel, for example.
  • the surface of the shutter 14 or the surface of the facing portion 14a may be subjected to a roughening process in order to increase the adsorption efficiency of the vapor deposition material.
  • a Cu film may be formed on the surface of the shutter 14 or the surface of the facing portion 14a in order to increase thermal conductivity.
  • the cooling unit 14 b is a part that cools the shutter 14.
  • the cooling unit 14 b includes a wall that defines a cavity 14 h extending in the Z direction.
  • the cavity 14h can be, for example, a cavity having a rectangular cross section.
  • the cavity 14h constitutes a flow path F through which a coolant such as cooling air or cooling water flows.
  • FIG. 7 is a diagram illustrating a shutter according to an embodiment.
  • FIG. 7A shows a plan view of the shutter 14 viewed from the X direction
  • FIG. 7B shows a plan view of the cooling unit 14b viewed from the Y direction.
  • FIG. 8 is a diagram illustrating a refrigerant piping system in the film forming apparatus according to the embodiment.
  • one end 14e1 of the cavity 14h constitutes one end F1 of the flow path F, and is connected to the pipe da2 connected to the chamber wall 16 via the flexible pipe da1. Can do.
  • a valve Va is provided in the pipe da2.
  • the other end 14e2 of the cavity 14h constitutes the other end F2 of the flow path F, and can be connected to the pipe db2 connected to the chamber wall 16 through the flexible pipe db1.
  • the pipe db2 is provided with a valve Vb.
  • coolant supplied from the supply source is supplied in the flow path F from the end F1 via piping da2 and da1.
  • the refrigerant supplied into the flow path F is discharged from the other end F2 through the pipes db1 and db2.
  • the cooling unit 14b the facing part 14a of the shutter 14 is cooled, and the adsorption efficiency of the vapor deposition material in the facing part 14a is increased.
  • the cooling unit 14 b can be provided so as to be positioned between the moving space in which the stage S moves and the vapor deposition head 12 when the shutter 14 is in the closed position.
  • the vapor deposition head 12 generally has a heater and can be used in a heated state. Therefore, the presence of the cooling unit 14b between the moving space in which the stage S moves and the vapor deposition head 12 can reduce the amount of heat transferred from the vapor deposition head 12 to the moving space. Therefore, the influence of heat on the component parts of the film forming apparatus 10 or the substrate W to be processed disposed in the moving space is suppressed.
  • the shutter 14 may have a heating unit 14c.
  • the heating unit 14c is embedded in, for example, a wall constituting the cooling unit 14b.
  • the heating unit 14c may be a heating wire provided to meander inside the wall of the cooling unit 14b. According to the heating unit 14c, the vapor deposition material attached to the facing unit 14a during a period other than the film forming process period can be removed by heating.
  • the shutter 14 may be detachable from the rail 28a, or maintenance such as cleaning of the shutter 14 may be performed by removing the shutter 14 from the rail 28a.
  • the facing portion 14a may be configured to be removable from the cooling portion 14b.
  • the facing portion 14a may be attached to the cooling portion 14b by a fixing tool such as a screw.
  • the some fin of the opposing part 14a may be comprised independently of the cooling part 14b so that removal is possible.
  • the plurality of fins 14f of the facing portion 14a may be individually attached to the cooling portion 14b by a fixture such as a screw.
  • FIG. 9 is a diagram illustrating a control unit according to an embodiment.
  • a film forming method according to an embodiment will be described together with a control sequence by the control unit.
  • FIG. 10 is a diagram illustrating a sequence of steps in the film forming method according to the embodiment.
  • the control unit 30 illustrated in FIG. 9 can be, for example, a computing device having a CPU (Central Processing Unit) and a memory.
  • the control unit 30 sends a control signal for each element of the film forming apparatus 10 according to a program, data, or the like stored in the memory. Specifically, the control unit 30 sends out a control signal for causing each element of the film forming apparatus 10 to execute some or all of the plurality of steps shown in FIG.
  • the control signal sent out by the control unit 30 can include the following control signals.
  • the control unit 30 may be a single computing device, or may be a plurality of computing devices that individually control each process and cooperate with each other.
  • FIG. 10 time is taken on the horizontal axis, and each process is shown on the vertical axis.
  • the period in which each process is performed is indicated by a double line extending in the horizontal direction from the label indicating the process.
  • heating of the vapor deposition head 12 is started (starting at time t1; step S1).
  • the cooling of the shutter 14 is started (starting at time t2; step S2).
  • the shutter 14 is in the closed position.
  • the substrate to be processed W is placed on the stage S (starting at time t3, step S3). Thereafter, the mask M is aligned and placed on the substrate W to be processed using the mask aligner 24 (starting at time t4, step S4). Thereafter, the shutter 14 is moved to the open position for film formation (starting at time t5, step S5). Next, the stage S is moved in the X direction from a position below the mask aligner 24 (starting at time t6, step S6). Then, when the stage S passes below the vapor deposition head 12, an organic layer is formed on the film formation surface on the substrate to be processed S (starting at time t7, step S7).
  • step S8 After completion of the film formation process (time t8), the mask M is removed (step S8), and the substrate W to be processed is taken out from the film formation chamber C1 (starting at time t9, step S9).
  • the shutter 14 is moved to the closed position. Further, after the film formation process is completed, the shutter 14 is heated, and the vapor deposition material attached to the shutter 14 is removed (step S10). After this heating is continued from time t8 to time t10, cooling of the shutter 14 is started again (starting at time t11, step S11).
  • the shutter 14 is cooled while the shutter 14 is in the closed position (for example, during a period from time t2 to time t5). Therefore, the adsorption efficiency of the vapor deposition material in the shutter 14 is increased. Thereby, the pressure of the space between the shutter 14 and the injection port 12a is reduced. As a result, it is possible to shorten the period (the period from time t5 to time t7) until the gas injection state from the injection port 12a is stabilized after the shutter 14 is opened (after time t5). Therefore, the throughput is improved. Further, since the shutter 14 is heated after the film formation process, the vapor deposition material attached to the shutter 14 can be removed without affecting the film formation process.
  • FIG. 11 is a diagram schematically showing a film forming apparatus according to another embodiment.
  • FIG. 11 schematically shows a film forming apparatus according to an embodiment as viewed from the moving direction (X direction) of the stage.
  • a film forming apparatus 10A shown in FIG. 11 is different from the film forming apparatus 10 in that it includes a shutter moving mechanism 28A in place of the shutter moving mechanism 28.
  • the shutter 14 is movable in the vertical direction (Y direction). Therefore, in the film forming apparatus 10A, the shutter moving mechanism 28A moves the shutter 14 in the Y direction.
  • the shutter moving mechanism 28A can be, for example, an air cylinder that moves the shutter 14 in the Y direction.
  • the shutter moving mechanism 28 ⁇ / b> A can be supported by a support base 32 provided below the chamber wall 16. Further, the rod of the shutter moving mechanism 28A can be connected to both edge portions of the shutter 14 in the Z direction.
  • the shutter moving mechanism 28A moves the shutter 14 above the moving space of the stage S when the shutter 14 blocks the gas from the vapor deposition head 12. Thereby, the shutter 14 opposes the ejection port of the vapor deposition head 12. In this state, the shutter 14 is in the closed position. On the other hand, the shutter moving mechanism 28A moves the shutter 14 to the open position by moving the shutter 14 below the moving space of the stage S. Thereby, the gas from the vapor deposition head 12 is sprayed on the to-be-processed substrate W, without the gas from the vapor deposition head 12 being interrupted by the shutter 14.
  • FIG. 12 is a perspective view showing a shutter according to another embodiment.
  • a shutter 14A illustrated in FIG. 12 includes a cooling unit 14Ab having a structure different from that of the cooling unit 14b of the shutter 14.
  • the cooling unit 14Ab is provided with three holes extending in the Z direction. Of these three holes, the hole 14i located in the center in the X direction constitutes a flow path F through which the refrigerant flows.
  • the heating part 14c which is a cartridge type heater can be inserted in the two holes 14n on both sides of the hole 14i among the three holes, for example. Thus, since a cartridge-type heater can be used, the manufacture of the shutter 14A is easier.
  • the refrigerant may flow through the hole 14i as shown in FIG. 12, but as shown in FIG. 13, the pipe 14d is inserted into the hole 14i and the refrigerant flows through the flow path F in the pipe 14d. May be.
  • the pipe 14d may partially contact the inner wall surface of the cooling unit 14Ab that defines the hole 14i.
  • the pipe 14d includes a first portion 14d1, a second portion 14d2, and a third portion 14d3.
  • the second portion 14d2 is provided between the first portion 14d1 and the third portion 14d3 in the longitudinal direction (Z direction) of the pipe 14d.
  • the outer diameter of the second portion 14d2 is larger than the outer diameters of the first portion 14d1 and the third portion 14d3.
  • the second portion 14d2 is in contact with the inner wall surface defining the hole 14i in the central region in the Z direction of the shutter 14A.
  • the first portion 14d1 and the third portion 14d3 are not in contact with the inner wall surface that defines the hole 14i.
  • the heat distribution of the shutter 14 can be adjusted by configuring the pipe through which the refrigerant flows so as to partially contact the inner wall surface of the hole 14i.
  • FIG. 14 is a perspective view showing a shutter moving mechanism according to another embodiment.
  • a shutter moving mechanism 28B shown in FIG. 14 is coupled to one end of the shutter 14 and swings the shutter 14 about the axis extending in the Y direction.
  • the shutter moving mechanism 28B may be a rotary air cylinder. In this way, the shutter 14 may be moved between the closed position and the open position by swinging the shutter 14 around one end thereof.
  • FIG. 15 is a view showing a shutter having a flow path for refrigerant according to another embodiment.
  • FIG. 15A shows a shutter cooling unit viewed in the Y direction
  • FIG. 15B shows the shutter viewed from the Z direction.
  • a wall 14p extending in the Z direction is provided in the cavity 14h of the cooling unit 14b.
  • the wall 14p forms a U-shaped flow path F in the cavity 14h. That is, in the flow path F shown in FIG. 15, one end F1 and the other end F2 of the flow path F are provided at one end of the cooling unit 14b.
  • the U-shaped flow path F may be comprised by the piping 14g, as shown in FIG.
  • FIG. 16 is a view showing a shutter having a refrigerant flow path according to another embodiment.
  • FIG. 16A shows a shutter cooling portion viewed in the Y direction.
  • (B) shows the shutter viewed from the Z direction.
  • a pipe 14g is provided in the cavity 14h of the cooling unit 14b.
  • the pipe 14g is cut in a plane parallel to the longitudinal direction (Z direction) and bent into a U shape.
  • the cut end face of the pipe 14g made by this cutting can be joined to the wall on the facing portion 14a side among the walls defining the cavity 14h.
  • coolant with respect to the wall by the side of the opposing part 14a becomes large, and it becomes possible to cool the opposing part 14a efficiently.
  • the shutter having the flow path F shown in FIGS. 15 and 16 can be used together with any shutter moving mechanism described in this specification.
  • coolants containing the flow path F shown in FIG.15 and FIG.16 may be the same as the piping system demonstrated in FIG. That is, the refrigerant supplied from one end F1 may flow in one direction through the flow path F and be discharged from the other end F2.
  • FIG. 17 is a diagram illustrating a piping system according to another embodiment.
  • the direction of the refrigerant flowing in the flow path F can be switched between one direction and the other direction.
  • the pipe dc branches from the pipe da2 between the pipe da1 and the valve Va.
  • the pipe dc is provided with a valve Vc.
  • the pipe dc is connected to the pipe db2 between the outlet of the pipe db2 and the valve Vb.
  • a pipe dd branches from the pipe db2 between the pipe db1 and the valve Vb.
  • This pipe dd is provided with a valve Vd.
  • the pipe dd is connected to the pipe da2 between the supply port of the pipe da2 and the valve Va.
  • valve Va and the valve Vb are opened simultaneously.
  • the valve Vc and the valve Vd are closed.
  • the valve Va and the valve Vb are closed.
  • the refrigerant supplied to the pipe da2 flows in one direction through the flow path F via the pipe da1.
  • the refrigerant that has flowed in one direction through the flow path F flows through the pipe db1 and the pipe db2 and is discharged.
  • the valve Vc and the valve Vd are opened simultaneously, the refrigerant supplied to the pipe da2 flows through the flow path F in the other direction opposite to the one direction via the pipe dd.
  • the refrigerant that has been able to flow through the flow path F in the other direction flows through the pipe da1, the pipe dc, and the pipe db2 and is discharged.
  • the direction in which the refrigerant flows in the flow path F can be switched between one direction and the other direction opposite to the one direction. With this configuration, the direction in which the refrigerant flows is alternately switched, so that the shutter is cooled more uniformly.
  • FIG. 18 is a perspective view showing a shutter moving mechanism according to still another embodiment.
  • the shutter moving mechanism 28C shown in FIG. 18 rotates the facing portion 14Ca of the shutter 14C about the axis extending in the Z direction, and the facing portion 14Ca is opened (see FIG. 18A) and closed (see FIG. 18). (See (b)).
  • the shutter moving mechanism 28C may include a rotation drive device 28Ca and a shaft 28Cb.
  • the rotational drive device 28Ca can be, for example, a rotary air cylinder.
  • the shaft 28Cb extends in the Z direction, and is coupled to the rotational drive device 28Ca at one end thereof.
  • the cooling portion 14Cb of the shutter 14C is configured by a wall that defines a space for inserting the shaft 28Cb.
  • the shaft 28Cb is held by the wall of the cooling unit 14Cb.
  • the inside of the shaft 28Cb is hollow. This cavity defines a flow path F for the refrigerant. Since the shutter moving mechanism 28C is a uniaxially driven moving mechanism, it can be easily configured in the film forming apparatus.
  • FIG. 19A to 19F show various modifications of the shutter and / or the vapor deposition head.
  • the opposing part 14a of a shutter may be comprised by the surface inclined with respect to the centerline Y1 extended in the Y direction of the injection nozzle 12a.
  • the facing portion 14a shown in FIG. 19A is constituted by two surfaces that are inclined downward from a top piece that extends in the Z direction and intersects the center line Y1. These two surfaces may be curved surfaces as shown in FIG.
  • FIG. 19C the top side may be deviated in the X direction with respect to the center line Y1.
  • the facing portion 14a of the shutter may be constituted by a wavy surface as shown in FIG. Further, as shown in FIG. 19E, the facing portion 14a of the shutter may be configured by a plane orthogonal to the Y direction. In this case, the center line Y2 of the injection port is inclined with respect to the Y direction.
  • the facing portion 14a reflects the gas that is not adsorbed by the facing portion 14a in a direction deviating from the injection port 12a. Therefore, according to these embodiments, the pressure in the space between the injection port 12a and the facing portion 14a can be more effectively reduced.
  • the gas that is not adsorbed by the facing portion 14a is mainly a carrier gas, and may include a vapor of a vapor deposition material as the remainder.
  • the tip portion of the vapor deposition head 12 provided with the injection port 12a may be constituted by a tapered surface.
  • the taper angle ⁇ shown in FIG. 19F may be about 35 degrees, for example, and the width W of the tip of the vapor deposition head 12 may be about 6 mm.
  • the facing portion 14a reflects the gas that is not adsorbed by the facing portion 14a toward the injection port 12a.
  • the tapered surface faces the gas toward the facing portion 14a. Further reflections can be reduced.
  • the surface of the shutter or the opposed portion 14a may be roughened, and Cu having good thermal conductivity may be used.
  • a metal film may be formed.
  • the ejection port 12a and the facing portion 14a may be separated by 10 mm or more.
  • FIG. 20 is a diagram illustrating another example of the film forming system.
  • a mask stocker 106D and an alignment chamber 108 are provided on both sides of the transfer chamber 104D in the Z direction via gate valves G, respectively.
  • the transfer chamber 104D includes a transfer device.
  • This transport apparatus receives the mask M from the mask stocker 106D, and transports the substrate W and the mask M to the alignment chamber 108.
  • the alignment chamber 108 the mask M is aligned and placed on the substrate W to be processed.
  • the alignment chamber 108 conveys the substrate W to be processed on which the mask M is placed in the alignment chamber 108 onto the stage S of the film forming apparatus 10D.
  • This film forming apparatus 10 ⁇ / b> D is different from the film forming apparatus 10 in that it does not have the mask aligner 24.
  • the film formation system 100D may be suitable for film formation for a small substrate to be processed W as compared with the film formation system 100.
  • the film forming system 100 aligns the mask M in the film forming apparatus 10
  • the transfer capability required for the transfer apparatus in the transfer chamber 104 is relatively low. Therefore, the film forming system 100 can be suitable for a large substrate to be processed W. Further, the film forming system 100 can be manufactured at a lower cost than the film forming system 100D.
  • SYMBOLS 10 ... Film-forming apparatus, 12 ... Evaporation head, 12a ... Injection port, 14 ... Shutter, 16 ... Chamber wall, C1 ... Deposition chamber, 20 ... Deposition gas supply source, 22 ... Moving mechanism, 28 ... Shutter moving mechanism, 30 ... Control unit, 100 ... Film forming system, F ... Flow path for refrigerant, S ... Stage, W ... Substrate to be processed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

According to one embodiment of the present invention, a film-forming apparatus is provided with a deposition head and a shutter. The deposition head has a jetting port, from which a gas containing gas molecules of a deposition material is jetted. The shutter can be disposed at a position where the shutter blocks the gas jetted from the jetting port of the deposition head. The shutter has a cooling unit for cooling the shutter.

Description

成膜装置及び成膜方法Film forming apparatus and film forming method
 本発明の実施形態は、成膜装置及び成膜方法に関するものである。 Embodiments of the present invention relate to a film forming apparatus and a film forming method.
 特許文献1には、有機材料の成膜装置が記載されている。特許文献1に記載された装置は、有機材料の気体分子を含むガスを噴射する蒸着ヘッドを備えている。この装置では、蒸着ヘッドから噴射されたガスが被処理基体に付着することにより、被処理基体上に有機材料が成膜される。 Patent Document 1 describes an organic material film forming apparatus. The apparatus described in Patent Document 1 includes a vapor deposition head that ejects a gas containing gas molecules of an organic material. In this apparatus, an organic material is deposited on the substrate to be processed by the gas sprayed from the vapor deposition head adhering to the substrate to be processed.
特開2008-88490号公報JP 2008-88490 A
 上述したような成膜装置においては、蒸着ヘッドからのガスの噴射状態が安定してから成膜を行うために、蒸着ヘッドからは成膜プロセス前からガスを噴射させておく必要がある。このため、本願発明者は、成膜プロセス前に噴射されるガスを遮るためにシャッタを設けた成膜装置の研究を行っている。この研究において、本願発明者は、シャッタの開放後においてガスの噴射状態が安定するまでの間に時間を要するという課題を見出している。 In the film forming apparatus as described above, in order to perform film formation after the gas injection state from the vapor deposition head is stabilized, it is necessary to inject gas from the vapor deposition head before the film formation process. For this reason, the inventor of the present application has studied a film forming apparatus provided with a shutter in order to block the gas injected before the film forming process. In this research, the present inventor has found a problem that it takes time until the gas injection state is stabilized after the shutter is opened.
 そこで、本発明は、一側面においては、シャッタの開放後にガスの噴射状態が安定するまでの期間を短くすることが可能な成膜装置を提供することを目的としている。また、本発明は、別の側面においては、シャッタの開放後にガスの噴射状態が安定するまでの期間を短くすることが可能な成膜方法を提供することを目的としている。 In view of the above, an object of one aspect of the present invention is to provide a film forming apparatus capable of shortening a period until the gas injection state is stabilized after the shutter is opened. Another object of the present invention is to provide a film forming method capable of shortening a period until the gas injection state is stabilized after the shutter is opened.
 本願発明者は、上述した課題が生ずる要因は、シャッタを閉じている間にシャッタと噴射口との間において圧力が上昇することにあることを見出している。この圧力の上昇は、シャッタによって反射されたガスが噴射口から噴射されるガスと衝突することにより、発生しているものと推測される。 The inventor of the present application has found that the cause of the above-described problem is that the pressure increases between the shutter and the ejection port while the shutter is closed. This increase in pressure is presumed to have occurred because the gas reflected by the shutter collides with the gas injected from the injection port.
 本発明の一側面に係る成膜装置は、蒸着ヘッド、及び、シャッタを備える。蒸着ヘッドは、蒸着材料の気体分子を含むガスを噴射する噴射口を有する。シャッタは、蒸着ヘッドの噴射口からのガスを遮る位置(以下、「閉位置」という)に配置可能である。このシャッタは、当該シャッタを冷却するための冷却部を有する。 A film forming apparatus according to one aspect of the present invention includes a vapor deposition head and a shutter. The vapor deposition head has an ejection port that ejects a gas containing gas molecules of the vapor deposition material. The shutter can be arranged at a position (hereinafter referred to as “closed position”) that blocks gas from the ejection port of the vapor deposition head. The shutter has a cooling unit for cooling the shutter.
 この成膜装置では、シャッタが冷却されるので、蒸着材料の気体分子がシャッタにおいて吸着される。したがって、シャッタと噴射口との間の圧力の上昇が低減され得る。その結果、この成膜装置によれば、シャッタの開放後にガスの噴射状態が安定するまでの期間を短くすることが可能である。 In this film forming apparatus, since the shutter is cooled, gas molecules of the vapor deposition material are adsorbed on the shutter. Therefore, an increase in pressure between the shutter and the ejection port can be reduced. As a result, according to this film forming apparatus, it is possible to shorten the period until the gas injection state is stabilized after the shutter is opened.
 一実施形態においては、成膜装置は、被処理基体を搭載するステージと、ステージを蒸着ヘッドの噴射口からのガスの噴射方向に対して交差する方向に移動させる移動機構を更に備え得る。蒸着ヘッドは、複数の噴射口を有していてもよく、当該複数の噴射口は、ステージの移動方向に交差する方向に配列され得る。この実施形態の蒸着ヘッドは一方向に配列された噴射口を有するものであり、所謂リニアソース型の蒸着ヘッドである。リニアソース型の蒸着ヘッドと被処理基体との間の距離は、一般的に、ポイントソース型の蒸着ヘッドと被処理基体との間の距離より短く設定される。したがって、リニアソース型の蒸着ヘッドとシャッタとの距離は必然的に短くなる。故に、冷却部を有するシャッタは、リニアソース型の蒸着ヘッドに有効である。 In one embodiment, the film forming apparatus may further include a stage on which the substrate to be processed is mounted, and a moving mechanism that moves the stage in a direction that intersects with the gas injection direction from the injection port of the vapor deposition head. The vapor deposition head may have a plurality of injection ports, and the plurality of injection ports may be arranged in a direction that intersects the moving direction of the stage. The vapor deposition head of this embodiment has a jet port arranged in one direction, and is a so-called linear source type vapor deposition head. The distance between the linear source type vapor deposition head and the substrate to be processed is generally set shorter than the distance between the point source type vapor deposition head and the substrate to be processed. Therefore, the distance between the linear source type vapor deposition head and the shutter is inevitably shortened. Therefore, the shutter having the cooling part is effective for the linear source type vapor deposition head.
 一実施形態においては、シャッタが閉位置に配置されているときに、冷却部は、蒸着ヘッドと被処理基体を成膜するための空間との間に介在し得る。一般的に蒸着ヘッドは使用時に加熱される。この実施形態によれば、蒸着ヘッドから放射される熱による上記空間への影響を低減し得る。 In one embodiment, when the shutter is disposed at the closed position, the cooling unit may be interposed between the vapor deposition head and the space for forming the substrate to be processed. Generally, the vapor deposition head is heated during use. According to this embodiment, the influence on the space due to the heat radiated from the vapor deposition head can be reduced.
 一実施形態においては、冷却部は、冷媒流路を含み得る。この形態においては、成膜装置は、流路において冷媒が流れる方向を一方向と該一方向と反対の他方向とに切替えるための手段を更に備えていてもよい。この実施形態によれば、シャッタをより均一に冷却することが可能となる。 In one embodiment, the cooling unit may include a refrigerant flow path. In this embodiment, the film forming apparatus may further include means for switching the direction in which the refrigerant flows in the flow path between one direction and another direction opposite to the one direction. According to this embodiment, the shutter can be cooled more uniformly.
 一実施形態においては、シャッタは、当該シャッタを加熱するための加熱部を更に有していてもよい。加熱部を用いてシャッタを加熱することにより、例えば成膜プロセスの期間以外の時間に、シャッタに付着した蒸着材料を除去することが可能となる。 In one embodiment, the shutter may further include a heating unit for heating the shutter. By heating the shutter using the heating unit, for example, the vapor deposition material attached to the shutter can be removed at a time other than the period of the film forming process.
 一実施形態においては、シャッタは、ガスが吹き付けられる部分において櫛歯構造を有していてもよい。この実施形態によれば、櫛歯構造により気体分子をより効率良く吸着することが可能である。 In one embodiment, the shutter may have a comb-tooth structure in a portion where gas is sprayed. According to this embodiment, it is possible to adsorb gas molecules more efficiently by the comb-tooth structure.
 一実施形態においては、シャッタは、ガスが吹き付けられる部分において、噴射口の中心線に対して傾斜した面を含んでいてもよい。この実施形態によれば、例えば、蒸着材料の気体分子と共に上記ガスに混合されるアルゴンガスといったキャリアガスを、噴射口に向かう方向とは異なる方向に反射することが可能となる。一実施形態においては、上記の傾斜した面は、波状の面を含み得る。 In one embodiment, the shutter may include a surface inclined with respect to the center line of the injection port in a portion where the gas is blown. According to this embodiment, for example, it becomes possible to reflect a carrier gas such as argon gas mixed with the gas together with gas molecules of the vapor deposition material in a direction different from the direction toward the injection port. In one embodiment, the inclined surface may include a wavy surface.
 一実施形態においては、噴射口が設けられている蒸着ヘッドの先端部分が、テーパー状の面で構成されていてもよい。この形態によれば、シャッタから反射されたガスが蒸着ヘッドの先端部分の方向に反射されても、テーパー面によって当該ガスが逸らされる。したがって、ガスのシャッタの方向への更なる反射を低減することができる。 In one embodiment, the tip portion of the vapor deposition head provided with the injection port may be configured with a tapered surface. According to this form, even if the gas reflected from the shutter is reflected in the direction of the tip portion of the vapor deposition head, the gas is deflected by the tapered surface. Therefore, further reflection of the gas in the direction of the shutter can be reduced.
 本発明の別の側面の成膜方法は、(a)蒸着ヘッドの噴射口からの蒸着材料の気体分子を含むガスを遮る位置(以下、「閉位置」というにシャッタを配置している期間においてシャッタを冷却する工程と、(b)シャッタを閉位置から退避させる工程と、(c)蒸着ヘッドからのガスにより被処理基体上に蒸着材料を成膜する工程と、を含む。この成膜方法では、シャッタが閉位置にある期間に当該シャッタが冷却され、蒸着材料の気体分子がシャッタにおいて吸着される。したがって、シャッタと噴射口との間の圧力の上昇が低減され得る。その結果、この成膜方法によれば、シャッタの開放後にガスの噴射状態が安定するまでの期間を短くすることが可能である。 According to another aspect of the present invention, there is provided a film forming method comprising: (a) a position where a gas containing gas molecules of a vapor deposition material from an ejection port of a vapor deposition head is blocked (hereinafter referred to as “closed position”) A step of cooling the shutter, (b) a step of retracting the shutter from the closed position, and (c) a step of forming a vapor deposition material on the substrate to be processed by a gas from the vapor deposition head. Then, during the period when the shutter is in the closed position, the shutter is cooled, and gas molecules of the vapor deposition material are adsorbed in the shutter, so that an increase in pressure between the shutter and the injection port can be reduced. According to the film forming method, it is possible to shorten the period until the gas injection state is stabilized after the shutter is opened.
 一実施形態においては、成膜方法は、成膜する工程の後に、シャッタを加熱する工程を更に含んでいてもよい。この実施形態の成膜方法によれば、成膜プロセスの期間とは異なる期間に、シャッタを加熱してシャッタに付着した蒸着材料を除去することが可能である。 In one embodiment, the film forming method may further include a step of heating the shutter after the step of forming the film. According to the film formation method of this embodiment, it is possible to remove the vapor deposition material attached to the shutter by heating the shutter during a period different from the period of the film formation process.
 以上説明したように、本発明の一側面及び別の側面によれば、シャッタの開放後にガスの噴射状態が安定するまでの期間を短くすることが可能な成膜装置及び成膜方法が提供される。 As described above, according to one aspect and another aspect of the present invention, there is provided a film forming apparatus and a film forming method capable of shortening the period until the gas injection state is stabilized after the shutter is opened. The
一実施形態に係る成膜装置を含む成膜システムの一例を示す図である。It is a figure which shows an example of the film-forming system containing the film-forming apparatus which concerns on one Embodiment. 一実施形態に係る成膜システムによって製造され得る有機EL素子の一例を示す図である。It is a figure which shows an example of the organic EL element which can be manufactured with the film-forming system which concerns on one Embodiment. 一実施形態に係る成膜装置を概略的に示す図である。It is a figure showing roughly the film deposition system concerning one embodiment. 一実施形態に係る成膜装置を概略的に示す図である。It is a figure showing roughly the film deposition system concerning one embodiment. 一実施形態に係る蒸着ヘッド、シャッタ、及びシャッタ移動機構を示す斜視図である。It is a perspective view which shows the vapor deposition head which concerns on one Embodiment, a shutter, and a shutter movement mechanism. 一実施形態に係る蒸着ヘッド及びシャッタを側方から見た平面図である。It is the top view which looked at the vapor deposition head and shutter which concern on one Embodiment from the side. 一実施形態に係るシャッタを示す図である。It is a figure which shows the shutter which concerns on one Embodiment. 一実施形態に係る成膜装置における冷媒用の配管系統を示す図である。It is a figure which shows the piping system for refrigerant | coolants in the film-forming apparatus which concerns on one Embodiment. 一実施形態に係る制御部を示す図である。It is a figure which shows the control part which concerns on one Embodiment. 一実施形態に係る成膜方法における各工程のシーケンスを示す図である。It is a figure which shows the sequence of each process in the film-forming method which concerns on one Embodiment. 別の実施形態に係る成膜装置を概略的に示す図である。It is a figure which shows schematically the film-forming apparatus which concerns on another embodiment. 別の実施形態に係るシャッタを示す斜視図である。It is a perspective view which shows the shutter which concerns on another embodiment. 図12に示すシャッタの変形例を示す図である。It is a figure which shows the modification of the shutter shown in FIG. 別の実施形態に係るシャッタ移動機構を示す斜視図である。It is a perspective view which shows the shutter movement mechanism which concerns on another embodiment. 別の実施形態に係る冷媒用の流路を有するシャッタを示す図である。It is a figure which shows the shutter which has the flow path for refrigerant | coolants which concerns on another embodiment. 別の実施形態に係る冷媒用の流路を有するシャッタを示す図である。It is a figure which shows the shutter which has the flow path for refrigerant | coolants which concerns on another embodiment. 別の実施形態に係る配管系統を示す図である。It is a figure which shows the piping system which concerns on another embodiment. 更に別の実施形態に係るシャッタ移動機構を示す斜視図である。It is a perspective view which shows the shutter movement mechanism which concerns on another embodiment. シャッタ又は蒸着ヘッドの種々の変形例を示す図である。It is a figure which shows the various modifications of a shutter or a vapor deposition head. 成膜システムの別の一例を示す図である。It is a figure which shows another example of the film-forming system.
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 図1は、一実施形態に係る成膜装置を含む成膜システムの一例を示す図である。図1に示す成膜システム100は、一実施形態の成膜装置10を備えている。成膜システム100は、例えば、図2に示す有機EL(Electro Luminescence)素子を製造するシステムとして用いられ得る。 FIG. 1 is a diagram illustrating an example of a film forming system including a film forming apparatus according to an embodiment. A film forming system 100 illustrated in FIG. 1 includes a film forming apparatus 10 according to an embodiment. The film forming system 100 can be used, for example, as a system for manufacturing an organic EL (Electro Luminescence) element shown in FIG.
 図2は、一実施形態に係る成膜システムによって製造され得る有機EL素子の一例を示す図である。図2に示す有機EL素子Dは、基板Sub、第1層D1、第2層D2、第3層D3、第4層D4、及び、第5層D5を備え得る。基板Subは、ガラス基板のような光学的に透明な基板である。 FIG. 2 is a diagram illustrating an example of an organic EL element that can be manufactured by a film forming system according to an embodiment. The organic EL element D shown in FIG. 2 may include a substrate Sub, a first layer D1, a second layer D2, a third layer D3, a fourth layer D4, and a fifth layer D5. The substrate Sub is an optically transparent substrate such as a glass substrate.
 基板Subの一主面上には、第1層D1が設けられている。第1層D1は、陽極層として用いられ得る。この第1層D1は、光学的に透明な電極層であり、例えば、ITO(Indium Tin Oxide)のような導電性材料により構成され得る。第1層D1は、例えば、スパッタリング法により形成される。 A first layer D1 is provided on one main surface of the substrate Sub. The first layer D1 can be used as an anode layer. The first layer D1 is an optically transparent electrode layer, and may be formed of a conductive material such as ITO (Indium Tin Oxide). The first layer D1 is formed by, for example, a sputtering method.
 第1層D1上には、第2層D2、第3層D3、及び第4層D4が順に積層されている。第2層D2、第3層D3、及び第4層D4は、有機層である。第2層D2は、ホール輸送層で有り得る。第3層D3は、発光層であり、例えば、非発光層D3a、青発光層D3b、赤発光層D3c、緑発光層D3dを含み得る。また、第4層D4は、電子輸送層であり得る。 The second layer D2, the third layer D3, and the fourth layer D4 are sequentially stacked on the first layer D1. The second layer D2, the third layer D3, and the fourth layer D4 are organic layers. The second layer D2 can be a hole transport layer. The third layer D3 is a light emitting layer, and may include, for example, a non-light emitting layer D3a, a blue light emitting layer D3b, a red light emitting layer D3c, and a green light emitting layer D3d. Further, the fourth layer D4 may be an electron transport layer.
 第4層D4上には、第5層D5が設けられている。第5層D5は、陰極層であり、例えば、Ag、Al等により構成され得る。第5層D5は、スパッタリング法等により形成され得る。このような構成の素子Dは、更に、マイクロ波プラズマCVD等により形成されるSiNといった材料の絶縁性の封止膜によって封止され得る。 The fifth layer D5 is provided on the fourth layer D4. The fifth layer D5 is a cathode layer and can be made of, for example, Ag, Al, or the like. The fifth layer D5 can be formed by a sputtering method or the like. The element D having such a configuration can be further sealed with an insulating sealing film made of a material such as SiN formed by microwave plasma CVD or the like.
 図1に戻り、このような有機EL素子Dを製造し得る成膜システム100は、ローダ102、搬送室104、及び、マスクストッカ106を更に備え得る。成膜システム100では、ローダ102と当該ローダ102の次のモジュールの間、搬送室104と当該搬送質104の前のモジュールとの間、搬送室104と成膜装置10の成膜室との間、マスクストッカ106と成膜装置10の成膜室の間のように、各モジュール間にはゲートバルブGが設けられている。これにより、各モジュール内の空間が密閉されるようになっている。なお、成膜システム100は、ゲートバルブGに限定されることなく、各モジュール内の空間を隔離することが可能な手段であれば、任意の隔離手段を含み得る。 Returning to FIG. 1, the film forming system 100 capable of manufacturing such an organic EL element D may further include a loader 102, a transfer chamber 104, and a mask stocker 106. In the film forming system 100, between the loader 102 and the next module of the loader 102, between the transfer chamber 104 and the module in front of the transfer quality 104, and between the transfer chamber 104 and the film forming chamber of the film forming apparatus 10. As in between the mask stocker 106 and the film forming chamber of the film forming apparatus 10, a gate valve G is provided between the modules. Thereby, the space in each module is sealed. The film forming system 100 is not limited to the gate valve G, and can include any isolation means as long as it is a means capable of isolating the space in each module.
 成膜システム100においては、以下に説明するように、被処理基体が処理され得る。即ち、まず、基板Subがローダ102上に搭載される。そして、被処理基体として基板Subがスパッタリング装置(図示せず)に搬送され、当該スパッタリング装置内において基板Sub上にパターン化された第1層D1が形成される。これにより、基板Sub上に第1層D1を有する被処理基体が作成される。 In the film forming system 100, the substrate to be processed can be processed as described below. That is, first, the substrate Sub is mounted on the loader 102. Then, the substrate Sub is transferred as a substrate to be processed to a sputtering apparatus (not shown), and a patterned first layer D1 is formed on the substrate Sub in the sputtering apparatus. Thereby, the to-be-processed base | substrate which has the 1st layer D1 on the board | substrate Sub is produced.
 次いで、被処理基体は搬送室104を介して成膜装置10の成膜室内に搬送され、当該成膜室内において、第1層D1上に、有機層である第2層D2、第3層D3、及び第4層D4が順次形成される。これにより、第1層D1上に有機層を有する被処理基体が作成される。 Next, the substrate to be processed is transferred into the film forming chamber of the film forming apparatus 10 through the transfer chamber 104, and the second layer D2 and the third layer D3, which are organic layers, are formed on the first layer D1 in the film forming chamber. , And a fourth layer D4 are sequentially formed. Thereby, the to-be-processed base | substrate which has an organic layer on the 1st layer D1 is created.
 次いで、被処理基体は別のスパッタリング装置(図示せず)に搬送され、当該スパッタリング装置内において第4層D4上に第5層D5が形成される。これにより、第4層D4上に第5層D5を有する被処理基体が作成される。更に、被処理基体はプラズマCVD装置に搬送され、当該プラズマCVD装置内において封止膜が形成される。なお、成膜システム100は、図2に示す有機EL素子Dに限定されず、有機層を含む太陽電池素子、又は、有機半導体素子といった任意の有機素子の生成に用いられ得る。 Next, the substrate to be processed is transferred to another sputtering apparatus (not shown), and the fifth layer D5 is formed on the fourth layer D4 in the sputtering apparatus. Thereby, a to-be-processed base | substrate which has the 5th layer D5 on the 4th layer D4 is produced. Further, the substrate to be processed is transferred to a plasma CVD apparatus, and a sealing film is formed in the plasma CVD apparatus. In addition, the film-forming system 100 is not limited to the organic EL element D shown in FIG. 2, and can be used to generate any organic element such as a solar cell element including an organic layer or an organic semiconductor element.
 図3及び図4は、一実施形態の成膜装置を概略的に示す図である。図3は、ステージの移動方向に直交する方向(側方)から見た一実施形態の成膜装置を概略的に示しており、図4は、ステージの移動方向から見た一実施形態の成膜装置を概略的に示している。なお、以下の説明では、図3及び図4に示すように、フェースアップ状態において成膜を行う成膜装置10について説明する。即ち、成膜装置10では、成膜面を上に向けた被処理基体Wの当該成膜面に対して上方からガスが噴射される。なお、本発明の思想は、フェースダウン状態や基板を垂直に立てた状態において成膜を行う成膜装置にも適用され得る。 3 and 4 are diagrams schematically showing a film forming apparatus according to an embodiment. FIG. 3 schematically shows a film forming apparatus according to an embodiment as viewed from a direction (side) perpendicular to the moving direction of the stage, and FIG. 4 shows a structure of the embodiment as viewed from the moving direction of the stage. 1 schematically shows a membrane device. In the following description, as shown in FIGS. 3 and 4, a film forming apparatus 10 that performs film formation in the face-up state will be described. That is, in the film forming apparatus 10, gas is injected from above onto the film forming surface of the substrate W to be processed with the film forming surface facing upward. Note that the idea of the present invention can also be applied to a film forming apparatus that performs film formation in a face-down state or in a state where the substrate is vertically set up.
 図3及び図4に示すように、成膜装置10は、一以上の蒸着ヘッド12、及び、一以上のシャッタ14を備えている。一以上のシャッタ14はそれぞれ、対応する蒸着ヘッド12からのガスを遮るように配置可能である。また、一実施形態においては、成膜装置10は、チャンバ壁16、及びチャンバ壁18を更に備え得る。 As shown in FIGS. 3 and 4, the film forming apparatus 10 includes one or more vapor deposition heads 12 and one or more shutters 14. Each of the one or more shutters 14 can be arranged to block gas from the corresponding vapor deposition head 12. In one embodiment, the film forming apparatus 10 may further include a chamber wall 16 and a chamber wall 18.
 チャンバ壁16は、上述した成膜室C1を画成しており、チャンバ壁18はチャンバC2を画成している。成膜室C1には、配管d1を介して排気装置P1が接続されている。この配管d1には、弁V1が設けられている。排気装置P1は、成膜室C1内のガスの排気を行い、成膜室C1を実質的に真空に維持する。 The chamber wall 16 defines the film forming chamber C1 described above, and the chamber wall 18 defines the chamber C2. An exhaust device P1 is connected to the film forming chamber C1 through a pipe d1. The pipe d1 is provided with a valve V1. The exhaust device P1 exhausts the gas in the film formation chamber C1, and maintains the film formation chamber C1 in a substantially vacuum.
 一以上の蒸着ヘッド12は、成膜室C1とチャンバC2にまたがるように設けられている。図3には、有機EL素子Dを製造するために、六つの蒸着ヘッド12が成膜室C1に対して設けられている。蒸着ヘッド12の個数は、製造する素子の有機層の数に応じて蒸着ヘッド12の数は任意に変更され得る。また、一つの成膜室に一以上の任意の個数の蒸着ヘッド12が設けられていてもよい。なお、六つの蒸着ヘッド12は、実質的に同様の構成を有するので、以下の説明では、一つの蒸着ヘッド12の構成について説明する。 One or more vapor deposition heads 12 are provided so as to straddle the film forming chamber C1 and the chamber C2. In FIG. 3, in order to manufacture the organic EL element D, six vapor deposition heads 12 are provided for the film formation chamber C1. The number of the vapor deposition heads 12 can be arbitrarily changed according to the number of organic layers of the element to be manufactured. One or more arbitrary number of vapor deposition heads 12 may be provided in one film formation chamber. In addition, since the six vapor deposition heads 12 have substantially the same configuration, in the following description, the configuration of one vapor deposition head 12 will be described.
 蒸着ヘッド12は、蒸着材料の気体分子を含むガスを噴射する。蒸着ヘッド12には、配管d2を介して蒸着ガス供給源20が接続されている。配管d2には、弁V2が設けられている。弁V2は、蒸着ガス供給源20からの蒸着ヘッド12へのガスの供給及び供給停止を切替える。蒸着ガス供給源20によって発生されて供給されるガスは、蒸着材料(有機材料)の気体分子、及びキャリアガスを含む。キャリアガスには、Arといった不活性ガスが用いられる。 The vapor deposition head 12 injects the gas containing the gas molecule of vapor deposition material. A vapor deposition gas supply source 20 is connected to the vapor deposition head 12 via a pipe d2. A valve V2 is provided in the pipe d2. The valve V2 switches between supply and stop of gas supply from the vapor deposition gas supply source 20 to the vapor deposition head 12. The gas generated and supplied by the deposition gas supply source 20 includes gas molecules of a deposition material (organic material) and a carrier gas. An inert gas such as Ar is used as the carrier gas.
 また、蒸着ヘッド12は、配管d3を介して排気装置P2に接続されている。この配管d3には、弁v3が設けられている。弁V3は、蒸着ヘッド12内のガスの排気及び排気停止を切替える。 Further, the vapor deposition head 12 is connected to the exhaust device P2 through the pipe d3. The pipe d3 is provided with a valve v3. The valve V3 switches exhaust of the gas in the vapor deposition head 12 and exhaust stop.
 また、弁V2と蒸着ガス供給源20との間において上述した配管d2からは配管d4が分岐しており、当該配管d4は、弁V3と排気装置P2との間において配管d3に接続している。この配管d4には、弁V4が設けられている。配管d4は、蒸着ガス供給源20からのガスを蒸着ヘッド12に対して供給しないときに、当該ガスを排気装置P2に迂回させる経路を構成している。即ち、蒸着ヘッド12へのガスの非供給時には、弁V2及びV3が閉じられ、弁V4が開けられる。これにより、蒸着ガス供給源20からのガスは、配管d4を介して排気される。一方、蒸着ヘッド12へのガス供給時には弁V4が閉じられ、弁V2が開けられる。これにより、蒸着ヘッド12に蒸着ガス供給源20からガスが供給される。 Further, a pipe d4 is branched from the pipe d2 described above between the valve V2 and the vapor deposition gas supply source 20, and the pipe d4 is connected to the pipe d3 between the valve V3 and the exhaust device P2. . The pipe d4 is provided with a valve V4. The pipe d4 constitutes a path for bypassing the gas to the exhaust device P2 when the gas from the vapor deposition gas supply source 20 is not supplied to the vapor deposition head 12. That is, when the gas is not supplied to the vapor deposition head 12, the valves V2 and V3 are closed and the valve V4 is opened. Thereby, the gas from the vapor deposition gas supply source 20 is exhausted through the pipe d4. On the other hand, when the gas is supplied to the vapor deposition head 12, the valve V4 is closed and the valve V2 is opened. As a result, gas is supplied from the vapor deposition gas supply source 20 to the vapor deposition head 12.
 なお、弁V2、弁V3、及び弁V4は、チャンバ壁18によって画成されたチャンバC2内に設けられている。また、配管d2、配管d3及び配管d4は、部分的にチャンバC2内に設けられている。このチャンバC2内は、排気装置P2によって排気され得る。 In addition, the valve V2, the valve V3, and the valve V4 are provided in the chamber C2 defined by the chamber wall 18. Further, the pipe d2, the pipe d3, and the pipe d4 are partially provided in the chamber C2. The inside of the chamber C2 can be exhausted by the exhaust device P2.
 一実施形態においては、成膜装置10は、ステージS及び移動機構22を更に備え得る。ステージS上には、搬送室104の搬送装置によって搬送された被処理基体Wが載置される。ステージSは、例えば、静電チャックを有し、当該静電チャックによる静電力により、被処理基体Wを吸着し得る。このステージSは、移動機構22によって所定方向に移動可能に支持されている。 In one embodiment, the film forming apparatus 10 may further include a stage S and a moving mechanism 22. On the stage S, the substrate W to be processed transported by the transport device in the transport chamber 104 is placed. The stage S has, for example, an electrostatic chuck and can attract the substrate W to be processed by an electrostatic force generated by the electrostatic chuck. The stage S is supported by a moving mechanism 22 so as to be movable in a predetermined direction.
 移動機構22は、成膜室C1内の空間においてステージSをX方向に移動させる。この空間は、蒸着ヘッド12のガスの噴射方向(Y方向)において蒸着ヘッド12の下方に位置する。また、X方向は、蒸着ヘッド12からのガスの噴射方向(Y方向)に交差する方向であり、例えば、Y方向に直交する方向である。この移動機構22によりステージSがX方向に移動されると、ステージS上に載置された被処理基体Wが蒸着ヘッド12の下方を通過する。その結果、被処理基体Wに有機層が蒸着により成膜される。なお、この移動機構22には、リニアモータを用いたリニアステージが採用され得る。また、移動機構22には、ステージSをX方向に移動させる機構であれば、任意の機構を用いることが可能である。 The moving mechanism 22 moves the stage S in the X direction in the space in the film forming chamber C1. This space is located below the vapor deposition head 12 in the gas ejection direction (Y direction) of the vapor deposition head 12. Further, the X direction is a direction that intersects with the gas injection direction (Y direction) from the vapor deposition head 12, and is, for example, a direction orthogonal to the Y direction. When the stage S is moved in the X direction by the moving mechanism 22, the substrate W to be processed placed on the stage S passes under the vapor deposition head 12. As a result, an organic layer is formed on the substrate W by vapor deposition. Note that a linear stage using a linear motor can be adopted as the moving mechanism 22. Further, any mechanism can be used as the moving mechanism 22 as long as the mechanism moves the stage S in the X direction.
 また、一実施形態においては、成膜装置10は、マスクアライナ24を更に備え得る。マスクストッカ106に格納されているマスクMは、当該マスクストッカ106内の搬送装置によって成膜室C1内に搬送される。成膜室C1によって搬送されたマスクMは、マスクアライナ24によって被処理基体W上に位置合わせされる。成膜装置10では、上述した有機層は、マスクMに対応したパターンで被処理基体W上に形成され得る。 In one embodiment, the film forming apparatus 10 may further include a mask aligner 24. The mask M stored in the mask stocker 106 is transported into the film forming chamber C1 by the transport device in the mask stocker 106. The mask M transferred by the film forming chamber C1 is aligned on the substrate W to be processed by the mask aligner 24. In the film forming apparatus 10, the organic layer described above can be formed on the substrate W to be processed in a pattern corresponding to the mask M.
 上述の移動機構22に案内されてステージSが通過する移動空間と蒸着ヘッド12との間には、対応のシャッタ14が設けられている。シャッタ14は、蒸着ヘッド12からのガスを一時的に遮るために用いられる。以下、図3及び図4と共に、図5及び図6を参照する。図5は、一実施形態に係る蒸着ヘッド、シャッタ、及びシャッタ移動機構を示す斜視図である。図5においては、蒸着ヘッド12とシャッタ14とが、図3及び図4に示す蒸着ヘッド12とシャッタ14とのY方向の位置関係から反転した位置関係で示されている。図6は、一実施形態に係る蒸着ヘッド及びシャッタを側方(Z方向)から見て示す平面図である。 Corresponding shutters 14 are provided between the moving space through which the stage S is guided by the moving mechanism 22 and the vapor deposition head 12. The shutter 14 is used to temporarily block the gas from the vapor deposition head 12. Hereinafter, FIG. 5 and FIG. 6 will be referred to together with FIG. 3 and FIG. FIG. 5 is a perspective view showing a vapor deposition head, a shutter, and a shutter moving mechanism according to an embodiment. In FIG. 5, the vapor deposition head 12 and the shutter 14 are shown in a positional relationship inverted from the positional relationship in the Y direction between the vapor deposition head 12 and the shutter 14 shown in FIGS. 3 and 4. FIG. 6 is a plan view showing a vapor deposition head and a shutter according to an embodiment as viewed from the side (Z direction).
 蒸着ヘッド12は、一実施形態においては、複数の噴射口12aを有し得る。複数の噴射口12aからは、蒸着ガス供給源20によって供給されたガスがY方向軸中心に噴射される。これら噴射口12aは、ステージSの移動方向(X方向)に交差する方向に配列され得る。例えば、複数の噴射口12aは、X方向及びY方向に直交するZ方向に配列され得る。 The vapor deposition head 12 may have a plurality of injection ports 12a in one embodiment. From the plurality of injection ports 12a, the gas supplied by the vapor deposition gas supply source 20 is injected around the Y-direction axis. These injection ports 12a may be arranged in a direction that intersects the moving direction (X direction) of the stage S. For example, the plurality of injection ports 12a can be arranged in the Z direction orthogonal to the X direction and the Y direction.
 シャッタ14は、複数の噴射口12aが配列された方向(Z方向)に延在している。シャッタ14は、蒸着ヘッド12の噴射口12aからのガスを遮る位置(以下、「閉位置」という)に配置可能である。また、シャッタ14は、開位置から退避して、蒸着ヘッド12の噴射口12aからのガスを遮らない位置(以下、「開位置」という)にも移動可能である。 The shutter 14 extends in the direction (Z direction) in which the plurality of injection ports 12a are arranged. The shutter 14 can be arranged at a position (hereinafter referred to as “closed position”) that blocks gas from the ejection port 12 a of the vapor deposition head 12. Further, the shutter 14 is retracted from the open position and can be moved to a position where the gas from the ejection port 12a of the vapor deposition head 12 is not blocked (hereinafter referred to as “open position”).
 一実施形態においては、各シャッタ14は、図3~図5に示すように、対応するシャッタ移動機構28によってY方向に移動される。一実施形態においては、シャッタ移動機構28は、レール28a、及び駆動装置28bを含む。レール28aは、シャッタ14のZ方向の両縁部を支持するようにX方向に延在しており、シャッタ14をX方向に案内する。駆動装置28bは、シャッタ14のX方向への移動のための駆動力を発生する。例えば、駆動装置28bは、シャッタ14に結合され、当該シャッタ14にX方向への駆動力を与えるエアシリンダで有り得る。 In one embodiment, each shutter 14 is moved in the Y direction by a corresponding shutter moving mechanism 28 as shown in FIGS. In one embodiment, the shutter moving mechanism 28 includes a rail 28a and a driving device 28b. The rail 28a extends in the X direction so as to support both edges of the shutter 14 in the Z direction, and guides the shutter 14 in the X direction. The driving device 28b generates a driving force for moving the shutter 14 in the X direction. For example, the driving device 28b may be an air cylinder that is coupled to the shutter 14 and applies a driving force in the X direction to the shutter 14.
 一実施形態においては、シャッタ14は、対向部14a及び冷却部14bを有している。対向部14aは、閉位置にシャッタ14が位置するときに、噴射口12aに対向する部分である。噴射口12aからのガスは、主として、この対向部14aに照射され、当該対向部によって遮られる。一実施形態においては、対向部14aは、図6に示すように、櫛歯構造を有している。対向部14aは、櫛歯構造として、例えば、冷却部14bから蒸着ヘッド12に向けて延びた、即ち、Y方向及びZ方向に沿って延在する複数のフィン14fを含み得る。この櫛歯構造は、シャッタ14による蒸着材料の吸着効率を高める。なお、シャッタ14は、例えば、ステンレスといった熱伝導率に優れる部材により構成され得る。また、シャッタ14の表面又は対向部14aの表面には、蒸着材料の吸着効率を高めるために、粗面化処理がなされていてもよい。また、シャッタ14の表面又は対向部14aの表面には、熱伝導性を高めるためにCu膜が形成されていてもよい。 In one embodiment, the shutter 14 includes a facing portion 14a and a cooling portion 14b. The facing portion 14a is a portion facing the ejection port 12a when the shutter 14 is located at the closed position. The gas from the injection port 12a is mainly applied to the facing portion 14a and is blocked by the facing portion. In one embodiment, the opposing part 14a has a comb-tooth structure, as shown in FIG. The facing portion 14a may include, for example, a plurality of fins 14f extending from the cooling portion 14b toward the vapor deposition head 12, that is, extending along the Y direction and the Z direction, as a comb-tooth structure. This comb structure increases the adsorption efficiency of the vapor deposition material by the shutter 14. In addition, the shutter 14 can be comprised by the member excellent in thermal conductivity, such as stainless steel, for example. Further, the surface of the shutter 14 or the surface of the facing portion 14a may be subjected to a roughening process in order to increase the adsorption efficiency of the vapor deposition material. In addition, a Cu film may be formed on the surface of the shutter 14 or the surface of the facing portion 14a in order to increase thermal conductivity.
 冷却部14bは、シャッタ14を冷却する部分である。一実施形態においては、図6に示すように、冷却部14bは、Z方向に延在する空洞14hを画成する壁を含んでいる。空洞14hは、例えば、断面矩形形状の空洞で有り得る。この空洞14hは、冷却用のエア又は冷却水といった冷媒が流れる流路Fを構成している。 The cooling unit 14 b is a part that cools the shutter 14. In one embodiment, as shown in FIG. 6, the cooling unit 14 b includes a wall that defines a cavity 14 h extending in the Z direction. The cavity 14h can be, for example, a cavity having a rectangular cross section. The cavity 14h constitutes a flow path F through which a coolant such as cooling air or cooling water flows.
 ここで、図7及び図8を参照する。図7は、一実施形態のシャッタを示す図である。図7の(a)には、シャッタ14をX方向から見た平面図が示されており、図7の(b)には、冷却部14bをY方向から見た平面図が示されている。図8は、一実施形態の成膜装置における冷媒用の配管系統を示す図である。 Here, refer to FIG. 7 and FIG. FIG. 7 is a diagram illustrating a shutter according to an embodiment. FIG. 7A shows a plan view of the shutter 14 viewed from the X direction, and FIG. 7B shows a plan view of the cooling unit 14b viewed from the Y direction. . FIG. 8 is a diagram illustrating a refrigerant piping system in the film forming apparatus according to the embodiment.
 図7及び図8に示すように、空洞14hの一端14e1は、流路Fの一端F1を構成しており、可撓性の配管da1を介して、チャンバ壁16に接続された配管da2に接続し得る。この配管da2には、弁Vaが設けられている。また、空洞14hの他端14e2は、流路Fの他端F2を構成しており、可撓性の配管db1を介して、チャンバ壁16に接続された配管db2に接続し得る。この配管db2には、弁Vbが設けられている。図7及び図8に示す例では、供給源から供給された冷媒は、配管da2及びda1を介して一端F1から流路F内に供給される。流路F内に供給された冷媒は、他端F2から配管db1及びdb2を介して排出される。かかる冷却部14bによれば、シャッタ14の対向部14aが冷却され、当該対向部14aにおける蒸着材料の吸着効率が高められる。 As shown in FIGS. 7 and 8, one end 14e1 of the cavity 14h constitutes one end F1 of the flow path F, and is connected to the pipe da2 connected to the chamber wall 16 via the flexible pipe da1. Can do. A valve Va is provided in the pipe da2. The other end 14e2 of the cavity 14h constitutes the other end F2 of the flow path F, and can be connected to the pipe db2 connected to the chamber wall 16 through the flexible pipe db1. The pipe db2 is provided with a valve Vb. In the example shown in FIG.7 and FIG.8, the refrigerant | coolant supplied from the supply source is supplied in the flow path F from the end F1 via piping da2 and da1. The refrigerant supplied into the flow path F is discharged from the other end F2 through the pipes db1 and db2. According to the cooling unit 14b, the facing part 14a of the shutter 14 is cooled, and the adsorption efficiency of the vapor deposition material in the facing part 14a is increased.
 また、冷却部14bは、図6に示すように、シャッタ14が閉位置にあるときに、ステージSが移動する移動空間と蒸着ヘッド12との間に位置するように設けられ得る。蒸着ヘッド12は、一般にヒーターを有し、加熱された状態で用いられ得る。したがって、ステージSが移動する移動空間と蒸着ヘッド12との間に冷却部14bが存在することにより、蒸着ヘッド12から当該移動空間に伝わる熱量を低減することができる。したがって、当該移動空間内に配置される成膜装置10の構成部品、又は、被処理基体W等に対する熱による影響が抑制される。 Further, as shown in FIG. 6, the cooling unit 14 b can be provided so as to be positioned between the moving space in which the stage S moves and the vapor deposition head 12 when the shutter 14 is in the closed position. The vapor deposition head 12 generally has a heater and can be used in a heated state. Therefore, the presence of the cooling unit 14b between the moving space in which the stage S moves and the vapor deposition head 12 can reduce the amount of heat transferred from the vapor deposition head 12 to the moving space. Therefore, the influence of heat on the component parts of the film forming apparatus 10 or the substrate W to be processed disposed in the moving space is suppressed.
 一実施形態においては、図6及び図7に示すように、シャッタ14は、加熱部14cを有し得る。加熱部14cは、例えば、冷却部14bを構成する壁の内部に埋め込まれている。加熱部14cは、冷却部14bの壁の内部において蛇行するように設けられた電熱線であってもよい。かかる加熱部14cによれば、成膜プロセスの期間以外の期間に対向部14aに付着した蒸着材料を加熱により除去することが可能となる。なお、シャッタ14はレール28aから取り外し可能であってもよく、レール28aからシャッタ14を取り外して当該シャッタ14に対する洗浄等のメンテナンスが行われてもよい。 In one embodiment, as shown in FIGS. 6 and 7, the shutter 14 may have a heating unit 14c. The heating unit 14c is embedded in, for example, a wall constituting the cooling unit 14b. The heating unit 14c may be a heating wire provided to meander inside the wall of the cooling unit 14b. According to the heating unit 14c, the vapor deposition material attached to the facing unit 14a during a period other than the film forming process period can be removed by heating. The shutter 14 may be detachable from the rail 28a, or maintenance such as cleaning of the shutter 14 may be performed by removing the shutter 14 from the rail 28a.
 一実施形態においては、対向部14aは、冷却部14bから取り外し可能に構成されていてもよい。例えば、対向部14aは、冷却部14bに対してネジといった固定具により取り付けられていてもよい。また、別の実施形態では、対向部14aの複数のフィンが、冷却部14bから独立して取り外し可能に構成されていてもよい。例えば、対向部14aの複数のフィン14fは、冷却部14bに対してネジといった固定具によって個別に取り付けられていてもよい。対向部14a又は対向部14aの各フィンを冷却部14bから取り外し可能とすることにより、対向部14a又は各フィンを容易に洗浄することが可能となる。 In one embodiment, the facing portion 14a may be configured to be removable from the cooling portion 14b. For example, the facing portion 14a may be attached to the cooling portion 14b by a fixing tool such as a screw. Moreover, in another embodiment, the some fin of the opposing part 14a may be comprised independently of the cooling part 14b so that removal is possible. For example, the plurality of fins 14f of the facing portion 14a may be individually attached to the cooling portion 14b by a fixture such as a screw. By making the opposing portion 14a or each fin of the opposing portion 14a removable from the cooling portion 14b, the opposing portion 14a or each fin can be easily cleaned.
 以下、図9を参照して、成膜システム100の一部又は成膜装置10の一部として用いられ得る制御部について説明する。図9は、一実施形態の制御部を示す図である。また、図9と共に図10を参照して、制御部による制御シーケンスと共に、一実施形態に係る成膜方法についても説明する。図10は、一実施形態に係る成膜方法における各工程のシーケンスを示す図である。 Hereinafter, a control unit that can be used as a part of the film forming system 100 or a part of the film forming apparatus 10 will be described with reference to FIG. FIG. 9 is a diagram illustrating a control unit according to an embodiment. In addition, with reference to FIG. 10 together with FIG. 9, a film forming method according to an embodiment will be described together with a control sequence by the control unit. FIG. 10 is a diagram illustrating a sequence of steps in the film forming method according to the embodiment.
 図9に示す制御部30は、例えば、CPU(中央処理装置)及びメモリを有する計算装置で有り得る。制御部30は、メモリに格納されたプログラムやデータ等に従って成膜装置10の各要素に対する制御信号を送出する。具体的には、制御部30は、図10に示す複数の工程の一部又は全てを成膜装置10の各要素に実行させるための制御信号を送出する。例えば、制御部30によって送出される制御信号は、以下の制御信号を含み得る。
・移動機構22によるステージSの走査を制御するための制御信号
・マスクアライナ24を制御する制御信号
・ゲートバルブGの開閉を制御する制御信号
・弁(V1~V4、Va、及びVb等)の開閉を制御する制御信号
・シャッタ移動機構28(例えば、駆動装置28b)を制御する制御信号
・加熱部14cへの電源供給を制御する制御信号
The control unit 30 illustrated in FIG. 9 can be, for example, a computing device having a CPU (Central Processing Unit) and a memory. The control unit 30 sends a control signal for each element of the film forming apparatus 10 according to a program, data, or the like stored in the memory. Specifically, the control unit 30 sends out a control signal for causing each element of the film forming apparatus 10 to execute some or all of the plurality of steps shown in FIG. For example, the control signal sent out by the control unit 30 can include the following control signals.
-Control signal for controlling scanning of stage S by moving mechanism 22-Control signal for controlling mask aligner 24-Control signal for controlling opening / closing of gate valve G-Valves (V1 to V4, Va, Vb, etc.) Control signal for controlling opening / closing / Control signal for controlling shutter moving mechanism 28 (for example, driving device 28b) / Control signal for controlling power supply to heating unit 14c
 なお、制御部30は、単一の計算装置であってもよく、又は、各工程の制御を個別に担い且つ互いに連携する複数の計算装置であってもよい。 The control unit 30 may be a single computing device, or may be a plurality of computing devices that individually control each process and cooperate with each other.
 以下、図10を参照する。図10においては、横軸に時間がとられており、縦軸に各工程が示されている。図10においては、各工程が行われている期間は、その工程を示すラベルから横方向に延びる二重線で示されている。図10に示すように、一実施形態の成膜方法では、まず、蒸着ヘッド12の加熱が開始される(時刻t1に開始。工程S1)。その後、シャッタ14の冷却が開始される(時刻t2に開始。工程S2)。この時点では、シャッタ14は閉位置にある。 Hereinafter, refer to FIG. In FIG. 10, time is taken on the horizontal axis, and each process is shown on the vertical axis. In FIG. 10, the period in which each process is performed is indicated by a double line extending in the horizontal direction from the label indicating the process. As shown in FIG. 10, in the film forming method of one embodiment, first, heating of the vapor deposition head 12 is started (starting at time t1; step S1). Thereafter, the cooling of the shutter 14 is started (starting at time t2; step S2). At this point, the shutter 14 is in the closed position.
 次いで、被処理基体WがステージS上に載置される(時刻t3に開始。工程S3)。その後、マスクアライナ24を用いて被処理基体W上にマスクMが位置合わせさて載置される(時刻t4に開始。工程S4)。その後、成膜のために、シャッタ14が開位置に移動される(時刻t5に開始。工程S5)。次いで、マスクアライナ24の下方の位置からX方向にステージSが移動される(時刻t6に開始。工程S6)。そして、ステージSが蒸着ヘッド12の下方を通過すると、被処理基体S上の成膜面に有機層の成膜が行われる(時刻t7に開始。工程S7)。 Next, the substrate to be processed W is placed on the stage S (starting at time t3, step S3). Thereafter, the mask M is aligned and placed on the substrate W to be processed using the mask aligner 24 (starting at time t4, step S4). Thereafter, the shutter 14 is moved to the open position for film formation (starting at time t5, step S5). Next, the stage S is moved in the X direction from a position below the mask aligner 24 (starting at time t6, step S6). Then, when the stage S passes below the vapor deposition head 12, an organic layer is formed on the film formation surface on the substrate to be processed S (starting at time t7, step S7).
 次いで、成膜プロセスの終了後(時刻t8)、マスクMが除去され(工程S8)、成膜室内C1から被処理基体Wが取り出される(時刻t9に開始。工程S9)。また、成膜プロセスの終了後(時刻t8)、シャッタ14は、閉位置に移動される。また、成膜プロセスの終了後、シャッタ14が加熱され、シャッタ14に付着した蒸着材料が除去される(工程S10)。この加熱が時刻t8~t10までの間継続した後、シャッタ14の冷却が再び開始される(時刻t11に開始。工程S11)。 Next, after completion of the film formation process (time t8), the mask M is removed (step S8), and the substrate W to be processed is taken out from the film formation chamber C1 (starting at time t9, step S9). In addition, after the film formation process ends (time t8), the shutter 14 is moved to the closed position. Further, after the film formation process is completed, the shutter 14 is heated, and the vapor deposition material attached to the shutter 14 is removed (step S10). After this heating is continued from time t8 to time t10, cooling of the shutter 14 is started again (starting at time t11, step S11).
 以上説明した成膜方法によれば、シャッタ14が閉位置にある間(例えば、時刻t2~時刻t5の期間)、シャッタ14が冷却される。したがって、シャッタ14における蒸着材料の吸着効率が高められる。これにより、シャッタ14と噴射口12aとの間における空間の圧力が低減される。その結果、シャッタ14を開放した後(時刻t5以降)に噴射口12aからのガスの噴射状態が安定するまでの期間(時刻t5から時刻t7の期間)を短縮することが可能となる。故に、スループットが向上される。また、成膜プロセスの後に、シャッタ14が加熱されるので、成膜プロセスに影響を与えることなく、シャッタ14に付着した蒸着材料を除去することができる。 According to the film forming method described above, the shutter 14 is cooled while the shutter 14 is in the closed position (for example, during a period from time t2 to time t5). Therefore, the adsorption efficiency of the vapor deposition material in the shutter 14 is increased. Thereby, the pressure of the space between the shutter 14 and the injection port 12a is reduced. As a result, it is possible to shorten the period (the period from time t5 to time t7) until the gas injection state from the injection port 12a is stabilized after the shutter 14 is opened (after time t5). Therefore, the throughput is improved. Further, since the shutter 14 is heated after the film formation process, the vapor deposition material attached to the shutter 14 can be removed without affecting the film formation process.
 以下、別の種々の実施形態について説明する。図11は、別の実施形態に係る成膜装置を概略的に示す図である。図11は、ステージの移動方向(X方向)から見た一実施形態の成膜装置を概略的に示している。図11に示す成膜装置10Aは、シャッタ移動機構28に代わるシャッタ移動機構28Aを備えている点で、成膜装置10と異なっている。 Hereinafter, various other embodiments will be described. FIG. 11 is a diagram schematically showing a film forming apparatus according to another embodiment. FIG. 11 schematically shows a film forming apparatus according to an embodiment as viewed from the moving direction (X direction) of the stage. A film forming apparatus 10A shown in FIG. 11 is different from the film forming apparatus 10 in that it includes a shutter moving mechanism 28A in place of the shutter moving mechanism 28.
 成膜装置10Aでは、シャッタ14は、上下方向(Y方向)に移動可能になっている。そのため、成膜装置10Aでは、シャッタ移動機構28Aは、シャッタ14をY方向に移動させる。シャッタ移動機構28Aは、例えば、Y方向にシャッタ14を移動させるエアシリンダで有り得る。シャッタ移動機構28Aは、チャンバ壁16の下方に設けられた支持台32に支持され得る。また、シャッタ移動機構28Aのロッドは、シャッタ14のZ方向における両縁部に接続され得る。 In the film forming apparatus 10A, the shutter 14 is movable in the vertical direction (Y direction). Therefore, in the film forming apparatus 10A, the shutter moving mechanism 28A moves the shutter 14 in the Y direction. The shutter moving mechanism 28A can be, for example, an air cylinder that moves the shutter 14 in the Y direction. The shutter moving mechanism 28 </ b> A can be supported by a support base 32 provided below the chamber wall 16. Further, the rod of the shutter moving mechanism 28A can be connected to both edge portions of the shutter 14 in the Z direction.
 シャッタ移動機構28Aは、シャッタ14により蒸着ヘッド12からのガスを遮るときには、ステージSの移動空間よりも上方に当該シャッタ14を移動させる。これにより、シャッタ14は、蒸着ヘッド12の噴射口と対向する。この状態では、シャッタ14は、閉位置にある。一方、シャッタ移動機構28Aは、ステージSの移動空間よりも下方にシャッタ14を移動させることにより、シャッタ14を開位置に移動させる。これにより、シャッタ14によって蒸着ヘッド12からのガスが遮られることなく、蒸着ヘッド12からのガスは、被処理基体Wに吹き付けられる。 The shutter moving mechanism 28A moves the shutter 14 above the moving space of the stage S when the shutter 14 blocks the gas from the vapor deposition head 12. Thereby, the shutter 14 opposes the ejection port of the vapor deposition head 12. In this state, the shutter 14 is in the closed position. On the other hand, the shutter moving mechanism 28A moves the shutter 14 to the open position by moving the shutter 14 below the moving space of the stage S. Thereby, the gas from the vapor deposition head 12 is sprayed on the to-be-processed substrate W, without the gas from the vapor deposition head 12 being interrupted by the shutter 14.
 図12は、別の実施形態に係るシャッタを示す斜視図である。図12に示すシャッタ14Aは、シャッタ14の冷却部14bとは異なる構造の冷却部14Abを有している。冷却部14Abには、Z方向に延びる三つの孔が設けられている。これら三つの孔のうち、X方向において中央に位置する孔14iは、冷媒が流れる流路Fを構成している。また、三つの孔のうち孔14iの両側の二つの孔14nには、例えば、カートリッジ型のヒーターである加熱部14cが挿入され得る。このように、カートリッジ型のヒーターを用いることができるので、シャッタ14Aの製造はより容易なものとなっている。 FIG. 12 is a perspective view showing a shutter according to another embodiment. A shutter 14A illustrated in FIG. 12 includes a cooling unit 14Ab having a structure different from that of the cooling unit 14b of the shutter 14. The cooling unit 14Ab is provided with three holes extending in the Z direction. Of these three holes, the hole 14i located in the center in the X direction constitutes a flow path F through which the refrigerant flows. Moreover, the heating part 14c which is a cartridge type heater can be inserted in the two holes 14n on both sides of the hole 14i among the three holes, for example. Thus, since a cartridge-type heater can be used, the manufacture of the shutter 14A is easier.
 シャッタ14Aでは、図12に示すように孔14iに冷媒が流されてもよいが、図13に示すように、孔14iに配管14dを挿入し、当該配管14d内の流路Fに冷媒を流してもよい。 In the shutter 14A, the refrigerant may flow through the hole 14i as shown in FIG. 12, but as shown in FIG. 13, the pipe 14d is inserted into the hole 14i and the refrigerant flows through the flow path F in the pipe 14d. May be.
 また、一実施形態においては、配管14dは、一部分において、孔14iを画成する冷却部14Abの内壁面に接触していてもよい。図13に示す例では、配管14dは、第1の部分14d1、第2の部分14d2、第3の部分14d3を含んでいる。第2の部分14d2は、配管14dの長手方向(Z方向)において、第1の部分14d1と第3の部分14d3の間に設けられている。この第2の部分14d2の外径は、第1の部分14d1及び第3の部分14d3の外径よりも大きくなっている。図13に示すように、第2の部分14d2は、シャッタ14AのZ方向における中央領域において、孔14iを画成する内壁面に接している。一方、第1の部分14d1及び第3の部分14d3は、孔14iを画成する内壁面には接していない。このように冷媒が流れる配管を孔14iの内壁面に部分的に接するように構成することによって、シャッタ14の熱分布を調整することが可能となる。 Further, in one embodiment, the pipe 14d may partially contact the inner wall surface of the cooling unit 14Ab that defines the hole 14i. In the example shown in FIG. 13, the pipe 14d includes a first portion 14d1, a second portion 14d2, and a third portion 14d3. The second portion 14d2 is provided between the first portion 14d1 and the third portion 14d3 in the longitudinal direction (Z direction) of the pipe 14d. The outer diameter of the second portion 14d2 is larger than the outer diameters of the first portion 14d1 and the third portion 14d3. As shown in FIG. 13, the second portion 14d2 is in contact with the inner wall surface defining the hole 14i in the central region in the Z direction of the shutter 14A. On the other hand, the first portion 14d1 and the third portion 14d3 are not in contact with the inner wall surface that defines the hole 14i. Thus, the heat distribution of the shutter 14 can be adjusted by configuring the pipe through which the refrigerant flows so as to partially contact the inner wall surface of the hole 14i.
 図14は、別の実施形態に係るシャッタ移動機構を示す斜視図である。図14に示すシャッタ移動機構28Bは、シャッタ14の一端に結合されており、Y方向に延びる軸線中心にシャッタ14を揺動させる。このシャッタ移動機構28Bは、ロータリエアシリンダであってもよい。このように、シャッタ14をその一端を中心に揺動させることにより、当該シャッタ14を閉位置と開位置との間で移動させてもよい。 FIG. 14 is a perspective view showing a shutter moving mechanism according to another embodiment. A shutter moving mechanism 28B shown in FIG. 14 is coupled to one end of the shutter 14 and swings the shutter 14 about the axis extending in the Y direction. The shutter moving mechanism 28B may be a rotary air cylinder. In this way, the shutter 14 may be moved between the closed position and the open position by swinging the shutter 14 around one end thereof.
 図15は、別の実施形態に係る冷媒用の流路を有するシャッタを示す図である。図15の(a)には、Y方向に見たシャッタの冷却部が示されており、図15の(b)にはZ方向から見たシャッタが示されている。図15に示すシャッタでは、冷却部14bの空洞14h内に、Z方向に延びる壁14pが設けられている。この壁14pは、空洞14hにおいてU字状の流路Fを形成する。即ち、図15に示す流路Fでは、冷却部14bの一端に、流路Fの一端F1及び他端F2が設けられている。 FIG. 15 is a view showing a shutter having a flow path for refrigerant according to another embodiment. FIG. 15A shows a shutter cooling unit viewed in the Y direction, and FIG. 15B shows the shutter viewed from the Z direction. In the shutter shown in FIG. 15, a wall 14p extending in the Z direction is provided in the cavity 14h of the cooling unit 14b. The wall 14p forms a U-shaped flow path F in the cavity 14h. That is, in the flow path F shown in FIG. 15, one end F1 and the other end F2 of the flow path F are provided at one end of the cooling unit 14b.
 U字状の流路Fは、図16に示すように、配管14gによって構成されていてもよい。図16は、別の実施形態に係る冷媒用の流路を有するシャッタを示す図であり、図16の(a)には、Y方向に見たシャッタの冷却部が示されており、図16の(b)にはZ方向から見たシャッタが示されている。図16に示すシャッタでは、冷却部14bの空洞14h内に、配管14gが設けられている。配管14gは、例えば、その長手方向(Z方向)に平行な平面において切断されてU字状に折り曲げられている。この切断によって作られた配管14gの切断端面は、空洞14hを画成する壁のうち対向部14a側の壁に接合され得る。これにより、対向部14a側の壁に対する冷媒の接触面積が大きくなり、対向部14aを効率良く冷却することが可能となる。 The U-shaped flow path F may be comprised by the piping 14g, as shown in FIG. FIG. 16 is a view showing a shutter having a refrigerant flow path according to another embodiment. FIG. 16A shows a shutter cooling portion viewed in the Y direction. (B) shows the shutter viewed from the Z direction. In the shutter shown in FIG. 16, a pipe 14g is provided in the cavity 14h of the cooling unit 14b. For example, the pipe 14g is cut in a plane parallel to the longitudinal direction (Z direction) and bent into a U shape. The cut end face of the pipe 14g made by this cutting can be joined to the wall on the facing portion 14a side among the walls defining the cavity 14h. Thereby, the contact area of the refrigerant | coolant with respect to the wall by the side of the opposing part 14a becomes large, and it becomes possible to cool the opposing part 14a efficiently.
 なお、これら図15及び図16に示す流路Fを有するシャッタは、本明細書に説明する任意のシャッタ移動機構と共に用いることができる。また、図15及び図16に示す流路Fを含む冷媒用の配管系統は、図8にて説明した配管系統と同様であってもよい。即ち、一端F1から供給された冷媒が流路Fを一方向に流れて他端F2から排出されてもよい。 Note that the shutter having the flow path F shown in FIGS. 15 and 16 can be used together with any shutter moving mechanism described in this specification. Moreover, the piping system for refrigerant | coolants containing the flow path F shown in FIG.15 and FIG.16 may be the same as the piping system demonstrated in FIG. That is, the refrigerant supplied from one end F1 may flow in one direction through the flow path F and be discharged from the other end F2.
 一実施形態においては、流路Fを含む配管系統として、図17に示す配管系統が採用されてもよい。図17は、別の実施形態に係る配管系統を示す図である。図17に示す配管系統では、流路Fに流れる冷媒の方向を一方向と他方向とに切替えることができる。具体的には、配管da1と弁Vaとの間において配管da2からは配管dcが分岐している。配管dcには弁Vcが設けられている。配管dcは、配管db2の排出口と弁Vbとの間において配管db2に接続している。また、配管db1と弁Vbとの間において配管db2からは配管ddが分岐している。この配管ddには弁Vdが設けられている。配管ddは、配管da2の供給口と弁Vaとの間において配管da2に接続している。 In one embodiment, the piping system shown in FIG. 17 may be employed as the piping system including the flow path F. FIG. 17 is a diagram illustrating a piping system according to another embodiment. In the piping system shown in FIG. 17, the direction of the refrigerant flowing in the flow path F can be switched between one direction and the other direction. Specifically, the pipe dc branches from the pipe da2 between the pipe da1 and the valve Va. The pipe dc is provided with a valve Vc. The pipe dc is connected to the pipe db2 between the outlet of the pipe db2 and the valve Vb. Further, a pipe dd branches from the pipe db2 between the pipe db1 and the valve Vb. This pipe dd is provided with a valve Vd. The pipe dd is connected to the pipe da2 between the supply port of the pipe da2 and the valve Va.
 図17に示す配管系統においては、弁Vaと弁Vbとが同時に開放される。弁Vaと弁Vbとが開放されているときには、弁Vcと弁Vdが閉じられる。一方、弁Vcと弁Vdが同時に開放されているときには、弁Vaと弁Vbとが閉じられる。 In the piping system shown in FIG. 17, the valve Va and the valve Vb are opened simultaneously. When the valve Va and the valve Vb are opened, the valve Vc and the valve Vd are closed. On the other hand, when the valve Vc and the valve Vd are opened simultaneously, the valve Va and the valve Vb are closed.
 弁Vaと弁Vbとが同時に開放されているときには、配管da2に供給された冷媒は配管da1を介して流路Fを一方向に流れる。流路Fを一方向に流れ得た冷媒は、配管db1及び配管db2を流れて排出される。一方、弁Vcと弁Vdとが同時に開放されているときには、配管da2に供給された冷媒は配管ddを介して流路Fを、上記一方向とは反対の他方向に流れる。流路Fを他方向に流れ得た冷媒は、配管da1、配管dc、及び配管db2を流れて排出される。このように、図17に示す配管系統によれば、冷媒が流路F内において流れる方向を一方向と当該一方向と反対の他方向との間で切替えることができる。かかる構成によって冷媒が流れる方向が交互に切替えられるので、シャッタはより均一に冷却される。 When the valve Va and the valve Vb are opened simultaneously, the refrigerant supplied to the pipe da2 flows in one direction through the flow path F via the pipe da1. The refrigerant that has flowed in one direction through the flow path F flows through the pipe db1 and the pipe db2 and is discharged. On the other hand, when the valve Vc and the valve Vd are opened simultaneously, the refrigerant supplied to the pipe da2 flows through the flow path F in the other direction opposite to the one direction via the pipe dd. The refrigerant that has been able to flow through the flow path F in the other direction flows through the pipe da1, the pipe dc, and the pipe db2 and is discharged. Thus, according to the piping system shown in FIG. 17, the direction in which the refrigerant flows in the flow path F can be switched between one direction and the other direction opposite to the one direction. With this configuration, the direction in which the refrigerant flows is alternately switched, so that the shutter is cooled more uniformly.
 図18は、更に別の実施形態に係るシャッタ移動機構を示す斜視図である。図18に示すシャッタ移動機構28Cは、Z方向に延びる軸線中心にシャッタ14Cの対向部14Caを回転させ、当該対向部14Caを開位置(図18の(a)参照)と閉位置(図18の(b)参照)の間で移動させる。 FIG. 18 is a perspective view showing a shutter moving mechanism according to still another embodiment. The shutter moving mechanism 28C shown in FIG. 18 rotates the facing portion 14Ca of the shutter 14C about the axis extending in the Z direction, and the facing portion 14Ca is opened (see FIG. 18A) and closed (see FIG. 18). (See (b)).
 シャッタ移動機構28Cは、回転駆動装置28Ca及び軸28Cbを含み得る。回転駆動装置28Caは、例えば、ロータリエアシリンダであり得る。軸28Cbは、Z方向に延在しており、その一端において回転駆動装置28Caに結合されている。シャッタ14Cの冷却部14Cbは軸28Cbを挿入するための空間を画成する壁によって構成されている。この冷却部14Cbの壁によって軸28Cbは保持される。軸28Cbの内部は空洞になっている。この空洞は、冷媒用の流路Fを画成している。このシャッタ移動機構28Cは、一軸駆動の移動機構であるので、成膜装置内において容易に構成し得る。 The shutter moving mechanism 28C may include a rotation drive device 28Ca and a shaft 28Cb. The rotational drive device 28Ca can be, for example, a rotary air cylinder. The shaft 28Cb extends in the Z direction, and is coupled to the rotational drive device 28Ca at one end thereof. The cooling portion 14Cb of the shutter 14C is configured by a wall that defines a space for inserting the shaft 28Cb. The shaft 28Cb is held by the wall of the cooling unit 14Cb. The inside of the shaft 28Cb is hollow. This cavity defines a flow path F for the refrigerant. Since the shutter moving mechanism 28C is a uniaxially driven moving mechanism, it can be easily configured in the film forming apparatus.
 以下、図19を参照する。図19の(a)~(f)には、シャッタ及び/又は蒸着ヘッドの種々の変形形態が示されている。図19の(a)に示すように、シャッタの対向部14aは、噴射口12aのY方向に延びる中心線Y1に対して傾斜した面によって構成されていてもよい。具体的に、図19の(a)に示す対向部14aは、Z方向に延び中心線Y1に交差する頂片から下方に傾斜する二つの面によって構成されている。この二つの面は、図19の(b)に示すように、曲面であってもよい。また、上記頂辺は、図19の(c)に示すように、中心線Y1に対してX方向に偏位していてもよい。 Hereinafter, refer to FIG. 19A to 19F show various modifications of the shutter and / or the vapor deposition head. As shown to (a) of FIG. 19, the opposing part 14a of a shutter may be comprised by the surface inclined with respect to the centerline Y1 extended in the Y direction of the injection nozzle 12a. Specifically, the facing portion 14a shown in FIG. 19A is constituted by two surfaces that are inclined downward from a top piece that extends in the Z direction and intersects the center line Y1. These two surfaces may be curved surfaces as shown in FIG. Further, as shown in FIG. 19C, the top side may be deviated in the X direction with respect to the center line Y1.
 また、シャッタの対向部14aは、図19の(d)に示すように、波状の面によって構成されていてもよい。また、シャッタの対向部14aは、図19の(e)に示すように、Y方向に直交する平面によって構成されていてもよい。この場合には、噴射口の中心線Y2には、Y方向に対して傾斜が与えられている。 Further, the facing portion 14a of the shutter may be constituted by a wavy surface as shown in FIG. Further, as shown in FIG. 19E, the facing portion 14a of the shutter may be configured by a plane orthogonal to the Y direction. In this case, the center line Y2 of the injection port is inclined with respect to the Y direction.
 図19の(a)~(e)に示す実施形態の対向部14aは、当該対向部14aに吸着されないガスを噴射口12aから逸れる方向に反射する。したがって、これら実施形態によれば、噴射口12aと対向部14aとの間の空間における圧力をより効果的に低減することができる。なお、対向部14aに吸着されないガスは、主としてキャリアガスであり、その残部として蒸着材料の気体も含み得る。 In the embodiment shown in FIGS. 19A to 19E, the facing portion 14a reflects the gas that is not adsorbed by the facing portion 14a in a direction deviating from the injection port 12a. Therefore, according to these embodiments, the pressure in the space between the injection port 12a and the facing portion 14a can be more effectively reduced. Note that the gas that is not adsorbed by the facing portion 14a is mainly a carrier gas, and may include a vapor of a vapor deposition material as the remainder.
 また、図19の(f)に示すように、噴射口12aが設けられている蒸着ヘッド12の先端部分は、テーパー状の面によって構成されていてもよい。この場合には、図19の(f)に示すテーパー角αは、例えば35度程度であってもよく、蒸着ヘッド12の先端の幅Wは、6mm程度であってもよい。図19の(f)に示す実施形態によれば、対向部14aは、当該対向部14aに吸着されないガスを噴射口12aの側に反射するが、テーパー面によって当該ガスの対向部14a方向への更なる反射を低減することが可能である。 Further, as shown in FIG. 19 (f), the tip portion of the vapor deposition head 12 provided with the injection port 12a may be constituted by a tapered surface. In this case, the taper angle α shown in FIG. 19F may be about 35 degrees, for example, and the width W of the tip of the vapor deposition head 12 may be about 6 mm. According to the embodiment shown in FIG. 19F, the facing portion 14a reflects the gas that is not adsorbed by the facing portion 14a toward the injection port 12a. However, the tapered surface faces the gas toward the facing portion 14a. Further reflections can be reduced.
 なお、図19の(a)~(f)に示す何れの実施形態においても、シャッタ又は対向部14aの表面に、粗面化処理がなされていてもよく、また、熱伝導性が良好なCu等による金属膜が形成されていてもよい。また、噴射口12aと対向部14aとの間の空間の圧力を低減するために、噴射口12aと対向部14aとは、10mm以上離されていてもよい。 In any of the embodiments shown in FIGS. 19A to 19F, the surface of the shutter or the opposed portion 14a may be roughened, and Cu having good thermal conductivity may be used. A metal film may be formed. Further, in order to reduce the pressure in the space between the ejection port 12a and the facing portion 14a, the ejection port 12a and the facing portion 14a may be separated by 10 mm or more.
 次に、図20を参照する。図20は、成膜システムの別の一例を示す図である。図20に示す成膜システム100Dでは、Z方向において搬送室104Dの両側にゲートバルブGを介してマスクストッカ106D及びアライメント室108がそれぞれ設けられている。搬送室104Dは、搬送装置を有する。この搬送装置は、マスクストッカ106DからマスクMを受け取り、アライメント室108に被処理基体W及びマスクMを搬送する。アライメント室108では、マスクMの位置合わせが行われ、被処理基体W上に載置される。また、このアライメント室108は、アライメント室108においてその上にマスクMが載置された被処理基体Wを成膜装置10DのステージS上に搬送する。この成膜装置10Dは、マスクアライナ24を有していない点で成膜装置10とは異なる。 Next, refer to FIG. FIG. 20 is a diagram illustrating another example of the film forming system. In the film forming system 100D shown in FIG. 20, a mask stocker 106D and an alignment chamber 108 are provided on both sides of the transfer chamber 104D in the Z direction via gate valves G, respectively. The transfer chamber 104D includes a transfer device. This transport apparatus receives the mask M from the mask stocker 106D, and transports the substrate W and the mask M to the alignment chamber 108. In the alignment chamber 108, the mask M is aligned and placed on the substrate W to be processed. Further, the alignment chamber 108 conveys the substrate W to be processed on which the mask M is placed in the alignment chamber 108 onto the stage S of the film forming apparatus 10D. This film forming apparatus 10 </ b> D is different from the film forming apparatus 10 in that it does not have the mask aligner 24.
 成膜システム100Dは、成膜システム100と比較して、小型の被処理基体W用の成膜に適し得る。一方、成膜システム100は、マスクMを成膜装置10内で位置合わせするので、搬送室104の搬送装置に求められる搬送能力が比較的低い。したがって、成膜システム100は、大型の被処理基体Wに適し得る。また、成膜システム100は、成膜システム100Dよりも低コストに製造し得る。 The film formation system 100D may be suitable for film formation for a small substrate to be processed W as compared with the film formation system 100. On the other hand, since the film forming system 100 aligns the mask M in the film forming apparatus 10, the transfer capability required for the transfer apparatus in the transfer chamber 104 is relatively low. Therefore, the film forming system 100 can be suitable for a large substrate to be processed W. Further, the film forming system 100 can be manufactured at a lower cost than the film forming system 100D.
 以上、種々の実施形態について説明してきたが、本発明は上述した実施形態に限定されることなく種々の変形が可能である。例えば、説明した種々の実施形態の要素又は構成は、任意に他の実施形態の対応の要素又は構成と置き換えることができる。 Although various embodiments have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, elements or configurations of the various described embodiments can optionally be replaced with corresponding elements or configurations of other embodiments.
 10…成膜装置、12…蒸着ヘッド、12a…噴射口、14…シャッタ、16…チャンバ壁、C1…成膜室、20…蒸着ガス供給源、22…移動機構、28…シャッタ移動機構、30…制御部、100…成膜システム、F…冷媒用の流路、S…ステージ、W…被処理基体。 DESCRIPTION OF SYMBOLS 10 ... Film-forming apparatus, 12 ... Evaporation head, 12a ... Injection port, 14 ... Shutter, 16 ... Chamber wall, C1 ... Deposition chamber, 20 ... Deposition gas supply source, 22 ... Moving mechanism, 28 ... Shutter moving mechanism, 30 ... Control unit, 100 ... Film forming system, F ... Flow path for refrigerant, S ... Stage, W ... Substrate to be processed.

Claims (11)

  1.  蒸着材料の気体分子を含むガスを噴射する噴射口を有する蒸着ヘッドと、
     前記ガスを遮る位置に配置可能なシャッタと、
    を備え、
     前記シャッタは、該シャッタを冷却するための冷却部を有する、
    成膜装置。
    A deposition head having an ejection port for ejecting a gas containing gas molecules of the deposition material;
    A shutter that can be disposed at a position to block the gas;
    With
    The shutter includes a cooling unit for cooling the shutter.
    Deposition device.
  2.  被処理基体を搭載するステージと、
     前記ステージを前記蒸着ヘッドの前記噴射口からのガスの噴射方向に対して交差する方向に移動させる移動機構を更に備え、
     前記蒸着ヘッドは、前記噴射口を含む複数の噴射口を有しており、該複数の噴射口は、前記ステージの移動方向に交差する方向に配列されている、
    請求項1に記載の成膜装置。
    A stage on which a substrate to be processed is mounted;
    A moving mechanism that moves the stage in a direction that intersects the direction of gas ejection from the ejection port of the vapor deposition head;
    The vapor deposition head has a plurality of injection ports including the injection port, and the plurality of injection ports are arranged in a direction crossing the moving direction of the stage.
    The film forming apparatus according to claim 1.
  3.  前記シャッタが前記位置に配置されているときに、前記冷却部は、前記蒸着ヘッドと被処理基体を成膜するための空間との間に介在する、請求項1又は2の何れか一項に記載の成膜装置。 3. The cooling device according to claim 1, wherein when the shutter is disposed at the position, the cooling unit is interposed between the vapor deposition head and a space for forming a film to be processed. The film-forming apparatus of description.
  4.  前記冷却部は、冷媒流路を含んでおり、
     前記冷媒流路において冷媒が流れる方向を一方向と該一方向と反対の他方向とに切替えるための手段を更に備える、
    請求項1~3の何れか一項に記載の成膜装置。
    The cooling unit includes a refrigerant flow path,
    Means for switching a direction in which the refrigerant flows in the refrigerant flow path to one direction and another direction opposite to the one direction;
    The film forming apparatus according to any one of claims 1 to 3.
  5.  前記シャッタは、該シャッタを加熱するための加熱部を更に有する、請求項1~4の何れか一項に記載の成膜装置。 5. The film forming apparatus according to claim 1, wherein the shutter further includes a heating unit for heating the shutter.
  6.  前記シャッタは、前記ガスが吹き付けられる部分に櫛歯構造を有する、請求項1~5の何れか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 5, wherein the shutter has a comb-tooth structure in a portion to which the gas is blown.
  7.  前記シャッタは、前記ガスが吹き付けられる部分に前記噴射口の中心線に対して傾斜した面を含む、請求項1~6の何れか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 6, wherein the shutter includes a surface inclined with respect to a center line of the injection port at a portion to which the gas is blown.
  8.  前記面は、波状の面を含む、請求項7に記載の成膜装置。 The film forming apparatus according to claim 7, wherein the surface includes a wavy surface.
  9.  前記噴射口が設けられている前記蒸着ヘッドの先端部分は、テーパー状の面で構成されている、請求項1~8の何れか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 8, wherein a tip portion of the vapor deposition head provided with the spray port is configured by a tapered surface.
  10.  蒸着ヘッドの噴射口からの蒸着材料の気体分子を含むガスを遮る位置にシャッタを配置している期間において前記シャッタを冷却する工程と、
     前記シャッタを前記位置から退避させる工程と、
     前記蒸着ヘッドからの前記ガスにより被処理基体上に蒸着材料を成膜する工程と、
    を含む成膜方法。
    Cooling the shutter during a period in which the shutter is disposed at a position that blocks gas containing gas molecules of the vapor deposition material from the ejection port of the vapor deposition head;
    Retracting the shutter from the position;
    Depositing a deposition material on a substrate to be treated by the gas from the deposition head;
    A film forming method including:
  11.  前記成膜する工程の後に、前記シャッタを加熱する工程を更に含む、請求項10に記載の成膜方法。 The film forming method according to claim 10, further comprising a step of heating the shutter after the film forming step.
PCT/JP2012/059730 2011-04-11 2012-04-09 Film-forming apparatus and film-forming method WO2012141151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011087276A JP2014132101A (en) 2011-04-11 2011-04-11 Film deposition apparatus and film deposition method
JP2011-087276 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012141151A1 true WO2012141151A1 (en) 2012-10-18

Family

ID=47009324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059730 WO2012141151A1 (en) 2011-04-11 2012-04-09 Film-forming apparatus and film-forming method

Country Status (3)

Country Link
JP (1) JP2014132101A (en)
TW (1) TW201305369A (en)
WO (1) WO2012141151A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689926A (en) * 2016-09-13 2019-04-26 艾尔法普拉斯株式会社 Evaporation coating device
JP2019081949A (en) * 2017-10-31 2019-05-30 キヤノントッキ株式会社 Evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166637A1 (en) * 2017-03-17 2018-09-20 Applied Materials, Inc. Deposition system, deposition apparatus, and method of operating a deposition system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301078A (en) * 1991-03-29 1992-10-23 Fujitsu Ltd Cooling method and cooling device for film forming chamber
JPH05179452A (en) * 1992-01-08 1993-07-20 Anelva Corp Chemical vapor growth device
JPH10168559A (en) * 1996-12-06 1998-06-23 Ulvac Japan Ltd Organic thin film forming device and method for reutilizing organic material
JP2006104497A (en) * 2004-10-01 2006-04-20 Hitachi Zosen Corp Vapor deposition apparatus
WO2007026649A1 (en) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. Vapor deposition head device and method of coating by vapor deposition
JP2008075095A (en) * 2006-09-19 2008-04-03 Hitachi Zosen Corp Vacuum deposition system and vacuum deposition method
JP2008088490A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Deposition apparatus, deposition apparatus control apparatus, deposition apparatus control method, deposition apparatus using method and outlet manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301078A (en) * 1991-03-29 1992-10-23 Fujitsu Ltd Cooling method and cooling device for film forming chamber
JPH05179452A (en) * 1992-01-08 1993-07-20 Anelva Corp Chemical vapor growth device
JPH10168559A (en) * 1996-12-06 1998-06-23 Ulvac Japan Ltd Organic thin film forming device and method for reutilizing organic material
JP2006104497A (en) * 2004-10-01 2006-04-20 Hitachi Zosen Corp Vapor deposition apparatus
WO2007026649A1 (en) * 2005-08-29 2007-03-08 Matsushita Electric Industrial Co., Ltd. Vapor deposition head device and method of coating by vapor deposition
JP2008075095A (en) * 2006-09-19 2008-04-03 Hitachi Zosen Corp Vacuum deposition system and vacuum deposition method
JP2008088490A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Deposition apparatus, deposition apparatus control apparatus, deposition apparatus control method, deposition apparatus using method and outlet manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689926A (en) * 2016-09-13 2019-04-26 艾尔法普拉斯株式会社 Evaporation coating device
CN109689926B (en) * 2016-09-13 2021-02-26 艾尔法普拉斯株式会社 Evaporation plating device
JP2019081949A (en) * 2017-10-31 2019-05-30 キヤノントッキ株式会社 Evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device

Also Published As

Publication number Publication date
JP2014132101A (en) 2014-07-17
TW201305369A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
KR101760897B1 (en) Deposition source and apparatus for organic layer deposition having the same
CN105814231B (en) Evaporation source for organic material, deposition apparatus for depositing organic material in vacuum chamber, and method of evaporating organic material
JP6704348B2 (en) Evaporation source for organic materials
US8802200B2 (en) Method and apparatus for cleaning organic deposition materials
TWI527285B (en) Organic light-emitting display device
KR101146996B1 (en) Method for manufacturing of organic light emitting display apparatus
EP2248595B1 (en) Apparatus for depositing organic material and depositing method thereof
KR101983213B1 (en) Evaporation source for organic material
US8883259B2 (en) Thin film deposition apparatus
US20110033621A1 (en) Thin film deposition apparatus including deposition blade
JP2012211352A (en) Evaporation source, organic el-device manufacturing device and organic el-device manufacturing method
JP6615336B2 (en) Substrate processing apparatus and tube assembly method
US9174250B2 (en) Method and apparatus for cleaning organic deposition materials
WO2012118199A1 (en) Vapor-deposition device, vapor-deposition method, organic el display, and lighting device
WO2012141151A1 (en) Film-forming apparatus and film-forming method
KR101127583B1 (en) Cleaning method and cleaning system of organic materials
JP2007070679A (en) Film deposition apparatus, film deposition apparatus system, film deposition method, and manufacturing method of electronic equipment or organic electroluminescence element
CN104128342A (en) Method and apparatus for cleaning organic materials
JP4726123B2 (en) Application system
JP2011084807A (en) Thin film vapor deposition apparatus
WO2012127982A1 (en) Film forming apparatus, film forming method, method for manufacturing organic light emitting element, and organic light emitting element
JP6504540B2 (en) Substrate processing equipment
US9054342B2 (en) Apparatus and method for etching organic layer
KR20130060520A (en) Mask cleaning apparatus for manufacturing oled device
CN113764308A (en) Apparatus and method for processing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP