JP2005325425A - Organic vapor deposition method and organic vapor deposition system - Google Patents

Organic vapor deposition method and organic vapor deposition system Download PDF

Info

Publication number
JP2005325425A
JP2005325425A JP2004146182A JP2004146182A JP2005325425A JP 2005325425 A JP2005325425 A JP 2005325425A JP 2004146182 A JP2004146182 A JP 2004146182A JP 2004146182 A JP2004146182 A JP 2004146182A JP 2005325425 A JP2005325425 A JP 2005325425A
Authority
JP
Japan
Prior art keywords
evaporation
evaporation source
vapor deposition
organic
organic vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004146182A
Other languages
Japanese (ja)
Other versions
JP4522141B2 (en
Inventor
Koji Hane
功二 羽根
Toshihiro Okada
俊弘 岡田
Kyuzo Nakamura
久三 中村
Yoshio Sunaga
芳雄 砂賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004146182A priority Critical patent/JP4522141B2/en
Publication of JP2005325425A publication Critical patent/JP2005325425A/en
Application granted granted Critical
Publication of JP4522141B2 publication Critical patent/JP4522141B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic vapor deposition method and a system therefor by which a film deposition rate can be controlled accurately by preventing the variation in an evaporation rate caused by the position of an evaporation source. <P>SOLUTION: The organic vapor deposition system is provided with: a vacuum tank 2; an evaporation source 3 for an organic material composed so as to move between a waiting position and a film deposition position in the vacuum tank 2; and a film thickness sensor 50 for measuring the evaporation rate of vapor evaporated from the evaporation source 3 in the waiting position, and is composed in such a manner that the organic evaporation material is vapor-deposited on a substrate 5 as the evaporation rate in the evaporation source 3 is controlled based on the result obtained in the film thickness sensor 50. Sticking prevention members 7 each composed of a material having an emissivity equal to that of each mask 6 is arranged at almost the same height as that of each mask, further, the sticking prevention members 7 are cooled so as to make their temperature to that of each mask 6, and the loss of the radiant heat in the vicinity of the vapor release part in the evaporation source 3 is made equal in the waiting time and the film deposition time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、有機EL素子等を製造する際に、基板上に有機化合物の蒸着膜を形成するための技術に関する。   The present invention relates to a technique for forming a vapor deposition film of an organic compound on a substrate, for example, when manufacturing an organic EL element or the like.

図4(a)は、従来の有機蒸着装置の正面側断面図、図4(b)は、同有機蒸着装置の制御系の構成を示すブロック図である。
図4(a)(b)に示すように、この有機蒸着装置101においては、真空槽102内において直線状の蒸発源103を幅方向へ移動させ、マスク104を介して基板105上に有機蒸発材料を蒸着させるように構成されている。
FIG. 4A is a front sectional view of a conventional organic vapor deposition apparatus, and FIG. 4B is a block diagram showing a configuration of a control system of the organic vapor deposition apparatus.
As shown in FIGS. 4A and 4B, in this organic vapor deposition apparatus 101, the linear evaporation source 103 is moved in the width direction in the vacuum chamber 102, and organic evaporation is performed on the substrate 105 through the mask 104. It is configured to deposit material.

また、蒸発源103の待機位置の直上には防着部材106を挟んで膜厚センサ107が配設され、蒸発源103から蒸発される蒸気の蒸発レートを孔部108を介して検出するようになっている。   Further, a film thickness sensor 107 is disposed directly above the standby position of the evaporation source 103 with the deposition member 106 interposed therebetween, so that the evaporation rate of the vapor evaporated from the evaporation source 103 is detected through the hole 108. It has become.

従来、この有機蒸着装置101では、以下の方法で蒸発レート(成膜速度)の制御を行っている。   Conventionally, in this organic vapor deposition apparatus 101, the evaporation rate (deposition rate) is controlled by the following method.

まず、蒸発源103の脱ガス後、蒸着温度に到達するまでは、設定温度が一定となるように制御用の熱電対103aで蒸発源103の温度をモニタし、ヒータ103bの制御部110にフィードバックする。   First, after degassing the evaporation source 103, the temperature of the evaporation source 103 is monitored by the control thermocouple 103a so that the set temperature is constant until reaching the vapor deposition temperature, and is fed back to the control unit 110 of the heater 103b. To do.

次いで、成膜段階では、待機位置において、膜厚センサ107によって検出された結果に基づき蒸発レートが一定となるように蒸発源103の温度を調整し、蒸発レートが安定した(設定したレート安定幅に入った)時点で、その時の温度をキープするようヒータ103bの制御部110にフィードバックしながら、蒸発源103を移動させて蒸着を行う。   Next, in the film formation stage, the temperature of the evaporation source 103 is adjusted so that the evaporation rate is constant based on the result detected by the film thickness sensor 107 at the standby position, and the evaporation rate is stabilized (the set rate stability width). At the point of time, the evaporation source 103 is moved to perform deposition while feeding back to the control unit 110 of the heater 103b so as to keep the temperature at that time.

蒸発源103を往復動させて待機位置に戻って来た後は、再び、蒸発レートが回復する(安定化幅に入る)まで蒸発源103の温度調整を行い、蒸発源103の温度が安定した時点で、次の成膜を行う。   After reciprocating the evaporation source 103 and returning to the standby position, the temperature of the evaporation source 103 is adjusted again until the evaporation rate recovers (enters the stabilization range), and the temperature of the evaporation source 103 is stabilized. At that time, the next film formation is performed.

しかしながら、このような従来技術においては、蒸発源103が基板105の下方を移動する際と待機位置に位置する際とにおいて温度条件に差が生じ、蒸発レートが変動するという問題があった。   However, in such a conventional technique, there is a problem that the evaporation rate fluctuates due to a difference in temperature condition between when the evaporation source 103 moves below the substrate 105 and when it is positioned at the standby position.

本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、蒸発源の位置に起因する蒸発レートの変動を防止することによって精確な成膜速度の制御を達成可能な有機蒸着方法及び装置を提供することにある。   The present invention has been made in order to solve the above-described problems of the prior art, and the object of the present invention is to prevent an accurate deposition rate by preventing fluctuations in the evaporation rate due to the position of the evaporation source. It is an object to provide an organic vapor deposition method and apparatus capable of achieving the above control.

本発明者等は上記課題を解決すべく鋭意努力を重ねた結果、以下の知見を得て本発明を完成させるに至った。
すなわち、図4(a)(b)に示す従来技術においては、膜厚センサ107の下方に防着部材106が設置されており、熱的な観点でとらえると、蒸発源103がモニタ(防着部材106)の下方に位置する場合とスキャンして基板105の下方に位置する場合では、外乱の影響によって蒸発源103の上部即ち蒸気放出部分の輻射熱損失が変化し、蒸発材料の温度が微妙に変化していることが原因であると考えられる。
As a result of intensive efforts to solve the above problems, the present inventors have obtained the following knowledge and completed the present invention.
That is, in the prior art shown in FIGS. 4 (a) and 4 (b), the deposition preventing member 106 is installed below the film thickness sensor 107. From a thermal point of view, the evaporation source 103 is monitored (prevention). In the case where it is located below the member 106) and the case where it is located below the substrate 105 by scanning, the radiant heat loss of the upper part of the evaporation source 103, that is, the vapor emission part is changed by the influence of the disturbance, and the temperature of the evaporation material is slightly changed. It is thought that the cause is changing.

まず、蒸発源103が防着部材106の下方に位置する場合は、蒸発源103からの輻射熱により防着部材106の温度が徐々に上がって来るため、蒸発源103上部の輻射熱損失が小さくなっていき、この熱損失が減る分、防着部材106の温度が徐々に上がり、いずれ平衡状態(防着部材106が一番高い温度で安定している状態)に達することになる。   First, when the evaporation source 103 is located below the deposition preventing member 106, the temperature of the deposition preventing member 106 gradually increases due to the radiant heat from the evaporation source 103, so that the radiant heat loss at the top of the evaporation source 103 is reduced. As the heat loss decreases, the temperature of the deposition preventing member 106 gradually increases and eventually reaches an equilibrium state (a state where the deposition preventing member 106 is stable at the highest temperature).

一方、平衡状態になった後、蒸発源103がスキャンを始めると、防着部材106の温度より基板105の温度の方が低いため輻射熱損失が防着部材106の下方に位置する場合に比べて大きくなり、このため蒸発源103の上部及び蒸発材料の温度が徐々に下がり、結果として蒸発レートが下がっているものと推定される。   On the other hand, when the evaporation source 103 starts scanning after the equilibrium state is reached, the temperature of the substrate 105 is lower than the temperature of the deposition preventing member 106, so that the radiant heat loss is located below the deposition preventing member 106. Therefore, it is estimated that the temperature of the upper part of the evaporation source 103 and the evaporation material gradually decreases, and as a result, the evaporation rate decreases.

かかる知見に基づいてなされた請求項1記載の発明は、真空中で蒸発源内の有機蒸発材料を蒸発させ、前記蒸発源を待機させながら当該有機蒸発材料の蒸発レートを測定し、その測定結果に基づいて前記蒸発源における蒸発レートを制御しつつ前記蒸発源を移動させながら成膜対象物に対して成膜を行う有機蒸着方法であって、前記蒸発源の蒸気放出部分近傍の輻射熱損失が、待機時と成膜時において同等となるようにしたものである。
また、請求項2記載の発明は、所定の成膜対象物が収容される真空槽と、前記真空槽内において待機位置と成膜位置との間を移動するように構成され、所定の有機蒸発材料を蒸発させるための蒸発源と、前記待機位置において前記蒸発源から蒸発する蒸気の蒸発レートを測定するための蒸発量モニターとを備え、前記蒸発量モニターにおいて得られた結果に基づいて前記蒸発源における蒸発レートを制御しつつ、前記有機蒸発材料を前記成膜対象物に蒸着させるように構成された有機蒸着装置であって、前記蒸発源と前記蒸発量モニターの間に、温度調整手段を有する機構部が設けられているものである。
請求項3記載の発明は、請求項2記載の発明において、前記機構部が、前記成膜対象物のマスクと同等の輻射率の材料からなるものである。
請求項4記載の発明は、請求項3記載の発明において、前記待機位置における前記蒸発源と前記機構部との距離が、前記成膜位置における前記蒸発源と前記マスクとの距離にほぼ等しいものである。
請求項5記載の発明は、請求項2乃至4のいずれか1項記載の発明において、前記温度調整手段が、液冷による冷却部を有するものである。
請求項6記載の発明は、請求項2乃至5のいずれか1項記載の発明において、前記機構部が、当該有機蒸発材料の付着を防止するための防着部材であるものである。
The invention according to claim 1 made on the basis of such knowledge evaporates the organic evaporation material in the evaporation source in a vacuum, measures the evaporation rate of the organic evaporation material while waiting for the evaporation source, An organic vapor deposition method for forming a film on an object to be formed while moving the evaporation source while controlling the evaporation rate in the evaporation source based on the radiation heat loss in the vicinity of the vapor discharge portion of the evaporation source, This is the same during standby and during film formation.
According to a second aspect of the present invention, there is provided a vacuum chamber in which a predetermined film-forming object is accommodated, and a movement between a standby position and a film-forming position in the vacuum chamber. An evaporation source for evaporating the material, and an evaporation amount monitor for measuring an evaporation rate of the vapor evaporated from the evaporation source at the standby position, and the evaporation based on the result obtained in the evaporation amount monitor An organic vapor deposition apparatus configured to deposit the organic evaporation material on the film formation target while controlling an evaporation rate in a source, and a temperature adjusting unit is provided between the evaporation source and the evaporation amount monitor. The mechanism part which has is provided.
According to a third aspect of the present invention, in the second aspect of the present invention, the mechanism portion is made of a material having a radiation rate equivalent to that of the mask of the film formation target.
According to a fourth aspect of the invention, in the third aspect of the invention, the distance between the evaporation source and the mechanism at the standby position is substantially equal to the distance between the evaporation source and the mask at the film formation position. It is.
The invention according to claim 5 is the invention according to any one of claims 2 to 4, wherein the temperature adjusting means has a cooling part by liquid cooling.
The invention according to claim 6 is the invention according to any one of claims 2 to 5, wherein the mechanism portion is an adhesion preventing member for preventing adhesion of the organic evaporation material.

本発明においては、蒸発源の蒸気放出部分近傍の輻射熱損失が待機時と成膜時において同等となるようにしたことから、成膜の際に蒸発源の蒸気放出部分及び蒸発材料の温度変化が阻止され、その結果、蒸発レートに変動が生じないので、成膜速度の精確な制御が可能になる。   In the present invention, since the radiant heat loss in the vicinity of the vapor discharge portion of the evaporation source is made equal during standby and during film formation, the temperature change of the vapor discharge portion of the evaporation source and the evaporation material during film formation As a result, the evaporation rate does not fluctuate, so that the film forming speed can be accurately controlled.

本発明の場合、蒸発源の蒸気放出部分近傍の輻射熱損失を待機時と成膜時において同等にするためには、例えば、防着部材等の機構部に温度調整手段を持たせるとよい。   In the case of the present invention, in order to make the radiant heat loss in the vicinity of the vapor discharge portion of the evaporation source equal during standby and during film formation, for example, a mechanism such as a deposition preventing member may be provided with temperature adjusting means.

この場合、温度調整手段としては、例えば、水冷等の液冷による冷却部を設けることがあげられる。   In this case, as the temperature adjusting means, for example, a cooling part by liquid cooling such as water cooling may be provided.

また、機構部を成膜対象物のマスクと同等の輻射率の材料からなるものから構成し、待機位置における蒸発源と機構部との距離が、成膜位置における蒸発源とマスクとの距離にほぼ等しくなるように構成することによって、蒸発源の蒸気放出部分近傍の輻射熱損失を待機時と成膜時においてより近づけることが可能になる。   Further, the mechanism part is made of a material having an emissivity equivalent to that of the mask of the film formation target, and the distance between the evaporation source and the mechanism part at the standby position is the distance between the evaporation source and the mask at the film formation position. By configuring to be substantially equal, it is possible to make the radiant heat loss near the vapor discharge portion of the evaporation source closer during standby and during film formation.

本発明によれば、成膜の際に蒸発源の蒸気放出部分及び蒸発材料の温度変化が阻止することができ、これにより蒸発レートの変動を防止して成膜速度の精確な制御を行うことができる。   According to the present invention, it is possible to prevent the temperature change of the vapor discharge portion of the evaporation source and the evaporation material during film formation, thereby preventing the fluctuation of the evaporation rate and accurately controlling the film formation rate. Can do.

以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。
図1(a)は、本発明に係る有機蒸着装置の好ましい実施の形態の正面側断面図、図1(b)は、同実施の形態の制御系の構成を示すブロック図である。
また、図2は、同実施の形態の防着部材の平面図、図3は、同実施の形態の蒸発源の動作を示す説明図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1A is a front cross-sectional view of a preferred embodiment of an organic vapor deposition apparatus according to the present invention, and FIG. 1B is a block diagram showing the configuration of a control system of the same embodiment.
FIG. 2 is a plan view of the adhesion-preventing member of the embodiment, and FIG. 3 is an explanatory view showing the operation of the evaporation source of the embodiment.

図1に示すように、本実施の形態の薄膜形成装置1は、図示しない真空排気系に接続された真空槽2を有し、この真空槽2内の下方には蒸発源3が配設されている。   As shown in FIG. 1, a thin film forming apparatus 1 of the present embodiment has a vacuum chamber 2 connected to a vacuum exhaust system (not shown), and an evaporation source 3 is disposed below the vacuum chamber 2. ing.

本実施の形態の場合、蒸発源3は、水平方向に延びる細長形状の容器30を有し、この容器30内に図示しない有機系の蒸着材料(例えばAlq3)が収容されている。   In the case of the present embodiment, the evaporation source 3 has an elongated container 30 extending in the horizontal direction, and an organic vapor deposition material (for example, Alq3) (not shown) is accommodated in the container 30.

ここで、蒸発源3の容器30には、熱電対31とヒータ32が設けられている。これら熱電対31とヒータ32は制御部20に接続され、熱電対31によって容器30の温度を検出してフィードバックすることによって容器30を一定の温度に調整するようになっている。   Here, the container 30 of the evaporation source 3 is provided with a thermocouple 31 and a heater 32. The thermocouple 31 and the heater 32 are connected to the control unit 20, and the temperature of the container 30 is detected by the thermocouple 31 and fed back to adjust the container 30 to a constant temperature.

一方、真空槽2内の上部には、基板ホルダー4が設けられ、この基板ホルダー4に、蒸着膜を形成すべき基板(成膜対象物)5が固定されている。そして、基板5の下方近傍には、マスク6が設けられている。   On the other hand, a substrate holder 4 is provided in the upper part of the vacuum chamber 2, and a substrate (film formation target) 5 on which a vapor deposition film is to be formed is fixed to the substrate holder 4. A mask 6 is provided near the lower side of the substrate 5.

図3に示すように、本実施の形態の場合、マスク6には、基板5上に所定の薄膜を蒸着するための複数の素子パターン60が形成されている。   As shown in FIG. 3, in the case of the present embodiment, a plurality of element patterns 60 for depositing a predetermined thin film on the substrate 5 are formed on the mask 6.

そして、蒸発源3は、容器30に形成されたスリット状の蒸発口33の幅方向に水平移動し、基板5及びマスク6の全面に対して相対的に往復動するように構成されている。   The evaporation source 3 is configured to move horizontally in the width direction of the slit-shaped evaporation port 33 formed in the container 30 and to reciprocate relative to the entire surface of the substrate 5 and the mask 6.

真空槽2内の上部の基板の近傍には、蒸発源3の蒸発レートを測定するための膜厚センサ(蒸発量モニター)50が設けられている。   In the vicinity of the upper substrate in the vacuum chamber 2, a film thickness sensor (evaporation amount monitor) 50 for measuring the evaporation rate of the evaporation source 3 is provided.

この膜厚センサ50は、基板5の側方で、後述する待機位置に位置する蒸発源3の上方に配設されている。そして、この膜厚センサ50は上記制御部20に接続されている。   The film thickness sensor 50 is disposed on the side of the substrate 5 and above the evaporation source 3 located at a standby position to be described later. The film thickness sensor 50 is connected to the control unit 20.

さらに、蒸発源3と膜厚センサ50との間で基板5及びマスク6の下方近傍には、防着部材(機構部)7が設けられている。   Further, an adhesion preventing member (mechanism) 7 is provided between the evaporation source 3 and the film thickness sensor 50 in the vicinity below the substrate 5 and the mask 6.

図2に示すように、この防着部材7は、水平に配置される板状の部材からなるもので、その基板5に対応する部分には、蒸着材料を通過させるための開口部70が設けられている。   As shown in FIG. 2, the adhesion preventing member 7 is composed of a plate-like member arranged horizontally, and an opening 70 for allowing the vapor deposition material to pass therethrough is provided in a portion corresponding to the substrate 5. It has been.

また、防着部材7の膜厚センサ50の直下には、蒸着材料を通過させるための孔部71が設けられている。   Further, a hole 71 for allowing the vapor deposition material to pass therethrough is provided immediately below the film thickness sensor 50 of the deposition preventing member 7.

本発明の場合、防着部材7の材料は特に限定されることはないが、蒸発レートを安定させる観点からは、マスク6と同等の輻射率の材料からなるもの、特にエミッシビティを近づける観点からは、マスク6と同一の材料からなるものを採用することが好ましい。   In the case of the present invention, the material of the deposition preventing member 7 is not particularly limited, but from the viewpoint of stabilizing the evaporation rate, it is made of a material having an emissivity equivalent to that of the mask 6, particularly from the viewpoint of approaching emissivity. It is preferable to employ a material made of the same material as the mask 6.

このような材料としては、例えば、インバー(Fe−36%Ni)やこれに類するニッケル−コバルト系合金があげられる。   Examples of such materials include invar (Fe-36% Ni) and similar nickel-cobalt alloys.

また、本実施の形態の場合は、防着部材7の高さをマスク6とほぼ同じ高さに配置することによって、待機位置における蒸発源3と防着部材7の距離が、成膜位置における蒸発源3とマスク6の距離とほぼ等しくなるように構成されている。   Further, in the case of the present embodiment, the distance between the evaporation source 3 and the deposition preventing member 7 at the standby position is set at the film deposition position by disposing the deposition preventing member 7 at substantially the same height as the mask 6. The distance between the evaporation source 3 and the mask 6 is substantially equal.

さらに、防着部材7上には、防着部材7の温度を調整するための冷却部8が設けられている。   Furthermore, a cooling unit 8 for adjusting the temperature of the deposition preventing member 7 is provided on the deposition preventing member 7.

本実施の形態の冷却部8は、防着部材7の表面に例えば金属製のパイプを配置し、このパイプ内を水を循環させることによって防着部材7を冷却するように構成されている。   The cooling unit 8 of the present embodiment is configured to cool the deposition preventing member 7 by arranging, for example, a metal pipe on the surface of the deposition preventing member 7 and circulating water through the pipe.

このような構成を有する本実施の形態においては、まず、基板5を真空槽2内に搬入し、図1(a)に示すように、蒸発源3が待機位置に位置している状態でヒータ32への通電を行い、蒸着材料40の蒸発を開始するとともに、冷却部8のパイプ内を水を循環させて防着部材7の冷却を行う。   In the present embodiment having such a configuration, first, the substrate 5 is carried into the vacuum chamber 2, and the heater is kept in a state where the evaporation source 3 is located at the standby position as shown in FIG. 32 is energized to start evaporation of the vapor deposition material 40, and water is circulated through the pipe of the cooling unit 8 to cool the deposition preventing member 7.

そして、蒸発源3の蒸発口33から流出する蒸着材料の蒸発レートを膜厚センサ50によって検出し、その値が所定の値に安定した時点で蒸発源3を基板5下方の成膜位置に向って移動させる。   Then, the evaporation rate of the vapor deposition material flowing out from the evaporation port 33 of the evaporation source 3 is detected by the film thickness sensor 50, and when the value is stabilized at a predetermined value, the evaporation source 3 is directed to the film formation position below the substrate 5. To move.

この移動の直後に、蒸発源3のヒータ32の温度を制御して蒸着材料の温度を所定の温度に保持し、これにより蒸着材料の蒸発レートを一定の値に制御して成膜を行う。   Immediately after this movement, the temperature of the heater 32 of the evaporation source 3 is controlled to keep the temperature of the vapor deposition material at a predetermined temperature, thereby controlling the evaporation rate of the vapor deposition material to a constant value to perform film formation.

そして、蒸発源3の蒸発口33が基板5の全面を横切った後、蒸発源3を待機位置に向って移動させる。この場合、蒸発源3の蒸発口33が基板5の全面を横切るまで上記蒸発源3のヒータ32の温度制御を行う。   Then, after the evaporation port 33 of the evaporation source 3 crosses the entire surface of the substrate 5, the evaporation source 3 is moved toward the standby position. In this case, the temperature control of the heater 32 of the evaporation source 3 is performed until the evaporation port 33 of the evaporation source 3 crosses the entire surface of the substrate 5.

そして、蒸発源3の蒸発口33が基板5の全面を横切った後、ヒータ32への通電を停止する。   Then, after the evaporation port 33 of the evaporation source 3 crosses the entire surface of the substrate 5, energization to the heater 32 is stopped.

その後、基板5を真空槽2から搬出し、新たな基板5を真空槽2内へ搬入して上述した工程を繰り返す。   Thereafter, the substrate 5 is unloaded from the vacuum chamber 2, a new substrate 5 is loaded into the vacuum chamber 2, and the above-described steps are repeated.

以上述べたように本実施の形態においては、マスク6と同等の輻射率の材料からなる防着部材7をマスク6とほぼ同じ高さに配置するとともに、防着部材7を冷却してマスク6の温度に近づけるようにしたことから、蒸発源3の蒸気放出部分近傍の輻射熱損失を待機時と成膜時において容易に同等とすることができる。
その結果、成膜の際に蒸発源3の蒸気放出部分及び蒸発材料の温度変化を阻止することができるので、蒸発レートの変動を防止して成膜速度の精確な制御が行うことができる。
As described above, in the present embodiment, the deposition preventing member 7 made of a material having the same emissivity as that of the mask 6 is disposed at substantially the same height as the mask 6, and the deposition preventing member 7 is cooled to mask 6. Therefore, the radiant heat loss in the vicinity of the vapor discharge portion of the evaporation source 3 can be easily equalized during standby and during film formation.
As a result, the temperature change of the vapor discharge portion of the evaporation source 3 and the evaporation material can be prevented during the film formation, so that the fluctuation of the evaporation rate can be prevented and the film formation speed can be accurately controlled.

なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、上述の実施の形態においては、防着部材7をマスク6とほぼ同じ高さに配置するようにしたが、待機位置における蒸発源3と防着部材7の距離と成膜位置における蒸発源3とマスク6の距離とがほぼ等しくなるようにすれば、防着部材7の位置を変更することも可能である。
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the above-described embodiment, the deposition preventing member 7 is arranged at substantially the same height as the mask 6, but the distance between the evaporation source 3 and the deposition preventing member 7 at the standby position and the evaporation source at the film forming position. If the distance between 3 and the mask 6 is substantially equal, the position of the deposition preventing member 7 can be changed.

また、上述の実施の形態においては、防着部材7に冷却部のみを設けるようにしたが、本発明はこれに限られず、必要に応じて温度調整用のヒータ等を設けることも可能である。   In the above-described embodiment, only the cooling part is provided in the adhesion preventing member 7. However, the present invention is not limited to this, and a temperature adjusting heater or the like can be provided as necessary. .

さらに、防着部材7のみならず、蒸発源3の輻射熱損失に影響を及ぼす機構部に上記防着部材7と同様の温度調整手段を設けることも可能である。   Furthermore, it is possible to provide not only the adhesion preventing member 7 but also a temperature adjusting means similar to that of the adhesion preventing member 7 in the mechanism that affects the radiant heat loss of the evaporation source 3.

さらにまた、本発明は有機EL素子の有機薄膜を形成するための装置に限られず、種々の蒸着装置に適用することができる。ただし、本発明は有機蒸発材料を用いて有機EL素子の有機薄膜を形成する場合に特に有効なものである。   Furthermore, the present invention is not limited to an apparatus for forming an organic thin film of an organic EL element, and can be applied to various vapor deposition apparatuses. However, the present invention is particularly effective when an organic thin film of an organic EL element is formed using an organic evaporation material.

(a):本発明に係る有機蒸着装置の好ましい実施の形態の正面側断面図 (b):同実施の形態の制御系の構成を示すブロック図(A): Front side sectional view of a preferred embodiment of an organic vapor deposition apparatus according to the present invention (b): A block diagram showing a configuration of a control system of the same embodiment 同実施の形態の防着部材の平面図The top view of the adhesion prevention member of the embodiment 同実施の形態の蒸発源の動作を示す説明図Explanatory drawing which shows operation | movement of the evaporation source of the embodiment (a):従来の有機蒸着装置の正面側断面図 (b):同有機蒸着装置の制御系の構成を示すブロック図(A): Front side sectional view of a conventional organic vapor deposition apparatus (b): Block diagram showing the configuration of a control system of the organic vapor deposition apparatus

符号の説明Explanation of symbols

1…真空蒸着装置 2…真空槽 3…蒸発源 5…基板(成膜対象物) 6…マスク 7…防着部材(機構部) 30…容器 31…熱電対 32…ヒータ 50…膜厚センサ(蒸発量モニター) DESCRIPTION OF SYMBOLS 1 ... Vacuum vapor deposition apparatus 2 ... Vacuum tank 3 ... Evaporation source 5 ... Substrate (film formation object) 6 ... Mask 7 ... Deposition member (mechanism part) 30 ... Container 31 ... Thermocouple 32 ... Heater 50 ... Film thickness sensor ( Evaporation monitor)

Claims (6)

真空中で蒸発源内の有機蒸発材料を蒸発させ、前記蒸発源を待機させながら当該有機蒸発材料の蒸発レートを測定し、その測定結果に基づいて前記蒸発源における蒸発レートを制御しつつ前記蒸発源を移動させながら成膜対象物に対して蒸着を行う有機蒸着方法であって、
前記蒸発源の蒸気放出部分近傍の輻射熱損失が、待機時と成膜時において同等となるようにした有機蒸着方法。
Evaporating the organic evaporation material in the evaporation source in a vacuum, measuring the evaporation rate of the organic evaporation material while waiting for the evaporation source, and controlling the evaporation rate in the evaporation source based on the measurement result, the evaporation source An organic vapor deposition method for performing vapor deposition on a film formation target while moving
An organic vapor deposition method in which radiant heat loss in the vicinity of a vapor discharge portion of the evaporation source is made equal during standby and during film formation.
所定の成膜対象物が収容される真空槽と、
前記真空槽内において待機位置と成膜位置との間を移動するように構成され、所定の有機蒸発材料を蒸発させるための蒸発源と、
前記待機位置において前記蒸発源から蒸発する蒸気の蒸発レートを測定するための蒸発量モニターとを備え、
前記蒸発量モニターにおいて得られた結果に基づいて前記蒸発源における蒸発レートを制御しつつ、前記有機蒸発材料を前記成膜対象物に蒸着させるように構成された有機蒸着装置であって、
前記蒸発源と前記蒸発量モニターの間に、温度調整手段を有する機構部が設けられている有機蒸着装置。
A vacuum chamber in which a predetermined film formation target is stored;
An evaporation source configured to move between a standby position and a film forming position in the vacuum chamber, and for evaporating a predetermined organic evaporation material;
An evaporation amount monitor for measuring an evaporation rate of vapor evaporated from the evaporation source at the standby position;
An organic vapor deposition apparatus configured to deposit the organic evaporation material on the film formation target while controlling an evaporation rate in the evaporation source based on a result obtained in the evaporation amount monitor,
An organic vapor deposition apparatus in which a mechanism having temperature adjusting means is provided between the evaporation source and the evaporation amount monitor.
前記機構部が、前記成膜対象物のマスクと同等の輻射率の材料からなる請求項2記載の有機蒸着装置。   The organic vapor deposition apparatus according to claim 2, wherein the mechanism portion is made of a material having an emissivity equivalent to that of the mask of the film formation target. 前記待機位置における前記蒸発源と前記機構部との距離が、前記成膜位置における前記蒸発源と前記マスクとの距離にほぼ等しい請求項3記載の有機蒸着装置。   The organic vapor deposition apparatus according to claim 3, wherein a distance between the evaporation source and the mechanism at the standby position is substantially equal to a distance between the evaporation source and the mask at the film formation position. 前記温度調整手段が、液冷による冷却部を有する請求項2乃至4のいずれか1項記載の有機蒸着装置。   The organic vapor deposition apparatus of any one of Claims 2 thru | or 4 with which the said temperature adjustment means has a cooling part by liquid cooling. 前記機構部が、当該有機蒸発材料の付着を防止するための防着部材である請求項2乃至5のいずれか1項記載の有機蒸着装置。   The organic vapor deposition apparatus according to any one of claims 2 to 5, wherein the mechanism portion is an adhesion preventing member for preventing adhesion of the organic evaporation material.
JP2004146182A 2004-05-17 2004-05-17 Organic vapor deposition method and organic vapor deposition apparatus Active JP4522141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146182A JP4522141B2 (en) 2004-05-17 2004-05-17 Organic vapor deposition method and organic vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146182A JP4522141B2 (en) 2004-05-17 2004-05-17 Organic vapor deposition method and organic vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JP2005325425A true JP2005325425A (en) 2005-11-24
JP4522141B2 JP4522141B2 (en) 2010-08-11

Family

ID=35471987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146182A Active JP4522141B2 (en) 2004-05-17 2004-05-17 Organic vapor deposition method and organic vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP4522141B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
WO2008111398A1 (en) * 2007-03-06 2008-09-18 Tokyo Electron Limited Apparatus for controlling deposition apparatus and method for controlling deposition apparatus
JP2010215994A (en) * 2009-03-18 2010-09-30 Semiconductor Energy Lab Co Ltd Manufacturing device, film deposition method, and light emitting device manufacturing method
JP2011068980A (en) * 2009-05-04 2011-04-07 Samsung Mobile Display Co Ltd Apparatus for depositing organic material and depositing method thereof
DE112009002374T5 (en) 2008-09-30 2012-11-29 Tokyo Electron Ltd. Separator, deposition method and storage medium with program stored therein
JP2014055342A (en) * 2012-09-14 2014-03-27 Hitachi High-Technologies Corp Film deposition apparatus
US8974858B2 (en) 2009-05-04 2015-03-10 Samsung Display Co., Ltd. Method of depositing organic material
TWI486470B (en) * 2011-03-22 2015-06-01 Au Optronics Corp Evaporation apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091919A (en) * 2002-07-11 2004-03-25 Ulvac Japan Ltd Thin film forming apparatus and method
JP2004107763A (en) * 2002-09-20 2004-04-08 Ulvac Japan Ltd Thin film-forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091919A (en) * 2002-07-11 2004-03-25 Ulvac Japan Ltd Thin film forming apparatus and method
JP2004107763A (en) * 2002-09-20 2004-04-08 Ulvac Japan Ltd Thin film-forming apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
WO2008111398A1 (en) * 2007-03-06 2008-09-18 Tokyo Electron Limited Apparatus for controlling deposition apparatus and method for controlling deposition apparatus
DE112008000604T5 (en) 2007-03-06 2010-01-28 Tokyo Electron Ltd. Control device of a steamer and control method of a steamer
KR101123706B1 (en) * 2007-03-06 2012-03-20 도쿄엘렉트론가부시키가이샤 Apparatus for controlling deposition apparatus and method for controlling deposition apparatus
CN102719794A (en) * 2007-03-06 2012-10-10 东京毅力科创株式会社 Control device of evaporating apparatus and control method of evaporating apparatus
JP5190446B2 (en) * 2007-03-06 2013-04-24 東京エレクトロン株式会社 Vapor deposition apparatus and control method of vapor deposition apparatus
DE112009002374T5 (en) 2008-09-30 2012-11-29 Tokyo Electron Ltd. Separator, deposition method and storage medium with program stored therein
JP2010215994A (en) * 2009-03-18 2010-09-30 Semiconductor Energy Lab Co Ltd Manufacturing device, film deposition method, and light emitting device manufacturing method
JP2011068980A (en) * 2009-05-04 2011-04-07 Samsung Mobile Display Co Ltd Apparatus for depositing organic material and depositing method thereof
US8974858B2 (en) 2009-05-04 2015-03-10 Samsung Display Co., Ltd. Method of depositing organic material
TWI486470B (en) * 2011-03-22 2015-06-01 Au Optronics Corp Evaporation apparatus
JP2014055342A (en) * 2012-09-14 2014-03-27 Hitachi High-Technologies Corp Film deposition apparatus

Also Published As

Publication number Publication date
JP4522141B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
US7959971B2 (en) Film formation method with deposition source position control
US8698052B2 (en) Temperature control method of heat processing plate, computer storage medium, and temperature control apparatus of heat processing plate
TWI485281B (en) Film formation apparatus
JP4522141B2 (en) Organic vapor deposition method and organic vapor deposition apparatus
JP2014055342A (en) Film deposition apparatus
US20160186313A1 (en) Thin film deposition apparatus and method
JP4464085B2 (en) Thin film forming apparatus and thin film forming method
JP2011162846A (en) Vacuum evaporation source
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
TW201710535A (en) Measurement assembly for measuring a deposition rate, an evaporation source having the same, a deposition apparatus having the same and method therefor
US9309588B2 (en) Thin film deposition source, deposition apparatus and deposition method using the same
JP2014070227A (en) Filming apparatus, and temperature control method and device for evaporation source of the filming apparatus
US20120052189A1 (en) Vapor deposition system
JP5311985B2 (en) Vapor deposition apparatus and organic light emitting device manufacturing method
KR100646961B1 (en) Method for controlling effusion cell of deposition system
KR20190077424A (en) A mask holder with controlled adjustment
KR101950959B1 (en) Method for measuring deposition rate and deposition rate control system
JP2009221496A (en) Thin film deposition apparatus, and method of manufacturing thin film
JP6502528B2 (en) Diffusion barrier for oscillating quartz, measuring assembly for measuring deposition rate and method thereof
JP7240963B2 (en) Vacuum deposition equipment
JP2005116689A (en) Vapor phase epitaxial growth method and vapor phase epitaxial growth system
JP4156891B2 (en) Thin film forming equipment
KR100732850B1 (en) Method for controlling effusion cell of deposition system
KR102568327B1 (en) Deposition device having trim plates
KR20230102919A (en) Deposition system and method for controlling deposition rate thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250