JP7240963B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment Download PDF

Info

Publication number
JP7240963B2
JP7240963B2 JP2019111992A JP2019111992A JP7240963B2 JP 7240963 B2 JP7240963 B2 JP 7240963B2 JP 2019111992 A JP2019111992 A JP 2019111992A JP 2019111992 A JP2019111992 A JP 2019111992A JP 7240963 B2 JP7240963 B2 JP 7240963B2
Authority
JP
Japan
Prior art keywords
storage box
vapor deposition
heating
temperature
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019111992A
Other languages
Japanese (ja)
Other versions
JP2020204070A (en
Inventor
僚也 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019111992A priority Critical patent/JP7240963B2/en
Publication of JP2020204070A publication Critical patent/JP2020204070A/en
Application granted granted Critical
Publication of JP7240963B2 publication Critical patent/JP7240963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、真空蒸着装置に関し、より詳しくは、適切な昇温プロファイルで蒸着材料を加熱し、蒸着材料を安定して気化または昇華させて蒸着できるようにしたものに関する。 TECHNICAL FIELD The present invention relates to a vacuum vapor deposition apparatus, and more particularly, to a vapor deposition apparatus that heats a vapor deposition material with an appropriate temperature rise profile to stably vaporize or sublimate the vapor deposition material for vapor deposition.

例えば有機EL素子の製造工程においては、真空雰囲気中にて、被蒸着物としてのガラス基板などの基板表面に、有機材料を昇華または気化させて所定の薄膜を蒸着する工程があり、この蒸着工程には真空蒸着装置が広く利用されている(例えば、特許文献1参照)。このような真空蒸着装置は、真空チャンバを備え、その上部空間を基板が一方向に所定速度で移動するようになっている。そして、基板の移動方向をX軸方向、X軸方向に直交する基板の幅方向をY軸方向として、X軸方向に移動する基板に対向させて真空チャンバの下部には蒸着源が設けられている。 For example, in the manufacturing process of an organic EL element, there is a process of sublimating or evaporating an organic material to deposit a predetermined thin film on the surface of a substrate such as a glass substrate as an object to be deposited in a vacuum atmosphere. A vacuum deposition apparatus is widely used for this (see, for example, Patent Document 1). Such a vacuum deposition apparatus is equipped with a vacuum chamber in which the substrate moves in one direction at a predetermined speed. A vapor deposition source is provided in the lower part of the vacuum chamber so as to face the substrate moving in the X-axis direction, with the moving direction of the substrate being the X-axis direction and the width direction of the substrate perpendicular to the X-axis direction being the Y-axis direction. there is

蒸着源は、固体(例えば、粉末状)の蒸着材料(有機材料)を収容する収容箱を有し、基板に対向する収容箱の上面には、その外方に突出させて、昇華または気化した蒸着材料を放出する筒状の放出開口(噴射ノズル)がY軸方向に間隔を存して複数本列設されている(所謂リニアソース)。そして、真空雰囲気の真空チャンバ内で、収容箱に組み付けたシースヒータやハロゲンヒータ等の加熱手段で収容箱を加熱することで、収容箱からの伝熱やその壁面からの輻射熱で蒸着材料を加熱して昇華または気化させ、この昇華または気化した蒸着材料を各放出開口から所定の余弦則に従い放出させ、蒸着源に対してX軸方向に相対移動する基板に付着、堆積させることで所定の薄膜が蒸着される。 The deposition source has a storage box that stores a solid (for example, powdered) deposition material (organic material). A plurality of cylindrical ejection openings (injection nozzles) for ejecting vapor deposition materials are arranged at intervals in the Y-axis direction (so-called linear source). Then, in a vacuum chamber with a vacuum atmosphere, the storage box is heated by a heating means such as a sheath heater or a halogen heater attached to the storage box, so that the vapor deposition material is heated by heat transfer from the storage box and radiant heat from the wall surface. Then, the sublimated or vaporized vapor deposition material is discharged from each discharge opening according to a predetermined cosine law, and adhered to and deposited on a substrate that moves relative to the vapor deposition source in the X-axis direction, thereby forming a predetermined thin film. vapor-deposited.

ところで、有機EL素子は、液晶表示素子と比較して視認性や省電力化に優れるなどの利点があることから、日々改良が進められており、これに伴って新規な有機材料も次々と開発されている。このような新規な有機材料を上記従来例の真空蒸着装置を用いて蒸着する場合、その分解温度や気化温度または昇華温度が不明な場合が多く、そもそも固相から液相を経て気相に転移する気化性の有機材料か、または、固相から気相へ転移する昇華性の有機材料かが不明な場合がある。このとき、加熱開始から、所定の蒸着レートで基板表面に蒸着できる状態までの間の蒸着材料の昇温過程にて、必要以上の熱が蒸着材料に加えられると、蒸着材料が昇華性の有機材料であるような場合には、例えば収容箱内にて有機材料が分解または熱劣化して、素子の性能を決める所望の膜質を持つ薄膜を蒸着できないといった不具合が生じる。他方で、気化性の有機材料であるような場合には、例えば突沸が発生して蒸着材料が無駄に消費され、または、溶解むらが生じて蒸着レートが不安定になるといった不具合が生じる。 By the way, since organic EL elements have advantages such as better visibility and power saving compared to liquid crystal display elements, they are being improved day by day, and along with this, new organic materials are being developed one after another. It is When such a novel organic material is deposited using the above conventional vacuum deposition apparatus, its decomposition temperature, vaporization temperature, or sublimation temperature is often unknown. In some cases, it is unclear whether the organic material is vaporizable, or organic material is sublimable, which transitions from the solid phase to the gas phase. At this time, in the process of increasing the temperature of the vapor deposition material from the start of heating until the vapor deposition material can be vapor-deposited on the substrate surface at a predetermined vapor deposition rate, if the vapor deposition material is heated more than necessary, the vapor deposition material becomes sublimable organic material. In the case of a material, for example, the organic material decomposes or thermally deteriorates in the storage box, which causes a problem that a thin film having a desired film quality that determines the performance of the device cannot be deposited. On the other hand, in the case of a vaporizable organic material, for example, bumping occurs and the vapor deposition material is wasted, or uneven melting occurs and the vapor deposition rate becomes unstable.

従来では、作業者の経験を基に、収容箱に対する加熱温度を段階的かつ徐々に高め、真空チャンバ内に設けた膜厚モニタの測定結果で蒸着材料の昇華または気化を推測(特定)し、その後は、膜厚モニタの測定結果を基に、所定の蒸着レートが得られるように加熱手段により加熱温度を制御していた。このため、昇温過程にて適切な昇温プロファイルで蒸着材料を加熱するのに多大な労力と時間を要していた。このことから、次々と開発される有機材料を適切な昇温プロファイルで加熱し、蒸着材料を安定して気化または昇華させて蒸着できる真空蒸着装置の早期の開発が望まれている。 Conventionally, based on the operator's experience, the heating temperature for the storage box is gradually and gradually increased, and the sublimation or vaporization of the vapor deposition material is estimated (identified) based on the measurement results of the film thickness monitor provided in the vacuum chamber, After that, the heating temperature was controlled by the heating means so as to obtain a predetermined vapor deposition rate based on the measurement result of the film thickness monitor. For this reason, it takes a lot of labor and time to heat the vapor deposition material with an appropriate temperature rise profile during the temperature rise process. For this reason, early development of a vacuum deposition apparatus capable of heating organic materials developed one after another with an appropriate temperature elevation profile and stably vaporizing or sublimating deposition materials is desired.

特開2014-77193号公報JP 2014-77193 A

本発明は、以上の点に鑑み、蒸着材料を適切な昇温プロファイルで加熱して蒸着できる構成を有する真空蒸着装置を提供することをその課題とするものである。 SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide a vacuum vapor deposition apparatus having a configuration capable of vapor deposition by heating a vapor deposition material with an appropriate temperature rise profile.

上記課題を解決するために、本発明は、真空チャンバ内に配置されて固体の蒸着材料を収容する収容箱と、この収容箱内の蒸着材料を加熱する加熱手段とを備え、真空雰囲気の真空チャンバ内で、収容箱の蒸着材料を加熱してこの蒸着材料を昇華または気化させ、この昇華または気化した蒸着材料を収容箱の放出開口から放出させて真空チャンバ内に存する被蒸着物に対して予め設定される蒸着レートで蒸着する真空蒸着装置において、真空雰囲気中にて、加熱手段により蒸着材料を充填した収容箱を所定の昇温速度で加熱したときの温度を、同等の真空雰囲気中にて空の基準収容箱を同等の昇温速度で加熱したときの温度と比較してその温度差を測定する温度差測定手段と、収容箱内での蒸着材料の昇華または気化に伴う蒸着材料の重量変化を測定する熱重量測定手段とを更に備え、収容箱内の蒸着材料が昇華または気化を開始するまでの間、温度差測定手段で測定した温度差を基に、収容箱を加熱する加熱手段が制御され、熱重量測定手段で測定した重量変化で収容箱内での蒸着材料の昇華または気化を特定し、その後は、蒸着レートから定まる単位時間当たりの重量変化量を基に、収容箱を加熱する加熱手段が制御されるように構成したことを特徴とする。この場合、前記収容箱内の蒸着材料が気化を開始するまでの間、前記温度差測定手段で測定した温度差に加えて、前記熱重量測定手段で測定した重量変化を基に前記加熱手段が制御される構成を採用してもよい。 In order to solve the above-mentioned problems, the present invention includes a storage box that is arranged in a vacuum chamber and stores a solid vapor deposition material, and heating means that heats the vapor deposition material in the storage box. In the chamber, the vapor deposition material in the container is heated to sublimate or vaporize the vapor deposition material, and the sublimated or vaporized vapor deposition material is discharged from the discharge opening of the container to be deposited on the object in the vacuum chamber. In a vacuum vapor deposition apparatus for vapor deposition at a preset vapor deposition rate, in a vacuum atmosphere, a storage box filled with a vapor deposition material is heated at a predetermined temperature rise rate by a heating means, and the temperature is measured in an equivalent vacuum atmosphere. A temperature difference measuring means for measuring the temperature difference by comparing the temperature of an empty reference storage box with the temperature when the reference storage box is heated at the same rate of temperature increase; a thermogravimetric measuring means for measuring a weight change, and heating the containing box based on the temperature difference measured by the temperature difference measuring means until the deposition material in the containing box starts sublimation or vaporization. The means is controlled to specify sublimation or vaporization of the vapor deposition material in the storage box based on the weight change measured by the thermogravimetric measurement means, and then the storage box based on the amount of weight change per unit time determined from the deposition rate. It is characterized in that the heating means for heating the is configured to be controlled. In this case, until the vapor deposition material in the storage box starts to vaporize, the heating means is operated based on the weight change measured by the thermogravimetry means in addition to the temperature difference measured by the temperature difference measuring means. A controlled configuration may be employed.

また、本発明においては、前記真空チャンバが真空計を更に備え、前記収容箱内の前記蒸着材料が昇華または気化を開始するまでの間、この真空計で測定した圧力を基に、前記基準収容箱と前記収容箱とを夫々加熱する加熱手段が制御される構成を採用してもよい。 Further, in the present invention, the vacuum chamber further includes a vacuum gauge, and the pressure measured by the vacuum gauge is used until the vapor deposition material in the storage box starts to sublimate or vaporize. A configuration may be adopted in which heating means for heating the box and the housing box are respectively controlled.

以上によれば、真空チャンバ内に収容箱に加えてこれと同一構造の基準収容箱が配置される場合を例に説明すると(このとき、基準収容箱は、蒸着時に昇華または気化した蒸着材料が付着しないように真空チャンバ内に設置されるが、別の真空チャンバに配置することもできる)、先ず、大気雰囲気の真空チャンバ内にて収容箱内に被蒸着物表面に蒸着しようとする蒸着材料を所定の充填率で充填する。一方、基準収容箱には蒸着材料を充填せずに、空の状態とする。そして、真空チャンバを真空排気し、真空チャンバ内が所定圧力(例えば1×10-5Pa)に達すると、例えば収容箱の周囲に配置される加熱手段を作動させて収容箱の加熱を開始し、その加熱温度を所定の昇温速度(例えば一定の温度勾配)で高めていく(つまり、加熱手段により収容箱に加える熱量を一定の温度勾配で増加させる)。これにより、収容箱からの伝熱やその壁面からの輻射熱で蒸着材料が加熱される。これと同時に、基準収容箱についても、上記と同一構成の加熱手段により、収容箱の加熱を開始し、同等の昇温速度で加熱温度を高める。 According to the above, if a case where a reference storage box having the same structure as the storage box is arranged in the vacuum chamber as an example (at this time, the reference storage box contains the deposition material sublimated or vaporized at the time of deposition). (Although it is installed in a vacuum chamber so as not to adhere, it can also be placed in a separate vacuum chamber), first, the deposition material to be deposited on the surface of the object to be deposited is placed in a storage box in a vacuum chamber in an atmospheric atmosphere. is filled at a predetermined filling rate. On the other hand, the reference storage box is left empty without being filled with the vapor deposition material. Then, the vacuum chamber is evacuated, and when the inside of the vacuum chamber reaches a predetermined pressure (eg, 1×10 −5 Pa), the heating means arranged around the storage box is activated to start heating the storage box. , the heating temperature is increased at a predetermined temperature increase rate (for example, a constant temperature gradient) (that is, the amount of heat applied to the housing box by the heating means is increased at a constant temperature gradient). As a result, the vapor deposition material is heated by heat transfer from the containing box and radiant heat from the wall surface thereof. At the same time, the heating means for the reference storage box having the same configuration as the above starts heating the storage box, and the heating temperature is increased at the same rate of temperature rise.

加熱温度を高めていくと、収容箱の壁面に付着したガスやこれに充填された蒸着材料に含まれるガスが先ず放出される。このため、真空計で測定した圧力が所定範囲を超えて変化すると、昇温を一旦停止し、そのときの加熱温度(つまり、加熱手段により収容箱に加える熱量を一定に保持した状態)で蒸着材料の加熱を継続する。このとき、基準収容箱についても、昇温を一旦停止する。そして、単位時間当たりの圧力変化量が所定範囲内になると、収容箱の加熱を再開し、上記と同等の昇温速度で加熱温度を高める。これと同時に、基準収容箱についても加熱を再開する。これにより、基板表面に蒸着した膜に不純物が混入して膜質を劣化させるといったことが抑制できる。 As the heating temperature is increased, the gas adhering to the wall surface of the storage box and the gas contained in the vapor deposition material filled therein are released first. Therefore, when the pressure measured by the vacuum gauge changes beyond a predetermined range, the temperature rise is temporarily stopped, and deposition is performed at the heating temperature at that time (that is, the amount of heat applied to the container by the heating means is kept constant). Continue to heat the material. At this time, the temperature rise of the reference storage box is also temporarily stopped. Then, when the amount of pressure change per unit time falls within a predetermined range, the heating of the containing box is restarted, and the heating temperature is increased at the same rate of temperature rise as above. At the same time, the heating of the reference storage box is resumed. As a result, it is possible to suppress deterioration of the film quality due to contamination of the film deposited on the substrate surface with impurities.

次に、更に加熱温度を一定の昇温速度で高めていく際、温度差測定手段により収容箱と基準収容箱との温度差が連続してまたは定期的に測定される。このように測定した温度差からは、収容箱内の蒸着材料の加熱に伴う、赤熱、転移(気化性の蒸着材料の場合のメルト温度)、分解、融解や酸化などで生じる吸熱、発熱といった熱変化量が測定できる(即ち、吸熱、発熱の挙動がデータとして取得される)。例えば、昇温中に、温度差測定手段で測定した温度差が所定の範囲を超えて大きくなったような場合には、加熱手段により収容箱を介して蒸着材料に加えられる熱が蒸着材料の相転移に利用されたがことが判断できるため、蒸着材料が気化性の材料であることが特定できる。このとき、温度差測定手段での温度差の測定に加えて、熱重量測定手段での重量変化をも測定する構成を採用すれば、例えば、突沸が発生して蒸着材料が無駄に消費され、または、蒸着材料に必要以上の熱負荷が加えられる前に加熱手段を制御して、加熱温度を下げたり、または、加熱温度の昇温を一旦停止したりすることができる。例えば、加熱手段により収容箱に加える熱量を所定温度勾配で高めた後、その熱量で一定時間保持し、熱変化量が許容範囲内に維持されているような場合には、収容箱に加える熱量を所定温度勾配で更に高め、その熱量で一定時間保持するという操作を少なくとも1回以上実施して、蒸着材料を加熱していく。その後、熱変化量と重量変化量とを測定しながら、加熱温度を徐々に昇温していけば、収容箱内の蒸着材料に溶解むらが生じたりすることも防止できる。 Next, when the heating temperature is further increased at a constant heating rate, the temperature difference measuring means continuously or periodically measures the temperature difference between the storage box and the reference storage box. From the temperature difference measured in this way, heat such as red heat, transition (melt temperature in the case of vapor deposition material), decomposition, melting, oxidation, etc., caused by heating of the deposition material in the storage box, heat generation, etc. The amount of change can be measured (that is, endothermic and exothermic behaviors are acquired as data). For example, if the temperature difference measured by the temperature difference measuring means increases beyond a predetermined range during the temperature rise, the heat applied to the vapor deposition material by the heating means through the storage box will cause the vapor deposition material to Since it can be determined that the material is used for phase transition, it can be specified that the vapor deposition material is a vaporizable material. At this time, if a configuration is adopted in which weight change is measured by the thermogravimetric measurement means in addition to the measurement of the temperature difference by the temperature difference measurement means, for example, bumping occurs and the vapor deposition material is wasted. Alternatively, the heating means can be controlled to lower the heating temperature, or the heating temperature can be temporarily stopped before an excessive heat load is applied to the vapor deposition material. For example, after increasing the amount of heat applied to the storage box by a heating means at a predetermined temperature gradient, the amount of heat is maintained for a certain period of time. is further increased at a predetermined temperature gradient and held at that heat amount for a certain period of time at least once to heat the vapor deposition material. After that, if the heating temperature is gradually increased while measuring the amount of heat change and the amount of weight change, it is possible to prevent uneven melting of the vapor deposition material in the storage box.

他方で、例えば、昇温中の所定時間内に、常に温度差測定手段で測定した温度差が所定の範囲内に維持される場合には、相転移がないことで蒸着材料が昇華性の材料であることが特定できる。このような場合には、加熱温度を一定の昇温速度で高めることができる一方で、熱変化量が、蒸着材料の劣化等を招来しない許容範囲を超えて変化したような場合には、収容箱を加熱する加熱手段が制御される(上記と同様に、蒸着材料を加熱していく)。これにより、作業者の経験によらず、自動で収容箱、ひいては蒸着材料を一定の昇温速度で加熱することができ、このような昇温過程にて必要以上の熱が蒸着材料に加えられることが防止できる。 On the other hand, for example, if the temperature difference measured by the temperature difference measuring means is always maintained within a predetermined range within a predetermined time during temperature rise, the vapor deposition material is a sublimable material because there is no phase transition. It can be specified that In such a case, while the heating temperature can be increased at a constant temperature increase rate, if the amount of heat change changes beyond the allowable range that does not cause deterioration of the vapor deposition material, etc., the accommodation The heating means for heating the box is controlled (the deposition material is heated in the same manner as described above). As a result, regardless of the operator's experience, the storage box and, in turn, the vapor deposition material can be automatically heated at a constant rate of temperature increase, and in such a temperature rising process, more heat than necessary is applied to the vapor deposition material. can be prevented.

次に、更に加熱温度を一定の昇温速度で高め、ある温度に達すると、収容箱内の蒸着材料が昇華または気化し始める。このとき、収容箱内の蒸着材料の重量が減少する。このことから、熱重量測定手段で測定した重量変化から、収容箱内での蒸着材料の昇華または気化が特定される。蒸着材料が昇華または気化した後は、単位時間当たりの重量減少量を基に、収容箱を加熱する加熱手段が制御される(つまり、基板表面に蒸着しようとする膜の厚さ及び蒸着時間を基に単位時間当たりの重量減少量を特定し、重量減少量が所定値になるように加熱温度を設定すれば、一定の蒸着レートで蒸着できる)。このとき、重量測定手段での重量変化の測定に加えて、温度差測定手段での温度差の測定をも測定する構成を採用すれば、蒸着材料の分解や熱劣化が防止される、加熱手段により蒸着材料に加える熱量の上限(言い換えると、蒸着材料に応じて蒸着レート)が特定でき、これに応じて、例えば、基板の相対移動速度を制御したりすることができる。 Next, the heating temperature is further increased at a constant rate of temperature rise, and when a certain temperature is reached, the vapor deposition material inside the storage box begins to sublimate or vaporize. At this time, the weight of the vapor deposition material in the container decreases. Therefore, the sublimation or vaporization of the vapor deposition material inside the storage box can be identified from the weight change measured by the thermogravimetry means. After the deposition material sublimes or vaporizes, the heating means for heating the storage box is controlled based on the amount of weight loss per unit time (that is, the thickness of the film to be deposited on the substrate surface and the deposition time If the amount of weight reduction per unit time is specified based on the above, and the heating temperature is set so that the amount of weight reduction is a predetermined value, vapor deposition can be performed at a constant vapor deposition rate). At this time, in addition to measuring the weight change by the weight measuring means, if the temperature difference measuring means also measures the temperature difference, decomposition and thermal deterioration of the vapor deposition material can be prevented. can specify the upper limit of the amount of heat applied to the vapor deposition material (in other words, the vapor deposition rate according to the vapor deposition material), and the relative movement speed of the substrate can be controlled accordingly.

このように本発明では、蒸着材料の昇温過程において、温度差測定手段により収容箱と基準収容箱との温度差と、熱重量測定手段により収容箱内の蒸着材料の重量変化を測定することで、作業者の経験に依らず、また、収容箱への蒸着材料の充填率に関係なく、蒸着材料の昇華または気化する温度を確実に把握しながら、蒸着材料を適切な昇温プロファイルで加熱して蒸着することが可能になる。ここで、(同一の蒸着材料を利用して蒸着する場合の)収容箱に対する蒸着材料の充填率の差異や、収容箱に蒸着材料を同等の充填率で追加充填した場合でも、上記昇温プロファイルは変化する虞があるが、このような場合でも、適切な昇温プロファイルで蒸着材料を加熱して蒸着することが可能になる。 As described above, in the present invention, in the process of raising the temperature of the deposition material, the temperature difference measuring means measures the temperature difference between the storage box and the reference storage box, and the thermogravimetric measurement means measures the weight change of the deposition material in the storage box. Therefore, regardless of the operator's experience and regardless of the filling rate of the deposition material in the storage box, the deposition material is heated with an appropriate temperature rise profile while reliably grasping the temperature at which the deposition material sublimes or vaporizes. vapor deposition becomes possible. Here, even if there is a difference in the filling rate of the vapor deposition material in the storage box (when vapor deposition is performed using the same vapor deposition material), or if the storage box is additionally filled with the vapor deposition material at the same filling rate, the temperature rise profile However, even in such a case, it is possible to heat the vapor deposition material with an appropriate temperature rise profile for vapor deposition.

ところで、蒸着源として、収容箱の上面に筒状の放出開口(噴射ノズル)が複数本列設されたものを利用する場合、蒸着中、放出開口もまた、気化または昇華温度と同等の温度に加熱されていないと、放出開口を通過する蒸着材料が付着して固化し、ノズル詰まりを招来するといった不具合が生じる。このため、蒸着材料が充填された収容箱の部分を加熱する第1の加熱手段と、収容箱の放出開口を加熱する第2の加熱手段とを有する場合において、生産終了に伴い、被蒸着物に対する蒸着を停止する場合、熱重量測定手段で測定した単位時間当たりの重量変化量を基に、第1の加熱手段を制御して収容箱を所定の降温速度で降温させ、この重量変化量が所定値に達すると、第1及び第2の各加熱手段が停止される構成を採用することができる。これにより、生産終了時のノズル詰まりを回避でき、有利である。 By the way, when using a vapor deposition source having a plurality of cylindrical discharge openings (injection nozzles) arranged in a row on the upper surface of a storage box, the discharge openings are also heated to a temperature equivalent to the vaporization or sublimation temperature during vapor deposition. If not heated, vapor deposition material passing through the discharge openings will adhere and solidify, causing problems such as clogging of the nozzles. For this reason, in the case of having the first heating means for heating the portion of the containing box filled with the vapor deposition material and the second heating means for heating the discharge opening of the containing box, the object to be vapor deposited is When stopping vapor deposition, the first heating means is controlled to lower the temperature of the storage box at a predetermined cooling rate based on the weight change amount per unit time measured by the thermogravimetric measuring means, and this weight change amount is A configuration can be employed in which each of the first and second heating means is stopped when a predetermined value is reached. This advantageously avoids nozzle clogging at the end of production.

収容箱に蒸着材料が残っているような状態で生産を終了する場合に、上記のように第1及び第2の各加熱手段の作動を停止すると、蒸着材料によっては、急峻に固化して、材料劣化する虞がある。このため、降温過程において、温度差測定手段により測定した温度差を基に、第1及び第2の各加熱温度が徐々に低下するように制御することが好ましい。このとき、蒸着材料が気化性の材料の場合、温度差測定手段での温度差の測定をも測定しておけば、液相から固相への相転移を特定できるため、蒸着材料をむらなく固相に戻すことができる。 When the production is finished with the vapor deposition material remaining in the storage box, if the operation of the first and second heating means is stopped as described above, depending on the vapor deposition material, abrupt solidification may occur. There is a risk of material deterioration. For this reason, it is preferable to control so that the first and second heating temperatures are gradually lowered based on the temperature difference measured by the temperature difference measuring means in the temperature lowering process. At this time, if the vapor deposition material is a vaporizable material, if the temperature difference is also measured by the temperature difference measuring means, the phase transition from the liquid phase to the solid phase can be specified. It can be converted back to solid phase.

(a)は、本発明の実施形態の真空蒸着装置を説明する、一部を断面視とした部分斜視図、(b)は、真空蒸着装置を正面側からみた部分断面図。1(a) is a partially cross-sectional partial perspective view illustrating a vacuum deposition apparatus according to an embodiment of the present invention, and FIG. 1(b) is a partial cross-sectional view of the vacuum deposition apparatus viewed from the front side. 蒸着材料の加熱開始から加熱停止までの昇温及び降温のプロファイルを説明するグラフであり、(a)は、蒸着材料が気化性の材料、(b)は、蒸着材料が昇華性の材料の場合である。2 is a graph for explaining the profile of temperature rise and temperature drop from the start of heating to the end of heating of the vapor deposition material, (a) when the vapor deposition material is a vaporizable material, and (b) when the vapor deposition material is a sublimable material. is.

以下、図面を参照して、被蒸着物を矩形の輪郭を持つ所定厚さのガラス基板(以下、「基板Sw」という)、蒸着材料を高分子の有機材料Omとし、基板Swの片面に有機膜を蒸着(成膜)する場合を例に本発明の真空蒸着方法の実施形態を説明する。以下においては、「上」、「下」といった方向を指す用語は、図1に示す真空蒸着装置の姿勢を基準とする。 Hereinafter, with reference to the drawings, the object to be vapor-deposited is a glass substrate having a rectangular outline and a predetermined thickness (hereinafter referred to as “substrate Sw”), the vapor deposition material is a polymeric organic material Om, and an organic An embodiment of the vacuum deposition method of the present invention will be described by taking the case of depositing (depositing) a film as an example. Hereinafter, terms such as "up" and "down" are based on the attitude of the vacuum deposition apparatus shown in FIG.

図1を参照して、DMは、本実施形態の真空蒸着装置である。真空蒸着装置DMは、真空チャンバ1を備え、真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、所定圧力(真空度)に真空排気して保持できるようになっている。真空チャンバ1の所定位置には、その内部の圧力を測定するピラニ真空計、電離真空計、ペニング真空計などの真空計Vgが設けられている。真空チャンバ1の上部にはまた、基板搬送装置2が設けられている。基板搬送装置2は、蒸着面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Swを真空チャンバ1内の一方向に所定速度で移動するようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略する。また、以下においては、後述の蒸着源Dsに対する基板Swの相対移動方向をX軸方向、X軸方向に直交する基板Swの幅方向をY軸方向とする。 Referring to FIG. 1, DM is the vacuum deposition apparatus of this embodiment. The vacuum deposition apparatus DM includes a vacuum chamber 1, which is connected to a vacuum pump through an exhaust pipe (not shown and described), and can be evacuated to and maintained at a predetermined pressure (degree of vacuum). It's like A vacuum gauge Vg such as a Pirani vacuum gauge, an ionization vacuum gauge, or a Penning vacuum gauge is provided at a predetermined position in the vacuum chamber 1 to measure the internal pressure. A substrate transfer device 2 is also provided above the vacuum chamber 1 . The substrate transfer device 2 has a carrier 21 that holds the substrate Sw with its lower surface as a vapor deposition surface open. to move. Since a known device can be used as the substrate transfer device 2, further explanation is omitted. Also, hereinafter, the direction of relative movement of the substrate Sw with respect to the vapor deposition source Ds, which will be described later, is defined as the X-axis direction, and the width direction of the substrate Sw perpendicular to the X-axis direction is defined as the Y-axis direction.

基板搬送装置2によって搬送される基板Swと蒸着源Dsとの間には、板状のマスクプレート3が設けられている。本実施形態では、マスクプレート3は、基板Swと一体に取り付けられて基板Swと共に基板搬送装置2によって搬送される。なお、マスクプレート3は、真空チャンバ1に予め固定配置しておくこともできる。マスクプレート3には、板厚方向に貫通する複数の開口31が形成され、これら開口31がない位置にて有機材料Omの基板Swに対する付着範囲が制限されることで所定のパターンで基板Swに蒸着される。マスクプレート3としては、インバー、アルミ、アルミナやステンレス等の金属製の他、ポリイミド等の樹脂製のものが用いられる。そして、真空チャンバ1の底面には、X軸方向に移動される基板Swに対向させて、蒸着源としての収容箱Dsが設けられている。 A plate-like mask plate 3 is provided between the substrate Sw transported by the substrate transport device 2 and the vapor deposition source Ds. In this embodiment, the mask plate 3 is attached integrally with the substrate Sw and transported together with the substrate Sw by the substrate transport device 2 . The mask plate 3 can also be fixedly arranged in the vacuum chamber 1 in advance. A plurality of openings 31 are formed through the mask plate 3 in the plate thickness direction, and the adhesion range of the organic material Om to the substrate Sw is limited at positions where there are no openings 31, so that the organic material Om adheres to the substrate Sw in a predetermined pattern. vapor-deposited. The mask plate 3 may be made of metal such as invar, aluminum, alumina or stainless steel, or made of resin such as polyimide. A storage box Ds as a vapor deposition source is provided on the bottom surface of the vacuum chamber 1 so as to face the substrate Sw that is moved in the X-axis direction.

収容箱Dsは、外容器41と、外容器41内に設置される、上面を開口した内容器42とを備え、内容器42に粉末状(固体)の有機材料Omが収容される。外容器41内には、内容器42の壁面を囲うようにしてシースヒータ等の第1の加熱手段43aが設けられている。第1の加熱手段43aにより内容器42を加熱すると、内容器42の壁面からの伝熱や外容器41の上面(基板Swとの対向面)41aから輻射で有機材料Omが加熱されて昇華または気化する。外容器41の上面41aにはまた、所定高さの筒体で構成される放出開口(噴射ノズル)44がY軸方向に所定の間隔で複数本(本実施形態では6本)列設され、外容器41内で昇華または気化した蒸着材料Omが所定の余弦則に従い真空チャンバ1内の空間に放出される。また、外容器41の上面(基板Swとの対向面)41aは、各放出開口44が挿通する開口45aが形成された遮蔽板45で覆われ、外容器41と遮蔽板45との間には、シースヒータ等の第2の加熱手段43bが設けられている。第2の加熱手段43bにより各放出開口44が主として加熱され、蒸着時に、放出開口44を通過する有機材料Omが付着して固化し、ノズル詰まりを発生させることを防止している。 The storage box Ds includes an outer container 41 and an inner container 42 having an open top, which is installed in the outer container 41. The inner container 42 accommodates a powdery (solid) organic material Om. A first heating means 43a such as a sheath heater is provided inside the outer container 41 so as to surround the wall surface of the inner container 42 . When the inner container 42 is heated by the first heating means 43a, the organic material Om is heated by heat transfer from the wall surface of the inner container 42 and radiation from the upper surface (the surface facing the substrate Sw) 41a of the outer container 41, thereby sublimating or Vaporize. On the upper surface 41a of the outer container 41, a plurality of discharge openings (injection nozzles) 44, which are cylindrical bodies having a predetermined height, are arranged at predetermined intervals in the Y-axis direction (six in this embodiment). The vapor deposition material Om sublimated or vaporized within the outer container 41 is discharged into the space within the vacuum chamber 1 according to a predetermined cosine law. In addition, the upper surface (the surface facing the substrate Sw) 41a of the outer container 41 is covered with a shielding plate 45 formed with openings 45a through which the discharge openings 44 are inserted. , a second heating means 43b such as a sheath heater is provided. The discharge openings 44 are mainly heated by the second heating means 43b to prevent the organic material Om passing through the discharge openings 44 from adhering and solidifying during vapor deposition and causing nozzle clogging.

外容器41の底面には、電子天秤などで構成される重量測定器46が設けられ、実質的に内容器42に収容された有機材料Omの昇華または気化に伴う重量変化(単位時間当たりの重量減少量)を測定できるようにしている。内容器42の側壁には、熱電対などで構成される温度測定器47aが設けられている。真空チャンバ1の底面にはまた、X軸方向に移動される基板Swに対してY軸方向にオフセットさせて収容箱Dsと同一の構成を持つ基準収容箱Bsが設けられ、上記収容箱Dsと同様、内容器42の側壁には熱電対などで構成される温度測定器47bが設けられている。この場合、基準収容箱Bsの周囲には、収容箱Dsの放出開口44から放出された有機材料Omが付着しないように、防着板5が設けられている。 A weight measuring device 46 composed of an electronic balance or the like is provided on the bottom surface of the outer container 41, and substantially changes in weight (weight per unit time) associated with sublimation or vaporization of the organic material Om contained in the inner container 42 decrease) can be measured. A side wall of the inner container 42 is provided with a temperature measuring device 47a composed of a thermocouple or the like. Also provided on the bottom surface of the vacuum chamber 1 is a reference storage box Bs having the same configuration as the storage box Ds, offset in the Y-axis direction with respect to the substrate Sw moved in the X-axis direction. Similarly, the side wall of the inner container 42 is provided with a temperature measuring device 47b composed of a thermocouple or the like. In this case, an anti-adhesion plate 5 is provided around the reference container Bs so that the organic material Om discharged from the discharge opening 44 of the container Ds does not adhere.

上記真空蒸着装置DMは、マイクロコンピュータ、記憶素子やシーケンサ等を備えた公知の制御ユニットCuを備える。そして、制御ユニットCuが、真空ポンプ(図示せず)や、基板搬送装置2などの各部品の制御を統括して行う。制御ユニットCuにはまた、真空計Vg、重量測定器46や、温度測定器47a,47bから出力を受け、これを基に、収容箱Dsと基準収容箱Bsとに夫々設けた第1及び第2の両加熱手段43a,43bの作動を制御するようになっている。この場合、重量測定器46、温度測定器47a,47b及び制御ユニットCuが本実施形態の温度差測定手段と熱重量測定手段とを構成する。以下に、図2(a)及び(b)も参照しつつ、上記真空蒸着装置DMを用いた基板Swへの蒸着(成膜)方法を説明する。 The vacuum deposition apparatus DM includes a well-known control unit Cu including a microcomputer, a memory element, a sequencer, and the like. Then, the control unit Cu centrally controls each component such as a vacuum pump (not shown) and the substrate transfer device 2 . The control unit Cu also receives outputs from the vacuum gauge Vg, the weight measuring device 46, and the temperature measuring devices 47a and 47b. 2 heating means 43a and 43b. In this case, the weight measuring device 46, the temperature measuring devices 47a and 47b, and the control unit Cu constitute the temperature difference measuring means and thermogravimetric measuring means of this embodiment. A vapor deposition (film formation) method on the substrate Sw using the vacuum vapor deposition apparatus DM will be described below with reference to FIGS. 2(a) and 2(b).

大気雰囲気中の真空チャンバ1内にて収容箱Dsの内容器42に有機材料Omを所定の充填率で充填する。このとき、基準収容箱Bsの内容器42には有機材料Omを充填せずに、空の状態とする。有機材料Omが充填されると、真空ポンプにより真空チャンバ1を真空排気し、真空チャンバ1内が所定圧力(例えば1×10-5Pa)に達すると、収容箱Ds及び基準収容箱Bsの第1及び第2の各加熱手段43a,43bを作動させて収容箱Ds及び基準収容箱Bsの加熱を開始し、加熱温度を所定の昇温速度(一定の温度勾配)で高めながら(つまり、収容箱Ds及び基準収容箱Bsに対して第1及び第2の各加熱手段43a,43bにより加える熱量を一定の温度勾配で増加させながら)、収容箱Ds及び基準収容箱Bsを加熱する。このとき、収容箱Dsでは、内容器42の側壁からの伝熱や、外容器41の上壁からの輻射熱で有機材料Omが加熱される。 In the vacuum chamber 1 in the atmosphere, the inner container 42 of the storage box Ds is filled with the organic material Om at a predetermined filling rate. At this time, the inner container 42 of the reference container Bs is left empty without being filled with the organic material Om. When the organic material Om is filled, the vacuum chamber 1 is evacuated by a vacuum pump, and when the inside of the vacuum chamber 1 reaches a predetermined pressure (for example, 1×10 −5 Pa), the storage box Ds and the reference storage box Bs are evacuated. The first and second heating means 43a and 43b are operated to start heating the storage box Ds and the reference storage box Bs, and the heating temperature is increased at a predetermined temperature increase rate (a constant temperature gradient) (that is, storage The storage box Ds and the reference storage box Bs are heated while increasing the amount of heat applied to the box Ds and the reference storage box Bs by the first and second heating means 43a and 43b at a constant temperature gradient. At this time, in the storage box Ds, the organic material Om is heated by heat transfer from the side wall of the inner container 42 and radiant heat from the upper wall of the outer container 41 .

加熱温度を高めていくと、収容箱Dsの壁面に付着したガスや、収容箱Dsに充填された有機材料Omに含まれるガスが放出される。制御ユニットCuは、真空計Vgで測定した圧力が所定範囲を超えて変化すると、収容箱Ds及び基準収容箱Bsの第1及び第2の各加熱手段43a,43bによる昇温を一旦停止し、そのときの加熱温度(つまり、収容箱Ds及び基準収容箱Bsに夫々加える熱量を一定に保持した状態)で有機材料Omの加熱を継続する(図2中、区間Aで示す脱ガス工程)。そして、単位時間当たりの圧力変化量が所定範囲内になると、第1及び第2の各加熱手段43a,43bによる収容箱Ds及び基準収容箱Bsの加熱を再開し、上記と同等の昇温速度で加熱温度を高める。これにより、基板Sw表面に蒸着した膜に不純物が混入して膜質を劣化させるといったことが抑制できる。 As the heating temperature is increased, the gas adhering to the wall surface of the storage box Ds and the gas contained in the organic material Om filled in the storage box Ds are released. When the pressure measured by the vacuum gauge Vg changes beyond a predetermined range, the control unit Cu temporarily stops raising the temperature of the storage box Ds and the reference storage box Bs by the first and second heating means 43a and 43b, The heating of the organic material Om is continued at the heating temperature at that time (that is, the amount of heat applied to the storage box Ds and the reference storage box Bs is kept constant) (the degassing step indicated by section A in FIG. 2). Then, when the amount of pressure change per unit time falls within a predetermined range, the first and second heating means 43a and 43b resume heating of the storage box Ds and the reference storage box Bs, and the temperature rise rate is the same as above. to increase the heating temperature. As a result, it is possible to prevent impurities from entering the film deposited on the surface of the substrate Sw and degrading the film quality.

次に、更に加熱温度を一定の昇温速度で高めていく際、制御ユニットCuは、温度測定器47a,47bから受ける出力を基に収容箱Dsの内容器42と基準収容箱Bsの内容器42との温度差を連続してまたは定期的に測定すると共に、重量測定器46から受ける出力を基に収容箱Ds、ひいては、内容器42に充填された有機材料Omの重量変化を連続してまたは定期的に測定する。このように測定した温度差からは、収容箱Ds内の有機材料Omの加熱に伴う、赤熱、転移(気化性の有機材料の場合のメルト温度)、分解、融解や酸化などで生じる吸熱、発熱といった熱変化量が測定できる(即ち、吸熱、発熱の挙動がデータとして取得される)。また、測定した温度差からは、収容箱Ds内の有機材料Omの加熱に伴う脱水の特定できるため、このような場合には、上記脱ガス工程を再度実施してもよい。そして、例えば、昇温中に、温度測定器47a,47bで夫々測定した温度差が所定の範囲を超えて大きくなったような場合には、第1及び第2の各加熱手段43a,43bにより収容箱Dsを介して有機材料Omに加えられる熱が相転移に利用されたことが判断できるため、有機材料Omが気化性の材料であることが判断(特定)できる。 Next, when the heating temperature is further increased at a constant heating rate, the control unit Cu controls the inner container 42 of the storage box Ds and the inner container of the reference storage box Bs based on the outputs received from the temperature measuring devices 47a and 47b. 42 continuously or periodically, and based on the output received from the weight measuring device 46, the storage box Ds, and thus the weight change of the organic material Om filled in the inner container 42 is continuously measured. Or measure regularly. From the temperature difference measured in this way, red heat, transition (melt temperature in the case of a vaporizable organic material), decomposition, melting, oxidation, etc., caused by heating of the organic material Om in the storage box Ds, endothermic heat generation, etc. The amount of heat change can be measured (that is, endothermic and exothermic behaviors are acquired as data). Further, from the measured temperature difference, dehydration due to heating of the organic material Om in the storage box Ds can be identified. Therefore, in such a case, the degassing step may be performed again. For example, when the temperature difference measured by the temperature measuring devices 47a and 47b exceeds a predetermined range during temperature rise, the first and second heating means 43a and 43b Since it can be determined that the heat applied to the organic material Om through the storage box Ds is used for the phase transition, it can be determined (specified) that the organic material Om is a vaporizable material.

気化性の材料と判断されると、制御ユニットCuは、有機材料Omの重量変化をも連続してまたは定期的に測定し、例えば、突沸が発生して有機材料Omが無駄に消費され、または、有機材料Omに必要以上の熱負荷が加えられるように、第1の加熱手段43aを制御する。例えば、図2(a)中、区間Bで示す昇温工程のように、第1及び第2の各加熱手段43a,43bにより収容箱Dsに加える熱量を所定温度勾配で高めた後、その熱量で一定時間保持し、熱変化量が許容範囲内に維持されているような場合には、収容箱Dsに加える熱量を所定温度勾配で更に高め、その熱量で一定時間保持するという操作を少なくとも1回以上実施して、有機材料Omを加熱していく。これに併せて、基準収容箱Bsを加熱する第1及び第2の各加熱手段43a,43bが同様に制御される。このように加熱温度を徐々に昇温していけば、昇温工程時に、収容箱Ds内の有機材料Omに溶解むらが生じたりすることも防止できる。 Once determined to be a vaporizable material, the control unit Cu also continuously or periodically measures the weight change of the organic material Om, e.g. , the first heating means 43a is controlled such that an excessive heat load is applied to the organic material Om. For example, in FIG. 2(a), as in the temperature raising step indicated by section B, after increasing the amount of heat applied to the housing box Ds by a predetermined temperature gradient by the first and second heating means 43a and 43b, the amount of heat is maintained for a certain period of time, and if the amount of heat change is maintained within the allowable range, the amount of heat applied to the storage box Ds is further increased by a predetermined temperature gradient, and this amount of heat is maintained for a certain period of time. This is repeated more than once to heat the organic material Om. Along with this, the first and second heating means 43a and 43b for heating the reference container Bs are similarly controlled. Gradually raising the heating temperature in this manner can prevent uneven melting of the organic material Om in the storage box Ds during the temperature raising process.

他方で、例えば、昇温中の所定時間内に、常に温度測定器47a,47bで夫々測定した温度差が所定の範囲内に維持される場合には、相転移がないことで有機材料Omが昇華性の材料であることが特定できる。このような場合には、例えば、図2(b)中、区間Bで示す昇温工程のように、加熱温度を一定の昇温速度で高めることができる。仮に、温度差が所定の範囲を超えて変化したような場合には、例えば、昇温が可及的速やかに一旦中断され、所定時間経過後に、上記より遅い昇温速度で加熱が再開される。これに併せて、基準収容箱Bsを加熱する第1及び第2の各加熱手段43a,43bが同様に制御される。この場合の許容範囲は、例えば実験的に適宜設定される。また、図2(b)中、区間Bで示す昇温工程においても、その熱変化量が、有機材料Omの劣化等を招来しない許容範囲内に維持されるように、例えば、上記同様、第1及び第2の各加熱手段43a,43bにより収容箱Dsに加える熱量を所定温度勾配で高めた後、その熱量で一定時間保持し、熱変化量が許容範囲内に維持されているような場合には、収容箱Dsに加える熱量を所定温度勾配で更に高め、その熱量で一定時間保持するという操作を少なくとも一回以上実施して、有機材料Omを加熱していくことができる。これにより、作業者の経験に依らず、自動で収容箱Ds、ひいては有機材料Omを一定の昇温速度で加熱することができ、このような昇温過程にて必要以上の熱が有機材料Omに加えられることが防止できる。 On the other hand, for example, when the temperature difference measured by the temperature measuring devices 47a and 47b is always maintained within a predetermined range within a predetermined time during the temperature rise, the phase transition does not occur and the organic material Om is It can be identified as a sublimable material. In such a case, for example, the heating temperature can be increased at a constant rate of temperature increase, as in the temperature increase step indicated by section B in FIG. 2(b). If the temperature difference changes beyond the predetermined range, for example, the temperature rise is temporarily interrupted as soon as possible, and after the elapse of a predetermined time, the heating is resumed at a slower temperature rise rate than the above. . Along with this, the first and second heating means 43a and 43b for heating the reference container Bs are similarly controlled. The allowable range in this case is appropriately set experimentally, for example. In addition, in the temperature rising step indicated by section B in FIG. 2B, for example, the second When the amount of heat applied to the storage box Ds by the first and second heating means 43a and 43b is increased with a predetermined temperature gradient, and then the amount of heat is maintained for a certain period of time, and the amount of heat change is maintained within the allowable range. In this case, the organic material Om can be heated by increasing the amount of heat applied to the storage box Ds at a predetermined temperature gradient and maintaining the amount of heat for a certain period of time at least once. As a result, regardless of the experience of the operator, the storage box Ds and, by extension, the organic material Om can be automatically heated at a constant temperature increase rate. can be prevented from being added to

更に加熱温度を一定の昇温速度で高め、ある温度に達すると、内容器42内の有機材料Omが昇華または気化し始める。このとき、有機材料Omの重量が減少することから、制御ユニットCuは、有機材料Omの昇華または気化を特定し、蒸着材料が昇華または気化した後は、重量変化(即ち、単位時間当たりの重量減少量)を基に、予め設定された蒸着レートとなるように収容箱Ds及び基準収容箱Bsの第1及び第2の各加熱手段43a,43bを制御する(図2中、区間Cで示す蒸着工程)。予め設定された蒸着レートになると、基板搬送装置2によって一枚の基板SwがX軸方向に搬送される。これにより、蒸着源Dsに対してX軸方向に相対移動する基板Swの下面に、各放出開口44から所定の余弦則に従い放出された有機材料Omが付着、堆積して所定の薄膜が蒸着される。このようにして複数枚の基板Swに対して蒸着する間、蒸着レートが常時同等になるように、重量変化を基に、収容箱Ds及び基準収容箱Bsの第1及び第2の各加熱手段43a,43bが適宜制御される。このとき、温度測定器47a,47bで夫々測定した温度差から、有機材料Omの分解等が判断できるため、有機材料Omに加える熱量の上限(言い換えると、蒸着レートの上限)が特定できる。このため、蒸着レートが、基板Swへの蒸着の際に求められる蒸着レートに満たないような場合には、これに応じて、例えば、基板Swの相対移動速度を制御したりすることができる。 Furthermore, the heating temperature is increased at a constant rate of temperature rise, and when a certain temperature is reached, the organic material Om in the inner container 42 begins to sublimate or vaporize. At this time, since the weight of the organic material Om decreases, the control unit Cu identifies the sublimation or vaporization of the organic material Om, and after the vapor deposition material sublimes or vaporizes, the weight change (that is, the weight per unit time amount of decrease), the first and second heating means 43a and 43b of the storage box Ds and the reference storage box Bs are controlled so as to achieve a preset deposition rate (indicated by section C in FIG. 2 evaporation process). When the preset vapor deposition rate is reached, the substrate conveying device 2 conveys one substrate Sw in the X-axis direction. As a result, the organic material Om emitted from each emission opening 44 according to a predetermined cosine law adheres and accumulates on the lower surface of the substrate Sw, which moves relative to the deposition source Ds in the X-axis direction, and a predetermined thin film is deposited. be. While vapor deposition is performed on a plurality of substrates Sw in this manner, the first and second heating means for the storage box Ds and the reference storage box Bs are heated based on the change in weight so that the deposition rate is always the same. 43a and 43b are appropriately controlled. At this time, since the decomposition of the organic material Om can be determined from the temperature difference measured by the temperature measuring devices 47a and 47b, the upper limit of the amount of heat applied to the organic material Om (in other words, the upper limit of the deposition rate) can be specified. Therefore, when the vapor deposition rate is less than the vapor deposition rate required for vapor deposition onto the substrate Sw, the relative movement speed of the substrate Sw can be controlled accordingly.

複数枚の基板Swに対する蒸着が終了(生産終了)し、収容箱Dsに有機材料Omが残っている状態で収容箱Ds及び基準収容箱Bsの第1及び第2の各加熱手段43a,43bを停止する場合には、先ず、一定の降温速度で収容箱Ds及び基準収容箱Bsに対する第1の加熱手段43aによる加熱温度を下げる(このとき、第2の加熱手段43bはそのまま維持する)。ここで、有機材料Omが気化性の材料である場合、降温中、温度測定器47a,47bで夫々測定した温度差からは、有機材料Omの一部が液相から固相に相転移したことが判断できるため、図2(a)中、区間Dで示すように、第1の加熱手段43aによる加熱温度の低下を一旦停止し、所定時間保持する。その後、加熱温度の一定の降温速度で下げ、このとき、重量測定器46から受ける出力を基に、有機材料Omの単位時間当たりの重量減少量を測定し、重量減少がなくなると、第1及び第2の各加熱手段43a,43bを完全に停止する。これにより、有機材料Omが急峻に固化することを防止しつつ、むらなく有機材料Omを固相に戻すことができる。 When the vapor deposition on the plurality of substrates Sw is completed (end of production) and the organic material Om remains in the storage box Ds, the first and second heating means 43a and 43b of the storage box Ds and the reference storage box Bs are turned on. When stopping, first, the heating temperature of the storage box Ds and the reference storage box Bs by the first heating means 43a is lowered at a constant cooling rate (at this time, the second heating means 43b is maintained as it is). Here, when the organic material Om is a vaporizable material, the temperature difference measured by the temperature measuring devices 47a and 47b during the temperature drop indicates that part of the organic material Om undergoes a phase transition from the liquid phase to the solid phase. can be determined, as indicated by section D in FIG. After that, the heating temperature is lowered at a constant cooling rate, and at this time, based on the output received from the weight measuring device 46, the amount of weight reduction of the organic material Om per unit time is measured. The second heating means 43a, 43b are completely stopped. As a result, the organic material Om can be returned to the solid phase evenly while preventing the organic material Om from being abruptly solidified.

他方、有機材料Omが昇華性の材料である場合、急峻に固化して材料劣化することを防止するために、図2(b)中、区間Dで示すように、第1の加熱手段43aによる加熱温度が段階的に降下され、このとき、重量測定器46から受ける出力を基に、有機材料Omの単位時間当たりの重量減少量を測定し、重量減少がなくなると、第1及び第2の各加熱手段43a,43bを完全に停止する。なお、上記のようにして有機材料Omを加熱して蒸着を行い、加熱を停止して終了するまでの第1及び第2の加熱手段43a,43bの昇温及び降温のプロファイルは、制御ユニットCuの記憶部に記憶されるようにしてもよく、内容器42に同一の有機材料Omを充填して再度蒸着するような場合には、記憶されたプロファイルに基づいて、第1及び第2の加熱手段43a,43bの作動を制御してもよい。 On the other hand, when the organic material Om is a sublimable material, it is heated by the first heating means 43a as shown in section D in FIG. The heating temperature is lowered stepwise, and at this time, the amount of weight reduction of the organic material Om per unit time is measured based on the output received from the weight measuring device 46. When the weight reduction ceases, the first and second Each heating means 43a, 43b is completely stopped. Note that the profile of the temperature rise and temperature drop of the first and second heating means 43a and 43b until the vapor deposition is performed by heating the organic material Om as described above and the heating is stopped and completed is determined by the control unit Cu When the same organic material Om is filled in the inner container 42 and vapor-deposited again, the first and second heating are performed based on the stored profile. The actuation of means 43a, 43b may be controlled.

以上の実施形態によれば、有機材料Omの昇温過程において、収容箱Dsと基準収容箱Bsとの温度差と、収容箱Ds内の有機材料Omの重量を測定することで、作業者の経験に依らず、また、収容箱Dsへの有機材料Omの充填率に関係なく、有機材料Omの昇華または気化する温度を確実に把握しながら、有機材料Omを適切な昇温プロファイル及び降温プロファイルで加熱または降温させて、基板Sw表面に所定の有機膜を蒸着する生産工程を実施することができる。しかも、降温時に、放出開口44を通過する有機材料Omが付着して固化し、ノズル詰まりを招来し、または、急峻に固化することで材料劣化するといった不具合が生じることを確実に防止できる。なお、従来の真空蒸着装置では、真空チャンバ内に水晶振動子を用いた膜厚モニタにより蒸着レートを監視していたが、本実施形態では、重量変化(即ち、単位時間当たりの重量減少量)を基に、予め設定された蒸着レートとなるように収容箱Ds及び基準収容箱Bsの第1及び第2の各加熱手段43a,43bを制御できるため、特段、膜厚モニタを必要とせず、有利である。 According to the above embodiment, in the process of increasing the temperature of the organic material Om, by measuring the temperature difference between the storage box Ds and the reference storage box Bs and the weight of the organic material Om in the storage box Ds, the operator can Appropriate temperature rise profile and temperature drop profile for the organic material Om while reliably grasping the sublimation or vaporization temperature of the organic material Om regardless of experience and regardless of the filling rate of the organic material Om in the storage box Ds. can be performed by heating or lowering the temperature of the substrate Sw to vapor-deposit a predetermined organic film on the surface of the substrate Sw. Moreover, it is possible to reliably prevent the organic material Om passing through the discharge opening 44 from adhering and solidifying when the temperature is lowered, leading to nozzle clogging, or material deterioration due to rapid solidification. In the conventional vacuum deposition apparatus, the deposition rate was monitored by a film thickness monitor using a crystal oscillator in the vacuum chamber. Based on this, the first and second heating means 43a and 43b of the storage box Ds and the reference storage box Bs can be controlled so as to achieve a preset deposition rate, so there is no particular need for a film thickness monitor, Advantageous.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、被蒸着物をガラス基板Swとし、基板搬送装置2によりガラス基板Swを一定の速度で搬送しながら蒸着するものを例に説明したが、基板搬送装置2の構成は、上記のものに限定されるものではない。例えば、被蒸着物をシート状の基材とし、駆動ローラと巻取りローラとの間で一定の速度で基材を移動させながら基材の片面に蒸着するような装置にも本発明は適用できる。また、上記実施形態では、蒸着源の収容箱Dsとして外容器41内に内容器42を配置したものを例に説明したが、これに限定されるものではなく、例えば、上面を開口した坩堝にも本発明は適用することができ、この場合、基準収容箱Bsもまた同一形態の坩堝が用いられる。また、蒸着材料も有機材料Omに限られるものではない。 Although the embodiments of the present invention have been described above, various modifications are possible without departing from the scope of the technical idea of the present invention. In the above embodiment, the object to be vapor-deposited is the glass substrate Sw, and the vapor deposition is performed while the glass substrate Sw is conveyed by the substrate conveying device 2 at a constant speed. It is not limited to For example, the present invention can also be applied to an apparatus in which the material to be vapor-deposited is a sheet-like base material, and vapor deposition is performed on one side of the base material while moving the base material at a constant speed between the drive roller and the take-up roller. . Further, in the above-described embodiment, the storage box Ds of the deposition source, in which the inner container 42 is arranged in the outer container 41, is described as an example. In this case, the crucible of the same shape is also used for the reference storage box Bs. Also, the vapor deposition material is not limited to the organic material Om.

更に、上記実施形態では、収容箱Dsに単一の重量測定器46を設けて実質的に有機材料Omの重量変化を測定するものを例に説明したが、例えば、収容箱Dsに重量測定器46を複数設け、複数箇所にて重量変化を測定してもよい。このような場合、特に図示して説明しないが、収容箱Ds内に設けられる加熱手段としてのシースヒータに対する通電経路を複数のブロックに分け、各重量測定器46で夫々測定した単位時間当たりの重量減少量に応じて、各ブロックのシースヒータを制御することもできる。これにより、収容箱Dsの容積が大きいような場合でも、収容箱Dsに充填された有機材料Omをその上面から略均等に昇華または気化させることができ(言い換えると、収容箱Ds内で有機材料Omが片減りすることを防止でき)、有利である。 Furthermore, in the above-described embodiment, a single weight measuring device 46 is provided in the containing box Ds to substantially measure the change in weight of the organic material Om. A plurality of 46 may be provided to measure the weight change at a plurality of locations. In such a case, although not shown and described, the energization path to the sheath heater as the heating means provided in the storage box Ds is divided into a plurality of blocks, and the weight reduction per unit time measured by each weight measuring device 46 is calculated. It is also possible to control the sheath heater of each block according to the quantity. As a result, even when the storage box Ds has a large volume, the organic material Om filled in the storage box Ds can be sublimated or vaporized substantially uniformly from the upper surface thereof (in other words, the organic material Om in the storage box Ds can be Om can be prevented from being unbalanced), which is advantageous.

また、上記実施形態では、真空チャンバ1内に収容箱Dsに加えてこれと同一構造の基準収容箱Bsが配置される場合を例に説明したが、これに限定されるものではく、基準収容箱Bsが他の真空チャンバに設けられているものでもよく、また、第1及び第2の加熱手段43a,43bにより加熱したときの温度変化の校正が取れているものであれば、基準収容箱Bsは、収容箱Dsと同一構造である必要はなく、更に、温度の測定位置も上記に限定されるものではない。この場合、真空雰囲気中にて、空の収容箱Dsを第1及び第2の加熱手段43a,43bにより加熱し、このときの温度変化を予め実験的に求め、これを事前に制御ユニットCuに記憶させておき、この記憶させたものとの比較で温度差を測定するようにしてもよい。 In addition, in the above-described embodiment, the case where the reference storage box Bs having the same structure as the storage box Ds is arranged in the vacuum chamber 1 has been described as an example. The box Bs may be provided in another vacuum chamber, and if the temperature change when heated by the first and second heating means 43a and 43b is calibrated, the reference storage box Bs does not need to have the same structure as storage box Ds, and the temperature measurement position is not limited to the above. In this case, the empty storage box Ds is heated by the first and second heating means 43a and 43b in a vacuum atmosphere, the temperature change at this time is experimentally determined in advance, and this is sent to the control unit Cu in advance. It may be stored and the temperature difference may be measured by comparison with this stored one.

Bs…基準収容箱、DM…真空蒸着装置、Ds…収容箱,蒸着源、Om…有機材料(蒸着材料)、Sw…基板(被蒸着物)、Vg…真空計、1…真空チャンバ、43a…第1の加熱手段、43b…第2の加熱手段、44…放出開口、46…重量測定器(熱重量測定手段)、47a,47b…温度測定器(温度差測定手段)、Cu…制御ユニット(熱重量測定手段,温度差測定手段)。 Bs... Reference storage box, DM... Vacuum evaporation apparatus, Ds... Storage box, evaporation source, Om... Organic material (evaporation material), Sw... Substrate (object to be evaporated), Vg... Vacuum gauge, 1... Vacuum chamber, 43a... First heating means 43b Second heating means 44 Release opening 46 Weight measuring device (thermogravimetric measuring means) 47a, 47b Temperature measuring device (temperature difference measuring means) Cu Control unit ( thermogravimetric measuring means, temperature difference measuring means).

Claims (4)

真空チャンバ内に配置されて固体の蒸着材料を収容する収容箱と、この収容箱内の蒸着材料を加熱する加熱手段とを備え、真空雰囲気の真空チャンバ内で、収容箱の蒸着材料を加熱してこの蒸着材料を昇華または気化させ、この昇華または気化した蒸着材料を収容箱の放出開口から放出させて真空チャンバ内に存する被蒸着物に対して予め設定される蒸着レートで蒸着する真空蒸着装置において、
真空雰囲気中にて、加熱手段により蒸着材料を充填した収容箱を所定の昇温速度で加熱したときの温度を、同等の真空雰囲気中にて空の基準収容箱を同等の昇温速度で加熱したときの温度と比較してその温度差を測定する温度差測定手段と、収容箱内での蒸着材料の昇華または気化に伴う蒸着材料の重量変化を測定する熱重量測定手段とを更に備え、
収容箱内の蒸着材料が昇華または気化を開始するまでの間、温度差測定手段で測定した温度差を基に、収容箱を加熱する加熱手段が制御され、
熱重量測定手段で測定した重量変化で収容箱内での蒸着材料の昇華または気化を特定し、その後は、蒸着レートから定まる単位時間当たりの重量変化量を基に、収容箱を加熱する加熱手段が制御されるように構成したことを特徴とする真空蒸着装置。
A storage box arranged in a vacuum chamber to store a solid vapor deposition material, and a heating means for heating the vapor deposition material in the storage box, wherein the vapor deposition material in the storage box is heated in the vacuum chamber having a vacuum atmosphere. A vacuum vapor deposition apparatus that sublimes or vaporizes the vapor deposition material of the lever, discharges the sublimated or vaporized vapor deposition material from the discharge opening of the storage box, and vaporizes the vapor deposition material existing in the vacuum chamber at a predetermined vapor deposition rate. in
In a vacuum atmosphere, the temperature when the storage box filled with the vapor deposition material is heated at a predetermined temperature rise rate by a heating means is heated at the same temperature rise rate in an empty reference storage box in an equivalent vacuum atmosphere. temperature difference measuring means for measuring the temperature difference by comparing with the temperature when the vapor deposition material is held;
until the deposition material in the storage box starts sublimation or vaporization, the heating means for heating the storage box is controlled based on the temperature difference measured by the temperature difference measuring means,
Heating means for identifying the sublimation or vaporization of the vapor deposition material in the storage box based on the weight change measured by the thermogravimetric measuring means, and then heating the storage box based on the amount of weight change per unit time determined from the deposition rate. is controlled.
前記収容箱内の蒸着材料が気化を開始するまでの間、前記温度差測定手段で測定した温度差に加えて、前記熱重量測定手段で測定した重量変化を基に前記加熱手段が制御されるように構成したことを特徴とする請求項1記載の真空蒸着装置。 The heating means is controlled based on the weight change measured by the thermogravimetric measuring means in addition to the temperature difference measured by the temperature difference measuring means until the deposition material in the storage box starts to vaporize. 2. The vacuum deposition apparatus according to claim 1, characterized in that it is constructed as follows. 前記真空チャンバが真空計を更に備え、前記収容箱内の前記蒸着材料が昇華または気化を開始するまでの間、この真空計で測定した圧力を基に、前記基準収容箱と前記収容箱とを夫々加熱する加熱手段が制御されるように構成したことを特徴とする請求項1または請求項2記載の真空蒸着装置。 The vacuum chamber further includes a vacuum gauge, and the reference storage box and the storage box are separated based on the pressure measured by the vacuum gauge until the vapor deposition material in the storage box starts to sublimate or vaporize. 3. A vacuum vapor deposition apparatus according to claim 1, wherein said heating means for heating are controlled respectively. 請求項1~請求項3のいずれか1項に記載の真空蒸着装置であって、前記加熱手段が、蒸着材料が充填された収容箱の部分を加熱する第1の加熱手段と、収容箱の放出開口を加熱する第2の加熱手段とを有するものにおいて、
被蒸着物に対する蒸着を停止する場合、熱重量測定手段で測定した単位時間当たりの重量変化量を基に、第1の加熱手段を制御して収容箱を所定の降温速度で降温させ、この重量変化量が所定値に達すると、第1及び第2の各加熱手段が停止されるように構成したことを特徴とする真空蒸着装置。
The vacuum deposition apparatus according to any one of claims 1 to 3, wherein the heating means includes first heating means for heating a portion of the storage box filled with the deposition material; and a second heating means for heating the emission opening,
When stopping vapor deposition on the object to be vapor-deposited, the first heating means is controlled to lower the temperature of the storage box at a predetermined temperature-lowering rate based on the amount of change in weight per unit time measured by the thermogravimetric measuring means. A vacuum vapor deposition apparatus characterized in that each of the first and second heating means is stopped when the amount of change reaches a predetermined value.
JP2019111992A 2019-06-17 2019-06-17 Vacuum deposition equipment Active JP7240963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019111992A JP7240963B2 (en) 2019-06-17 2019-06-17 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111992A JP7240963B2 (en) 2019-06-17 2019-06-17 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2020204070A JP2020204070A (en) 2020-12-24
JP7240963B2 true JP7240963B2 (en) 2023-03-16

Family

ID=73836910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111992A Active JP7240963B2 (en) 2019-06-17 2019-06-17 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP7240963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102572354B1 (en) * 2021-02-25 2023-08-29 (주)데포랩 Monitoring system for evapoporation process and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217445A (en) 2002-01-25 2003-07-31 Toshiba Corp Deposition method, x-ray image tube manufacturing method, deposition device and x-ray image tube manufacturing device
JP2006058214A (en) 2004-08-23 2006-03-02 Fuji Photo Film Co Ltd Method of manufacturing phosphor sheet
JP2008285719A (en) 2007-05-17 2008-11-27 Fujifilm Corp Vacuum deposition method
JP2015021169A (en) 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Vapor deposition apparatus and vapor deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217445A (en) 2002-01-25 2003-07-31 Toshiba Corp Deposition method, x-ray image tube manufacturing method, deposition device and x-ray image tube manufacturing device
JP2006058214A (en) 2004-08-23 2006-03-02 Fuji Photo Film Co Ltd Method of manufacturing phosphor sheet
JP2008285719A (en) 2007-05-17 2008-11-27 Fujifilm Corp Vacuum deposition method
JP2015021169A (en) 2013-07-19 2015-02-02 株式会社日立ハイテクノロジーズ Vapor deposition apparatus and vapor deposition method

Also Published As

Publication number Publication date
JP2020204070A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US20190093221A1 (en) Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
JP5551336B2 (en) Controllable supply of organic materials in the manufacture of OLEDs
TWI411695B (en) Apparatus and method for deposition organic compounds, and substrate treating facility with the apparatus
JP7240963B2 (en) Vacuum deposition equipment
JP5237088B2 (en) Controllable supply of powdered or granular material
JP3962349B2 (en) Vapor phase organic material vapor deposition method and vapor phase organic material vapor deposition apparatus using the same
EP2053070A1 (en) Apparatus for chemical vapor deposition and method of chemical vapor deposition
KR20070047201A (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP4519653B2 (en) Apparatus and method for depositing a coating material
KR101172410B1 (en) Method and apparatus for controlling the vaporization of organic material
JP2020190013A (en) Vacuum deposition method
US7842341B2 (en) Purifying organic materials for physical vapor deposition
JP4110966B2 (en) Vapor deposition apparatus and vapor deposition method
JP2004134250A (en) Evaporation source for organic material in vapor deposition device, and its deposition device
KR101450598B1 (en) Apparatus for Continuously Depositing Thin Film
JP7281372B2 (en) Evaluation method and vacuum deposition apparatus
JP7303031B2 (en) Evaporation source for vacuum deposition equipment
JP2020190012A (en) Vapor deposition source for vacuum evaporation apparatus
JP3745724B2 (en) Crucible for vapor deposition of sublimable material and vapor deposition method using the crucible
JP5647854B2 (en) Film forming apparatus and film forming method
KR100471361B1 (en) Apparatus for depositing organic- electroluminescent device
KR101258252B1 (en) Apparatus for depositing chemical layers
JP7312023B2 (en) Evaporation source for vacuum deposition equipment
JP2008156726A (en) Vacuum deposition system
JP4908234B2 (en) Evaporation source and vapor deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7240963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150