JP2004134250A - Evaporation source for organic material in vapor deposition device, and its deposition device - Google Patents

Evaporation source for organic material in vapor deposition device, and its deposition device Download PDF

Info

Publication number
JP2004134250A
JP2004134250A JP2002297766A JP2002297766A JP2004134250A JP 2004134250 A JP2004134250 A JP 2004134250A JP 2002297766 A JP2002297766 A JP 2002297766A JP 2002297766 A JP2002297766 A JP 2002297766A JP 2004134250 A JP2004134250 A JP 2004134250A
Authority
JP
Japan
Prior art keywords
crucible
organic material
vapor deposition
evaporation source
deposition device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002297766A
Other languages
Japanese (ja)
Inventor
Takashi Ujihara
氏原 孝志
Shuji Maki
牧  修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokki Corp filed Critical Tokki Corp
Priority to JP2002297766A priority Critical patent/JP2004134250A/en
Priority to KR1020030055991A priority patent/KR20040032737A/en
Publication of JP2004134250A publication Critical patent/JP2004134250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporation source for an organic material and its vapor deposition device in which temperature rising time is shortened and depositing rate is stabilized in a short time, and a lot of material can be filled, and in which there is no clogging of material at the nozzle and the depositing rate can be controlled in superior precision, in the deposition device in which organic material is formed in a film on the substrate by heating, sublimating, or melt-evaporating the material at the vapor deposition of the organic material on the substrate. <P>SOLUTION: As the evaporation source for the organic material, a crucible made of metal is used and directly heated by high frequency induction heating, and the exothermic source around the crucible is removed and thermal response is remarkably improved. Thereby, even if the crucible is of a large size, the temperature rising time is reduced, and the depositing rate is stabilized in short time and in the superior precision. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自発光性有機ELの製作において有機材料を基板に蒸着する際、ルツボに収納した有機材料を加熱し昇華若しくは溶融蒸発させて基板に有機材料を膜付けする蒸着装置における有機材料用蒸発源及びその蒸着装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
有機ELの製作において粉体状の有機材料21をガラス基板に蒸着する際、蒸発源としては、図5に示すボート式(電源25によりタングステンなどで作られたボート22に直接電流を流しボート22を加熱しボート22の熱で有機材料21を昇華あるいは溶融蒸発させる方式)、あるいは図3に示すように抵抗加熱方式(電源25によりシーズヒーター24に電流を流し加熱させその輻射熱で窒化ボロン,カーボン,石英ガラスなどで作られたルツボ23を加熱し、ルツボ23の熱で有機材料21を加熱し昇華あるいは溶融蒸発させる方式)を採用している。
【0003】
従って、ボート式は有機材料を少量しか仕込めなく生産には不利である。また抵抗加熱式はルツボ23を囲むシーズヒーター24の輻射熱で間接的にルツボ23を加熱する構成のため、ルツボ23を所定の温度に昇温させるに時間がかかり生産性が悪い。また、シーズヒーター24自体が高温に加熱されるため、ルツボ23の温度を下げたい時もシーズヒーター24の熱を受け降温に時間がかかる。このように、ルツボ23の温度の昇温あるいは降温に対する熱応答性が悪く蒸着レートを精度良く制御することが難しい。
【0004】
例えば、図4に示すようにルツボを加熱して、十分なレートに形成できる温度に昇温するのには約2時間もかかり、また、降温・昇温を繰り返し、一定のレートを生じさせる状態とするまで(蒸着開始可能な状態とするまで)更に30分以上も要する。またルツボを同一温度に制御してもレートが変化し所望のレートとすることも精度良く行なえず、更に時間も要する。
【0005】
更に上記のように加熱に時間がかかり、制御性も悪い為、ルツボは大きくすることができず(例えば容量が最大90cc)、一週間の連続運転をするためにはルツボを六個用意し、ルツボを切り替えて使用しているため、機構が非常に複雑となり、レートが安定するまでに時間がかかる。
【0006】
また、制御性が悪いため、蒸着レートを大きくすることができず生産性が悪い。
【0007】
また、有機材料が昇華あるいは溶融蒸発する際有機材料がノズルに詰まり易いという問題がある。
【0008】
有機材料は、図4で示すごとく極僅かな温度差で蒸発速度は変動し、かつ一定の温度であっても蒸発速度は変化する性質をもっており、非常に敏感な材料である。外部から加熱することは、ヒーターからルツボに輻射により熱が伝わることであり、ルツボの昇温に時間がかかり熱応答性が遅いことをしめしている。特にヒーターは熱容量を持ち、短時間で昇温、降温の応答速度が遅い。ルツボの大きさが大きくなると、ルツボの体積は3乗に比例して大きくなるのに対し、ヒーター加熱面積は2乗にしか比例せず、ルツボが大きくなるほど熱応答性は著しく悪くなる。また、ルツボを側面から加熱することは、蒸発開口部(ノズル部)から熱が逃げノズル部の温度低下をもたらす。このノズル部温度低下は蒸発開口部の有機材料の付着、つまりノズル詰まりを生じさせ、蒸発を中断させることとなる。
【0009】
本発明は、このような現状に鑑み、これを解決するもので、ルツボを高周波誘導加熱で直接加熱し、ルツボの熱で有機材料を加熱し昇華あるいは溶融蒸発させることで、ルツボの昇温スピードを上げ、しかもこの誘導加熱方式によれば、熱応答性が著しく良くなることから、蒸着レートが一定となる状態に精度良くスピーディーになし得、しかもルツボ容量を大きくすることができ(例えば500cc)一週間分の有機材料を仕込むことができ機構も大変シンプルにでき、また蒸着レートを大きくすることができ(例えば10Å/sec)生産性が良く、またPIDの制御も容易に制御値も決めることができ、またノズルに材料が詰まることなく昇華あるいは溶融蒸発させることができるなど多くの利点を有する画期的な有機EL蒸着装置における有機材料用蒸発源及びその蒸発装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0011】
有機材料1を基板2に蒸着する際、有機材料1を加熱し昇華若しくは溶融蒸発させて基板2に有機材料1を膜付けする蒸着装置における有機材料用蒸発源において、前記有機材料1を収納する金属製のルツボ3と、このルツボ3を直接高周波誘導加熱する誘導コイル4と高周波電源5とから構成したことを特徴とする蒸着装置における有機材料用蒸発源に係るものである。
【0012】
また、請求項1記載の有機材料用蒸発源のルツボ3と誘導コイル4を、一個以上真空槽9内に配置したことを特徴とする蒸着装置に係るものである。
【0013】
【発明の実施の形態】
好適と考える本発明の実施の形態(発明をどのように実施するか)を、図面に基づいてその作用効果を示して簡単に説明する。
【0014】
有機ELの作製において有機材料1をガラス基板2に蒸着する際、蒸発源として高周波誘導加熱でTiなど金属で製作されたルツボ3を直接加熱し、ルツボ3の熱でルツボ3の中に装填された有機材料1を加熱し昇華あるいは溶融蒸発し、ガラス基板2に有機材料1を膜付けする。
【0015】
ルツボ3を金属製ルツボにし、ルツボ3自身を高周波誘導加熱で直接加熱することにより、昇温速度が速くなりルツボ3以外の熱源もないため降温速度も速くなる。また大型ルツボ3においてその効果は顕著となる。さらにルツボ3を直接加熱することにより、蒸発開口部つまりノズル部も高周波誘導加熱されるためノズル部の温度が上昇し、有機材料1によるノズル詰まりが発生しないことになる。
【0016】
即ち、従来のように抵抗加熱方式(シーズヒーターに電流を流し加熱させその輻射熱で窒化ボロン,カーボン,石英ガラスなどで作られたルツボを加熱し、ルツボの熱で有機材料を加熱し昇華あるいは溶融蒸発させる方式)を採用せず、ルツボ3を高周波誘導加熱で直接加熱し、ルツボ3の熱で有機材料1を加熱し昇華あるいは溶融蒸発させるため、ルツボ3の昇温スピードは飛躍的に向上し、しかも熱応答性が良いため蒸着レートが一定となる状態に精度良くスピーディーになし得ることができる。
【0017】
例えば、図2に示すように蒸着開始まで遮断するシャッタ部6に設けた膜厚センサー7によってレートを測定するが、先ず十分なレートに膜付けできるルツボ温度(約250度)まで昇温するのに、実施例では10分程度で済み、極めて短時間で昇温可能となる。しかも、例えば10Å/secの蒸着レートにするため降温・昇温を繰り返すが、熱応答性が良いため、このレートとするまでにわずかな降温・昇温を繰り返すだけの制御で15分程度で行なえ、しかも精度良く所望の10Å/secにこのように短時間に設定できる。
【0018】
従って、スピーディーに昇温でき、スピーディーにして精度良く所望のレートに設定でき、そのためたとえルツボ3の容量が大きくても、瞬時に昇温でき、レートが一定となるまでの時間も短いため、早く蒸着を開始でき、しかも、精度の良い蒸着が行なえるためルツボ容量を大きくすることができ(例えば500cc)一週間分の有機材料を仕込むことができ機構が大変シンプルにでき、また蒸着レートを大きくすることができ(例えば10Å/sec)生産性が良く、またPIDの制御も容易に制御値も決めることができることとなる。
【0019】
また、昇華させにくい未精製材料もルツボ3のノズル部に材料が付着することなく蒸発させることができ、ノズルに材料が詰まることなく昇華あるいは溶融蒸発させることができる。
【0020】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0021】
有機物と反応しないTiなどの金属製のルツボ3の周囲に、このルツボ3自体に誘導電流を生じさせて直接加熱させることができる誘導コイル4を配設し、この誘導コイル4に高周波電流を流す高周波電源5を接続している。
【0022】
真空排気装置8で真空化する蒸着室9(真空槽9)にこのルツボ3及び誘導コイル4を配置し、このルツボ3の上部にガラス基板2を配設し、このルツボ3と基板2との間にシャッタ部6を設けると共に膜厚センサー7を設け、この膜厚センサー7によりレートを測定しつつ、高周波電源5の出力制御を行なって誘導加熱を昇温・降温制御して、膜厚センサー7により所望の一定のレートとなったところで、シャッタ部6を開放し、蒸着を開始するように構成している。
【0023】
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。
【0024】
【発明の効果】
本発明は上述のように構成したから、ルツボを高周波誘導加熱で直接加熱し、ルツボの熱で有機材料を加熱し昇華あるいは溶融蒸発させることで、ルツボの昇温スピードを上げ従来技術では昇温安定化時間は2.5時間要していたが、本発明の実施例では20分と著しく改善された。しかも熱応答性が著しく良くなることから、蒸着レートが一定となる状態に精度良くスピーディーになし得、しかもルツボ容量を大きくすることができ(例えば500cc)一週間分の有機材料を仕込むことができ機構も大変シンプルにでき、また蒸着レートを大きくすることができ(例えば10Å/sec)生産性が良く、またPIDの制御も容易に制御値も決めることができ、またノズルに材料が詰まることなく昇華あるいは溶融蒸発させることができるなど多くの利点を有する画期的な蒸着装置における有機材料用蒸発源及びその蒸着装置となる。
【図面の簡単な説明】
【図1】本実施例の概略構成説明図である。
【図2】本実施例の蒸着開始前の加熱制御を示す説明図である。
【図3】従来例(抵抗加熱方式)の概略構成説明図である。
【図4】従来例(抵抗加熱方式)の蒸着開始前の加熱制御を示す説明図である。
【図5】従来例(ボート式)の要部の概略構成説明図である。
【符号の説明】
1 有機材料
2 基板
3 ルツボ
4 誘導コイル
5 高周波電源
9 真空槽
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic material for an organic material in a vapor deposition apparatus in which an organic material stored in a crucible is heated and sublimated or melted and evaporated to form a film on the substrate when an organic material is vapor-deposited on a substrate in the production of a self-luminous organic EL. The present invention relates to an evaporation source and an evaporation apparatus therefor.
[0002]
Problems to be solved by the prior art and the invention
When a powdery organic material 21 is vapor-deposited on a glass substrate in the manufacture of an organic EL, a boat type shown in FIG. Or a method of sublimating or melting and evaporating the organic material 21 by the heat of the boat 22) or a resistance heating method (a current is supplied to a sheath heater 24 by a power supply 25 as shown in FIG. , A crucible 23 made of quartz glass or the like is heated, and the organic material 21 is heated by the heat of the crucible 23 to sublimate or melt-evaporate.
[0003]
Therefore, the boat type is disadvantageous for production because only a small amount of organic material is charged. In addition, since the resistance heating type heats the crucible 23 indirectly by radiant heat of the sheath heater 24 surrounding the crucible 23, it takes time to raise the temperature of the crucible 23 to a predetermined temperature, resulting in poor productivity. Further, since the sheath heater 24 itself is heated to a high temperature, it takes a long time to lower the temperature due to the heat of the sheath heater 24 even when it is desired to lower the temperature of the crucible 23. Thus, the thermal response to the rise or fall of the temperature of the crucible 23 is poor, and it is difficult to control the deposition rate with high accuracy.
[0004]
For example, as shown in FIG. 4, it takes about 2 hours to heat a crucible to a temperature at which a crucible can be formed at a sufficient rate. It takes more than 30 minutes until the process is started (until the deposition can be started). Further, even if the crucible is controlled at the same temperature, the rate changes, and it is not possible to accurately set the desired rate, and more time is required.
[0005]
Further, as described above, since heating takes time and controllability is poor, the crucible cannot be made large (for example, the capacity is up to 90 cc). For continuous operation for one week, six crucibles are prepared. Since the crucibles are switched and used, the mechanism becomes very complicated, and it takes time for the rate to stabilize.
[0006]
Further, since the controllability is poor, the deposition rate cannot be increased, and the productivity is poor.
[0007]
Further, there is a problem that the organic material is easily clogged in the nozzle when the organic material sublimates or melts and evaporates.
[0008]
As shown in FIG. 4, the organic material has a property that the evaporation rate fluctuates due to a very small temperature difference, and the evaporation rate changes even at a constant temperature, and is an extremely sensitive material. Heating from the outside means that heat is transmitted from the heater to the crucible by radiation, which indicates that the temperature rise of the crucible takes a long time and the thermal responsiveness is slow. In particular, the heater has a heat capacity, and the response speed of raising and lowering the temperature in a short time is slow. When the size of the crucible increases, the volume of the crucible increases in proportion to the cube, whereas the heating area of the heater is proportional only to the square, and as the crucible increases, the thermal responsiveness deteriorates significantly. In addition, when the crucible is heated from the side, heat escapes from the evaporating opening (nozzle portion), and the temperature of the nozzle portion decreases. The decrease in the temperature of the nozzle portion causes the organic material to adhere to the evaporation opening, that is, causes nozzle clogging, thereby interrupting the evaporation.
[0009]
In view of the above situation, the present invention solves this problem by directly heating the crucible by high-frequency induction heating, heating the organic material with the heat of the crucible, and sublimating or melting and evaporating the crucible, thereby increasing the temperature rising speed of the crucible. In addition, according to this induction heating method, the thermal response is remarkably improved, so that the deposition rate can be made constant and accurately and speedily, and the crucible capacity can be increased (for example, 500 cc). Organic materials for one week can be charged, the mechanism can be very simple, the deposition rate can be increased (for example, 10 ° / sec), the productivity is good, and the control of PID can be easily determined. And an innovative organic EL vapor deposition system that has many advantages such as sublimation or melt evaporation without material clogging in the nozzle. And its object is to provide an organic material for the evaporation source and the evaporation device delivers.
[0010]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0011]
When the organic material 1 is deposited on the substrate 2, the organic material 1 is stored in an evaporation source for the organic material in a deposition apparatus that heats the organic material 1 and sublimates or melts and evaporates the organic material 1 on the substrate 2. The present invention relates to an evaporation source for organic materials in a vapor deposition apparatus, comprising a metal crucible 3, an induction coil 4 for directly high-frequency induction heating the crucible 3, and a high-frequency power source 5.
[0012]
Further, the present invention relates to a vapor deposition apparatus, wherein at least one crucible 3 and an induction coil 4 of the organic material evaporation source according to the first aspect are arranged in a vacuum chamber 9.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention (how to implement the invention) will be briefly described with reference to the drawings, showing the operational effects thereof.
[0014]
When the organic material 1 is vapor-deposited on the glass substrate 2 in the production of the organic EL, the crucible 3 made of a metal such as Ti is directly heated by high frequency induction heating as an evaporation source, and is loaded into the crucible 3 by the heat of the crucible 3. The organic material 1 thus heated is sublimated or melted and evaporated, and the glass substrate 2 is coated with the organic material 1.
[0015]
By making the crucible 3 a metal crucible and directly heating the crucible 3 by high-frequency induction heating, the rate of temperature rise is increased and the rate of temperature decrease is increased because there is no heat source other than the crucible 3. The effect is remarkable in the large crucible 3. Further, by directly heating the crucible 3, the evaporation opening, that is, the nozzle portion is also subjected to high-frequency induction heating, so that the temperature of the nozzle portion rises and the nozzle clogging by the organic material 1 does not occur.
[0016]
That is, as in the conventional method, a resistance heating method (current is applied to a sheathed heater to heat the material, the radiant heat of the crucible made of boron nitride, carbon, quartz glass, etc. is used, and the heat of the crucible heats the organic material to sublime or melt the material. The crucible 3 is directly heated by high-frequency induction heating, and the organic material 1 is heated by the heat of the crucible 3 to be sublimated or melt-evaporated without employing the method of evaporating, so that the temperature rising speed of the crucible 3 is dramatically improved. In addition, since the thermal responsiveness is good, it is possible to accurately and speedily make the deposition rate constant.
[0017]
For example, as shown in FIG. 2, the rate is measured by a film thickness sensor 7 provided in a shutter section 6 which shuts off until the start of vapor deposition. First, the temperature is raised to a crucible temperature (about 250 degrees) at which a film can be formed at a sufficient rate. In the embodiment, it takes only about 10 minutes, and the temperature can be raised in a very short time. In addition, the temperature is decreased and raised repeatedly to set the vapor deposition rate to, for example, 10 ° / sec. However, since the thermal responsiveness is good, it can be performed in about 15 minutes by controlling the temperature to be slightly reduced and raised before reaching this rate. In addition, it can be set to the desired 10 ° / sec with high accuracy in such a short time.
[0018]
Therefore, the temperature can be raised quickly, and the desired rate can be set quickly and accurately. Therefore, even if the capacity of the crucible 3 is large, the temperature can be raised instantaneously, and the time until the rate becomes constant is short, so that The vapor deposition can be started, and the crucible capacity can be increased because accurate vapor deposition can be performed (for example, 500 cc). One week of organic material can be charged, the mechanism can be very simple, and the vapor deposition rate can be increased. (For example, 10 ° / sec), the productivity is good, and the control value of PID can be easily determined.
[0019]
Unpurified material that is difficult to sublimate can be evaporated without adhering the material to the nozzle portion of the crucible 3, and can be sublimated or melt-evaporated without clogging the nozzle.
[0020]
【Example】
A specific embodiment of the present invention will be described with reference to the drawings.
[0021]
An induction coil 4 capable of generating an induced current in the crucible 3 itself and directly heating the crucible 3 is disposed around a crucible 3 made of metal such as Ti which does not react with an organic substance. The high frequency power supply 5 is connected.
[0022]
The crucible 3 and the induction coil 4 are arranged in a vapor deposition chamber 9 (vacuum tank 9) to be evacuated by the vacuum evacuation device 8, and the glass substrate 2 is disposed above the crucible 3. A shutter section 6 is provided in between and a film thickness sensor 7 is provided. The output of the high-frequency power supply 5 is controlled by controlling the output of the high frequency power supply 5 while the rate is measured by the film thickness sensor 7 to control the temperature rise and fall of the induction heating. When the desired constant rate is achieved by the shutter 7, the shutter unit 6 is opened to start the vapor deposition.
[0023]
It should be noted that the present invention is not limited to the present embodiment, and a specific configuration of each component can be appropriately designed.
[0024]
【The invention's effect】
Since the present invention is configured as described above, the crucible is directly heated by high-frequency induction heating, and the organic material is heated by the heat of the crucible to sublimate or melt-evaporate, thereby increasing the temperature rising speed of the crucible and increasing the temperature in the prior art. The stabilization time required 2.5 hours, but was significantly improved to 20 minutes in the example of the present invention. Moreover, since the thermal responsiveness is remarkably improved, the deposition rate can be kept constant and accurately and speedily, and the crucible capacity can be increased (for example, 500 cc), and the organic material for one week can be charged. The mechanism can be very simple, the deposition rate can be increased (for example, 10 ° / sec), the productivity is good, the control value of the PID can be easily determined, and the nozzle can be prevented from clogging. An organic material evaporation source and an evaporation apparatus for an innovative evaporation apparatus having many advantages such as sublimation or melt evaporation.
[Brief description of the drawings]
FIG. 1 is a schematic structural explanatory view of the present embodiment.
FIG. 2 is an explanatory diagram showing heating control before the start of vapor deposition in this embodiment.
FIG. 3 is an explanatory diagram of a schematic configuration of a conventional example (resistance heating method).
FIG. 4 is an explanatory diagram showing heating control before the start of vapor deposition in a conventional example (resistance heating method).
FIG. 5 is an explanatory diagram of a schematic configuration of a main part of a conventional example (boat type).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Organic material 2 Substrate 3 Crucible 4 Induction coil 5 High frequency power supply 9 Vacuum tank

Claims (2)

有機材料を基板に蒸着する際、有機材料を加熱し昇華若しくは溶融蒸発させて基板に有機材料を膜付けする蒸着装置における有機材料用蒸発源において、前記有機材料を収納する金属製のルツボと、このルツボを直接高周波誘導加熱する誘導コイルと高周波電源とから構成したことを特徴とする蒸着装置における有機材料用蒸発源。When depositing the organic material on the substrate, in the evaporation source for the organic material in a deposition apparatus that heats the organic material, sublimates or melt-evaporates and deposits the organic material on the substrate, a metal crucible containing the organic material, An evaporation source for organic materials in a vapor deposition apparatus, comprising an induction coil for directly heating the crucible by high-frequency induction and a high-frequency power supply. 請求項1記載の有機材料用蒸発源のルツボと誘導コイルを、一個以上真空槽内に配置したことを特徴とする蒸着装置。An evaporation apparatus, wherein at least one crucible and an induction coil of the organic material evaporation source according to claim 1 are arranged in a vacuum chamber.
JP2002297766A 2002-10-10 2002-10-10 Evaporation source for organic material in vapor deposition device, and its deposition device Pending JP2004134250A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002297766A JP2004134250A (en) 2002-10-10 2002-10-10 Evaporation source for organic material in vapor deposition device, and its deposition device
KR1020030055991A KR20040032737A (en) 2002-10-10 2003-08-13 Vacuum evaporation equipment and evaporation source for organic material in vacuum evaporation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297766A JP2004134250A (en) 2002-10-10 2002-10-10 Evaporation source for organic material in vapor deposition device, and its deposition device

Publications (1)

Publication Number Publication Date
JP2004134250A true JP2004134250A (en) 2004-04-30

Family

ID=32287382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297766A Pending JP2004134250A (en) 2002-10-10 2002-10-10 Evaporation source for organic material in vapor deposition device, and its deposition device

Country Status (2)

Country Link
JP (1) JP2004134250A (en)
KR (1) KR20040032737A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503854A (en) * 2004-06-17 2008-02-07 イーストマン コダック カンパニー Vaporization of temperature sensitive materials
US7914621B2 (en) 2005-01-31 2011-03-29 Samsung Mobile Display Co., Ltd. Vapor deposition source and vapor deposition apparatus having the same
CN106973448A (en) * 2016-01-13 2017-07-21 张家港康得新光电材料有限公司 Heater
CN115341179A (en) * 2022-08-15 2022-11-15 合肥欣奕华智能机器股份有限公司 Evaporation source structure for OLED evaporation
JP7350045B2 (en) 2021-12-07 2023-09-25 長州産業株式会社 Deposition crucible, deposition source and deposition equipment
KR20230147715A (en) 2021-02-24 2023-10-23 가부시키가이샤 알박 Deposition source for vacuum evaporation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761079B1 (en) * 2005-01-31 2007-09-21 삼성에스디아이 주식회사 Deposition source having a cooling means and deposition apparatus using the same
KR100675902B1 (en) * 2005-04-09 2007-02-02 김응주 Methode and device for casting mold
KR101196517B1 (en) * 2005-04-21 2012-11-01 김명희 Evaporation cell with large-capacity crucibles for large-size OLED manufacturing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503854A (en) * 2004-06-17 2008-02-07 イーストマン コダック カンパニー Vaporization of temperature sensitive materials
US7914621B2 (en) 2005-01-31 2011-03-29 Samsung Mobile Display Co., Ltd. Vapor deposition source and vapor deposition apparatus having the same
CN106973448A (en) * 2016-01-13 2017-07-21 张家港康得新光电材料有限公司 Heater
KR20230147715A (en) 2021-02-24 2023-10-23 가부시키가이샤 알박 Deposition source for vacuum evaporation device
JP7350045B2 (en) 2021-12-07 2023-09-25 長州産業株式会社 Deposition crucible, deposition source and deposition equipment
CN115341179A (en) * 2022-08-15 2022-11-15 合肥欣奕华智能机器股份有限公司 Evaporation source structure for OLED evaporation

Also Published As

Publication number Publication date
KR20040032737A (en) 2004-04-17

Similar Documents

Publication Publication Date Title
JP2007169787A (en) System for applying coating and method for applying coating
KR20020059353A (en) Epitaxial growing method for growing aluminum nitride and growing chamber therefor
JP2004134250A (en) Evaporation source for organic material in vapor deposition device, and its deposition device
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
EP1893785B1 (en) Method for feeding powdered or granular material
CN113774476A (en) Resistance heating single crystal growing furnace by physical vapor transport method
JP2004315898A (en) Evaporation source in vapor deposition system
US4406252A (en) Inductive heating arrangement for evaporating thin film alloy onto a substrate
JPH05139882A (en) Molecular beam source
CN216156017U (en) Resistance heating single crystal growing furnace by physical vapor transport method
US20120052189A1 (en) Vapor deposition system
JP4435523B2 (en) Deposition method
JP2003095787A (en) Molecular beam source cell for depositing thin film
JP2010106357A (en) Method for depositing film and film deposition apparatus
WO2019234398A1 (en) A vapour deposition evaporator device
JP7240963B2 (en) Vacuum deposition equipment
JP5180469B2 (en) Vacuum deposition equipment
JP5044223B2 (en) Vacuum deposition equipment
KR101258252B1 (en) Apparatus for depositing chemical layers
KR102549982B1 (en) Evaporation source apparatus, vapor deposition apparatus and control method of evaporation source apparatus
US4382975A (en) Method for coating thin film alloy on a substrate utilizing inductive heating
JP3841635B2 (en) Crucible for molecular beam epitaxy equipment
JP6930282B2 (en) Cylindrical silicon target
JP2004323915A (en) Evaporation source for organic material in vapor deposition apparatus, and its vapor deposition apparatus
JP3741842B2 (en) Vacuum deposition apparatus and thin film forming method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060316