JP7281372B2 - Evaluation method and vacuum deposition apparatus - Google Patents

Evaluation method and vacuum deposition apparatus Download PDF

Info

Publication number
JP7281372B2
JP7281372B2 JP2019159813A JP2019159813A JP7281372B2 JP 7281372 B2 JP7281372 B2 JP 7281372B2 JP 2019159813 A JP2019159813 A JP 2019159813A JP 2019159813 A JP2019159813 A JP 2019159813A JP 7281372 B2 JP7281372 B2 JP 7281372B2
Authority
JP
Japan
Prior art keywords
organic material
storage box
container
vacuum
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019159813A
Other languages
Japanese (ja)
Other versions
JP2021038426A (en
Inventor
僚也 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2019159813A priority Critical patent/JP7281372B2/en
Publication of JP2021038426A publication Critical patent/JP2021038426A/en
Application granted granted Critical
Publication of JP7281372B2 publication Critical patent/JP7281372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、固体の有機材料を収容箱に収容し、真空雰囲気の真空チャンバ内で加熱手段により収容箱内の有機材料を加熱してこの有機材料を昇華または気化させるのに先立って、有機材料への熱負荷を評価する評価方法及びこの評価方法の実施が可能な真空蒸着装置に関する。 The present invention stores a solid organic material in a storage box, and heats the organic material in the storage box with a heating means in a vacuum chamber having a vacuum atmosphere to sublimate or vaporize the organic material. The present invention relates to an evaluation method for evaluating the heat load applied to a vacuum deposition apparatus and a vacuum deposition apparatus capable of implementing this evaluation method.

例えば有機EL素子の製造工程においては、真空雰囲気中でガラス基板などの基板表面に、有機膜(有機多層膜を含む)を蒸着する工程があり、この蒸着工程には真空蒸着装置が広く利用されている(例えば、特許文献1参照)。真空蒸着装置は、真空雰囲気を形成可能な真空チャンバを備え、真空チャンバ内には、有機材料を収容する収容箱と、収容箱内の有機材料を加熱するシースヒータ等の加熱手段とが設けられている。有機材料としては、素子の性能を決める所望の膜質を持つ有機膜を蒸着できるように、昇華精製などの公知の方法で高純度化(例えば、99.99%以上)されたものが一般に利用される。 For example, in the manufacturing process of an organic EL element, there is a process of vapor-depositing an organic film (including an organic multilayer film) on the surface of a substrate such as a glass substrate in a vacuum atmosphere, and a vacuum vapor deposition apparatus is widely used for this vapor deposition process. (See, for example, Patent Document 1). A vacuum deposition apparatus includes a vacuum chamber capable of forming a vacuum atmosphere, and the vacuum chamber is provided with a storage box for storing an organic material and a heating means such as a sheath heater for heating the organic material in the storage box. there is As the organic material, those highly purified (for example, 99.99% or more) by a known method such as sublimation purification are generally used so that an organic film having a desired film quality that determines the performance of the device can be deposited. be.

上記真空蒸着装置を用いて基板表面に有機膜を成膜するのに際しては、大気雰囲気の真空チャンバ内にて収容箱に、その鉛直方向上方から固体(具体的には粉末状)の有機材料を所定の充填率で充填する。このとき、有機材料の上層表面(即ち、有機材料の昇華面または気化面)は、凸凹が少ない平坦なものとなるようにならされる。次に、真空チャンバ内を真空排気して所定圧力に達すると、加熱手段により収容箱の外壁面を加熱する。これにより、収容箱壁面からの伝熱や輻射により有機材料が加熱され、有機材料の上層表面から有機材料が昇華または気化し、この昇華または気化した有機材料が収容箱上面に設けられる放出開口(噴射ノズル)から所定の余弦則に従い放出されて基板表面に付着、堆積することで有機膜が成膜される。 When forming an organic film on a substrate surface using the above-mentioned vacuum deposition apparatus, a solid (specifically, powdery) organic material is poured into a storage box from above in the vertical direction in a vacuum chamber in an atmospheric atmosphere. Fill at the specified filling rate. At this time, the surface of the upper layer of the organic material (that is, the sublimation surface or vaporization surface of the organic material) is flattened with little unevenness. Next, when the inside of the vacuum chamber is evacuated and reaches a predetermined pressure, the outer wall surface of the storage box is heated by the heating means. As a result, the organic material is heated by heat transfer and radiation from the wall surface of the storage box, and the organic material is sublimated or vaporized from the upper surface of the organic material. An organic film is formed by being ejected from an injection nozzle in accordance with a predetermined cosine law and adhering and depositing on the substrate surface.

ここで、シースヒータ等の加熱手段は、収容箱に加える熱量が略均等になるように設計、制御されるが、例えば有機材料の種類、収容箱への有機材料の充填率や放出開口の冷却といった外部要因によって、収容箱内の有機材料に加わる熱負荷に局所的に差が生じる場合がある。このとき、収容箱内に充填された有機材料の部分に必要以上の熱負荷が加わると、有機材料が昇華性のものであるような場合には、有機材料が局所的に分解または熱劣化して、所望の膜質を持つ有機膜を蒸着できないという不具合が生じる。他方で、有機材料が気化性のものであるような場合には、例えば突沸が発生して有機材料が無駄に消費され、または、溶解むらが生じて蒸着レートが不安定になるといった不具合が生じる。近年では、成膜対象としての基板の大型化に伴い、収容箱の容積も大型化して加熱手段の設計、制御が複雑化していることから、基板に対する所定の有機膜の成膜に先立って、加熱手段により収容箱内の有機材料を加熱したときの有機材料への熱負荷を簡便な手法で評価できるものの開発が早期に望まれている。 Here, the heating means such as the sheath heater is designed and controlled so that the amount of heat applied to the storage box is substantially uniform. External factors may cause local differences in the thermal load applied to the organic material within the containment box. At this time, if an excessive heat load is applied to the portion of the organic material filled in the container, if the organic material is sublimable, the organic material may be locally decomposed or thermally deteriorated. As a result, there arises a problem that an organic film having a desired film quality cannot be deposited. On the other hand, if the organic material is volatile, for example, bumping occurs and the organic material is wasted, or uneven melting occurs and the deposition rate becomes unstable. . In recent years, as the size of the substrate to be deposited has increased, the volume of the storage box has also increased, making the design and control of the heating means more complicated. There is an early demand for the development of a simple method for evaluating the heat load on the organic material when the organic material in the container is heated by a heating means.

特開2014-77193号公報JP 2014-77193 A

本発明は、以上の点に鑑み、加熱手段により収容箱内の有機材料を加熱したときの有機材料への熱負荷を簡便な手法で評価できる評価方法及び真空蒸着装置を提供することをその課題とするものである。 In view of the above points, it is an object of the present invention to provide an evaluation method and a vacuum deposition apparatus that can easily evaluate the heat load on the organic material when the organic material in the storage box is heated by a heating means. and

上記課題を解決するために、固体の有機材料を収容箱に充填し、真空雰囲気の真空チャンバ内で加熱手段により収容箱内の有機材料を加熱してこの有機材料を昇華または気化させるのに先立って、有機材料への熱負荷を評価する本発明の評価方法は、有機材料が昇華温度または気化温度に達する前に熱劣化するものを不純物とし、当該不純物を有機材料に所定の重量割合で含有させる工程と、加熱手段により収容箱内の有機材料を連続してまたは段階的に加熱する工程と、収容箱内で露出した有機材料の表面状態から有機材料への熱負荷の大小を識別する工程とを含むことを特徴とする。尚、本発明において、有機材料に不純物を含有させる工程には、収容箱に充填した有機材料に不純物を含有させる場合だけでなく、昇華精製等により高純度化される前の有機材料(つまり、不純物を上記割合で含有している有機材料)を収容箱に充填する場合を含むものとする。有機材料に含有させる不純物は、有機材料が昇華温度または気化温度に達する前に熱劣化(炭化)するものであれば、特に限定されない。また、収容箱に有機材料を充填したとき、少なくともその上層部分に、所定の重量割合で不純物が含有された有機材料の層があればよい。 In order to solve the above problems, a storage box is filled with a solid organic material, and the organic material in the storage box is heated by a heating means in a vacuum chamber in a vacuum atmosphere, prior to sublimation or vaporization of the organic material. Therefore, in the evaluation method of the present invention for evaluating the heat load on an organic material, impurities that are thermally degraded before the organic material reaches the sublimation temperature or the vaporization temperature are included in the organic material at a predetermined weight ratio. a step of continuously or stepwise heating the organic material in the storage box by a heating means; and identifying the magnitude of the heat load to the organic material from the surface state of the organic material exposed in the storage box. and a step. In the present invention, the step of adding impurities to the organic material includes not only the process of adding impurities to the organic material filled in the storage box, but also the organic material before being highly purified by sublimation purification (that is, (Organic material containing impurities in the above ratio). Impurities contained in the organic material are not particularly limited as long as they are thermally degraded (carbonized) before the organic material reaches the sublimation temperature or vaporization temperature. Moreover, when the storage box is filled with the organic material, it is sufficient that at least the upper layer portion of the storage box contains an organic material layer containing impurities in a predetermined weight ratio.

ここで、本発明者らは、鋭意研究を重ね、有機材料がアルミキノリノール錯体(Alq)や芳香族ジアミンなどの昇華性のものであって、例えば有機EL素子を製作するのに利用される純度まで高純度化される前のもの(例えば、99.5%)を収容箱に充填し、真空雰囲気中で収容箱の外壁面を加熱したところ、有機材料が昇華温度に達する前に、有機材料中の不純物が先に熱劣化(炭化)し、昇華温度に達した後には、これが収容箱に充填された有機材料の上層表面(昇華面)に、昇華することなく焦げ跡のように残ることを知見するのに至った。なお、有機材料がα-NPDなどの気化性のものである場合でも、有機材料の上層表面が液化する前段階で有機材料中の不純物が熱劣化して焦げ跡のようになる。 Here, the present inventors have made intensive studies and found that the organic material is sublimable, such as an aluminum quinolinol complex (Alq 3 ) or an aromatic diamine, and is used, for example, to produce an organic EL device. A storage box was filled with a material (for example, 99.5%) before being highly purified to a purity level, and the outer wall surface of the storage box was heated in a vacuum atmosphere. Impurities in the material are first thermally degraded (carbonized), and after reaching the sublimation temperature, they remain as burn marks on the upper layer surface (sublimation surface) of the organic material filled in the storage box without sublimation. I came to know that. Even when the organic material is volatile such as α-NPD, impurities in the organic material are thermally degraded to form burn marks before the upper surface of the organic material is liquefied.

そこで、本発明においては、上記知見を基に、有機材料を収容箱に充填するのに際して、所定の重量割合で不純物を含有させたため、昇華温度または気化温度と同等以下の温度まで加熱手段により収容箱内の有機材料を連続してまたは段階的に加熱していくと、収容箱内で、有機材料に大きな熱負荷が加わる部分から、有機材料中の不純物が順次熱劣化(炭化)して焦げ跡のようになっていく。このため、収容箱に充填された有機材料の上層表面にて熱劣化(炭化)していく部分を識別(特定)していけば、加熱手段により収容箱に所定の熱量を連続してまたは段階的に加えて昇温させるときの収容箱内の有機材料に加わる熱負荷の大小を極めて簡便な手法で評価できる(言い換えると、例えば、収容箱内の温度を複数の熱電対を用いて温度測定することなく、収容箱内の温度分布が実質的に確認できる)。その結果、熱負荷の大小の評価から加熱手段を適宜制御すれば、熱負荷の比較的大きい箇所にて、収容箱内に充填された有機材料の部分に必要以上の熱負荷が加わることや、優先的に昇華または気化して片減りするといったことが可及的に防止でき、有利である。なお、上記評価後に有機材料中に残存する不純物もまた、有機材料が昇華温度または気化温度まで加熱される前に熱劣化(炭化)するが、この熱劣化したものは昇華または気化しないので、所定の有機膜の成膜に悪影響を与えることはない。 Therefore, in the present invention, based on the above knowledge, when filling the container with the organic material, impurities are contained in a predetermined weight ratio, so that the organic material is contained by a heating means to a temperature equal to or lower than the sublimation temperature or the vaporization temperature. When the organic material in the box is heated continuously or step by step, impurities in the organic material are thermally degraded (carbonized) and charred sequentially from the part where the organic material receives a large heat load in the storage box. It becomes like a trace. Therefore, by identifying (specifying) the portion of the upper layer surface of the organic material filled in the storage box that is thermally degraded (carbonized), a predetermined amount of heat is continuously or stepwisely applied to the storage box by the heating means. It is possible to evaluate the magnitude of the heat load applied to the organic material in the container when the temperature is raised in addition to the target by a very simple method (in other words, for example, the temperature inside the container can be measured using a plurality of thermocouples). The temperature distribution in the storage box can be practically confirmed without As a result, if the heating means is appropriately controlled based on the evaluation of the magnitude of the heat load, the portion of the organic material filled in the storage box will not be subjected to an excessive heat load at a location where the heat load is relatively large. This is advantageous because it is possible to prevent preferential sublimation or vaporization and unbalanced consumption as much as possible. Impurities remaining in the organic material after the above evaluation are also thermally degraded (carbonized) before the organic material is heated to the sublimation temperature or the vaporization temperature. does not adversely affect the deposition of organic films.

本発明において、前記重量割合は0.2重量%~5重量%の範囲内で設定されることが好ましい。不純物が0.2重量%より少ないと、熱劣化(炭化)していく部分を目視で識別することが困難であり、5重量%より多くなると、例えば、有機材料が昇華性のものである場合に、焦げ跡のように残る不純物が、その下層の高純度の有機材料の昇華を阻害し、収容箱内での有機材料の蒸発量が抑制され、ひいては、成膜レートの低下を招来する。 In the present invention, the weight ratio is preferably set within the range of 0.2% by weight to 5% by weight. If the impurity content is less than 0.2% by weight, it is difficult to visually identify the portion that is thermally degraded (carbonized). In addition, the remaining impurities such as burn marks inhibit the sublimation of the high-purity organic material in the lower layer, suppress the amount of evaporation of the organic material in the housing box, and eventually cause a decrease in the film formation rate.

また、上記評価方法の実施が可能な本発明の真空蒸着装置は、真空雰囲気を形成可能な真空チャンバ内に配置されて不純物を含有した有機材料を収容する収容箱と、収容箱内の有機材料を加熱する加熱手段とを備え、真空チャンバの壁面に設けられる第1透視窓と、収容箱に設けられる第2透視窓とを有して収容箱内で露出する有機材料の表面状態を視認可能としたことを特徴とする。 Further, the vacuum deposition apparatus of the present invention capable of carrying out the above-described evaluation method includes a storage box that is placed in a vacuum chamber capable of forming a vacuum atmosphere and stores an organic material containing impurities, and an organic material in the storage box. and a first see-through window provided on the wall surface of the vacuum chamber and a second see-through window provided in the container so that the surface state of the organic material exposed in the container can be visually recognized. It is characterized by

本発明によれば、第1透視窓及び第2透視窓を設けたことで、真空雰囲気中でガラス基板などの基板表面に所定の有機膜を成膜する(即ち、量産する)のに先立って、加熱手段により収容箱内の有機材料を加熱して昇華または気化させる際に、真空チャンバの外側から第1透視窓及び第2透視窓を介して有機材料の表面状態を視認して収容箱内の有機材料に加わる熱負荷の大小を評価し、これに応じて、加熱手段を適宜制御すれば、熱負荷の比較的大きい箇所にて、収容箱内に充填された有機材料の部分に必要以上の熱負荷が加わることや、優先的に昇華または気化して片減りするといったことが可及的に防止できる。 According to the present invention, by providing the first transparent window and the second transparent window, prior to forming a predetermined organic film on the surface of a substrate such as a glass substrate in a vacuum atmosphere (that is, mass production), When the organic material in the storage box is heated by the heating means to be sublimated or vaporized, the surface state of the organic material is visually observed from the outside of the vacuum chamber through the first see-through window and the second see-through window, and the inside of the box is If the magnitude of the heat load applied to the organic material is evaluated, and the heating means is appropriately controlled accordingly, the portion of the organic material filled in the container box will be heated more than necessary at the location where the heat load is relatively large. It is possible to prevent, as much as possible, the application of a thermal load of 100% and preferentially sublimating or vaporizing to cause an unbalanced consumption.

本発明の実施形態の真空蒸着装置を説明する、一部を断面視とした部分斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The partial perspective view which made the one part cross section explaining the vacuum deposition apparatus of embodiment of this invention. 本実施形態の真空蒸着装置を正面側からみた部分断面図。FIG. 2 is a partial cross-sectional view of the vacuum deposition apparatus of the present embodiment as seen from the front side; 本発明の効果を確認する実験結果を説明する写真であり、(a)は、加熱前の有機材料の表面状態を示す写真、(b)は、加熱中の有機材料の表面状態を示す写真。BRIEF DESCRIPTION OF THE DRAWINGS It is a photograph explaining the experimental result which confirms the effect of this invention, (a) is a photograph which shows the surface state of the organic material before heating, (b) is a photograph which shows the surface state of the organic material during heating.

以下、図面を参照して、固体の有機材料Omとして昇華性のアルミキノリノール錯体(Alq)を用い、この有機材料Omを収容箱に充填し、真空雰囲気の真空チャンバ内で加熱手段により収容箱内の有機材料Omを加熱してこの有機材料Omを昇華させるのに先立って、有機材料Omへの熱負荷を評価する本発明の実施形態に係る評価方法及びこの評価方法の実施が可能な真空蒸着装置DMについて説明する。以下において、「上」、「下」といった方向を指す用語は、図1及び図2に示す真空蒸着装置DMの姿勢を基準とする。 Hereinafter, with reference to the drawings, a sublimable aluminum quinolinol complex (Alq 3 ) is used as the solid organic material Om, the organic material Om is filled in a container, and the container is heated by heating means in a vacuum chamber in a vacuum atmosphere. An evaluation method according to an embodiment of the present invention for evaluating the heat load on the organic material Om prior to heating the organic material Om in the interior to sublimate the organic material Om, and a vacuum capable of implementing this evaluation method The vapor deposition device DM will be described. Hereinafter, terms such as "up" and "down" are based on the posture of the vacuum deposition apparatus DM shown in FIGS.

図1及び図2を参照して、真空蒸着装置DMは真空チャンバ1を備え、真空チャンバ1には、排気管を介して真空ポンプVpが接続され、所定圧力(真空度)に真空排気して保持できるようになっている。真空チャンバ1の上部にはまた、基板搬送装置2が設けられている。基板搬送装置2は、蒸着面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Swを真空チャンバ1内の一方向に所定速度で移動するようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略する。また、以下においては、後述の蒸着源Dsに対する基板Swの相対移動方向をX軸方向、X軸方向に直交する基板Swの幅方向をY軸方向とする。 Referring to FIGS. 1 and 2, the vacuum deposition apparatus DM includes a vacuum chamber 1, which is connected to a vacuum pump Vp through an exhaust pipe, and is evacuated to a predetermined pressure (degree of vacuum). It is designed to hold. A substrate transfer device 2 is also provided above the vacuum chamber 1 . The substrate transfer device 2 has a carrier 21 that holds the substrate Sw with its lower surface as a vapor deposition surface open. to move. Since a known device can be used as the substrate transfer device 2, further explanation is omitted. Also, hereinafter, the direction of relative movement of the substrate Sw with respect to the vapor deposition source Ds, which will be described later, is defined as the X-axis direction, and the width direction of the substrate Sw perpendicular to the X-axis direction is defined as the Y-axis direction.

基板搬送装置2によって搬送される基板Swと蒸着源Dsとの間には、板状のマスクプレート3が設けられている。本実施形態では、マスクプレート3は、基板Swと一体に取り付けられて基板Swと共に基板搬送装置2によって搬送される。なお、マスクプレート3は、真空チャンバ1に予め固定配置しておくこともできる。マスクプレート3には、板厚方向に貫通する複数の開口31が形成され、これら開口31がない位置にて有機材料Omの基板Swに対する付着範囲が制限されることで所定のパターンで基板Swに蒸着される。マスクプレート3としては、インバー等の金属製のものの他、ポリイミド等の樹脂製のものが用いられる。そして、真空チャンバ1の底面には、X軸方向に移動される基板Swに対向させて、蒸着源としての収容箱Dsが設けられている。 A plate-like mask plate 3 is provided between the substrate Sw transported by the substrate transport device 2 and the vapor deposition source Ds. In this embodiment, the mask plate 3 is attached integrally with the substrate Sw and transported together with the substrate Sw by the substrate transport device 2 . The mask plate 3 can also be fixedly arranged in the vacuum chamber 1 in advance. A plurality of openings 31 are formed through the mask plate 3 in the plate thickness direction, and the adhesion range of the organic material Om to the substrate Sw is limited at positions where there are no openings 31, so that the organic material Om adheres to the substrate Sw in a predetermined pattern. vapor-deposited. The mask plate 3 may be made of metal such as Invar or made of resin such as polyimide. A storage box Ds as a vapor deposition source is provided on the bottom surface of the vacuum chamber 1 so as to face the substrate Sw that is moved in the X-axis direction.

収容箱Dsは、外容器41と、外容器41内に設置される、上面を開口した内容器42とを備え、内容器42に粉末状(固体)の有機材料Omが所定の充填率で充填される。外容器41内には、内容器42の壁面(Y軸方向にのびる側面)を囲うようにして加熱手段としてのシースヒータ43a~43dが設けられている。この場合、内容器42が長手方向(Y軸方向)で複数(本実施形態では4つ)のブロック42a~42dに分けられ、ブロック42a~42d毎にシースヒータ43a~43dが独立して設けられて、図外の電源から夫々通電して加熱制御できるようにしている。外容器41の上壁41aには、所定高さの筒体で構成される放出開口(噴射ノズル)44がY軸方向に所定の間隔で複数本(本実施形態では6本)列設されている。各シースヒータ43a~43dに通電して内容器42を加熱すると、内容器42の壁面からの伝熱や外容器41の上壁(基板Swとの対向面)41aから輻射で有機材料Omが加熱され、内容器42に充填された有機材料Omの上層表面(即ち、有機材料Omの昇華面)Om1から有機材料Omが昇華し、この昇華した有機材料Omが所定の余弦則に従い放出開口44から真空チャンバ1内の空間に放出される。 The storage box Ds includes an outer container 41 and an inner container 42 having an open top, which is installed in the outer container 41. The inner container 42 is filled with a powdery (solid) organic material Om at a predetermined filling rate. be done. In the outer container 41, sheath heaters 43a to 43d are provided as heating means so as to surround the wall surface of the inner container 42 (side surface extending in the Y-axis direction). In this case, the inner container 42 is divided into a plurality (four in this embodiment) of blocks 42a to 42d in the longitudinal direction (Y-axis direction), and sheath heaters 43a to 43d are provided independently for each of the blocks 42a to 42d. , are energized from power sources (not shown) to control heating. In the upper wall 41a of the outer container 41, a plurality of discharge openings (injection nozzles) 44, which are cylindrical bodies having a predetermined height, are arranged at predetermined intervals in the Y-axis direction (six in this embodiment). there is When the sheath heaters 43a to 43d are energized to heat the inner container 42, the organic material Om is heated by heat transfer from the wall surface of the inner container 42 and radiation from the upper wall (facing the substrate Sw) 41a of the outer container 41. , the organic material Om is sublimated from the upper surface Om1 of the organic material Om (that is, the sublimation surface of the organic material Om) filled in the inner container 42, and the sublimated organic material Om is discharged from the emission opening 44 in accordance with the predetermined cosine law. It is released into the space inside the chamber 1 .

また、真空チャンバ1の壁面(側壁)の所定位置には第1透視窓11が設けられ、この第1透視窓11を介して放出開口44の詰まりがないか確認できるようになっている。外容器41の上壁41aの所定位置にもまた、第2透視窓45が設けられ、これら第1及び第2の透視窓11,45を介して有機材料Omの上層表面Om1を略全面に亘って視認できるようになっている。第1透視窓11及び第2透視窓45としては、例えば石英製のものが用いられる。なお、第2透視窓45には、内容器42で昇華した有機材料Omが付着するが、第2透視窓45もまた、内容器42を加熱したときの内容器42の壁面からの伝熱で加熱されるため、付着した有機材料Omが再昇華することで、その視認性が損なわれることはない。この場合、第2透視窓45の表面に有機材料Omの付着を防止する付着防止膜を成膜してもよい。また、本実施形態では、各シースヒータ43a~43dにより加熱したときに内容器42の側壁がその全面に亘って同等の温度に加熱できるように、外容器41の上壁41aに第2透視窓45を設けているが、内容器42に充填される有機材料Omの上層表面Om1を略全面に亘って視認でき、かつ、内容器42の側壁を同等の温度に加熱できるものであれば、第2透視窓45の位置や数は上記に限定されるものではない。 A first see-through window 11 is provided at a predetermined position on the wall surface (side wall) of the vacuum chamber 1 , and through this first see-through window 11 it is possible to check whether or not the discharge opening 44 is clogged. A second see-through window 45 is also provided at a predetermined position of the upper wall 41a of the outer container 41, and through these first and second see-through windows 11 and 45, the upper surface Om1 of the organic material Om is substantially entirely covered. are visible. As the first see-through window 11 and the second see-through window 45, for example, one made of quartz is used. Although the organic material Om sublimated in the inner container 42 adheres to the second see-through window 45, the second see-through window 45 is also exposed to heat transfer from the wall surface of the inner container 42 when the inner container 42 is heated. Since it is heated, the attached organic material Om is re-sublimated, and its visibility is not impaired. In this case, an anti-adhesion film may be formed on the surface of the second transparent window 45 to prevent the organic material Om from adhering. In this embodiment, the upper wall 41a of the outer container 41 is provided with a second see-through window 45 so that the entire side wall of the inner container 42 can be heated to the same temperature when heated by the sheath heaters 43a to 43d. However, if the upper surface Om1 of the organic material Om filled in the inner container 42 can be visually recognized over substantially the entire surface and the side wall of the inner container 42 can be heated to the same temperature, the second The position and number of the see-through windows 45 are not limited to the above.

上記真空蒸着装置DMは、マイクロコンピュータ、記憶素子やシーケンサ等を備えた公知の制御ユニット(図示省略)を備え、この制御ユニットが、真空ポンプVpや基板搬送装置2などの各部品の制御を統括して行うと共に、内容器42ひいては有機材料Omに略均等に熱量が加えられるように、電源から各シースヒータ43a~43dへの投入電力の制御を行うようにしている。以下に、本実施形態の評価方法を適用して上記真空蒸着装置DMにより所定の有機膜を成膜する場合を具体的に説明する。 The vacuum deposition apparatus DM includes a known control unit (not shown) equipped with a microcomputer, a memory element, a sequencer, etc., and this control unit supervises the control of each component such as the vacuum pump Vp and the substrate transfer device 2. At the same time, the power supplied from the power source to the sheath heaters 43a to 43d is controlled so that heat is applied substantially evenly to the inner container 42 and the organic material Om. A case where a predetermined organic film is formed by the vacuum deposition apparatus DM by applying the evaluation method of the present embodiment will be specifically described below.

先ず、大気雰囲気中の真空チャンバ1内にて、収容箱Dsの内容器42に、その上方から固体(粉末状)の有機材料Omを所定の充填率で充填する。このとき、有機材料Omに0.2重量%~5重量%の範囲の割合で不純物を含有させる。不純物としては、有機材料Omが昇華温度に達する前に先に熱劣化(炭化)するものであれば、特に制限はなく、また、内容器42に充填された有機材料Omの上層部分に不純物が含有された有機材料Omの層があればよい。本実施形態では、有機EL素子を製作するのに利用される純度(例えば99.99%以上)まで高純度化される前の所定純度(99.5%)の有機材料Omが内容器42に充填される。なお、有機材料Omに含まれる不純物が2重量%より少ないと、後述するように、熱劣化(炭化)していく部分を目視で識別することが困難であり、5重量%より多くなると、例えば、有機材料Omが昇華性のものである場合に、焦げ跡のように残る不純物が、その下層の高純度の有機材料Omの昇華を阻害し、収容箱Ds内での有機材料Omの蒸発量が抑制され、ひいては、成膜レートの低下を招来する。 First, in the vacuum chamber 1 in the atmosphere, the inner container 42 of the storage box Ds is filled from above with a solid (powder) organic material Om at a predetermined filling rate. At this time, the organic material Om is made to contain impurities at a rate in the range of 0.2% by weight to 5% by weight. The impurities are not particularly limited as long as they are thermally degraded (carbonized) before the organic material Om reaches the sublimation temperature. All that is needed is a layer of contained organic material Om. In the present embodiment, the organic material Om having a predetermined purity (99.5%) before being highly purified to a purity (e.g., 99.99% or more) used for manufacturing an organic EL element is contained in the inner container 42. be filled. If the impurity contained in the organic material Om is less than 2% by weight, it is difficult to visually identify the portion that is thermally degraded (carbonized) as described later. , when the organic material Om is sublimable, the remaining impurities such as burn marks inhibit the sublimation of the high-purity organic material Om in the lower layer, and the amount of evaporation of the organic material Om in the storage box Ds is suppressed, which in turn causes a decrease in the film formation rate.

次に、真空ポンプVpにより真空チャンバ1を真空排気し、真空チャンバ1内が所定圧力(例えば1×10-5Pa)に達すると、各シースヒータ43a~43dを作動させて内容器42の加熱を開始する。このとき、各シースヒータ43a~43dを所定の昇温速度(一定の温度勾配)で高めながら(つまり、連続して加える熱量を一定の温度勾配で増加させながら)、内容器42を加熱する。これにより、収容箱Dsでは、内容器42の側壁からの伝熱や、外容器41の上壁41aからの輻射熱で有機材料Omが連続して加熱される。なお、各シースヒータ43a~43dの制御により内容器42に所定の熱量を段階的に加えて有機材料Omを段階的に加熱することもできる。 Next, the vacuum pump Vp evacuates the vacuum chamber 1, and when the inside of the vacuum chamber 1 reaches a predetermined pressure (for example, 1×10 −5 Pa), the sheath heaters 43 a to 43 d are operated to heat the inner container 42 . Start. At this time, the inner container 42 is heated while the sheath heaters 43a to 43d are increased at a predetermined temperature rise rate (constant temperature gradient) (that is, the amount of heat continuously applied is increased at a constant temperature gradient). As a result, in the storage box Ds, the organic material Om is continuously heated by heat transfer from the side wall of the inner container 42 and radiant heat from the upper wall 41 a of the outer container 41 . It is also possible to stepwise heat the organic material Om by applying a predetermined amount of heat to the inner container 42 stepwise by controlling the sheath heaters 43a to 43d.

上記のように有機材料Omを連続して加熱していくと、内容器42内で、有機材料Omに大きな熱負荷が加わる部分から、有機材料Om中の不純物が順次熱劣化(炭化)して焦げ跡のようになっていく。このように有機材料Omの上層表面Om1にて熱劣化(炭化)していく部分を、外容器41に設けられた第2透視窓45と真空チャンバ1の壁面に設けられた第1透視窓11とを介して目視で識別(特定)する。そして、有機材料Omに大きな熱負荷が加わっている部分では、これに対向するシースヒータ43a~43dが制御され(例えば、加える熱量を低下または一旦停止される)、各シースヒータ43a~43dにより同等の温度勾配で内容器42内の有機材料Omが加熱されるようにする。その後、有機材料Omが昇華温度に達すると、有機材料Omの上層表面Om1の全体から同等の昇華量で有機材料Omが昇華する。この昇華した有機材料Omが所定の余弦則に従い放出開口44から真空チャンバ1内の空間に放出され、基板搬送装置2によって搬送される基板Sw表面にマスクプレート3越しに有機膜が成膜(蒸着)される。なお、熱劣化した(炭化)ものは、昇華しないので、成膜に悪影響を与えることはない。 When the organic material Om is continuously heated as described above, impurities in the organic material Om are sequentially thermally degraded (carbonized) from a portion where a large heat load is applied to the organic material Om within the inner container 42 . It becomes like a burn mark. In this way, the thermally degraded (carbonized) portion of the upper surface Om1 of the organic material Om is detected through the second see-through window 45 provided in the outer container 41 and the first see-through window 11 provided in the wall surface of the vacuum chamber 1 . Visually identify (identify) through Then, in the portion where a large heat load is applied to the organic material Om, the sheath heaters 43a to 43d facing this are controlled (for example, the amount of heat applied is reduced or temporarily stopped), and the respective sheath heaters 43a to 43d maintain an equivalent temperature. The gradient heats the organic material Om in the inner container 42 . After that, when the organic material Om reaches the sublimation temperature, the organic material Om is sublimated from the entire upper surface Om1 of the organic material Om with the same amount of sublimation. This sublimated organic material Om is discharged from the discharge opening 44 into the space in the vacuum chamber 1 according to the predetermined cosine law, and an organic film is formed (evaporation) on the surface of the substrate Sw transported by the substrate transport device 2 through the mask plate 3. ) is done. Note that the heat-degraded (carbonized) material does not sublimate, so it does not adversely affect the film formation.

以上の実施形態によれば、有機材料Om中の不純物が順次熱劣化(炭化)して焦げ跡のようになっていく箇所を特定するという極めて簡便な手法で、内容器42に所定の熱量を連続して(または段階的に)加えて昇温させるときの内容器42内の有機材料Omに加わる熱負荷の大小を評価できる。言い換えると、例えば、内容器42内の温度を複数の熱電対を用いて測定することなく、内容器42内の温度分布が実質的に確認できる。そして、熱負荷の大小の評価から各シースヒータ43a~43dへの通電を制御することで、内容器42内に充填された有機材料Omの部分に必要以上の熱負荷が加わることや、優先的に昇華して片減りするといったことが可及的に防止でき、有利である。 According to the above-described embodiment, a predetermined amount of heat is applied to the inner container 42 by an extremely simple method of identifying locations where impurities in the organic material Om are sequentially thermally degraded (carbonized) and become like burn marks. It is possible to evaluate the magnitude of the heat load applied to the organic material Om in the inner container 42 when it is continuously (or stepwisely) added and the temperature is raised. In other words, for example, the temperature distribution inside the inner container 42 can be substantially confirmed without measuring the temperature inside the inner container 42 using a plurality of thermocouples. Then, by controlling the energization of each sheath heater 43a to 43d based on the evaluation of the magnitude of the heat load, it is possible to prevent excessive heat load from being applied to the portion of the organic material Om filled in the inner container 42 and preferentially This is advantageous because it is possible to prevent sublimation and unbalanced consumption as much as possible.

次に、以上の効果を確認するため、上記真空蒸着装置DMを用いて次の実験を行った。即ち、有機材料Omとして、不純物を0.5重量%含有する粉末状のアルミキノリノール錯体(Alq)を用い、この有機材料Omを内容器42に充填した(図3(a)参照)。その後、真空チャンバ1を所定圧力(1×10-5Pa)まで真空排気し、各シースヒータ43a~43dにより内容器42の加熱を開始し、有機材料Omを連続的に加熱した。加熱開始から1時間経過後、図3(b)に示すように有機材料Omの上層表面Om1にて不純物の焦げ跡が確認され、この焦げ跡を特定するという簡単な手法で、内容器42内の有機材料Omに加わる熱負荷の大小を評価できることが判った。そして、この評価結果を基に、有機材料Omに焦げ跡が多く見られた部分(すなわち、大きな熱負荷が加わる内容器42のブロック42b,42c)では、これに対向するシースヒータ43b,43cへの投入電力を制御した(加える熱量を低下させた)。これにより、シースヒータ43b,43cへの投入電力を制御(調整)しない場合と比べて、有機材料Omの片減りを抑制できることが確認された。 Next, in order to confirm the above effect, the following experiment was conducted using the vacuum deposition apparatus DM. That is, a powdery aluminum quinolinol complex (Alq 3 ) containing 0.5% by weight of impurities was used as the organic material Om, and the inner container 42 was filled with this organic material Om (see FIG. 3A). After that, the vacuum chamber 1 was evacuated to a predetermined pressure (1×10 −5 Pa), and the sheath heaters 43a to 43d started heating the inner vessel 42 to continuously heat the organic material Om. After one hour from the start of heating, as shown in FIG. It was found that the magnitude of the heat load applied to the organic material Om can be evaluated. Then, based on this evaluation result, in the portions where many scorch traces were observed in the organic material Om (that is, the blocks 42b and 42c of the inner container 42 to which a large heat load is applied), the sheath heaters 43b and 43c facing the portions were heated. The input power was controlled (the amount of heat applied was reduced). As a result, it was confirmed that uneven consumption of the organic material Om can be suppressed as compared with the case where the electric power supplied to the sheath heaters 43b and 43c is not controlled (adjusted).

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、加熱手段としてシースヒータ43a~43dを用いる場合を例に説明したが、加熱手段はこれに限定されず、内容器42の側壁を同等の温度に加熱できるものを用いることができる。 Although the embodiments of the present invention have been described above, various modifications are possible without departing from the scope of the technical idea of the present invention. In the above embodiment, the case where the sheath heaters 43a to 43d are used as the heating means has been described as an example, but the heating means is not limited to this, and any one capable of heating the side wall of the inner container 42 to the same temperature can be used.

上記実施形態では、有機材料Omとして昇華性のものを用いる場合を例に説明したが、有機材料Omがα-NPDなどの気化性のものである場合でも、有機材料Omの上層表面が液化する前段階で有機材料Om中の不純物が熱劣化して焦げ跡のようになるため、本発明を適用することができる。 In the above embodiment, the sublimable organic material Om is used as an example, but even if the organic material Om is a vaporizable material such as α-NPD, the upper surface of the organic material Om is liquefied. The present invention can be applied because the impurities in the organic material Om are thermally degraded in the previous stage and become like burn marks.

DM…真空蒸着装置、Ds…収容箱、Om…有機材料、1…真空チャンバ、11…第1透視窓、42…内容器(収容箱)、43a~43d…シースヒータ(加熱手段)、45…第2透視窓。 DM... vacuum vapor deposition apparatus, Ds... storage box, Om... organic material, 1... vacuum chamber, 11... first see-through window, 42... inner container (accommodation box), 43a to 43d... sheath heater (heating means), 45... second 2 see-through window.

Claims (3)

固体の有機材料を収容箱に充填し、真空雰囲気の真空チャンバ内で加熱手段により収容箱内の有機材料を加熱してこの有機材料を昇華または気化させるのに先立って、有機材料への熱負荷を評価する評価方法であって、
有機材料が昇華温度または気化温度に達する前に熱劣化するものを不純物とし、当該不純物を有機材料に所定の重量割合で含有させる工程と、
加熱手段により収容箱内の有機材料を連続してまたは段階的に加熱する工程と、
収容箱内で露出した有機材料の表面状態から有機材料への熱負荷の大小を識別する工程とを含むことを特徴とする評価方法。
Prior to filling a container with a solid organic material and heating the organic material in the container with a heating means in a vacuum chamber having a vacuum atmosphere to sublimate or vaporize the organic material, heat load is applied to the organic material. An evaluation method for evaluating the
A step of making an organic material thermally degraded before it reaches a sublimation temperature or a vaporization temperature as an impurity, and adding the impurity to the organic material in a predetermined weight ratio;
continuously or stepwise heating the organic material in the container with a heating means;
and a step of discriminating the magnitude of the heat load to the organic material from the surface state of the organic material exposed in the storage box.
前記重量割合は0.2重量%~5重量%の範囲内で設定されることを特徴とする請求項1記載の評価方法。 2. The evaluation method according to claim 1, wherein said weight ratio is set within a range of 0.2% by weight to 5% by weight. 請求項1または請求項2記載の評価方法の実施が可能な真空蒸着装置であって、真空雰囲気を形成可能な真空チャンバ内に配置されて不純物を含有した有機材料が充填される収容箱と、収容箱内の有機材料を加熱する加熱手段とを備えるものにおいて、
真空チャンバの壁面に設けられる第1透視窓と、収容箱に設けられる第2透視窓とを有して収容箱内で露出する有機材料の表面状態を視認可能としたことを特徴とする真空蒸着装置。
A vacuum deposition apparatus capable of performing the evaluation method according to claim 1 or claim 2, wherein the storage box is placed in a vacuum chamber capable of forming a vacuum atmosphere and is filled with an organic material containing impurities; and a heating means for heating the organic material in the storage box,
A vacuum deposition characterized by having a first see-through window provided on the wall surface of the vacuum chamber and a second see-through window provided in the container so that the surface state of the organic material exposed in the container can be visually recognized. Device.
JP2019159813A 2019-09-02 2019-09-02 Evaluation method and vacuum deposition apparatus Active JP7281372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159813A JP7281372B2 (en) 2019-09-02 2019-09-02 Evaluation method and vacuum deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159813A JP7281372B2 (en) 2019-09-02 2019-09-02 Evaluation method and vacuum deposition apparatus

Publications (2)

Publication Number Publication Date
JP2021038426A JP2021038426A (en) 2021-03-11
JP7281372B2 true JP7281372B2 (en) 2023-05-25

Family

ID=74848283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159813A Active JP7281372B2 (en) 2019-09-02 2019-09-02 Evaluation method and vacuum deposition apparatus

Country Status (1)

Country Link
JP (1) JP7281372B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317951A (en) 2002-04-25 2003-11-07 Fuji Electric Co Ltd Vapor deposition device and method of organic thin film
JP2010129335A (en) 2008-11-27 2010-06-10 Seiko Epson Corp Physical vapor film-forming apparatus, and manufacturing method of organic el device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317951A (en) 2002-04-25 2003-11-07 Fuji Electric Co Ltd Vapor deposition device and method of organic thin film
JP2010129335A (en) 2008-11-27 2010-06-10 Seiko Epson Corp Physical vapor film-forming apparatus, and manufacturing method of organic el device

Also Published As

Publication number Publication date
JP2021038426A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US7815737B2 (en) Source for thermal physical vapor deposition of organic electroluminescent layers
TWI467040B (en) Evaporator for organic materials
JP2004052113A (en) Heating vessel and vapor deposition system using the same
JP2003160855A (en) Thin-film forming apparatus
JP4478113B2 (en) Heating vessel support and vapor deposition apparatus equipped with the same
JP3929397B2 (en) Method and apparatus for manufacturing organic EL element
JP7281372B2 (en) Evaluation method and vacuum deposition apparatus
JP7240963B2 (en) Vacuum deposition equipment
JP2020190013A (en) Vacuum deposition method
KR100829736B1 (en) Heating crucible of deposit apparatus
JP5180469B2 (en) Vacuum deposition equipment
WO2012086230A1 (en) Vacuum deposition equipment and vacuum deposition method
JP2007314844A (en) Vacuum vapor-deposition apparatus
JP2007113077A (en) Crucible
KR100340732B1 (en) Heating crucible of apparatus for depositing a organic materials
JP7078462B2 (en) Thin-film deposition source for vacuum-film deposition equipment
KR101258252B1 (en) Apparatus for depositing chemical layers
JP7162639B2 (en) Evaporation source device, vapor deposition device, and control method for evaporation source device
JP4908234B2 (en) Evaporation source and vapor deposition equipment
KR20060040233A (en) Evaporating apparatus and evaporating method of organic matter
JP2005307354A (en) Method and device for producing organic el element
KR101528709B1 (en) depositon crucible for improving evaporation uniformity
KR100583044B1 (en) Apparatus for linearly heating deposition source material
KR200365703Y1 (en) Apparatus for vapor deposition of thin film
KR20040026573A (en) Apparatus for depositing organic- electroluminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7281372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150