JP2005307354A - Method and device for producing organic el element - Google Patents

Method and device for producing organic el element Download PDF

Info

Publication number
JP2005307354A
JP2005307354A JP2005132291A JP2005132291A JP2005307354A JP 2005307354 A JP2005307354 A JP 2005307354A JP 2005132291 A JP2005132291 A JP 2005132291A JP 2005132291 A JP2005132291 A JP 2005132291A JP 2005307354 A JP2005307354 A JP 2005307354A
Authority
JP
Japan
Prior art keywords
organic
container
thin film
electromagnetic induction
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005132291A
Other languages
Japanese (ja)
Inventor
Kazuo Ishii
和男 石井
Hiroshi Miyazaki
浩 宮崎
Shuhei Hotta
修平 堀田
Yoshitaka Uchibori
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA YUKA KOGYO KK
Nippon Steel Chemical and Materials Co Ltd
Seta Giken KK
Original Assignee
OSAKA YUKA KOGYO KK
Nippon Steel Chemical Co Ltd
Seta Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA YUKA KOGYO KK, Nippon Steel Chemical Co Ltd, Seta Giken KK filed Critical OSAKA YUKA KOGYO KK
Priority to JP2005132291A priority Critical patent/JP2005307354A/en
Publication of JP2005307354A publication Critical patent/JP2005307354A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing vapor-deposited films of good quality for organic El elements uniformly and rapidly in high productivity by electromagnetic induction heating of a container to which the raw material is introduced and a device used for the same. <P>SOLUTION: The device for vapor deposition of films for the organic EL elements vaporizes an organic material 5 for the organic EL elements in the container 2 and deposits the material in thin film on the surface of a film-forming substrate 6 and comprises the container 2 constructed of a material capable of generating heat by electromagnetic induction and a means for heating the container for vaporizing the organic material 5 by electromagnetic induction. Also provided is a method for producing the organic EL elements by using the device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は有機エレクトロルミネッセンス素子(有機EL素子)の製造装置に関し、詳しくは有機EL素子用有機薄膜を真空蒸着法で作成するために有機EL材料を気化させるための方法及び装置に関する。   The present invention relates to an apparatus for manufacturing an organic electroluminescence element (organic EL element), and more particularly to a method and apparatus for vaporizing an organic EL material in order to form an organic thin film for an organic EL element by a vacuum deposition method.

有機EL素子の一般的な構造としては、透明導電膜からなる陽極と陰極との間に正孔輸送層、発光層、電子輸送層等の有機薄膜層が形成されており、陽極から正 孔輸送層を介して発光層に注入された正孔と陰極から電子輸送層を介して発光層に注入された電子とが再結合する際に発光が生じる。このとき、蒸発レートの不 安定さから生じる正孔輸送層、発光層、電子輸送層等の有機薄膜層の厚さや、組成等の品質が均質でないと蒸着ロット間で不均一を生じ、素子性能のばらつき等の問題が生じる。   As a general structure of an organic EL element, an organic thin film layer such as a hole transport layer, a light emitting layer, and an electron transport layer is formed between an anode and a cathode made of a transparent conductive film. Light emission occurs when holes injected into the light emitting layer through the layer and electrons injected from the cathode through the electron transport layer into the light emitting layer recombine. At this time, if the thickness, composition, etc. of the organic thin film layers such as the hole transport layer, the light emitting layer, and the electron transport layer, which are caused by the instability of the evaporation rate, are not uniform, non-uniformity occurs between the deposition lots, and the device performance This causes problems such as variations in

有機EL素子用有機薄膜作成方法の一つとして真空蒸着法があることは、特開2000−68055号公報等で知られている。真空蒸着法では、蒸着材料の気化温度以上に加熱された蒸発源から気化した蒸着材料が成膜用基板上で固体で堆積し薄膜を形成する。
蒸発源の加熱方法としては、間接加熱方式の他、Appl.Phys.Lett.68(16),15 April 1996や特開2000−68055号公報に記載されているような、比較的電気抵抗の高い金属容器(金属ボート)に電流を流し、抵抗発熱を利用するいわゆる直接抵抗加熱方式が知られている。
特開2000−68055号公報 Appl.Phys.Lett.68(16),15 April 1996
It is known in Japanese Patent Application Laid-Open No. 2000-68055 and the like that there is a vacuum deposition method as one method for producing an organic thin film for an organic EL element. In the vacuum vapor deposition method, a vapor deposition material vaporized from an evaporation source heated to a vaporization temperature or higher of the vapor deposition material is deposited as a solid on a film formation substrate to form a thin film.
As a method for heating the evaporation source, in addition to the indirect heating method, Appl. Phys. Lett. 68 (16), 15 April 1996 and Japanese Patent Application Laid-Open No. 2000-68055, so-called direct resistance heating that uses resistance heat generation by passing current through a metal container (metal boat) having relatively high electrical resistance. The method is known.
JP 2000-68055 A Appl. Phys. Lett. 68 (16), 15 April 1996

直接抵抗加熱方式では、一般に融点の高いタングステン、タンタル、モリブデン等の金属材料を薄板状に加工して電気抵抗を高くした容器が用いられるが、容器全体を均一に加熱するためには、容器を流れる電流分布が均一になるような形状である必要がある。ボートのような長い形状では長手方向の両端に端子を取ることにより比較的均一な電流分布を得ることができるがそれでも中央部と端部で温度の偏りが生じ、また、材料の仕込み量が限られるので、量産には不向きである。   In the direct resistance heating method, a container in which a metal material such as tungsten, tantalum, or molybdenum having a high melting point is generally processed into a thin plate to increase electric resistance is used, but in order to heat the entire container uniformly, It is necessary that the current distribution be uniform. In a long shape like a boat, a relatively uniform current distribution can be obtained by placing terminals at both ends in the longitudinal direction, but there is still a temperature deviation between the center and the end, and the amount of materials charged is limited. Therefore, it is not suitable for mass production.

材料の仕込み量を確保するためには、坩堝のような形状が適しているが、坩堝様の形状において端子をとって直接抵抗加熱する場合、坩堝全体が均一に加熱されるように坩堝全体に均一に電流を流すことは困難である。したがって、坩堝に温度分布が形成され、電流密度が低い部分では目的温度より低くなり蒸着物質の気化が起こらず、一方電流密度が高い部分では局部的な過昇温が起こり所定量以上の原料の気化が起こるのみならず、原料とする有機材料の熱分解が起こり生成する有機薄膜の変質をもたらす可能性もある。   A crucible-like shape is suitable for securing the amount of material charged. However, when resistance heating is performed directly with a terminal in a crucible-like shape, the entire crucible is heated uniformly so that the entire crucible is heated. It is difficult to flow a current uniformly. Therefore, a temperature distribution is formed in the crucible, and the vapor deposition material does not vaporize at a portion where the current density is low and lower than the target temperature. There is a possibility that not only vaporization will occur, but also the organic material used as a raw material will be thermally decomposed and the resulting organic thin film may be altered.

一般に量産のために、材料を坩堝状の容器に仕込む場合は、上記のような直接抵抗加熱ではなく、別途設けられた抵抗加熱発熱体からの間接加熱により容器を均一に加熱する方式が用いられる。しかし、このような間接加熱方式では熱応答性が悪く、したがって蒸発量の制御が難しくなる。すなわち、目的温度より低いときは蒸着物質の気化量が充分ではなく、成膜厚さが薄くなり、一方目的温度よりオーバーシュートすると、成膜厚さが厚すぎるばかりでなく、有機材料の熱分解が起こり生成する有機薄膜の変質をもたらすことになる。また、間接加熱方式では直接加熱方式と比較して昇温開始から目的温度に達し安定した有機薄膜層が得られる迄に時間がかかるので、その間、時間的にも、原料的にもロスが生じる。何れにしても、蒸発レートが安定するまでは、シャッター等を用い基板への蒸着を防ぐ操作を必要とし、上述のロスが発生する場合が多い。   In general, when a material is charged into a crucible container for mass production, a method of heating the container uniformly by indirect heating from a resistance heating heating element provided separately is used instead of direct resistance heating as described above. . However, such an indirect heating method has poor thermal responsiveness, so that it is difficult to control the evaporation amount. That is, when the temperature is lower than the target temperature, the vaporization amount of the vapor deposition material is not sufficient, and the film thickness becomes thin. On the other hand, when the overshoot exceeds the target temperature, not only the film thickness is too thick but also the thermal decomposition of the organic material. Will occur, resulting in alteration of the organic thin film. In addition, in the indirect heating method, compared with the direct heating method, it takes time from the start of temperature increase until the target temperature is reached and a stable organic thin film layer is obtained. . In any case, until the evaporation rate is stabilized, an operation for preventing vapor deposition on the substrate using a shutter or the like is required, and the above-mentioned loss often occurs.

本発明は、蒸着原料を均一に且つ速やかに加熱することができ、しかも熱応答性や温度制御に優れる装置を提供すると共に、製品歩留まりや生産性よく、良好な品質の有機EL素子用の蒸着膜を得る方法を提供する。   The present invention provides a device that can uniformly and quickly heat the vapor deposition raw material and is excellent in thermal response and temperature control, as well as vapor deposition for organic EL elements of good quality with good product yield and productivity. A method of obtaining a membrane is provided.

本発明は、有機EL素子用の有機材料を気化し、成膜用基板上で堆積させて薄膜を形成する有機EL薄膜蒸着方法において、前記有機材料を装入する容器の少なくとも一部が電磁誘導により発熱する材料で構成され、コイルに電流を供給することにより前記の容器を電磁誘導加熱により直接加熱することにより、装入された有機材料を昇華させて気化させることを特徴とする有機EL素子の製造方法である。ここで、有機EL素子用の有機材料としては、有機金属錯体が例示される。   The present invention relates to an organic EL thin film vapor deposition method in which an organic material for an organic EL element is vaporized and deposited on a film formation substrate to form a thin film. At least a part of the container in which the organic material is charged is electromagnetic induction. An organic EL element comprising a material that generates heat by heating, and by directly heating the container by electromagnetic induction heating by supplying current to the coil, the charged organic material is sublimated and vaporized It is a manufacturing method. Here, an organic metal complex is illustrated as an organic material for organic EL elements.

また、本発明は、容器中の有機EL素子用の有機材料を気化し、成膜用基板上で堆積させて薄膜を形成する有機EL薄膜蒸着において、少なくとも一部が電磁誘導により発熱する材料で構成された前記容器と、該有機材料を昇華させて気化させるためコイルに電流を供給することにより前記容器を電磁誘導加熱する手段とを備えたことを特徴とする有機EL薄膜蒸着用装置である。ここで、容器の少なくとも内面が気化する有機材料に対して不活性な材料で構成された容器であること、又は、容器の少なくとも底部及び側部の材質が電磁誘導により発熱する材料で構成された容器であることは望ましい有機EL薄膜蒸着用装置を与える。   The present invention also relates to a material that at least partially generates heat by electromagnetic induction in organic EL thin film deposition in which an organic material for an organic EL element in a container is vaporized and deposited on a film formation substrate to form a thin film. An organic EL thin film deposition apparatus comprising: the container configured; and means for electromagnetically heating the container by supplying a current to a coil to sublimate and vaporize the organic material. . Here, at least the inner surface of the container is a container made of a material inert to the organic material to be vaporized, or at least the bottom and side parts of the container are made of a material that generates heat by electromagnetic induction. Being a container provides a desirable organic EL thin film deposition apparatus.

以下、本発明の有機EL薄膜蒸着用装置及びそれを使用した蒸着方法について詳細に説明する。
図1は、本発明の装置の一例を示す断面模式図であり、図中、1はチャンバー、2は容器、3はコイル、4は電力供給装置、5は有機材料、6は基板、7は基板ホルダーである。なお、この例ではチャンバー内に主な装置が組み込まれているが、例えばチャンバーを細長いものとしてコイルをチャンバー外に設ける態様も可能である。
Hereinafter, the organic EL thin film deposition apparatus of the present invention and the deposition method using the same will be described in detail.
FIG. 1 is a schematic cross-sectional view showing an example of the apparatus of the present invention, in which 1 is a chamber, 2 is a container, 3 is a coil, 4 is a power supply device, 5 is an organic material, 6 is a substrate, and 7 is a substrate. It is a substrate holder. In this example, the main device is incorporated in the chamber. However, for example, a mode in which the chamber is elongated and the coil is provided outside the chamber is also possible.

上記例における真空蒸着装置は、真空とすることができるチャンバー1内に配置され、有機材料5を装入する容器2、容器2の周囲に配置されたコイル3、コイル3に通じる電力供給装置4及び蒸着を受ける基板6を保持する基板ホルダー7を備えている。チャンバー1は、真空ポンプ等により減圧可能とされている他、内部に装入される有機材料や基板の出し入れが可能な構造とされている。   The vacuum vapor deposition apparatus in the above example is disposed in a chamber 1 that can be evacuated, and includes a container 2 in which an organic material 5 is charged, a coil 3 disposed around the container 2, and a power supply apparatus 4 that leads to the coil 3. And a substrate holder 7 for holding the substrate 6 to be deposited. The chamber 1 can be decompressed by a vacuum pump or the like, and has a structure in which an organic material and a substrate inserted therein can be taken in and out.

容器2の形状は、通常の坩堝形状であることもできるし、単純な筒型でもよいが、いわゆる坩堝形状又はその変形形状が好ましい。また、セル、クヌーセンセル等と呼ばれる形状も好ましいものの一つである。なお、径が大きい場合は容器内部にも誘導加熱で加熱可能な材料を配設した構造体としてもよい。後者の例として、容器内に誘導加熱可能な壁を設けることも可能である。容器2の形状は、特に限定されるものではないが、装入される有機材料を、迅速、且つ、均一に加熱し得る構造であることが好ましい。   The shape of the container 2 can be a normal crucible shape or a simple cylindrical shape, but a so-called crucible shape or a deformed shape thereof is preferable. A shape called a cell, a Knudsen cell, or the like is also a preferable one. Note that when the diameter is large, a structure in which a material that can be heated by induction heating is also provided inside the container. As an example of the latter, it is possible to provide a wall capable of induction heating in the container. Although the shape of the container 2 is not specifically limited, It is preferable that it is a structure which can heat the organic material with which it is charged rapidly and uniformly.

容器2自体を発熱させる場合は、電磁誘導で発熱可能な発熱材料から形成されるが、発熱材料以外の材料と共に形成されていてもよい。発熱材料は金属材料、非金属材料いずれでもよいが、導電性の磁性体であることが好ましい。好ましくは、装入される有機材料が接する容器の底部及び側部を含む部分が電磁誘導で発熱可能な発熱材料から形成されることがよい。   When the container 2 itself generates heat, it is formed from a heat generating material capable of generating heat by electromagnetic induction, but may be formed together with a material other than the heat generating material. The heat generating material may be either a metal material or a non-metal material, but is preferably a conductive magnetic material. Preferably, a portion including a bottom portion and a side portion of a container with which an organic material to be charged is in contact is formed from a heat generating material capable of generating heat by electromagnetic induction.

また、容器を形成する材料が誘導加熱で発熱しない材料の場合でも、特開平3−98286号公報や特開平8−264272号公報で提案されているように、電磁誘導加熱で発熱可能な構造の充填体を容器内に配置して、この充填体の発熱を加熱源として用いてもよい。この場合、容器が電磁誘導により発熱する材料で構成される必要は必ずしもないが、容器が電磁誘導により発熱するものであって、しかも電磁誘導加熱が可能な充填体を配置すれば、均一加熱の点で有利である。例えば、容器サイズが大きくなると、容器内壁に接触している有機材料とそれと離れている有機材料とで温度勾配が形成され、均一な温度制御に問題が生じる場合がある。このような問題を回避するためには、電磁誘導で発熱可能な充填体を容器内に配置し、電磁誘導加熱で充填体を直接加熱するか、もしくは容器と共に直接加熱する方法が温度勾配の発生を押さえるために効果がある。   Further, even when the material forming the container is a material that does not generate heat by induction heating, as proposed in JP-A-3-98286 and JP-A-8-264272, it has a structure capable of generating heat by electromagnetic induction heating. The filling body may be disposed in the container, and the heat generated by the filling body may be used as a heating source. In this case, the container is not necessarily made of a material that generates heat by electromagnetic induction. However, if a container that generates heat by electromagnetic induction and is capable of electromagnetic induction heating is disposed, uniform heating can be achieved. This is advantageous. For example, when the container size increases, a temperature gradient is formed between the organic material that is in contact with the inner wall of the container and the organic material that is away from the organic material, which may cause problems in uniform temperature control. In order to avoid such problems, a method of placing a packing body capable of generating heat by electromagnetic induction in the container and heating the packing body directly by electromagnetic induction heating or directly heating together with the container generates a temperature gradient. It is effective to hold down.

ここで、上記の充填体自身も、電磁誘導加熱で均一に加熱されるためには、その形状、充填体の厚さ、間隔、材質の透磁率、電気伝導度、供給される交流電流の周波数等、設計上、種々の因子の最適化を行うことが重要である。そのため、電磁誘導加熱可能な材料できた金網等の材料を積層した積層体としたり、金網や針金等の材料で小さな筒状物を多数作り、その周囲や間隙や内部に有機材料粉末を存在させることも有利である。なお、充填体は特に成形しない粒状、板状、塊状等であることもできる。   Here, in order for the above-mentioned filling body itself to be heated uniformly by electromagnetic induction heating, the shape, the thickness of the filling body, the interval, the magnetic permeability of the material, the electrical conductivity, the frequency of the supplied alternating current In designing, it is important to optimize various factors. Therefore, it is a laminated body made of a material such as a wire mesh made of electromagnetic induction heatable material, or a large number of small cylindrical objects are made of a material such as a wire mesh or a wire, and organic material powder is present around, inside or in the gap. It is also advantageous. The filler may be in the form of granules, plates, lumps or the like that are not particularly molded.

例えば、有機材料が発光層を形成する材料である場合は、有機金属錯体が使用されることが多いが、高温下で錯体金属が異種金属と接触すると、ある割合で金属交換が起こる。したがって錯体純度は低下し、ときには原料純度を下回ることも起こり得る。金属錯体は高温下で昇華精製する際に、殆どの場合分解を伴う。分解で生成した配位子は、異種金属材料と接触すれば当然その錯体を形成する。有機材料が酸類、硫黄化合物、ハロゲン化合物等を含んでいる場合、金属装置を使用すると、これら不純物が金属腐食、金属の触媒作用による分解、分解物によるコンタミ等を起こす懸念がある。   For example, when the organic material is a material that forms a light emitting layer, an organometallic complex is often used. However, when the complex metal comes into contact with a different metal at a high temperature, metal exchange occurs at a certain rate. Therefore, the purity of the complex is lowered and sometimes lower than the purity of the raw material. In most cases, metal complexes are decomposed during sublimation purification at high temperatures. The ligand formed by decomposition naturally forms a complex when it comes into contact with a different metal material. When the organic material contains acids, sulfur compounds, halogen compounds, etc., if a metal device is used, these impurities may cause metal corrosion, decomposition due to metal catalysis, contamination due to decomposition products, and the like.

前記のとおり容器2は、1種類の金属材料で構成されていても、2層以上の材料から構成されていても差し支えないし、容器自身が電磁誘導で発熱しなくとも、中に配置した充填物が発熱すればよいが、少なくとも1部は発熱材料である必要があり、前記のように金属材料に起因して有機材料にコンタミや変質が起こる場合は、容器の内面や充填物の表面が気化する有機材料に対して不活性な材料とすることが好ましい。好ましい発熱材料としては、一般に鉄や鉄合金等の鉄系の金属が用いられるが、耐熱性と防食性の観点からステンレス鋼や、黒鉛や窒化チタン等の磁性セラミックスを用いることも可能である。発熱材料が、鉄等の金属の場合、気化物質や微量残留する酸素ガス等に対して不活性ではないことが多いが、このような場合は、内層(有機材料と接触する面の表面層)をこれらの有機材料やガス等に対し不活性材料の層とするのがよい。   As described above, the container 2 may be composed of one kind of metal material or may be composed of two or more layers of materials, and the packing disposed in the container 2 even if the container itself does not generate heat by electromagnetic induction. However, if the organic material is contaminated or deteriorated due to the metal material as described above, the inner surface of the container or the surface of the filling is vaporized. It is preferable that the material be inert to the organic material. As a preferable heat generating material, iron-based metals such as iron and iron alloys are generally used. However, from the viewpoint of heat resistance and corrosion resistance, it is also possible to use stainless steel and magnetic ceramics such as graphite and titanium nitride. When the heat-generating material is a metal such as iron, it is often not inert to vaporized substances or trace amounts of residual oxygen gas. In such cases, the inner layer (surface layer in contact with the organic material) Is preferably a layer of an inert material against these organic materials and gases.

不活性材料としては、貴金属、合金等の金属類、フッ素樹脂、ポリイミド樹脂、シリコン樹脂等の耐熱性樹脂類、石英ガラス、パイレックス(登録商標)、硬質ガラス、琺瑯等のガラス類、アルミナ、窒化珪素、磁器等のセラミックス類等がある。好適な不活性材料としては、金属類、琺瑯等のガラス類、フッ素樹脂及びセラミックス類が挙げられる。これらの内、強度を有さなかったり、成形困難な材料や高価な材料は、薄膜蒸着やメッキ等の手段で内層とすることが可能である。また、内層として、発熱材料でもあり、不活性材料でもある窒化チタン等の磁性セラミックスを使用することも有利である。更に、多層構造とする代りに、SiC、黒鉛、窒化チタン等の発熱材料で、且つ、不活性材料でもある材料でできた容器を用いることもできる。   Examples of inert materials include precious metals, alloys and other metals, heat-resistant resins such as fluororesin, polyimide resin, and silicon resin, quartz glass, pyrex (registered trademark), hard glass, glass such as glazing, alumina, and nitriding There are ceramics such as silicon and porcelain. Suitable inert materials include metals, glasses such as soot, fluororesins and ceramics. Of these, materials that do not have strength, are difficult to form, or are expensive can be made into an inner layer by means such as thin film deposition or plating. It is also advantageous to use magnetic ceramics such as titanium nitride, which is a heat generating material and an inert material, as the inner layer. Further, a container made of a material that is a heat generating material such as SiC, graphite, or titanium nitride and that is also an inert material can be used instead of the multilayer structure.

コイル3は、容器2又は充填体を誘導加熱するためのものであり、容器2の周囲に設置される。容器の周囲に設置したコイルには交流電流を流すことにより容器や充填体に直接発熱を生じさせる。コイル3へ供給する電流は、電力供給装置4から供給されるが、電力供給装置4は商用電源等と接続し、所定の周波数の交流を発生する。電力供給装置4からコイル3へ供給する電流の周波数は、発熱体の厚みや電流の浸透深さを考慮して数十〜100kHzの範囲から任意に選べばよいが、発熱効率から10kHz以上の高周波であることが望ましい。   The coil 3 is for inductively heating the container 2 or the filling body, and is installed around the container 2. The coil installed around the container causes direct heat generation in the container and the filling body by passing an alternating current. The current supplied to the coil 3 is supplied from the power supply device 4. The power supply device 4 is connected to a commercial power source or the like, and generates alternating current with a predetermined frequency. The frequency of the current supplied from the power supply device 4 to the coil 3 may be arbitrarily selected from the range of several tens to 100 kHz in consideration of the thickness of the heating element and the penetration depth of the current. It is desirable that

加熱はコイル3に電流を供給することにより行うが、可及的短時間で気化温度に達するように電流供給量を制御する。なお、容器の熱容量を小さくすることも気化速度を早めるため有効であるので、必要以上に容器を大きくしたり、肉厚を厚くしないことが有利であるが、投入電流量を大きくすることで如何なる大きさにも対応できる。電力供給装置4は、昇温速度や設定温度を所定の範囲に維持する温度調節器等の制御機構を有することができる。そのため、容器に熱電対等を配置することもよい。電力供給装置4は、商用電源に接続され、これを好ましくは高周波電流に変換し、誘導コイルへ出力すると共に、熱電対等からの信号により供給電流の制御が可能とされている。   Heating is performed by supplying current to the coil 3, and the amount of current supply is controlled so that the vaporization temperature is reached in the shortest possible time. Since reducing the heat capacity of the container is also effective for increasing the vaporization rate, it is advantageous not to make the container larger than necessary or to increase the wall thickness, but any increase in the input current amount Can also accommodate size. The power supply device 4 can have a control mechanism such as a temperature controller that maintains the temperature increase rate and the set temperature within a predetermined range. Therefore, a thermocouple or the like may be disposed in the container. The power supply device 4 is connected to a commercial power source, and preferably converts this into a high-frequency current, outputs it to the induction coil, and allows the supply current to be controlled by a signal from a thermocouple or the like.

昇華性物質であるような有機材料を気化させ、これを蒸着させる場合、容器の形状が、ボートであれば、中心部が先に蒸発し、その周囲の原料を蒸発させるためにボート温度を上げていくが、セルの場合も、セル内面付近の原料から蒸発し、そこに空隙ができるため、中心部の原料を蒸発させるためにセル温度を上げていくことがよい。このときモニターするのは蒸発レート又は実際の膜厚とすることがよく、これにより、電力供給装置4からの供給電力を制御し、均一な膜厚を確保する。   When vaporizing an organic material such as a sublimable substance and depositing it, if the shape of the container is a boat, the center part will evaporate first, and the boat temperature will be raised to evaporate the surrounding materials. However, in the case of the cell, since the raw material near the inner surface of the cell is evaporated and a void is formed there, it is preferable to raise the cell temperature in order to evaporate the raw material in the central part. At this time, it is preferable to monitor the evaporation rate or the actual film thickness, thereby controlling the power supplied from the power supply device 4 to ensure a uniform film thickness.

有機EL素子は、前記のように陽極と陰極との間に正孔輸送層、発光層、電子輸送層等の有機薄膜層を有しているが、本発明で蒸着させる有機材料5は、かかる有機薄膜層を形成する少なくとも1種の有機材料である。   The organic EL element has organic thin film layers such as a hole transport layer, a light emitting layer, and an electron transport layer between the anode and the cathode as described above. It is at least 1 type of organic material which forms an organic thin film layer.

本発明による電磁誘導加熱で気化する有機EL用有機材料としては、正孔輸送材料、発光材料、電子輸送材料等の何れにも適用することができる。そのような材料としては、正孔輸送材料としてはポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物などがあり、発光材料としては、トリス(8−キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体などがあり、電子輸送材料としては、1,3,4−オキサゾール誘導体や1,2,4−トリアゾール誘導体があるが、これらに限定されるものではなく、蒸着法により薄膜形成される有機EL用有機化合物であれば何にでも使用できる。また、有機材料の多元蒸着のような正確な蒸着量制御にも本発明の方法は有効である。   The organic material for organic EL vaporized by electromagnetic induction heating according to the present invention can be applied to any of hole transport materials, light emitting materials, electron transport materials, and the like. Examples of such materials include porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds as hole transport materials, and tris (8-quinolinolato) aluminum complexes and bis (benzoquinolinos) as luminescent materials. Lato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex, etc., and electron transport materials include 1,3,4-oxazole derivatives and 1,2,4-triazole derivatives, but are not limited thereto. Any organic compound for organic EL that can be formed into a thin film by a vapor deposition method can be used. The method of the present invention is also effective for precise deposition amount control such as multi-source deposition of organic materials.

基板ホルダー7は、チャンバー内で、容器2のほぼ真上に、所定の間隔を置いて設けられる。基板ホルダー7には、EL素子を構成する基板6がセットされ、セットされた基板6の表面に気化した有機材料が蒸着する。基板ホルダー7が、基板6を保持する機構は吸引法やつめで保持する方法など公知の手段が採用できる。なお、必要により基板ホルダー7の内部に冷却機構等を設けることも可能である。基板6の大きさは、特に限定されないが、最大長さが500mmを超えるものまで可能である。   The substrate holder 7 is provided at a predetermined interval almost directly above the container 2 in the chamber. A substrate 6 constituting an EL element is set on the substrate holder 7, and vaporized organic material is deposited on the surface of the set substrate 6. As the mechanism for holding the substrate 6 by the substrate holder 7, a known means such as a suction method or a holding method can be adopted. If necessary, a cooling mechanism or the like can be provided inside the substrate holder 7. Although the magnitude | size of the board | substrate 6 is not specifically limited, The thing whose maximum length exceeds 500 mm is possible.

以上のように本発明によれば、蒸着原料を大量に装入することが可能な坩堝様等の容器や充填体を電磁誘導加熱により、均一に、且つ速やかに加熱することができ、しかも熱応答性や温度制御に優れるので、良好な品質の蒸着膜を得ることができ、製品歩留まりや生産性を向上することができる。この結果、高品質の有機EL素子を安定して、高い歩留まりで得ることが可能となる。   As described above, according to the present invention, a crucible-like container or filling body capable of charging a large amount of vapor deposition raw material can be uniformly and quickly heated by electromagnetic induction heating, and heat Since it is excellent in responsiveness and temperature control, it is possible to obtain a vapor deposition film of good quality, and to improve product yield and productivity. As a result, a high-quality organic EL element can be stably obtained with a high yield.

次に、本発明の装置を使用して蒸着する方法について説明する。
容器2には、蒸着させる有機材料5を所定量装入する。また、基板ホルダー7には、既にいくつかの層が蒸着等により設けられていてもよい基板6が、蒸着させる面を容器側に向けてセットされる。
その後、減圧と加熱が行われ、蒸着が開始する。容器2及びその周囲の蒸発部温度は有機材料5の所定の蒸気圧が得られる温度であればよい。通常、この蒸気圧は数Torrから10-8Torr程度(約1×102Paから1×10-6Pa程度)であるが、気化分子の平均自由行路を長くするためにチャンバー内は10-6Torr以下にすることが望ましい。蒸発部の温度制御は、温度計と温度調節器とで交流電源をオン・オフしたり、インバータ制御することなどにより、設定温度を保持する。
容器へ装入した有機材料は所定の真空度と温度で気化し、例えば、容器上部に配置されたスリットを通過して、被蒸着体である基板表面上に付着・堆積し蒸着薄膜を形成する。
Next, a method for vapor deposition using the apparatus of the present invention will be described.
The container 2 is charged with a predetermined amount of the organic material 5 to be deposited. In addition, a substrate 6 on which several layers may already be provided by vapor deposition or the like is set on the substrate holder 7 with the surface to be vapor deposited facing the container.
Then, pressure reduction and heating are performed, and vapor deposition starts. The temperature of the evaporation part in the container 2 and its surroundings may be a temperature at which a predetermined vapor pressure of the organic material 5 can be obtained. Usually, this vapor pressure is about several Torr to about 10 −8 Torr (about 1 × 10 2 Pa to 1 × 10 −6 Pa), but in order to lengthen the mean free path of vaporized molecules, the inside of the chamber is 10 − 6 Torr or less is desirable. In the temperature control of the evaporation unit, the set temperature is maintained by turning on / off the AC power source with a thermometer and a temperature controller, or by controlling the inverter.
The organic material charged in the container is vaporized at a predetermined degree of vacuum and temperature, and passes through a slit disposed in the upper part of the container, for example, and adheres to and deposits on the surface of the substrate as a deposition target to form a deposited thin film. .

以下、実施例に基づき、本発明の具体例を説明する。   Hereinafter, based on an Example, the specific example of this invention is demonstrated.

実施例1
8−ヒドロキシキノリンアルミニウム(以下、Alq3という)を、図1に示す蒸着装置により蒸着した。
容器2には、内径15mmφ、高さ25mmの炭素鋼管の内面に、溶融アルミメッキを施した筒状の坩堝を用いた。電磁誘導の交流電源は200V、60Hzとし、温度調節器を具備する電力供給装置4にインバータを用い高周波化した。
容器2にAlq3を1g装入し、容器2の外壁温度を360℃設定にて加熱し、チャンバー1の外周は室温の空気に接触させてほぼ室温に維持すると共に、真空ポンプによりチャンバー内を5×10-7Torrに減圧した。
基板6として100mmx100mmの大きさのガラス基板を使用し、容器2の真上約350mmのところにおき回転させた。また、膜厚モニターを配置して、膜厚レートを測定した。膜厚モニターにより膜厚レートが安定するまで、基板はシャッターで覆い、膜厚レートが一定となった時点で、シャッターを外し、蒸着を開始した。膜厚レートが0.3nm/secとなるように電源からの供給電力を調整した。約170秒後に50nmのAlq3膜が得られた。膜厚みは、全面積において±5%の、また、中心寄りの50mm×50mmにおいては±1%の幅にあった。
Example 1
8-Hydroxyquinoline aluminum (hereinafter referred to as Alq3) was deposited by the deposition apparatus shown in FIG.
The container 2 was a cylindrical crucible in which a molten aluminum plating was applied to the inner surface of a carbon steel pipe having an inner diameter of 15 mmφ and a height of 25 mm. The AC power supply for electromagnetic induction was 200 V, 60 Hz, and the frequency was increased using an inverter in the power supply device 4 equipped with a temperature controller.
The container 2 is charged with 1 g of Alq3, the outer wall temperature of the container 2 is heated at a setting of 360 ° C., the outer periphery of the chamber 1 is kept in contact with room temperature air, and is kept at about room temperature. The pressure was reduced to × 10 -7 Torr.
A glass substrate having a size of 100 mm × 100 mm was used as the substrate 6, and the glass substrate was placed about 350 mm directly above the container 2 and rotated. A film thickness monitor was arranged to measure the film thickness rate. The substrate was covered with a shutter until the film thickness rate was stabilized by the film thickness monitor, and when the film thickness rate became constant, the shutter was removed and vapor deposition was started. The power supplied from the power source was adjusted so that the film thickness rate was 0.3 nm / sec. After about 170 seconds, a 50 nm Alq3 film was obtained. The film thickness was ± 5% in the entire area, and ± 1% in the case of 50 mm × 50 mm closer to the center.

参考例1
容器2として、内径15mmφ、高さ25mmのアルミナ系セラミックス製の坩堝を用いた。そして、容器2の内部に電磁誘導により発熱するフェライト系ステンレス製の細管(外径4.8mmφ、内径3.0mm、高さ25mm)7本を束ねた充填体を装入した上で、Alq3を0.3g装入し、実施例1と同様の条件で蒸着を行った。蒸着後に膜厚を測定したところ、実施例1と同様に良好な結果を示した。図2は、前記充填体の斜視図であり、細管8の配列状況を示す。
Reference example 1
As the container 2, an alumina ceramic crucible having an inner diameter of 15 mmφ and a height of 25 mm was used. Then, after charging a bundle of seven ferritic stainless steel thin tubes (outer diameter 4.8 mmφ, inner diameter 3.0 mm, height 25 mm) that generate heat by electromagnetic induction into the container 2, 0.3 g was charged and vapor deposition was performed under the same conditions as in Example 1. When the film thickness was measured after vapor deposition, the same results as in Example 1 were obtained. FIG. 2 is a perspective view of the filler, and shows the arrangement of the thin tubes 8.

参考例2
容器2として、内径15mmφ、高さ25mmの、上部5mmの材質をフェライト系ステンレス、下部20mmの材質をアルミナ系セラミックスとするステンレス−セラミックス製の坩堝を用いた。そして、容器2の内部に100メッシュの金網を、間隔を設けて9枚積層した充填体(容器2の内壁に接する径を有し、高さ20mm)を底部に接して充填した上で、Alq3を0.3g装入し、実施例1と同様の条件で蒸着を行った。蒸着後に膜厚を測定したところ、実施例1と同様に良好な結果を示した。図3は、前記充填体の斜視図であり、金網9の積層状況を示す。
Reference example 2
As the container 2, a stainless-ceramic crucible having an inner diameter of 15 mmφ and a height of 25 mm and having an upper 5 mm material made of ferritic stainless steel and a lower 20 mm material made of alumina ceramics was used. Then, after filling the inside of the container 2 with a 100 mesh wire netting and 9 sheets stacked at intervals (having a diameter in contact with the inner wall of the container 2 and a height of 20 mm) in contact with the bottom, Alq3 0.3 g was charged, and vapor deposition was performed under the same conditions as in Example 1. When the film thickness was measured after vapor deposition, the same results as in Example 1 were obtained. FIG. 3 is a perspective view of the filler, showing a state of lamination of the wire mesh 9.

有機EL素子蒸着用装置の断面模式図である。It is a cross-sectional schematic diagram of the apparatus for organic EL element vapor deposition. 充填体の斜視図である。It is a perspective view of a filling body. 他の充填体の斜視図である。It is a perspective view of another filling body.

符号の説明Explanation of symbols

1:チャンバー、2:容器、3:コイル、4:電力供給装置、5:有機材料、6:基板、7:基板ホルダー   1: chamber, 2: container, 3: coil, 4: power supply device, 5: organic material, 6: substrate, 7: substrate holder

Claims (5)

有機EL素子用の有機材料を気化し、成膜用基板上で堆積させて薄膜を形成する有機EL薄膜蒸着方法において、前記有機材料を装入する容器の少なくとも一部が電磁誘導により発熱する材料で構成され、コイルに電流を供給することにより前記の容器を電磁誘導加熱により直接加熱することにより、装入された有機材料を昇華させて気化させることを特徴とする有機EL素子の製造方法。   In an organic EL thin film vapor deposition method in which an organic material for an organic EL element is vaporized and deposited on a film formation substrate to form a thin film, a material in which at least a part of the container charged with the organic material generates heat by electromagnetic induction A method for producing an organic EL element, wherein the container is directly heated by electromagnetic induction heating by supplying a current to a coil to sublimate and vaporize the charged organic material. 容器中の有機EL素子用の有機材料を気化し、成膜用基板上で堆積させて薄膜を形成する有機EL薄膜蒸着において、少なくとも一部が電磁誘導により発熱する材料で構成された前記容器と、該有機材料を昇華させて気化させるためコイルに電流を供給することにより前記容器を電磁誘導加熱する手段とを備えたことを特徴とする有機EL薄膜蒸着用装置。   In the organic EL thin film vapor deposition in which an organic material for an organic EL element in a container is vaporized and deposited on a film formation substrate to form a thin film, at least a part of the container is made of a material that generates heat by electromagnetic induction; An organic EL thin film deposition apparatus comprising: means for electromagnetically heating the container by supplying a current to the coil to sublimate and vaporize the organic material. 容器の少なくとも内面が気化する有機材料に対して不活性な材料で構成された容器である請求項2記載の有機EL薄膜蒸着用装置。   The organic EL thin film deposition apparatus according to claim 2, wherein at least an inner surface of the container is a container made of a material inert to an organic material to be vaporized. 容器の少なくとも底部及び側部の材質が電磁誘導により発熱する材料で構成された容器である請求項2又は3記載の有機EL薄膜蒸着用装置。   The organic EL thin film deposition apparatus according to claim 2 or 3, wherein at least the bottom and sides of the container are made of a material that generates heat by electromagnetic induction. 有機EL素子用の有機材料が、有機金属錯体である請求項1記載の有機EL素子の製造方法。   The method for producing an organic EL element according to claim 1, wherein the organic material for the organic EL element is an organometallic complex.
JP2005132291A 2000-08-10 2005-04-28 Method and device for producing organic el element Withdrawn JP2005307354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132291A JP2005307354A (en) 2000-08-10 2005-04-28 Method and device for producing organic el element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000242164 2000-08-10
JP2001196679 2001-06-28
JP2005132291A JP2005307354A (en) 2000-08-10 2005-04-28 Method and device for producing organic el element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002519697A Division JP3929397B2 (en) 2000-08-10 2001-08-09 Method and apparatus for manufacturing organic EL element

Publications (1)

Publication Number Publication Date
JP2005307354A true JP2005307354A (en) 2005-11-04

Family

ID=35436444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132291A Withdrawn JP2005307354A (en) 2000-08-10 2005-04-28 Method and device for producing organic el element

Country Status (1)

Country Link
JP (1) JP2005307354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187902A1 (en) * 2018-03-28 2019-10-03 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus and method for producing organic electronic device
JP2019173153A (en) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus, and production method of organic electronic device
CN113195781A (en) * 2018-12-19 2021-07-30 Posco公司 Coating control device and method in PVD coating process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187902A1 (en) * 2018-03-28 2019-10-03 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus and method for producing organic electronic device
JP2019173153A (en) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus, and production method of organic electronic device
JP2019173152A (en) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus, and production method of organic electronic device
JP2019173154A (en) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus
JP2019173151A (en) * 2018-03-28 2019-10-10 公益財団法人福岡県産業・科学技術振興財団 Vapor deposition apparatus, and production method of organic electronic device
CN113195781A (en) * 2018-12-19 2021-07-30 Posco公司 Coating control device and method in PVD coating process

Similar Documents

Publication Publication Date Title
JP3929397B2 (en) Method and apparatus for manufacturing organic EL element
US20210139329A1 (en) Boron nitride nanotube synthesis via direct induction
EP1270768A1 (en) Epitaxial growing method for growing aluminum nitride and growing chamber therefor
JP2009084663A (en) Vapor generation device, vapor deposition source, vapor deposition apparatus and vapor generation method
US4548670A (en) Silicon melting and evaporation method for high purity applications
JP4522709B2 (en) Method and apparatus for coating a substrate
US2665320A (en) Metal vaporizing crucible
US3216710A (en) Aluminum vaporizer
JP2005307354A (en) Method and device for producing organic el element
JP2001323367A (en) Method for vapor depositing organic compound, and method for purifying organic compound
JP2004059992A (en) Organic thin film deposition apparatus
JPH0114170B2 (en)
KR20130000294A (en) Apparatus for fabricating ingot
US4569307A (en) Silicon melting and evaporation apparatus for high purity applications
JP2009197259A (en) Vapor deposition source and film deposition method
JP4171365B2 (en) Vapor deposition equipment
JPH06280004A (en) Electron beam evaporation source
KR100583044B1 (en) Apparatus for linearly heating deposition source material
KR100548904B1 (en) Method and apparatus for producing resistance-heated boat for metal evaporation
JP2005320572A (en) Vapor deposition equipment for organic compound and vapor deposition method for organic compound
JPH04120269A (en) Method and device for vapor-depositing metal
KR100625966B1 (en) Method of vacuum evaporation for EL and appratus the same
JP2002317261A (en) SiC COATED CARBON HEATER FURNACE AND FILM DEPOSITION SYSTEM
JP4964447B2 (en) Carbon nanotube production equipment
JP2004323915A (en) Evaporation source for organic material in vapor deposition apparatus, and its vapor deposition apparatus

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320