JP4380319B2 - Vapor deposition apparatus and organic electroluminescence element manufacturing method - Google Patents

Vapor deposition apparatus and organic electroluminescence element manufacturing method Download PDF

Info

Publication number
JP4380319B2
JP4380319B2 JP2003422403A JP2003422403A JP4380319B2 JP 4380319 B2 JP4380319 B2 JP 4380319B2 JP 2003422403 A JP2003422403 A JP 2003422403A JP 2003422403 A JP2003422403 A JP 2003422403A JP 4380319 B2 JP4380319 B2 JP 4380319B2
Authority
JP
Japan
Prior art keywords
crucible
vapor deposition
substrate
hole
deposition apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003422403A
Other languages
Japanese (ja)
Other versions
JP2004214185A5 (en
JP2004214185A (en
Inventor
浩志 加納
圭三 森
優 山口
敬郎 森
徳明 土井
洋之 渡辺
洋樹 岸下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003422403A priority Critical patent/JP4380319B2/en
Publication of JP2004214185A publication Critical patent/JP2004214185A/en
Publication of JP2004214185A5 publication Critical patent/JP2004214185A5/ja
Application granted granted Critical
Publication of JP4380319B2 publication Critical patent/JP4380319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、蒸着装置および有機エレクトロルミネッセンス(以下、有機ELという)素子の製造方法に関し、詳しくは、るつぼから蒸発材料を出射し、マスクを介してその蒸発材料を被蒸着基板に被着する蒸着装置およびこの蒸着装置を用いて有機EL膜を成膜する工程を備えた有機EL素子の製造方法に関するものである。   The present invention relates to a vapor deposition apparatus and a method for manufacturing an organic electroluminescence (hereinafter referred to as organic EL) element, and more specifically, vapor deposition in which an evaporation material is emitted from a crucible and the evaporation material is deposited on a deposition substrate through a mask. The present invention relates to an apparatus and a method for manufacturing an organic EL element including a step of forming an organic EL film using the vapor deposition apparatus.

近年、平面型の表示装置として、有機EL素子を発光素子としたもの(以下、「有機ELディスプレイ」という)が注目を集めている。この有機ELディスプレイは、バックライトが不要な自発光型のフラットディスプレイであり、自発光型に特有の広視野角を実現できるという利点を有する。また、有機ELディスプレイは、必要な画素のみを点灯させればよいため消費電力の点でバックライト型(例えば、液晶ディスプレイ)に比べて有利であるとともに、今後実用化が期待されている高精細度の高速のビデオ信号に対して十分な応答性能を具備すると考えられている。   In recent years, as a flat display device, an organic EL element using a light emitting element (hereinafter referred to as “organic EL display”) has been attracting attention. This organic EL display is a self-luminous type flat display that does not require a backlight, and has an advantage that a wide viewing angle peculiar to the self-luminous type can be realized. In addition, an organic EL display is advantageous in comparison with a backlight type (for example, a liquid crystal display) in terms of power consumption because only necessary pixels need to be lit, and high definition that is expected to be put to practical use in the future. It is considered to have sufficient response performance for high-speed video signals.

有機EL素子における有機層は、通常、正孔(ホール)注入層、正孔輸送層、発光層、電荷注入層等といった3〜5層が積層されてなる。ただし、各層を形成する有機材料は耐水性が低く、ウエットプロセスを利用することができない。そこで、有機層を形成する際には真空薄膜成膜技術の一つである真空蒸着技術によって各層を順に成膜して積層構造とするのが一般的である。また、フルカラーの画像表示を行う有機EL素子を構成する場合は、R(赤)、G(緑)、B(青)の各色成分に対応した3種類の有機材料から成る有機層を、それぞれ異なる画素位置に成膜する必要がある。   The organic layer in the organic EL element is usually formed by laminating 3 to 5 layers such as a hole injection layer, a hole transport layer, a light emitting layer, and a charge injection layer. However, the organic material forming each layer has low water resistance and cannot use a wet process. Therefore, when forming an organic layer, it is common to form each layer in order by a vacuum deposition technique, which is one of vacuum thin film forming techniques, to form a laminated structure. In the case of configuring an organic EL element that performs full-color image display, organic layers made of three kinds of organic materials corresponding to R (red), G (green), and B (blue) color components are different from each other. It is necessary to form a film at the pixel position.

このような有機層の成膜を行う技術として、本願発明者らは成膜対象となる基板と複数のライン型蒸発源とを相対移動させることで複数の有機層を連続成膜する装置および方法を提案している(例えば、特許文献1参照。)。   As a technique for forming such an organic layer, the inventors of the present application have provided an apparatus and a method for continuously forming a plurality of organic layers by relatively moving a substrate to be formed and a plurality of line-type evaporation sources. (For example, refer to Patent Document 1).

また、有機EL材料を蒸着する蒸着装置のライン型蒸発源では、基板上で有機EL材料を蒸着する範囲(画素)を制限する目的で、金属製の蒸着マスクが用いられる。このため、熱源にて加熱されたライン型蒸発源上部を蒸着マスクが通過すると加熱されたるつぼの上面(基板との対向面)から放射熱を受けて蒸着マスクの温度が上昇し膨張することになる。したがって、蒸着マスクの温度上昇が大きいと膨張率も大きくなり、有機EL材料を蒸着する範囲にずれを生じることになる。このためライン型蒸発源からの放射熱を抑えるために、反射板が用いられている。   Further, in a line-type evaporation source of a vapor deposition apparatus for vapor-depositing an organic EL material, a metal vapor deposition mask is used for the purpose of limiting a range (pixel) for vapor-depositing the organic EL material on the substrate. For this reason, when the vapor deposition mask passes through the upper part of the line type evaporation source heated by the heat source, the vapor deposition mask rises in temperature by receiving radiation heat from the upper surface of the heated crucible (opposite surface to the substrate). Become. Therefore, if the temperature rise of the vapor deposition mask is large, the expansion coefficient also increases, and the range in which the organic EL material is vapor-deposited is shifted. For this reason, in order to suppress the radiant heat from the line-type evaporation source, a reflector is used.

特開2003−157973号公報(特願2002―133536号明細書、段落0026−0030、図1、2)Japanese Unexamined Patent Publication No. 2003-157773 (Japanese Patent Application No. 2002-133536, paragraphs 0026-0030, FIGS. 1 and 2)

しかしながら、図4に示すように、放射阻止板115はるつぼ112の近傍に配置されることから高温にさらされる。したがって、放射阻止板115に対して水冷等の冷却を施す必要があるが、放射阻止板開口部116に蒸発した有機EL材料が放射阻止板116に当たって冷却され付着することによって、るつぼ112の孔114から飛散する有機EL材料の飛行の妨げになるという問題点がある。付着しない範囲まで放射阻止板開口部116を広げると、蒸着マスク(図示せず)に対向するるつぼ112表面の露出部分が広がってしまい放射熱を防止する効果が減少し、蒸着マスクに放射熱が伝わってしまうことになる。また、付着量が微量であっても、蒸着装置を長時間稼動させた場合には、有機EL材料が積層することになり、やはり飛散する有機EL材料の妨げになる。   However, as shown in FIG. 4, since the radiation blocking plate 115 is disposed in the vicinity of the crucible 112, it is exposed to a high temperature. Therefore, although it is necessary to cool the radiation blocking plate 115 such as water cooling, the organic EL material evaporated to the radiation blocking plate opening 116 strikes the radiation blocking plate 116 and adheres to the holes 114 of the crucible 112. There is a problem in that it hinders the flight of the organic EL material scattered from. If the radiation blocking plate opening 116 is widened to a range where it does not adhere, the exposed portion of the surface of the crucible 112 facing the vapor deposition mask (not shown) spreads, reducing the effect of preventing radiant heat, and radiant heat is applied to the vapor deposition mask. It will be transmitted. Even if the amount of adhesion is very small, when the vapor deposition apparatus is operated for a long time, the organic EL material is laminated, which also hinders the scattered organic EL material.

本発明の蒸着装置は、蒸着マスクを介して被蒸着基板に蒸発させた蒸着材料を被着させる蒸着装置において、前記蒸着材料を収納しかつ蒸発させるるつぼと、前記被蒸着基板と対向する前記るつぼ上部に突出した状態で前記るつぼの長手方向に形成された複数の突出部と、前記るつぼ内部より前記被蒸着基板方向に向かって前記突出部のそれぞれに形成された孔と、前記突出部の周囲でかつ前記孔の射出側開口部と同じ高さもしくは前記孔の射出側開口部よりも低い位置に前記るつぼの上面と間隔を置いて設けられた放射阻止体とを備えるThe vapor deposition apparatus of the present invention is a vapor deposition apparatus for depositing a vapor deposition material evaporated on a vapor deposition substrate through a vapor deposition mask, and a crucible for storing and vaporizing the vapor deposition material, and the crucible facing the vapor deposition substrate. a plurality of protrusions longitudinally formed on the crucible in a state of protruding upward, and holes formed in each of the projecting portions toward said more internal crucible in the vapor-deposited substrate direction, around the protrusion in and comprising a radiation blocking member provided at a top surface and a distance of the crucible at a position lower than the exit side opening of the exit side opening with the same height or the hole of the hole.

本発明の有機エレクトロルミネッセンス素子の製造方法は、蒸着マスクを介して基板に有機材料を蒸発させ被着させる蒸着装置を用いて、有機エレクトロルミネッセンス素子を構成する有機膜を成膜する工程を備えていて、前記蒸着装置は、前記蒸着材料を収納しかつ蒸発させるるつぼと、前記被蒸着基板と対向する前記るつぼ上部に突出した状態で前記るつぼの長手方向に形成された突出部と、前記るつぼ内部より前記被蒸着基板方向に向かって前記突出部のそれぞれに形成された孔と、前記突出部の周囲でかつ前記孔の射出側開口部と同じ高さもしくは前記孔の射出側開口部よりも低い位置に前記るつぼの上面と間隔を置いて設けられた放射阻止体とを備えるMethod of manufacturing an organic electroluminescent device of the present invention, by using the vapor deposition apparatus depositing evaporated organic material onto the substrate through a deposition mask, comprising the step of forming an organic film constituting the organic electroluminescence element Tei The vapor deposition apparatus includes a crucible for storing and evaporating the vapor deposition material, a protruding portion formed in a longitudinal direction of the crucible in a state of protruding from the crucible upper portion facing the deposition target substrate, and the crucible inside More holes formed in each of the protrusions toward the deposition substrate, and the height around the protrusion and the same as the emission side opening of the hole or lower than the emission side opening of the hole and a radiation blocking member provided at a top surface and a distance of the crucible in the position.

上記蒸着装置では、るつぼ内で蒸発した蒸着材料を射出する孔をるつぼ上部に設けた突出部に形成することにより、放射阻止体を孔の射出側開口部と同じ高さもしくは孔の射出側開口部よりも低い位置に設けることができる。このため、蒸着中に放射阻止体への蒸着材料の付着という問題を解決することができる。これにより、放射阻止体の冷却が可能となり、蒸着マスクへの熱放射の影響を軽減することができ、マスクの温度上昇を抑えることが可能となる。これにより、蒸着マスクの熱膨張を抑えることができ、蒸発した蒸着材料の蒸着範囲のずれを的確に防止することが可能となるという利点がある。   In the above vapor deposition apparatus, by forming a hole for injecting the vapor deposition material evaporated in the crucible in the protruding portion provided at the upper part of the crucible, the radiation blocking body is the same height as the emission side opening of the hole or the emission side opening of the hole. It can provide in a position lower than a part. For this reason, the problem of adhesion of the vapor deposition material to the radiation blocker during vapor deposition can be solved. Thereby, the radiation blocker can be cooled, the influence of thermal radiation on the vapor deposition mask can be reduced, and the temperature rise of the mask can be suppressed. Thereby, the thermal expansion of a vapor deposition mask can be suppressed and there exists an advantage that the shift | offset | difference of the vapor deposition range of the evaporated vapor deposition material can be prevented exactly.

上記有機エレクトロルミネッセンス素子の製造方法では、本発明の蒸着装置を用いて有機EL素子を構成する有機膜を成膜するため、蒸発させた蒸着材料の飛行を阻害することなく放射阻止体により蒸着マスクへの放射熱を防ぐことができるので、蒸着マスクの膨張を抑制することができる。よって、画素ずれを起こすことなく有機EL素子を構成する有機膜の成膜が可能になるので、設計値とおりの画素開口率が得られるようになり、それによって、有機EL表示装置の輝度を確保することができるようになるという利点がある。   In the method of manufacturing an organic electroluminescence element, an organic film constituting the organic EL element is formed using the vapor deposition apparatus of the present invention, so that the vapor deposition mask is formed by the radiation blocker without hindering the flight of the vaporized vapor deposition material. Since radiant heat can be prevented, the expansion of the vapor deposition mask can be suppressed. Therefore, it becomes possible to form an organic film constituting the organic EL element without causing pixel shift, so that the pixel aperture ratio as designed can be obtained, thereby ensuring the luminance of the organic EL display device. There is an advantage that you will be able to.

蒸発源のるつぼから蒸着マスクへの放射熱の影響を軽減し、蒸着マスクの膨張を抑制することで精度の高い蒸着を行うという目的を、被蒸着基板に蒸着マスクを介して蒸発させた蒸着材料を被着させる蒸着装置において、蒸着材料を収納しかつ蒸発させるるつぼと、被蒸着基板と対向するるつぼ上部に突出した状態に形成された突出部と、るつぼ内部より被蒸着基板方向に向かって突出部に形成された孔と、突出部の周囲でかつ孔の射出側開口部と同じ高さもしくは孔の射出側開口部よりも低い位置にるつぼの上面と間隔を置いて設けられた放射阻止体とを備えることで実現した。   Vapor deposition material evaporated to the target substrate through the vapor deposition mask for the purpose of reducing the influence of radiant heat from the crucible of the vaporization source to the vapor deposition mask and suppressing the expansion of the vapor deposition mask. In a vapor deposition apparatus for depositing, a crucible for storing and evaporating a vapor deposition material, a projecting portion formed in a state of projecting to the upper part of the crucible facing the deposition target substrate, and projecting from the crucible inside toward the deposition target substrate And a radiation blocking body provided around the protrusion and spaced from the upper surface of the crucible at the same height as the exit side opening of the hole or lower than the exit side opening of the hole And realized.

本発明の蒸着装置に係る第1実施例を、図1によって説明する。本実施例に係る蒸着装置は、主として有機EL素子の製造に適したもので、蒸発源が長尺状となっているライン型蒸発源を用い、このライン型蒸発源と蒸着対象となる基板とを相対移動させなが成膜を行うものである。図1(1)は本実施例に係る蒸着装置の主要部を示す模式的斜視図であり、(2)蒸発源の構造を示す概略構成断面図である。 A first embodiment of the vapor deposition apparatus of the present invention will be described with reference to FIG. The vapor deposition apparatus according to the present embodiment is mainly suitable for manufacturing an organic EL element, and uses a line type evaporation source having a long evaporation source, and the line type evaporation source and a substrate to be evaporated the a is relatively moved but performs a et deposition. FIG. 1A is a schematic perspective view showing the main part of the vapor deposition apparatus according to the present embodiment, and FIG. 1B is a schematic sectional view showing the structure of the evaporation source.

図1(1)に示すように、蒸着源11が備えられている。この蒸発源11は一例としていわゆるライン型蒸発源となっている。この蒸発源11の詳細は後に説明する。上記蒸発源11の上方には蒸着マスク31を介して被蒸着基板51は設置されている。この被蒸着基板51は例えばガラス基板であり、一例として有機EL材料が真空蒸着される。この蒸着装置では、被蒸着基板51の被蒸着箇所が蒸発源11より蒸発された蒸着材料が飛散する領域を通過するように、蒸発源11と被蒸着基板51との相対位置を可変させる図示はしない移動装置が備えられている。この移動装置により被蒸着基板51および被蒸着基板51に密着した蒸着マスク31を矢印ア方向に移動させながら、蒸発源11から被蒸着基板51の被蒸着面に向けて有機材料を蒸発させ被膜形成を行う。なお、被蒸着基板51および蒸着マスク31を固定しておき、図示はしない移動装置により蒸発源11を移動させてもよい。   As shown in FIG. 1A, a vapor deposition source 11 is provided. For example, the evaporation source 11 is a so-called line-type evaporation source. Details of the evaporation source 11 will be described later. A deposition target substrate 51 is installed above the evaporation source 11 through a deposition mask 31. The deposition target substrate 51 is a glass substrate, for example, and an organic EL material is vacuum deposited as an example. In this vapor deposition apparatus, the relative position between the evaporation source 11 and the evaporation target substrate 51 is varied so that the evaporation target portion of the evaporation target substrate 51 passes through the region where the evaporation material evaporated from the evaporation source 11 scatters. A moving device is provided. While moving the deposition target substrate 51 and the deposition mask 31 adhered to the deposition target substrate 51 in the direction of arrow A by this moving device, the organic material is evaporated from the evaporation source 11 toward the deposition target surface of the deposition target substrate 51 to form a film. I do. The evaporation source 11 may be moved by a moving device (not shown) while the evaporation target substrate 51 and the evaporation mask 31 are fixed.

次に、本実施例に係る蒸着装置の蒸発源の構造を図1(2)によって詳細に説明する。図1(2)に示すように、蒸着材料71を収納しかつ蒸発させるるつぼ12が備えられている。るつぼ12は、例えばカーボン、チタン、タンタルなどの熱放射効率のよい素材で構成され、蒸発材料71を入れるための耐熱性の容器であり、被蒸着基板面51に沿って、かつ移動装置による相対位置の可変方向と直交する方向がるつぼの長手方向となるように形成されている。このるつぼ12の下部には、るつぼ12を加熱して蒸発材料71を蒸発させるための熱源21が設置されている。この熱源21は、例えば電熱線で構成されたヒータであり、温度測定器および温度制御器により温度制御が可能となっている。   Next, the structure of the evaporation source of the vapor deposition apparatus according to the present embodiment will be described in detail with reference to FIG. As shown in FIG. 1 (2), a crucible 12 is provided for storing and evaporating the vapor deposition material 71. The crucible 12 is made of a material having good thermal radiation efficiency, such as carbon, titanium, and tantalum, and is a heat-resistant container for containing the evaporation material 71. The crucible 12 is disposed along the deposition target substrate surface 51 and relative to the moving device. It is formed so that the direction orthogonal to the variable direction of the position is the longitudinal direction of the crucible. A heat source 21 for heating the crucible 12 and evaporating the evaporation material 71 is installed below the crucible 12. The heat source 21 is a heater composed of, for example, a heating wire, and the temperature can be controlled by a temperature measuring device and a temperature controller.

上記るつぼ12には、上記被蒸着基板51と対向するるつぼ上部に突出した状態に突出部13が、例えばるつぼの長手方向に複数形成されている。この突出部13の外形状は例えば円柱形状、円錐台形状、角錐台形状等、るつぼ上面12uより突出していればよい。この突出高さは、後に詳述する放射阻止体15を設けた際に放射阻止体15上面と同等の高さもしくは高くなるようになっていればよい。突出部13の高さはるつぼ上面12uより例えば5mm〜10mm程度である。この突出部13には、るつぼ内部より被蒸着基板51方向に向かって段階的に先細りとなる形状を有する孔14が形成されている。したがって、るつぼ12は、孔14を除いて内部は密閉された構造となっている。   In the crucible 12, a plurality of projecting portions 13 are formed, for example, in the longitudinal direction of the crucible so as to project to the upper part of the crucible facing the deposition target substrate 51. The outer shape of the projecting portion 13 may project from the crucible upper surface 12u, such as a columnar shape, a truncated cone shape, or a truncated pyramid shape. It is sufficient that the protruding height is equal to or higher than the upper surface of the radiation blocking body 15 when the radiation blocking body 15 described in detail later is provided. The height of the protrusion 13 is, for example, about 5 mm to 10 mm from the upper surface 12u of the crucible. In the protruding portion 13, a hole 14 having a shape that is tapered stepwise from the inside of the crucible toward the deposition target substrate 51 is formed. Therefore, the crucible 12 has a structure in which the inside is sealed except for the hole 14.

また、上記突出部13の周囲でかつ孔14の射出側開口部14aと同じ高さもしくは射出側開口部14aよりも低い位置に、上記るつぼ上面12uと間隔dを置いて放射阻止体15が設けられている。この放射阻止体15は、例えば、ステンレス、アルミニウム合金等の金属材料から構成される板状のものであり、るつぼ12の材料より熱反射効率の高い材料から成る。この放射阻止体15は、熱反射効率を高めるため、るつぼ12側が鏡面に加工されていることが好ましい。また、板状に形成されている放射阻止体15の強度を補強するリブ(図示せず)を放射阻止体15に形成してもよい。   Further, a radiation blocking body 15 is provided around the protrusion 13 and at the same height as the exit side opening 14a of the hole 14 or at a position lower than the exit side opening 14a with a gap d from the crucible upper surface 12u. It has been. The radiation blocker 15 is a plate-shaped member made of a metal material such as stainless steel or aluminum alloy, and is made of a material having higher heat reflection efficiency than the material of the crucible 12. In order to increase the heat reflection efficiency, it is preferable that the crucible 12 side is processed into a mirror surface. Further, a rib (not shown) that reinforces the strength of the radiation blocking body 15 formed in a plate shape may be formed on the radiation blocking body 15.

なお、上記実施例ではるつぼ12の上方に一枚の放射阻止体15を設けているが、複数枚の放射阻止体15を層構造に配設することもできる。例えば、複数枚の放射阻止体15は間隔を空けて層構造に配設することができる。このように、複数枚の放射阻止体15を層構造に配設することで、より効率よくるつぼ12の放射熱を遮断するようにしてもよい。   In the above embodiment, one radiation blocking body 15 is provided above the crucible 12, but a plurality of radiation blocking bodies 15 may be arranged in a layer structure. For example, the plurality of radiation blocking bodies 15 can be arranged in a layered structure at intervals. Thus, the radiation heat of the crucible 12 may be blocked more efficiently by arranging a plurality of radiation blocking bodies 15 in a layered structure.

上記蒸着装置では、放射阻止体15が、突出部13の周囲でかつ孔14の射出側開口部14aと同じ高さもしくは孔14の射出側開口部14aよりも低い位置にるつぼ上面12uと間隔dを置いて設けられていることから、孔14から射出される蒸着材料71は放射阻止体15に付着することなく被蒸着基板51方向(矢印イ方向)に飛行することができる。また、冷却装置により被蒸着基板51がるつぼ12より低い温度に冷却されたとしても、孔14から出射された蒸発された蒸着材料71は放射阻止体15の開口部15aの縁に接触することなく被蒸着基板51方向に飛行するので、放射阻止体15への蒸着材料71の付着を防止することができるようになる。   In the above vapor deposition apparatus, the radiation blocking body 15 is spaced from the crucible upper surface 12u around the protrusion 13 and at the same height as the exit side opening 14a of the hole 14 or lower than the exit side opening 14a of the hole 14. Therefore, the vapor deposition material 71 ejected from the hole 14 can fly in the direction of the deposition target substrate 51 (in the direction of arrow A) without adhering to the radiation blocker 15. Further, even when the evaporation target substrate 51 is cooled to a temperature lower than that of the crucible 12 by the cooling device, the evaporated evaporation material 71 emitted from the hole 14 does not contact the edge of the opening 15 a of the radiation blocking body 15. Since it flies in the direction of the deposition target substrate 51, the deposition material 71 can be prevented from adhering to the radiation blocker 15.

また、蒸着マスク31に対するるつぼ12表面の露出部分が少なくなるので、るつぼ12から蒸着マスク31への放射熱をより多く遮断できるようになる。つまり、放射阻止体15は、被蒸着基板51側からるつぼ12を見た場合、孔14が形成される突出部13を除くるつぼ12上部を覆う状態となり、被蒸着基板51側から見たるつぼ12の露出を最小限の状態としている。したがって、るつぼ12からの放射熱は放射阻止体15によって遮蔽され、蒸着マスク31への悪影響が防止できる。   Further, since the exposed portion of the surface of the crucible 12 with respect to the vapor deposition mask 31 is reduced, more radiation heat from the crucible 12 to the vapor deposition mask 31 can be blocked. That is, when the crucible 12 is viewed from the deposition substrate 51 side, the radiation blocking body 15 is in a state of covering the upper part of the crucible 12 excluding the protruding portion 13 where the hole 14 is formed, and the crucible 12 viewed from the deposition substrate 51 side. The exposure is minimal. Therefore, the radiant heat from the crucible 12 is shielded by the radiation blocker 15, and adverse effects on the vapor deposition mask 31 can be prevented.

またるつぼ12内より蒸発させた蒸着材料71を射出する孔14が、るつぼ12内部より被蒸着基板51方向に向かって段階的に先細りとなる形状を有することから、るつぼ12内で蒸発させた蒸着材料71が孔14の射出側開口部14aに向かって飛散する際の妨げにならない。   Further, since the hole 14 for injecting the vapor deposition material 71 evaporated from the inside of the crucible 12 has a shape that gradually tapers from the inside of the crucible 12 toward the deposition target substrate 51, the vapor deposition evaporated in the crucible 12. This does not hinder the material 71 from being scattered toward the exit side opening 14 a of the hole 14.

また、上記蒸着装置1においては、図2に示すように、放射阻止体15に冷却装置71を設けることが好ましい。なお、この図面で示した放射阻止体15の断面は、L字型であるが、T字型であってもよい。図面では放射阻止体15を効率良く冷却するために、放射阻止体15の両側に冷却体72を設けた一例を示した。   Moreover, in the said vapor deposition apparatus 1, it is preferable to provide the cooling device 71 in the radiation blocker 15, as shown in FIG. In addition, although the cross section of the radiation blocking body 15 shown in this drawing is L-shaped, it may be T-shaped. The drawing shows an example in which cooling bodies 72 are provided on both sides of the radiation blocking body 15 in order to efficiently cool the radiation blocking body 15.

上記冷却装置71の基本構成としては、例えば、放射阻止体15接触した状態設けられた冷却体72と冷媒送給装置73とからなる。また冷却体72の温度を制御する温度制御部(図示せず)を設けてもよい。冷却体7は、例えばアルミニウム、アルミニウム合金、ステンレス等の金属材料からなり、その内部には冷媒を循環させる流路が形成されているものである。冷媒送給装置73により流路内に送給される冷媒には、例えば冷水もしくは冷却気体(炭酸ガス、窒素ガス等)を用いることができる。上記冷媒送給装置73により冷却体72内に設けた流路内に冷媒を流すことにより、放射阻止体15の温度をるつぼ12の温度より低い温度とすることで、るつぼ12から蒸着マスク31への熱放射の影響がさらに軽減できるようになる。 The basic configuration of the cooling device 71 includes, for example, a cooling body 72 and a refrigerant feeding device 73 provided in contact with the radiation blocking body 15. Moreover, you may provide the temperature control part (not shown) which controls the temperature of the cooling body 72. FIG. Cooling body 7 2, for example aluminum, an aluminum alloy, a metal material such as stainless steel, and its inside in which flow passage through which coolant circulates is formed. As the refrigerant fed into the flow path by the refrigerant feeding device 73, for example, cold water or a cooling gas (carbon dioxide gas, nitrogen gas, etc.) can be used. The coolant is fed from the crucible 12 to the vapor deposition mask 31 by setting the temperature of the radiation blocking body 15 to be lower than the temperature of the crucible 12 by flowing the coolant through the flow path provided in the cooling body 72 by the coolant feeding device 73. The effect of heat radiation can be further reduced.

次に、本発明の有機EL素子の製造方法に係る実施例を、蒸着装置の動作と併せて以下に説明する。   Next, the Example which concerns on the manufacturing method of the organic EL element of this invention is described below with operation | movement of a vapor deposition apparatus.

前記図1に示すように、蒸発源11は温度制御されながら熱源21により加熱されることにより、るつぼ12内の蒸着材料71(例えば有機EL材料)が溶融して蒸発し、孔14を通り、上方に向けて出射される。そして被蒸着基板51の被蒸着面上に被着する。その際、蒸発源(ライン型蒸発源)11上方の被蒸着基板51は所定方向に移動され、蒸発源11の上方を通過する被蒸着基板51の被蒸着面上に蒸着マスク31の開口部形状を転写するように有機ELの薄膜が形成される。   As shown in FIG. 1, the evaporation source 11 is heated by the heat source 21 while the temperature is controlled, so that the vapor deposition material 71 (for example, organic EL material) in the crucible 12 is melted and evaporated, passes through the holes 14, The light is emitted upward. Then, it is deposited on the deposition surface of the deposition substrate 51. At that time, the evaporation target substrate 51 above the evaporation source (line evaporation source) 11 is moved in a predetermined direction, and the shape of the opening of the evaporation mask 31 is formed on the evaporation target surface of the evaporation target substrate 51 passing above the evaporation source 11. An organic EL thin film is formed so as to transfer the light.

ここで、るつぼ12は熱源21により高温に加熱されている。蒸着マスク31がるつぼ12上方を通過すると、るつぼ12から放射熱を受けて蒸着マスク31は過熱されて膨張することになる。そこで、るつぼ12の材料よりも熱反射効率の高い材料から成る放射阻止体15を上記説明したようにるつぼ12上方に配設しておくことで、るつぼ12から蒸着マスク31への熱放射の影響を軽減できるようにしている。   Here, the crucible 12 is heated to a high temperature by the heat source 21. When the vapor deposition mask 31 passes over the crucible 12, the vapor deposition mask 31 is heated and expanded by receiving radiation heat from the crucible 12. Therefore, by arranging the radiation blocking body 15 made of a material having a higher heat reflection efficiency than the material of the crucible 12 above the crucible 12 as described above, the influence of the heat radiation from the crucible 12 to the vapor deposition mask 31. Can be reduced.

上記有機エレクトロルミネッセンス素子の製造方法では、本発明の蒸着装置を用いて有機エレクトロルミネッセンス素子を構成する有機膜を成膜するため、蒸発させた蒸着材料71の飛行を阻害することなく放射阻止体15により蒸着マスク31への放射熱を防ぐことができるので、蒸着マスク31の膨張を抑制することができる。よって、画素ずれを起こすことなく有機EL膜の成膜が可能になるので、設計値とおりの画素開口率が得られるようになり、それによって、有機EL表示装置の輝度を確保することができるようになる。   In the method for manufacturing an organic electroluminescent element, an organic film constituting the organic electroluminescent element is formed using the vapor deposition apparatus of the present invention, and thus the radiation blocker 15 is not obstructed without inhibiting the flight of the evaporated vapor deposition material 71. Since radiation heat to the vapor deposition mask 31 can be prevented, expansion of the vapor deposition mask 31 can be suppressed. Therefore, since the organic EL film can be formed without causing pixel shift, the pixel aperture ratio as designed can be obtained, thereby ensuring the luminance of the organic EL display device. become.

次に、本発明の蒸着装置に係る第2実施例を、図3の概略構成断面図により説明する。図3では、蒸着装置の蒸着源を示す。   Next, a second embodiment according to the vapor deposition apparatus of the present invention will be described with reference to the schematic sectional view of FIG. In FIG. 3, the vapor deposition source of a vapor deposition apparatus is shown.

図3(1)、(2)、(3)および(4)に示すように、蒸着材料71を収納しかつ蒸発させるるつぼ12が備えられている。るつぼ12は、例えばカーボン、チタン、タンタルなどの熱放射効率のよい素材で構成され、蒸発材料71を入れるための耐熱性の容器である。このるつぼ12の下部には、るつぼ12を加熱して蒸発材料71を蒸発させるための熱源21が設置されている。この熱源21は、例えば電熱線で構成されたヒータであり、温度測定器および温度制御器により温度制御が可能となっている。   As shown in FIGS. 3 (1), (2), (3) and (4), a crucible 12 for storing and evaporating the vapor deposition material 71 is provided. The crucible 12 is a heat-resistant container that is made of a material having good thermal radiation efficiency, such as carbon, titanium, or tantalum, and that contains the evaporation material 71. A heat source 21 for heating the crucible 12 and evaporating the evaporation material 71 is installed below the crucible 12. The heat source 21 is a heater composed of, for example, a heating wire, and the temperature can be controlled by a temperature measuring device and a temperature controller.

上記るつぼ12には、上記被蒸着基板51と対向するるつぼ上部に突出した状態に突出部13が形成されている。この突出部13の外形状は例えば円柱形状、円錐台形状、角錐台形状等、るつぼ上面12uより突出していればよい。この突出高さは、後に詳述する放射阻止体15を設けた際に放射阻止体15上面と同等の高さもしくは高くなるようになっていればよい。突出部13の高さはるつぼ上面12uより例えば5mm〜10mm程度である。(1)に示す突出部13には、るつぼ12内部より被蒸着基板方向に向かって段階的で一部連続的に先細りとなる形状を有する孔14が形成されている。(2)に示す突出部13には、るつぼ12内部より被蒸着基板方向に向かって連続的に先細りとなる形状を有する孔14が形成されている。(3)に示す外形状が円錐台形状の突出部13には、るつぼ12内部より被蒸着基板方向に向かって直線的に先細りとなる形状を有する孔14が形成されている。または(4)に示す外形状が円柱形状の突出部13には、るつぼ12内部より被蒸着基板方向に向かって孔14が直線的に形成されていてもよい。したがって、るつぼ12は、孔14を除いて内部は密閉された構造となっている。連続的に先細りになる部分は曲面で形成されてもいくつかの平面で形成されていてもよい。すなわち、その形状は、蒸発した蒸着材料71が孔14の内部に付着することなく、孔14の射出側開口部14aに円滑に導かれる形状であればよい。   In the crucible 12, a protruding portion 13 is formed so as to protrude to the upper part of the crucible facing the deposition target substrate 51. The outer shape of the projecting portion 13 may project from the crucible upper surface 12u, such as a columnar shape, a truncated cone shape, or a truncated pyramid shape. It is sufficient that the protruding height is equal to or higher than the upper surface of the radiation blocking body 15 when the radiation blocking body 15 described in detail later is provided. The height of the protrusion 13 is, for example, about 5 mm to 10 mm from the upper surface 12u of the crucible. In the protruding portion 13 shown in (1), a hole 14 having a shape that is tapered stepwise and partially continuously from the inside of the crucible 12 toward the deposition target substrate is formed. In the protrusion 13 shown in (2), a hole 14 having a shape that continuously tapers from the inside of the crucible 12 toward the deposition target substrate is formed. In the protrusion 13 whose outer shape shown in (3) is frustoconical, a hole 14 having a shape that tapers linearly from the inside of the crucible 12 toward the deposition substrate is formed. Or the hole 14 may be linearly formed in the protrusion part 13 whose outer shape shown in (4) is cylindrical from the inside of the crucible 12 toward the deposition target substrate. Therefore, the crucible 12 has a structure in which the inside is sealed except for the hole 14. The continuously tapered portion may be formed of a curved surface or several planes. That is, the shape may be any shape as long as the evaporated vapor deposition material 71 is smoothly guided to the exit side opening 14 a of the hole 14 without adhering to the inside of the hole 14.

また、上記突出部13の周囲でかつ孔14の射出側開口部14aと同じ高さもしくは射出側開口部14aよりも低い位置に、上記るつぼ上面12uと間隔dを置いて放射阻止体15が設けられている。この放射阻止体15は、例えば、ステンレス、アルミニウム合金等の金属材料から構成される板状のものであり、るつぼ12の材料より熱反射効率の高い材料から成る。この放射阻止体15は、熱反射効率を高めるため、るつぼ12側が鏡面に加工されていることが好ましい。また、板状に形成されている放射阻止体15の強度を補強するリブを放射阻止体15に形成してもよい。   Further, a radiation blocking body 15 is provided around the protrusion 13 and at the same height as the exit side opening 14a of the hole 14 or at a position lower than the exit side opening 14a with a gap d from the crucible upper surface 12u. It has been. The radiation blocker 15 is a plate-shaped member made of a metal material such as stainless steel or aluminum alloy, and is made of a material having higher heat reflection efficiency than the material of the crucible 12. In order to increase the heat reflection efficiency, it is preferable that the crucible 12 side is processed into a mirror surface. Moreover, you may form the rib which reinforces the intensity | strength of the radiation blocking body 15 currently formed in plate shape in the radiation blocking body 15.

なお、上記第2実施例は、るつぼ12の上方に一枚の放射阻止体15を設けているが、複数枚の放射阻止体15を層構造に配設することもできる。例えば、複数枚の放射阻止体15は間隔を空けて層構造に配設することができる。このように、複数枚の放射阻止体15を層構造に配設することで、より効率よくるつぼ12の放射熱を遮断するようにしてもよい。   In the second embodiment, one radiation blocking body 15 is provided above the crucible 12, but a plurality of radiation blocking bodies 15 may be arranged in a layer structure. For example, the plurality of radiation blocking bodies 15 can be arranged in a layered structure at intervals. Thus, the radiation heat of the crucible 12 may be blocked more efficiently by arranging a plurality of radiation blocking bodies 15 in a layered structure.

上記図3によって説明した蒸着装置では、前記図1(2)によって説明した蒸着装置1と同様なる作用、効果が得られるとともに、孔14をるつぼ12内部より被蒸着基板51方向に向かって段階的で一部連続的もしくは連続的に先細りとなる形状に形成したことから、前記図1(2)によって説明した蒸着装置1の孔14よりも蒸発した蒸着材料71が孔14の射出側開口部14aに向かって円滑に飛散することができる。そのため、蒸発した蒸着材料71の分布がより均一になる。また、図3(2)、(3)、(4)に示した突出部13の形状では、突出部13の先端開口部の厚みを最小の厚みで形成することができるので、放射阻止体15側に露出される突出部13の先端開口部の面積は最小となり、突出部13自体からの輻射熱量を微量抑えることが可能となるので、蒸着マスク温度の上昇を抑制することができる。よって、蒸着マスクの熱膨張が低減され、蒸着位置ズレの発生を抑制することができる。 In the vapor deposition apparatus described with reference to FIG. 3, the same operation and effect as the vapor deposition apparatus 1 described with reference to FIG. 1 (2) can be obtained, and the holes 14 are stepped from the inside of the crucible 12 toward the deposition target substrate 51. The vapor deposition material 71 evaporated from the hole 14 of the vapor deposition apparatus 1 described with reference to FIG. 1 (2) is partly continuously or continuously tapered. Can be smoothly scattered. Therefore, the distribution of the evaporated vapor deposition material 71 becomes more uniform. Further, in the shape of the protruding portion 13 shown in FIGS. 3 (2), (3), and (4), the thickness of the tip opening portion of the protruding portion 13 can be formed with the minimum thickness, so that the radiation blocking body 15 is formed. The area of the tip opening portion of the protruding portion 13 exposed to the side is minimized, and the amount of radiant heat from the protruding portion 13 itself can be suppressed to a very small amount , so that an increase in the deposition mask temperature can be suppressed. Therefore, the thermal expansion of the vapor deposition mask is reduced, and the occurrence of vapor deposition position deviation can be suppressed.

また、上記蒸着装置は、一例として、インライン方式の有機EL蒸着システムに組み込むことが可能である。さらに、本実施例で説明した蒸着装置は、他の素子、他の材料から成る膜を製造する場合であっても適用可能である。また、上記実施例では、長尺状のライン型蒸発源についての例を示したが、これ以外の蒸発源についても、突出部と放射阻止体の構造および孔の構造を適用することが可能である。   Moreover, the said vapor deposition apparatus can be integrated in an in-line type organic electroluminescent vapor deposition system as an example. Further, the vapor deposition apparatus described in this embodiment is applicable even when a film made of another element or another material is manufactured. In the above embodiment, an example of a long line-type evaporation source has been shown. However, the structure of the protrusion and the radiation blocking body and the structure of the hole can be applied to other evaporation sources. is there.

本発明の蒸着装置および有機EL素子の製造方法は、有機EL素子以外の素子、他の材料から成る膜を製造する場合であっても適用することが可能である。   The vapor deposition apparatus and the organic EL element manufacturing method of the present invention can be applied even in the case of manufacturing an element other than the organic EL element and a film made of other materials.

本発明の蒸着装置に係る第1実施例を示す図面であり、図1(1)は本実施例に係る蒸着装置の主要部を示す模式的斜視図であり、(2)蒸発源の構造を示す概略構成断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows 1st Example which concerns on the vapor deposition apparatus of this invention, FIG. 1 (1) is a typical perspective view which shows the principal part of the vapor deposition apparatus which concerns on a present Example, (2) The structure of an evaporation source FIG. 冷却装置の実施例を示す概略構成図である。It is a schematic block diagram which shows the Example of a cooling device. 本発明の蒸着装置に係る第2実施例を示す概略構成断面図である。It is schematic structure sectional drawing which shows 2nd Example which concerns on the vapor deposition apparatus of this invention. 従来の蒸着装置の蒸着源を示す概略構成断面図である。It is schematic structure sectional drawing which shows the vapor deposition source of the conventional vapor deposition apparatus.

符号の説明Explanation of symbols

1…蒸着装置、12…るつぼ、13…突出部、14…孔、14a…射出側開口部、15…放射阻止体、31…蒸着マスク   DESCRIPTION OF SYMBOLS 1 ... Deposition apparatus, 12 ... Crucible, 13 ... Projection part, 14 ... Hole, 14a ... Ejection side opening part, 15 ... Radiation blocker, 31 ... Deposition mask

Claims (6)

被蒸着基板に蒸着マスクを介して蒸発させた蒸着材料を被着させる蒸着装置において、
前記蒸着材料を収納しかつ蒸発させるるつぼと、
前記被蒸着基板と対向する前記るつぼ上部に突出した状態で前記るつぼの長手方向に形成された複数の突出部と、
前記るつぼ内部より前記被蒸着基板方向に向かって前記突出部のそれぞれに形成された孔と、
前記突出部の周囲でかつ前記孔の射出側開口部と同じ高さもしくは前記孔の射出側開口部よりも低い位置に前記るつぼの上面と間隔を置いて設けられた放射阻止体とを備える
蒸着装置
In a vapor deposition apparatus for depositing a vapor deposition material evaporated on a vapor deposition substrate through a vapor deposition mask,
A crucible for containing and evaporating the vapor deposition material;
A plurality of protrusions formed in the longitudinal direction of the crucible in a state of protruding to the upper part of the crucible facing the deposition target substrate;
Holes formed in each of the protrusions from the inside of the crucible toward the deposition substrate,
A radiation blocking body provided around the protrusion and at the same height as the exit side opening of the hole or at a position lower than the exit side opening of the hole and spaced from the upper surface of the crucible.
Vapor deposition equipment .
前記放射阻止体は、金属からなる板状体で構成され、
前記放射阻止体を冷却する冷却装置を備えている
ことを特徴とする請求項1記載の蒸着装置。
The radiation blocking body is composed of a plate-shaped body made of metal,
The vapor deposition apparatus according to claim 1, further comprising a cooling device that cools the radiation blocking body.
前記放射阻止体は複数枚を層構造に配設したものから成る
ことを特徴とする請求項1記載の蒸着装置。
The vapor deposition apparatus according to claim 1, wherein the radiation blocking body includes a plurality of layers arranged in a layer structure.
前記孔は、前記るつぼ内部より前記被蒸着基板方向に向かって先細りとなる形状を有する
ことを特徴とする請求項1記載の蒸着装置。
The vapor deposition apparatus according to claim 1, wherein the hole has a shape that tapers from the inside of the crucible toward the vapor deposition substrate.
前記被蒸着基板の被蒸着箇所が前記るつぼより蒸発された蒸着材料が飛散する領域を通過するように、前記るつぼと前記被蒸着基板との相対位置を可変させる移動装置を備えており、
前記るつぼは、前記被蒸着基板面に沿って、かつ前記移動装置による相対位置の可変方向と直交する方向がるつぼの長手方向となるように形成され、
前記孔は前記るつぼの長手方向に複数配設されている
ことを特徴とする請求項1記載の蒸着装置。
A moving device that varies a relative position of the crucible and the deposition substrate so that a deposition position of the deposition substrate passes through a region where the vapor deposition material evaporated from the crucible is scattered;
The crucible is formed so that the direction perpendicular to the variable direction of the relative position by the moving device is the longitudinal direction of the crucible along the deposition target substrate surface,
The vapor deposition apparatus according to claim 1, wherein a plurality of the holes are arranged in a longitudinal direction of the crucible.
蒸着マスクを介して基板に有機材料を蒸発させ被着させる蒸着装置を用いて、有機エレクトロルミネッセンス素子を構成する有機膜を成膜する工程を備えていて
前記蒸着装置は、
前記蒸着材料を収納しかつ蒸発させるるつぼと、
前記被蒸着基板と対向する前記るつぼ上部に突出した状態で前記るつぼの長手方向に形成された複数の突出部と、
前記るつぼ内部より前記被蒸着基板方向に向かって前記突出部のそれぞれに形成された孔と、
前記突出部の周囲でかつ前記孔の射出側開口部と同じ高さもしくは前記孔の射出側開口部よりも低い位置に前記るつぼの上面と間隔を置いて設けられた放射阻止体とを備える
有機エレクトロルミネッセンス素子の製造方法。
Using a vapor deposition apparatus for depositing evaporated organic material onto the substrate through a deposition mask, provided with a step of forming an organic film constituting the organic electroluminescent device,
The vapor deposition apparatus includes:
A crucible for containing and evaporating the vapor deposition material;
A plurality of protrusions formed in the longitudinal direction of the crucible in a state of protruding to the upper part of the crucible facing the deposition target substrate;
Holes formed in each of the protrusions from the inside of the crucible toward the deposition substrate,
A radiation blocking body provided around the protrusion and at the same height as the exit side opening of the hole or at a position lower than the exit side opening of the hole and spaced from the upper surface of the crucible.
Manufacturing method of organic electroluminescent element .
JP2003422403A 2002-12-19 2003-12-19 Vapor deposition apparatus and organic electroluminescence element manufacturing method Expired - Fee Related JP4380319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422403A JP4380319B2 (en) 2002-12-19 2003-12-19 Vapor deposition apparatus and organic electroluminescence element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002367461 2002-12-19
JP2003422403A JP4380319B2 (en) 2002-12-19 2003-12-19 Vapor deposition apparatus and organic electroluminescence element manufacturing method

Publications (3)

Publication Number Publication Date
JP2004214185A JP2004214185A (en) 2004-07-29
JP2004214185A5 JP2004214185A5 (en) 2006-09-28
JP4380319B2 true JP4380319B2 (en) 2009-12-09

Family

ID=32828781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422403A Expired - Fee Related JP4380319B2 (en) 2002-12-19 2003-12-19 Vapor deposition apparatus and organic electroluminescence element manufacturing method

Country Status (1)

Country Link
JP (1) JP4380319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150048620A (en) 2013-10-24 2015-05-07 히다치 조센 가부시키가이샤 Manifold for vacuum evaporation apparatus

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381011B1 (en) * 2003-08-04 2012-12-05 LG Display Co., Ltd. Evaporation source for evaporating an organic electroluminescent layer
KR100592304B1 (en) 2004-11-05 2006-06-21 삼성에스디아이 주식회사 Heating vessel and deposition apparatus having the same
KR101196517B1 (en) * 2005-04-21 2012-11-01 김명희 Evaporation cell with large-capacity crucibles for large-size OLED manufacturing
EP1752554B1 (en) * 2005-07-28 2007-10-17 Applied Materials GmbH & Co. KG Vaporizing device
JP4894193B2 (en) * 2005-08-09 2012-03-14 ソニー株式会社 Vapor deposition apparatus and display device manufacturing system
EP1788112B1 (en) * 2005-10-26 2011-08-17 Applied Materials GmbH & Co. KG Vapour deposition apparatus
ATE509131T1 (en) 2005-10-26 2011-05-15 Applied Materials Gmbh & Co Kg EVAPORATOR DEVICE WITH A CONTAINER FOR RECEIVING MATERIAL TO BE EVAPORATED
KR101200641B1 (en) * 2006-02-17 2012-11-12 황창훈 Array Method of linear type crucible with multi nozzles for large-size OLED deposition
JP5081516B2 (en) * 2007-07-12 2012-11-28 株式会社ジャパンディスプレイイースト Vapor deposition method and vapor deposition apparatus
JP5201932B2 (en) * 2007-09-10 2013-06-05 株式会社アルバック Supply device and organic vapor deposition device
KR101128745B1 (en) * 2007-09-10 2012-03-27 가부시키가이샤 알박 Vapor emission device, organic thin-film vapor deposition apparatus and method of organic thin-film vapor deposition
JP5311985B2 (en) * 2008-11-26 2013-10-09 キヤノン株式会社 Vapor deposition apparatus and organic light emitting device manufacturing method
US20100247809A1 (en) * 2009-03-31 2010-09-30 Neal James W Electron beam vapor deposition apparatus for depositing multi-layer coating
US20110097495A1 (en) * 2009-09-03 2011-04-28 Universal Display Corporation Organic vapor jet printing with chiller plate
JP2012049356A (en) * 2010-08-27 2012-03-08 Kyocera Corp Manufacturing device of photoelectric conversion device and manufacturing method of photoelectric conversion device
DE102010055285A1 (en) * 2010-12-21 2012-06-21 Solarion Ag Photovoltaik Evaporator source, evaporator chamber and coating process
JP5329718B2 (en) * 2010-12-27 2013-10-30 シャープ株式会社 Vapor deposition method, vapor deposition film, and organic electroluminescence display device manufacturing method
KR101760897B1 (en) * 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
JP2012169168A (en) * 2011-02-15 2012-09-06 Hitachi High-Technologies Corp Crystal oscillation-type film thickness monitoring device and evaporation source device and thin film deposition system of el material using the same
JP5492120B2 (en) * 2011-03-08 2014-05-14 株式会社日立ハイテクノロジーズ Evaporation source and vapor deposition equipment
KR20140029529A (en) * 2011-09-06 2014-03-10 파나소닉 주식회사 In-line vapor deposition device
JP2013211137A (en) * 2012-03-30 2013-10-10 Samsung Display Co Ltd Vacuum evaporation method and apparatus of the same
EP2839052A4 (en) * 2012-04-19 2015-06-10 Intevac Inc Dual-mask arrangement for solar cell fabrication
PT2852469T (en) 2012-04-26 2019-07-31 Intevac Inc System architecture for vacuum processing
US10062600B2 (en) 2012-04-26 2018-08-28 Intevac, Inc. System and method for bi-facial processing of substrates
KR101451082B1 (en) * 2012-10-30 2014-10-15 주식회사 선익시스템 Nozzle Shield to minimize the Thermal Deformation
JP6607923B2 (en) 2014-08-05 2019-11-20 インテヴァック インコーポレイテッド Implant mask and alignment
CN105543782A (en) * 2015-12-30 2016-05-04 山东大学 Evaporation coating device capable of preventing substrate or materials on substrate from baked damage and application
CN105420675A (en) * 2015-12-30 2016-03-23 山东大学 Device for reducing baking temperature rise influence on substrate in evaporation coating equipment or material on substrate and application
KR20170104710A (en) * 2016-03-07 2017-09-18 삼성디스플레이 주식회사 Thin film forming apparatus and method for manufacturing display device using the same
JP2020002388A (en) * 2018-06-25 2020-01-09 株式会社アルバック Vapor deposition source for vacuum evaporation system
JP2020132985A (en) * 2019-02-25 2020-08-31 株式会社アルバック Vacuum treatment apparatus and vacuum treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150048620A (en) 2013-10-24 2015-05-07 히다치 조센 가부시키가이샤 Manifold for vacuum evaporation apparatus

Also Published As

Publication number Publication date
JP2004214185A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4380319B2 (en) Vapor deposition apparatus and organic electroluminescence element manufacturing method
JP5492120B2 (en) Evaporation source and vapor deposition equipment
JP2005044592A (en) Depositing mask, film formation method using it, and film formation device using it
JP5081516B2 (en) Vapor deposition method and vapor deposition apparatus
JP4909152B2 (en) Vapor deposition apparatus and vapor deposition method
KR100796148B1 (en) Vertical movement type effusion cell for depositing material and deposition system having it
CN1831185B (en) Evaporate source module and vapor deposited apparatus using thereof
JP5324010B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
JP2004107764A (en) Thin film-forming apparatus
JP5400653B2 (en) Vacuum deposition equipment
JP2007186787A (en) Vapor deposition pot, thin-film forming apparatus provided therewith and method for producing display device
JPH1154275A (en) Organic layer patterned in full-color organic electroluminescent display array of thin-film transistor array board
JP2007046100A (en) Vapor deposition apparatus, and system for manufacturing display unit
CN103526162A (en) Deposition apparatus
KR20160112293A (en) Evaporation source and Deposition apparatus including the same
JP4442558B2 (en) Evaporation source heating control method, evaporation source cooling control method, and evaporation source control method
US20200080193A1 (en) Carrier plate for evaporating device and evaporating device thereof
TWI693859B (en) Deposition source having volume changeable type crucible
JP2004158337A (en) Vapor deposition device
JP2006348337A (en) Vapor deposition film-forming apparatus and vapor deposition source
KR20160090988A (en) Evaporation source having a plurality of modules
KR100646961B1 (en) Method for controlling effusion cell of deposition system
US20190067579A1 (en) Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic el display device
CN112011760A (en) Heating device, evaporation source device, film forming method, and method for manufacturing electronic device
JP2004169066A (en) Vapor deposition system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees