JP5304277B2 - 電池ハイブリッドシステム及びその使用方法 - Google Patents

電池ハイブリッドシステム及びその使用方法 Download PDF

Info

Publication number
JP5304277B2
JP5304277B2 JP2009018493A JP2009018493A JP5304277B2 JP 5304277 B2 JP5304277 B2 JP 5304277B2 JP 2009018493 A JP2009018493 A JP 2009018493A JP 2009018493 A JP2009018493 A JP 2009018493A JP 5304277 B2 JP5304277 B2 JP 5304277B2
Authority
JP
Japan
Prior art keywords
battery
primary battery
secondary battery
output
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009018493A
Other languages
English (en)
Other versions
JP2010178506A (ja
Inventor
博幸 山川
直樹 牛来
義宏 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2009018493A priority Critical patent/JP5304277B2/ja
Publication of JP2010178506A publication Critical patent/JP2010178506A/ja
Application granted granted Critical
Publication of JP5304277B2 publication Critical patent/JP5304277B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池ハイブリッドシステム及びその使用方法に関するものである。
従来、電動車両には、ハイブリッド型車両、電気自動車等があり、例えば、ハイブリッド型車両は、エンジン及び電動機械としての駆動モータを備え、市街地において、駆動モータを駆動し、郊外において、エンジンを駆動し、必要に応じて駆動モータを駆動することによって走行させられるようになっている。また、電気自動車は、駆動モータを備え、該駆動モータを駆動することによって走行させられる。
前記電動車両においては、電源としてリチウムイオン電池等の充電可能な二次電池が使用される。そして、駆動モータは、電動車両を加速したり、定常走行(定地走行)させたりする際に、前記二次電池から出力(力行出力)された電力を受けて駆動され、電動車両を減速する際に、電力を回生し、二次電池に入力(回生入力)する。
すなわち、二次電池から電力が出力されるのに伴って、二次電池は放電され、二次電池に電力が入力されるのに伴って、二次電池は充電される。
ところが、前記構成の電動車両においては、二次電池の単位重量当たりの容量を表す重量エネルギー密度が低いので、航続距離を長くすることができない。
そこで、例えば、二次電池と並列に、重量エネルギー密度の高い一次電池を接続し、各一次電池の出力を利用して、二次電池の残容量が小さくなったときに、一次電池の電力を二次電池に供給したり、一次電池及び二次電池の電力を駆動モータに供給したりすることによって電動車両の航続距離を長くすることが考えられる(例えば、特許文献1参照。)。
特開平6−283210号公報
しかしながら、前記従来の電動車両においては、一般的に、重量エネルギー密度の高い一次電池は重量出力密度が低いので、二次電池の残容量がなくなった場合に、一次電池だけでは十分な電力を駆動モータに供給することができないことがある。
本発明は、前記従来の電動車両の問題点を解決して、二次電池の残容量がなくならないように制御を行うことによって、常に十分な電力を電動機械に供給することができる電池ハイブリッドシステム及びその使用方法を提供することを目的とする。
そのために、本発明の電池ハイブリッドシステムにおいては、電動機械と、一次電池と、該一次電池と接続され、一次電池の出力を変更するための出力変更部と、前記一次電池と前記出力変更部を介して接続された二次電池と、制御装置とを有する。
そして、該制御装置は、前記一次電池及び二次電池の各残容量を取得し、二次電池の残容量が第1の閾値以下になると、一次電池の使用を開始し、前記電動機械を駆動するための要求電力を取得し、該要求電力に対して変動緩和処理を行った値及び前記二次電池の残容量に基づいて前記出力変更部を制御することによって、前記電動機械において消費される電力及び二次電池を充電するのに必要な電力を、一次電池から供給される電力でまかなうことができるように一次電池の出力を発生させ、二次電池の残容量が第1の閾値より大きい第2の閾値より大きくなると、一次電池の使用を停止させ、一次電池の残容量が理論上使用可能な最小の値になると、一次電池の使用を終了する。
本発明の他の電池ハイブリッドシステムにおいては、さらに、前記制御装置は、前記二次電池の残容量があらかじめ設定された範囲内を維持するように前記一次電池の出力を変更する。
本発明の更に他の電池ハイブリッドシステムにおいては、さらに、前記出力変更部は、スイッチング素子を備えた昇圧回路であり、前記電動機械において消費される電力及び二次電池の残容量に応じて前記スイッチング素子のデューティ比を制御する。
本発明の電池ハイブリッドシステムの使用方法においては、電動機械、一次電池、該一次電池と接続され、一次電池の出力を変更するための出力変更部、前記一次電池と前記出力変更部を介して接続された二次電池、及び制御装置を有する電池ハイブリッドシステムに適用されるようになっている。
そして、前記一次電池及び二次電池の各残容量を取得し、二次電池の残容量が第1の閾値以下になると、一次電池の使用を開始し、前記電動機械を駆動するための要求電力を取得し、該要求電力に対して変動緩和処理を行った値及び前記二次電池の残容量に基づいて前記出力変更部を制御することによって、前記電動機械において消費される電力及び二次電池を充電するのに必要な電力を、一次電池から供給される電力でまかなうことができるように一次電池の出力を発生させ、二次電池の残容量が第1の閾値より大きい第2の閾値より大きくなると、一次電池の使用を停止させ、一次電池の残容量が理論上使用可能な最小の値になると、一次電池の使用を終了する。
本発明によれば、電池ハイブリッドシステムにおいては、電動機械と、一次電池と、該一次電池と接続され、一次電池の出力を変更するための出力変更部と、前記一次電池と前記出力変更部を介して接続された二次電池と、制御装置とを有する。
そして、該制御装置は、前記一次電池及び二次電池の各残容量を取得し、二次電池の残容量が第1の閾値以下になると、一次電池の使用を開始し、前記電動機械を駆動するための要求電力を取得し、該要求電力に対して変動緩和処理を行った値及び前記二次電池の残容量に基づいて前記出力変更部を制御することによって、前記電動機械において消費される電力及び二次電池を充電するのに必要な電力を、一次電池から供給される電力でまかなうことができるように一次電池の出力を発生させ、二次電池の残容量が第1の閾値より大きい第2の閾値より大きくなると、一次電池の使用を停止させ、一次電池の残容量が理論上使用可能な最小の値になると、一次電池の使用を終了する。
この場合、制御装置において、二次電池及び一次電池を電動車両の走行状態にかかわらず、同時に使用することができる。例えば、電動車両の加速時等のように電動機械を駆動するための要求電力が大きい場合、二次電池及び一次電池を同時に使用し、停止時及び定速走行時等のように前記要求電力が小さい場合、一次電池の重量エネルギー密度が高く、二次電池の重量エネルギー密度が低いので、一次電池を主として使用することによって、電動車両の航続距離を長くすることができる。
そして、停止時及び定速走行時等のように前記要求電力が小さい場合、一次電池から二次電池に電力を供給し、二次電池を充電することができるので、二次電池の容量をその分小さくすることができる。したがって、二次電池を大型化する必要がなく、電動車両のコストを低くすることができる。
また、二次電池の残容量を第1の閾(しきい)値以上に保持することができるので、電動車両の加速時等のように電動機械を駆動するための要求電力が大きい場合、十分な電力を電動機械に供給することができる。
さらに、前記要求電力に対して変動緩和処理が行われるので、変動が緩和された後の要求電力に基づいて目標出力が算出され、該目標出力に基づいてデューティ比が算出される。したがって、要求電力が急に変動しても、一次電池によって適正な出力を発生させることができる。
本発明の第1の実施の形態における電池ハイブリッドシステムの制御ブロック図である。 本発明の第1の実施の形態における電池ハイブリッドシステムの要部回路図である。 本発明の第1の実施の形態におけるインバータ制御部の動作を示すフローチャートである。 本発明の第1の実施の形態における電池ハイブリッドシステムの動作を示すフローチャートである。 本発明の第1の実施の形態における電池ハイブリッドシステムの動作を示す第1の概念図である。 本発明の第1の実施の形態における電池ハイブリッドシステムの動作を示す第2の概念図である。 本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示すフローチャートである。 本発明の第2の実施の形態におけるインバータ要求電力算出処理手段の動作を示すフローチャートである。 本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示す第1の概念図である。 本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示す第2の概念図である。 本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示す第3の概念図である。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図1は本発明の第1の実施の形態における電池ハイブリッドシステムの制御ブロック図、図2は本発明の第1の実施の形態における電池ハイブリッドシステムの要部回路図である。
図において、10は制御装置としての、かつ、第1の制御部としての昇圧回路制御部、11は電動機械としての駆動モータ、13は該駆動モータ11に接続された負荷としての、かつ、電流変換部としてのインバータ、14は該インバータ13に接続された電源部、90は前記駆動モータ11を駆動するためにインバータ13の制御を行う第2の制御部としてのインバータ制御部である。
前記駆動モータ11は、図示されない出力軸を介して駆動輪と機械的に連結され、力行時にインバータ13を介して電源部14から電力が供給されて駆動され、駆動モータ11のトルク、すなわち、駆動モータトルクを発生させて駆動輪に送り、回生時に駆動輪からの回転を受けて電力を回生し、インバータ13を介して電源部14に供給する。
前記インバータ13は、電圧変換部としての図示されないDC/DCコンバータ、及び複数の、例えば、6個のスイッチング素子としての図示されないトランジスタを備え、前記DC/DCコンバータは、電源部14の出力電圧を所定の電圧に変更し、前記各トランジスタは、一対ずつユニット化されて各相のトランジスタモジュール(IGBT)を構成し、前記インバータ制御部90から送られた駆動信号によってオン・オフさせられ、電源部14から供給された直流の電流を3相の交流の電流に変換し、駆動モータ11に供給する。
また、前記電源部14は、充電可能な第1の電池としての、かつ、主電池としての二次電池15、充電不能な第2の電池としての、かつ、補助電池としての一次電池16、及び一次電池16の出力及び電圧を変更するための出力変更部としての、かつ、電圧変更部としての昇圧回路18を備え、二次電池15、一次電池16及び昇圧回路18は、互いに、かつ、前記インバータ13に対して並列に接続される。
前記昇圧回路制御部10は、第1の電池情報として二次電池15の残容量SOCmを、第2の電池情報として一次電池16の残容量SOCsを読み込む。なお、残容量SOCm、SOCsは、二次電池15及び一次電池16の各容量(電池容量)に対する充電された電気量を百分率で表したものである。また、前記昇圧回路制御部10は、インバータ制御部90から、前記駆動モータ11を駆動する際にインバータ13において必要とされる電力、すなわち、要求電力としてのインバータ要求電力Wirを読み込む。
本実施の形態においては、二次電池15として、エネルギー密度、本実施の形態においては、重量エネルギー密度が低いが、出力密度が高い電池、例えば、リチウムイオン電池が使用され、一次電池16として、出力密度は低いが、重量エネルギー密度が高い電池、例えば、空気電池が使用される。該空気電池においては、正極に空気が、負極に金属、例えば、アルミニウム、亜鉛等が使用され、空気中の酸素と金属とが化学反応を起こすことによって、電力が発生させられる。
なお、一次電池16は、重量エネルギー密度が高い分だけ寸法が小さく、かつ、軽量にされ、電動車両の本体、すなわち、車両本体に対して着脱自在に配設される。
この場合、二次電池15及び一次電池16を同時に使用することができる。例えば、電動車両の加速時等のようにインバータ要求電力Wirが大きい場合、前述されたように、一次電池16の出力密度が低く、二次電池15の出力密度が高いので、二次電池15を主として使用し、必要に応じて二次電池15及び一次電池16を使用して電動車両の駆動トルクを大きくすることができる。また、停止時及び定速走行時等のようにインバータ要求電力Wirが小さい場合、一次電池16の重量エネルギー密度が高く、二次電池15の重量エネルギー密度が低いので、一次電池16を主として使用することによって、電動車両の航続距離を長くすることができる。
さらに、停止時及び定速走行時等のようにインバータ要求電力Wirが小さい場合に、一次電池16から二次電池15に電力を供給し、二次電池15を充電することによって、二次電池15の使用に伴って小さくなった残容量SOCmを大きくすることができる。
なお、本実施の形態においては、前述されたように、第2の電池として、かつ、補助電池として一次電池16が使用されるようになっているが、一次電池16に代えて、前記二次電池15とは異なる種類の二次電池、又は同じ種類でも容量が大きい二次電池を使用することができる。
さらに、本実施の形態においては、出力変更部として、一次電池16の電圧を高くするために昇圧回路18が配設されるが、出力変更部として、一次電池16の電圧を低くするために降圧回路を配設することができる。また、本実施の形態においては、二次電池15又は一次電池16と昇圧回路18とが独立させて配設されるが、二次電池15と昇圧回路18とを一体にして、二次電池ユニットを形成したり、一次電池16と昇圧回路18とを一体にして、一次電池ユニットを形成したりすることができる。
前記昇圧回路18は、昇圧回路制御部10から出力変更用の駆動信号としてのPWM指令を受け、一次電池16の電圧(直流電圧)を変更し、変更された電圧を出力電圧としてインバータ13に印加する。この場合、変更される前の電圧は一次電池16の端子間電圧を表し、変更された後の一次電池16の電圧は昇圧回路18の出力端子tm1に発生する電圧を表す。
なお、一次電池16の電圧の変更に伴って一次電池16の出力も変更され、一次電池16の電圧が高く(昇圧)されると、一次電池16の出力が大きくされ、一次電池16の電圧が低く(降圧)されると、一次電池16の出力が小さくされる。そのために、昇圧回路18は、コイルL、ダイオードD、スイッチング素子である電界効果トランジスタTr及びコンデンサCを備える。
そして、前記二次電池15及び一次電池16の各正極側の端子間に、前記コイルL及びダイオードDが直列に配設され、コイルLの一端と一次電池16の正極側の端子とが、コイルLの他端とダイオードDのアノードとが、ダイオードDのカソードと二次電池15の正極側の端子とがそれぞれ接続される。また、前記コイルLの他端とダイオードDのアノードとの間の結線部p1と、二次電池15及び一次電池16の各負極側の端子間の結線部p2(GND)との間に、前記電界効果トランジスタTrが配設され、電界効果トランジスタTrのドレーンと前記結線部p1とが、電界効果トランジスタTrのソースと前記結線部p2とが、電界効果トランジスタTrのゲートと前記昇圧回路制御部10とがそれぞれ接続される。さらに、前記ダイオードDのカソードと二次電池15の正極側の端子との間の結線部p3と、二次電池15及び一次電池16の各負極側の端子間の結線部p4との間に、前記コンデンサCが配設され、コンデンサCの一端と結線部p3とが、コンデンサCの他端と結線部p4とがそれぞれ接続される。
なお、前記一次電池16と直列に電流検出部としての電流センサ22(A)が、一次電池16と並列に電圧検出部としての電圧センサ23(V)が接続され、電流センサ22によってコイルLを流れる電流が検出され、電圧センサ23によって一次電池16の電圧が検出される。また、前記インバータ13と直列に電流検出部としての電流センサ24(A)が、インバータ13と並列に電圧検出部としての電圧センサ25(V)が接続され、電流センサ24によってインバータ13を流れる電流、すなわち、インバータ電流が検出され、電圧センサ25によってインバータ13に入力される電圧、すなわち、インバータ電圧が検出される。
ところで、前記昇圧回路制御部10の図示されない電圧変更制御処理手段としての昇圧制御処理手段は、電圧変更制御処理としての昇圧制御処理を行い、前記電界効果トランジスタTrをスイッチングするためのデューティ比を算出すると、該デューティ比に基づいてPWM指令を算出し、前記電界効果トランジスタTrのゲートに送る。
そして、電界効果トランジスタTrがオンになると、コイルLを電流が流れ、電界効果トランジスタTrがオフになると、コイルLを電流が流れなくなるが、このとき発生する磁束の変化を妨げるように、ダイオードDのカソードに高電圧が発生する。そして、前記電界効果トランジスタTrのオン・オフが繰り返されると、ダイオードDのカソード側に高電圧が繰り返し発生し、高電圧がコンデンサCによって平滑され、昇圧回路18の出力端子tm1に、デューティ比が高いほど高く、デューティ比が低いほど低い出力電圧が発生させられる。
次に、前記駆動モータ11を駆動する際のインバータ制御部90の動作について説明する。
図3は本発明の第1の実施の形態におけるインバータ制御部の動作を示すフローチャートである。
まず、インバータ制御部90の図示されない情報取得処理手段は、情報取得処理を行い、加速指標としてのアクセル開度αを読み込む。そのために、図示されないアクセルペダルに加速指標検出部としてのアクセル開度センサが配設され、該アクセル開度センサによってアクセル開度αが検出される。次に、インバータ制御部90の図示されない車両要求トルク算出処理手段は、車両要求トルク算出処理を行い、図示されないレゾルバ等の位置検出部によって検出された駆動モータ11の磁極位置θMを読み込み、該磁極位置θMに基づいて車速vを算出する。続いて、前記車両要求トルク算出処理手段は、前記車速v及び前記アクセル開度αに基づいて車両要求トルクを算出する。
次に、インバータ制御部90の図示されない電流指令値算出処理手段は、電流指令値算出処理を行い、電圧センサ25によって検出されたインバータ電圧Viを読み込むとともに、前記磁極位置θMに基づいて算出された駆動モータ回転速度NMを読み込み、前記インバータ電圧Vi及び駆動モータ回転速度NMに基づいて電流指令値を算出する。
そして、インバータ制御部90の図示されないIGBT制御処理手段は、IGBT制御処理を行い、電流指令値に基づいてインバータ13を駆動する。その結果、駆動モータ11にU相、V相及びW相の3相の電流が供給され、駆動モータ11が駆動される。
次に、フローチャートについて説明する。
ステップS1 アクセル開度αを読み込む。
ステップS2 車両要求トルクを算出する。
ステップS3 インバータ電圧Viを読み込む。
ステップS4 モータ回転速度NMを読み込む。
ステップS5 電流指令値を算出する。
ステップS6 IGBT制御処理を行い、処理を終了する。
次に、二次電池15の残容量SOCmに応じて二次電池15及び一次電池16を選択的に使用することができるようにした電池ハイブリッドシステムについて説明する。
図4は本発明の第1の実施の形態における電池ハイブリッドシステムの動作を示すフローチャート、図5は本発明の第1の実施の形態における電池ハイブリッドシステムの動作を示す第1の概念図、図6は本発明の第1の実施の形態における電池ハイブリッドシステムの動作を示す第2の概念図である。
まず、昇圧回路制御部10の図示されない電池情報取得処理手段は、電池情報取得処理を行い、二次電池15の残容量SOCmを読み込むことによって二次電池15の電池情報を取得する。
続いて、前記昇圧回路制御部10の図示されない残容量判断処理手段は、残容量判断処理を行い、二次電池15の使用に伴って、残容量SOCmが第1の閾値としての下限値SOCL、本実施の形態においては、30〔%〕以下になったかどうかを判断する。
前記残容量SOCmが、例えば、図5に示されるように、30〔%〕以下になると、前記昇圧回路制御部10の第2の電池使用処理手段は、第2の電池使用処理を行い、一次電池16の使用を開始する。
そして、前記昇圧制御処理手段は、前記デューティ比を変更して大きくし、一次電池16の出力を大きくし、昇圧回路18の出力端子tm1の出力電圧を電圧vmより高くする。このとき、昇圧制御処理手段は、インバータ13において消費される電力及び二次電池15に充電するのに必要な電力を一次電池16から供給される電力でまかなうことができる程度までデューティ比を変更する。すなわち、残容量SOCm及びインバータ13の要求電力にそれぞれ対応させてデューティ比が制御される。
この場合、図5に示されるように、一次電池16からの電力をインバータ13及び二次電池15に供給することができる。そして、例えば、インバータ13において消費される電力、すなわち、電流変換部電力としてのインバータ電力Wiを10〔kW〕とし、二次電池15の残容量SOCmの低下に伴って、二次電池15を充電するのに必要な電力を表す出力Wmを−5〔kW〕としたとき、一次電池16で発生させるべき出力Wsは、
Ws=Wi−Wm
=15〔kW〕
になる。
そして、前記昇圧制御処理手段は、一次電池16が前記出力Wsを発生させるように昇圧回路18のデューティ比をフィードバック制御する。また、電動車両を走行させる際に、インバータ要求電力Wirが変化するのに伴って、一次電池16の発生させるべき出力Wsが変化するので、昇圧回路18のデューティ比が連続的に変更されることになる。また、二次電池15の残容量SOCmに対応させて二次電池15の出力Wmが変化することになるので、これに対応して同様に昇圧回路18のデューティ比が連続的に変更される。
このように、一次電池16に接続された昇圧回路18のデューティ比を変更することによって、一次電池16及び二次電池15からインバータ13に供給される電力を制御することができるので、インバータ13に電力を供給しながら、二次電池15を充電し、残容量SOCmを大きくすることができる。
また、一次電池16からの電力をインバータ13及び二次電池15に供給している間、前記電池情報取得処理手段は、二次電池15の残容量SOCmを読み込み、前記残容量判断処理手段は、前記残容量SOCmが、第1の閾値より大きい第2の閾値としての上限値SOCH、本実施の形態においては、40〔%〕より大きくなったかどうかを判断する。
図6に示されるように、残容量SOCmが40〔%〕より大きくなると、前記第1の電池使用処理手段は、一次電池16の使用を停止させる。そのために、前記第1の電池使用処理手段は、昇圧制御処理手段が昇圧回路18に指令するデューティ比を0〔%〕に変更するか、又は昇圧回路18内に配設された図示されないリレーをオフにする。
その後、再び残容量SOCmが30〔%〕以下になるまで、二次電池15からの電力がインバータ13に供給される。例えば、インバータ電力Wiが10〔kW〕である場合、二次電池15の出力Wmは10〔kW〕になる。
ところで、残容量SOCmが30〔%〕より大きく、かつ、40〔%〕以下である場合、一次電池16が継続して使用されるが、その間、前記電池情報取得処理手段は、一次電池16の残容量SOCsを読み込むことによって一次電池16の電池情報を取得する。
そして、前記残容量判断処理手段は、残容量SOCsが理論上使用可能な最小の値、本実施の形態においては、0〔%〕になったかどうかを判断する。そして、残容量SOCsが0〔%〕になると、前記第2の電池使用処理手段は、一次電池16の使用を終了し、昇圧回路制御部10の図示されない通知処理手段は、通知処理を行い、残容量SOCsが0〔%〕になったこと、及び一次電池16の使用を終了したことを図示されない表示部に表示し、運転者に通知する。
このように、本実施の形態においては、残容量SOCmを、
SOCL≦SOCm≦SOCH
の範囲に維持することができる。したがって、出力密度の高い二次電池15を使用することによって、高出力で駆動モータ11を駆動することができ、電動車両の駆動トルクを大きくすることができる。
また、残容量SOCmを前記範囲に維持するために、重量エネルギー密度の高い一次電池16を、残容量SOCsが0〔%〕になるまで使用することができるので、電動車両の航続距離を長くすることができる。したがって、二次電池15の容量をその分小さくすることができるので、二次電池15を大型化する必要がなく、電動車両のコストを低くすることができる。
次に、フローチャートについて説明する。
ステップS11 二次電池15の残容量SOCmを読み込む。
ステップS12 残容量SOCmが下限値SOCL以下であるかどうかを判断する。残容量SOCmが下限値SOCL以下である場合はステップS13に進み、下限値SOCLより大きい場合はステップS11に戻る。
ステップS13 一次電池16の使用を開始する。
ステップS14 二次電池15の残容量SOCmを読み込む。
ステップS15 残容量SOCmが上限値SOCHより大きいかどうかを判断する。残容量SOCmが上限値SOCHより大きい場合はステップS16に、上限値SOCH以下である場合はステップS17に進む。
ステップS16 一次電池16の使用を停止して、ステップS11に戻る。
ステップS17 昇圧制御処理を行う。
ステップS18 一次電池16の残容量SOCsを読み込む。
ステップS19 残容量SOCsが0〔%〕以下であるかどうかを判断する。残容量SOCsが0〔%〕以下である場合はステップS20に進み、残容量SOCsが0〔%〕より大きい場合はステップS14に戻る。
ステップS20 一次電池16の使用を終了する。
ステップS21 通知処理を行い、処理を終了する。
次に、二次電池15の残容量SOCmを一定の値に維持して電動車両を走行させることができるようにした本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与し、同じ構造を有することによる発明の効果については同実施の形態の効果を援用する。
図7は本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示すフローチャート、図8は本発明の第2の実施の形態におけるインバータ要求電力算出処理手段の動作を示すフローチャートである。
この場合、第1の電池としての、かつ、主電池としての二次電池15の残容量SOCmを任意の一定の値、例えば、目標値SOCmrに維持するために 二次電池15、及び第2の電池としての、かつ、補助電池としての一次電池16の各出力Wm、Wsが制御される。
まず、制御装置としての、かつ、第1の制御部としての昇圧回路制御部10の図示されないインバータ要求電力取得処理手段は、インバータ要求電力取得処理を行い、要求電力としてのインバータ要求電力Wirを第2の制御部としてのインバータ制御部90から読み込むことによって取得する。そのために、該インバータ制御部90の図示されない要求電力算出処理手段としてのインバータ要求電力算出処理手段は、要求電力算出処理としてのインバータ要求電力算出処理を行い、負荷としての、かつ、電流変換部としてのインバータ13を作動させ、電動機械としての駆動モータ11を駆動するために必要な前記インバータ要求電力Wirを算出する。
ところで、一次電池16は追従性が低く、インバータ要求電力Wirが急に変動すると、インバータ要求電力Wirに追従した出力Wsを発生させることができない。そこで、前記昇圧回路制御部10の図示されない変動緩和処理手段は、変動緩和処理を行い、前記インバータ要求電力Wirを図示されないローパスフィルタに通し、高周波成分を除去することによってインバータ要求電力Wirの変動を緩和し、変動が緩和された後のインバータ要求電力Wir’を生成する。
なお、インバータ要求電力Wirが急に変動する場合、インバータ要求電力Wirと変動が緩和された後のインバータ要求電力Wir’に差分が生じるが、追従性の高い二次電池15からの出力Wmで電力差を補うことができるので、インバータ電力Wiが不足することがない。
次に、前記昇圧回路制御部10の電池情報取得処理手段は、二次電池15の残容量SOCmを読み込む。
そして、前記昇圧回路制御部10の図示されない目標出力算出処理手段は、目標出力算出処理を行い、前記目標値SOCmr及びインバータ要求電力Wir’を読み込み、残容量SOCmを目標値SOCmrに維持するための一次電池16の目標出力Wsrを算出する。この場合、目標出力Wsrは、比例定数をk1とすると、
Wsr=Wir’+k1・(SOCmr−SOCm)
になる。
次に、前記目標出力算出処理手段は、最大値Wsrmaxを超えないように目標出力Wsrを補正する。そのために、目標出力Wsrがあらかじめ設定された最大値Wsrmaxを超える場合、前記目標出力算出処理手段は、最大値Wsrmaxを目標出力Wsrとする。
続いて、前記昇圧回路制御部10の図示されない出力算出処理手段は、出力算出処理を行い、一次電池16の電圧Vs及び電流Isを読み込み、出力Ws
Ws=Vs・Is
を算出する。
そして、前記昇圧回路制御部10の前記昇圧制御処理手段は、目標出力Wsr及び出力Wsを読み込み、目標出力Wsrと実際の出力Wsとの出力差分δWs
δWs=Wsr−Ws
を取得し、該出力差分δWsに応じて出力変更部としての昇圧回路18におけるデューティ比Dutyを変更して大きくする。変更後のデューティ比Dutyの値をDuty’とし、比例定数をk2すると、
Duty’=Duty+k2・δWs
になる。
したがって、デューティ比Dutyに基づいて一次電池16の出力Wsを発生させると、残容量SOCmを目標値SOCmrに維持することができる。
このように、本実施の形態においては、インバータ要求電力Wir及び二次電池15の残容量SOCmに基づいて目標出力Wsrが算出され、該目標出力Wsr及び出力Wsに基づいてデューティ比Dutyが連続的に変更されるので、残容量SOCmを一定の目標値SOCmrに維持しながら電動車両を走行させることができる。
なお、前記目標出力Wsrを算出するに当たり、値k1・(SOCmr−SOCm)は、目標値SOCmrと残容量SOCmとの差ΔSOCm
ΔSOCm=SOCmr−SOCm
に比例定数k1を乗算したものであり、前記値Duty’を算出するに当たり、値k2・δWsは、出力差分δWsに比例定数k2を乗算したものであり、いずれも、デューティ比Dutyを連続的に変更するための比例項を構成する。
また、本実施の形態においては、変動緩和処理によって変動が緩和された後のインバータ要求電力Wir’に基づいて目標出力Wsrが算出され、該目標出力Wsrに基づいてデューティ比Dutyが算出されるので、インバータ要求電力Wirが急に変動しても、適正な出力Wsを発生させることができる。
次に、図7のフローチャートについて説明する。
ステップS31 インバータ要求電力Wirを読み込む。
ステップS32 変動緩和処理を行う。
ステップS33 二次電池15の残容量SOCmを読み込む。
ステップS34 一次電池16の目標出力Wsrを算出する。
ステップS35 一次電池16の目標出力Wsrが出力最大値Wsrmaxより大きいかどうかを判断する。一次電池16の目標出力Wsrが出力最大値Wsrmaxより大きい場合はステップ36に、一次電池16の目標出力Wsrが出力最大値Wsrmax以下である場合はステップ37に進む。
ステップS36 出力最大値Wsrmaxを一次電池16の目標出力Wsrにする。
ステップS37 一次電池16の出力Wsを算出する。
ステップS38 デューティ比Dutyを変更する。
次に、前記インバータ制御部90における前記インバータ要求電力算出処理手段の動作について説明する。
すなわち、該インバータ要求電力算出処理手段は、加速指標としてのアクセル開度αを読み込み、車速v及びアクセル開度αに基づいて車両要求トルクTOを算出する。
続いて、前記インバータ要求電力取得処理手段は、駆動モータ回転速度NMを読み込み、前記車両要求トルクTO及び駆動モータ回転速度NMに基づいてインバータ要求電力Wirを算出する。
なお、インバータ電圧及びインバータ電流を読み込み、インバータ電圧とインバータ電流とを乗算することによってインバータ要求電力Wirを算出することもできる。
次に、図8のフローチャートについて説明する。
ステップS41 アクセル開度αを取得する。
ステップS42 車両要求トルクTOを算出する。
ステップS43 モータ回転速度NMを算出する。
ステップS44 インバータ要求電力Wirを算出し、リターンする。
次に、インバータ13におけるインバータ要求電力Wirが電動車両の走行により変化しても、一次電池16の出力Wsが一定になるように制御を行う動作について説明する。
図9は本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示す第1の概念図、図10は本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示す第2の概念図、図11は本発明の第2の実施の形態における電池ハイブリッドシステムの動作を示す第3の概念図である。
この場合、インバータ要求電力Wirが算出され、二次電池15の残容量SOCmが読み込みまれ、一次電池16の目標出力Wsrが算出され、デューティ比Dutyが変更される。
図9に示されるように、例えば、インバータ要求電力Wirが15〔kW〕であり、高負荷が要求されている状態であり、大きい電力をインバータ13に供給したい場合、二次電池15及び一次電池16の電力がインバータ13に供給される。二次電池15の出力要求Wmrに一次電池16の目標出力Wsrを加算した値がインバータ13のインバータ要求電力Wirであるので、一次電池16の目標出力Wsrが5〔kW〕に維持され、残りをまかなうために二次電池15の出力要求Wmrは10〔kW〕になる。
また、図10に示されるように、例えば、インバータ要求電力Wirが2〔kW〕であり、図9の場合より低負荷が要求されている状態である場合、一次電池16の目標出力Wsrが5〔kW〕に維持されているので、余剰分は二次電池15に入力され、二次電池15が充電される。したがって、二次電池15の出力要求Wmrが−3〔kW〕になり、インバータ13及び二次電池15に電力が供給される。その結果、運転者は二次電池15を充電しながら電動車両を走行させることができる。
そして、図11に示されるように、例えば、インバータ要求電力Wirが−10〔kW〕であり、二次電池15の残容量SOCmが低下し、二次電池15の充電が必要になり、出力要求Wmrが15〔kW〕である場合、二次電池15の出力要求Wmrが−15〔kW〕になり、インバータ13から電力が二次電池15に供給される。この場合、一次電池16の目標出力Wsrが5〔kW〕に維持されているので、回生時の回生電力の10〔kW〕が二次電池15に入力され、二次電池15が充電される。
なお、本発明は前記各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。
10 昇圧回路制御部
11 駆動モータ
15 二次電池
16 一次電池
18 昇圧回路
90 インバータ制御部
SOCm 残容量
Ws 出力

Claims (4)

  1. 電動機械と、
    一次電池と、
    該一次電池と接続され、一次電池の出力を変更するための出力変更部と、
    前記一次電池と前記出力変更部を介して接続された二次電池と、
    制御装置とを有するとともに、
    該制御装置は、前記一次電池及び二次電池の各残容量を取得し、二次電池の残容量が第1の閾値以下になると、一次電池の使用を開始し、前記電動機械を駆動するための要求電力を取得し、該要求電力に対して変動緩和処理を行った値及び前記二次電池の残容量に基づいて前記出力変更部を制御することによって、前記電動機械において消費される電力及び二次電池を充電するのに必要な電力を、一次電池から供給される電力でまかなうことができるように一次電池の出力を発生させ、二次電池の残容量が第1の閾値より大きい第2の閾値より大きくなると、一次電池の使用を停止させ、一次電池の残容量が理論上使用可能な最小の値になると、一次電池の使用を終了することを特徴とする電池ハイブリッドシステム
  2. 記制御装置は、前記二次電池の残容量があらかじめ設定された範囲内を維持するように前記一次電池の出力を変更する請求項1に記載の電池ハイブリッドシステム
  3. 記出力変更部は、スイッチング素子を備えた昇圧回路であり、前記電動機械において消費される電力及び二次電池の残容量に応じて前記スイッチング素子のデューティ比を制御する請求項1又は2に記載の電池ハイブリッドシステム。
  4. 電動機械、一次電池、該一次電池と接続され、一次電池の出力を変更するための出力変更部、前記一次電池と前記出力変更部を介して接続された二次電池、及び制御装置を有する電池ハイブリッドシステムの使用方法において、
    前記一次電池及び二次電池の各残容量を取得し、
    二次電池の残容量が第1の閾値以下になると、一次電池の使用を開始し、
    前記電動機械を駆動するための要求電力を取得し、該要求電力に対して変動緩和処理を行った値及び前記二次電池の残容量に基づいて前記出力変更部を制御することによって、前記電動機械において消費される電力及び二次電池を充電するのに必要な電力を、一次電池から供給される電力でまかなうことができるように一次電池の出力を発生させ、
    二次電池の残容量が第1の閾値より大きい第2の閾値より大きくなると、一次電池の使用を停止させ、
    一次電池の残容量が理論上使用可能な最小の値になると、一次電池の使用を終了することを特徴とする電池ハイブリッドシステムの使用方法。
JP2009018493A 2009-01-29 2009-01-29 電池ハイブリッドシステム及びその使用方法 Active JP5304277B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018493A JP5304277B2 (ja) 2009-01-29 2009-01-29 電池ハイブリッドシステム及びその使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018493A JP5304277B2 (ja) 2009-01-29 2009-01-29 電池ハイブリッドシステム及びその使用方法

Publications (2)

Publication Number Publication Date
JP2010178506A JP2010178506A (ja) 2010-08-12
JP5304277B2 true JP5304277B2 (ja) 2013-10-02

Family

ID=42708901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018493A Active JP5304277B2 (ja) 2009-01-29 2009-01-29 電池ハイブリッドシステム及びその使用方法

Country Status (1)

Country Link
JP (1) JP5304277B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056732B2 (en) 2017-07-31 2021-07-06 Lg Chem, Ltd. Battery management apparatus and battery pack including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012165340A1 (ja) * 2011-06-01 2015-02-23 株式会社日立製作所 蓄電システム
JP2014107991A (ja) * 2012-11-28 2014-06-09 Furukawa Battery Co Ltd:The 電源システム
JP6213712B2 (ja) * 2013-04-30 2017-10-18 日産自動車株式会社 注液システム
JP6781550B2 (ja) * 2016-02-01 2020-11-04 川崎重工業株式会社 電力貯蔵システムおよびその制御方法
JP7078246B2 (ja) * 2017-07-03 2022-05-31 株式会社アドバンスクリエート マグネシウム電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389324B2 (ja) * 1994-06-21 2003-03-24 マツダ株式会社 電動車両用ハイブリッド電源装置
JP3487952B2 (ja) * 1995-04-14 2004-01-19 株式会社日立製作所 電気自動車の駆動装置及び駆動制御方法
JP4049833B2 (ja) * 1996-07-26 2008-02-20 トヨタ自動車株式会社 電源装置および電気自動車
JPH11332023A (ja) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電気自動車用バッテリー
JP3931267B2 (ja) * 1999-05-13 2007-06-13 ソニー株式会社 バッテリーパック
JP4400414B2 (ja) * 2004-10-25 2010-01-20 日産自動車株式会社 電源装置およびこれを搭載した車両
JP4984754B2 (ja) * 2006-09-04 2012-07-25 トヨタ自動車株式会社 電源システムおよびそれを備えた車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056732B2 (en) 2017-07-31 2021-07-06 Lg Chem, Ltd. Battery management apparatus and battery pack including the same

Also Published As

Publication number Publication date
JP2010178506A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4193704B2 (ja) 電源装置およびそれを搭載する自動車
EP1414145B1 (en) Motor drive control apparatus
JP3692993B2 (ja) 駆動装置および動力出力装置
US8035252B2 (en) Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program for causing computer to execute temperature increase control of power storage device
JP4835383B2 (ja) 電力供給ユニットの制御装置および制御方法、その方法をコンピュータに実現させるためのプログラム、そのプログラムを記録した記録媒体
RU2354563C2 (ru) Устройство привода двигателя
US9236736B2 (en) Power supply system and method for controlling the same
US20100181829A1 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP5304277B2 (ja) 電池ハイブリッドシステム及びその使用方法
US11203274B2 (en) Electrically driven vehicle
CN108454419B (zh) 电池系统的控制装置和电池系统
JP2009033830A (ja) 電気システムの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2010068576A (ja) コンバータ制御装置
CN111824044A (zh) 电源系统
JP5487675B2 (ja) モータ駆動装置及び電動車両
JP5493367B2 (ja) 電池ハイブリッドシステム
JP5808707B2 (ja) 電気自動車
JP2018196274A (ja) 電池システム
JP2020167838A (ja) 電気自動車
JP5316030B2 (ja) 電池ハイブリッドシステム及びその使用方法
JP5267092B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
CN115107561A (zh) 电源系统
JP5493368B2 (ja) 電池ハイブリッドシステム
JP2014093883A (ja) 動力出力装置
JP6477515B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5304277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250