JP5302455B2 - 無線アプリケーションのためのxpicの構成における変復調装置間の通信 - Google Patents

無線アプリケーションのためのxpicの構成における変復調装置間の通信 Download PDF

Info

Publication number
JP5302455B2
JP5302455B2 JP2012502463A JP2012502463A JP5302455B2 JP 5302455 B2 JP5302455 B2 JP 5302455B2 JP 2012502463 A JP2012502463 A JP 2012502463A JP 2012502463 A JP2012502463 A JP 2012502463A JP 5302455 B2 JP5302455 B2 JP 5302455B2
Authority
JP
Japan
Prior art keywords
communication device
polarization
differential interface
stage
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012502463A
Other languages
English (en)
Other versions
JP2012522442A (ja
Inventor
ミロッタ、ジオヴァンニ
カルガッティ、アントニオ
Original Assignee
テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エル エム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Publication of JP2012522442A publication Critical patent/JP2012522442A/ja
Application granted granted Critical
Publication of JP5302455B2 publication Critical patent/JP5302455B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/002Reducing depolarization effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • H04L25/0276Arrangements for coupling common mode signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線アプリケーションに関する。特に、本発明は、各無線リンク内で2つの直交偏波信号(orthogonally polarized signal)が同時に送信される無線通信ネットワークの装置間においてローカルで情報を転送するシステムおよび方法に関する。
今日、今まで以上に、ネットワーク運用者は、効率性およびトラフィックのケイパビリティの観点からほとんどの変復調装置の通信の傾向をカバーするソリューションを探している。無線ネットワークでは、使用される帯域幅のヘルツあたりのキャパシティの観点での効率的なソリューションは、同一のアンテナで同一チャネル偏波共用(Co-Channel Dual Polarized)の電磁場で2つのRF信号(通常、H信号およびV信号と呼ばれる)を送信することである。同一チャネル偏波共用(CCDP)は、無線送信ネットワークのキャパシティを倍増し、キャパシティの観点と周波数の再使用の観点との両方で、高密度の周波数帯域での、ネットワーク運用者にとっての明らかな利点を伴う。
マイクロ波の無線エネルギーは、波で進み、水平方向および垂直方向の両方に伝わる。この物理現象は、同時に両方の偏波上でのRF波の送信を可能にする。同一チャネル偏波共用の動作は、直交偏波で同一リンク上での2つの並行の通信チャネルを提供し、したがってリンクキャパシティを倍増する。別々の独立した信号は、単一の交差偏波アンテナ(cross polar antenna)を使用して同一の無線チャネル上で送信される。
2つの信号の直交性にもかかわらず、不完全なアンテナ分離およびチャネルの衰退(典型的には偏光解消効果)に起因して、信号間のいくらかの干渉がほとんど必然的に発生する。
CCDPチャネルを使用し、干渉の影響を消去するための主な技術は、交差偏波間干渉補償器(XPIC)と呼ばれる。
図1は、既知のXPICシステムの受信側の高レベルのブロック図を示す。システム1は、2つの直交偏波無線信号、垂直偏波信号4aおよび水平偏波信号4bを受信する交差偏波アンテナ2を含む。当該2つの直交偏波無線信号は、QAMで変調されている。
垂直変復調装置3aおよび水平変復調装置3bは、アンテナ2により検出される垂直偏波信号4aおよび水平偏波信号4bをそれぞれ受信するために提供される。特に、変復調装置は、ベースバンド信号の復調を実行する復調器5aおよび5bを含む。そのように得られた復調されたベースバンド信号は、交差偏波消去を実行するために2つの変復調装置の間で交換される。特に、両方の変復調装置における偏波信号および交差偏波信号の両方のアナログ/デジタル変換並びに帯域通過フィルタリング6a、6bの後に、偏波信号からの交差偏波信号の差し引きが、ノード7aおよび7bにおいて実行され、したがって交差偏波干渉を消去する。各変復調装置の交差偏波補償器(cross-polar canceller)は、2つの受信パスからの信号を処理し、合成して、元の独立した信号を復元する。
既存の技術の変復調装置の傾向は、適応変調の機能性を伴う無線システムを使用することである。適応変調の使用は、好ましい伝搬条件を伴う期間に、同一の無線周波数チャネル上での増加されたキャパシティを提供する。これは、保証キャパシティのためのリンクを形成するために使用される変復調方式であって、ライセンスされたスペクトラム効率クラスに関連する上記変復調方式よりも、よち高い変調方式を使用して得られる。これは、(より高いビットエラーレートの閾値および線形性の改善のための送信電力の減少により)減少したリンク予算(link budget)に起因してより低い可用性を伴うより高いキャパシティをもたらす。
近頃、技術の挑戦は、より高いトラフィックケイパビリティおよび無線リンクパフォーマンスのより高い最適化を保証するために、適応変調およびXPICの両方の機能性を同時にサポートできるマイクロ波無線リンクを開発することである。
既存のソリューションの問題は、既に説明されたXPICシステムは非常に効率的であるにもかかわらず適応変調機能および新たな動的なサービスについて完全には最適化されていないという事実に関連する。
実際には、固定変調の無線リンクで上記XPICソリューションを使用すると、(水平偏波および垂直偏波を扱う)2つの変復調装置の間の相互通信チャネルは必要ではない。交差偏波消去を実行する、変復調装置内のデジタル信号処理ブロックは、交差偏波を処理する変復調装置の状態から独立して機能する。
反対に、XPICが適応変調またはこれらの新たな種類の動的なサービスと組み合わせられる場合に、2つの変復調装置の間のいくらかの通信が、変調次数、トラフィックレート、および、適応変調の目的に有用に違いないいずれかの他の利用可能な情報等の追加情報をそれらの間で共有するために求められる。
したがって、本ソリューションの主な不利な点は、機器間に追加のワイヤまたはケーブルを導入しない限り、2つの変復調装置の間における本来の通信チャネルの欠落である。上記導入は、追加の生産コストおよび導入の観点でのより大きな複雑さにつながる。
本発明の目的は、従来技術に影響する上記欠点を克服することである。
この目的および後により明らかになる他の目標は、差動入力に基づいて通信チャネル上で第1のデータを通信する機能を伴う少なくとも1つの差動インターフェースステージを含む通信装置により達成される。上記通信装置の主な特徴は、上記差動インターフェースステージに接続される手段であって、上記差動インターフェースステージのコモンモードを変調することによって上記通信チャネル上で第2のデータを伝達する上記手段を備えることである。
望ましくは、上記差動インターフェースステージは、上記通信チャネルで上記第1のデータの互いに直交する成分を送信するために、第1の差動インターフェースステージおよび第2の差動インターフェースステージを含む。
さらに、上記差動インターフェースステージは、上記通信チャネルからの上記第1のデータの互いに直交する成分を受信するために、第3の差動インターフェースステージおよび第4の差動インターフェースステージを含む。上記差動インターフェースステージは、少なくとも1つの第1のバッファをさらに含んでもよい。
上記第2のデータを伝送する上記手段であって、上記差動インターフェースステージに接続される上記手段は、第2のバッファを含んでもよい。
上記通信装置は、上記差動入力に接続される少なくとも1つの直交振幅変調(QAM)復調器、並びに、上記第3の差動インターフェースステージおよび上記第4の差動インターフェースステージの出力に接続される少なくとも1つの交差偏波間干渉補償器(XPIC)を備えてもよい。
上記第2のデータは、マンチェスタ符号または33/66%のパルス幅変調符号を通して符号化されるデジタルデータであってもよく、固定長の構造化されたフレームの中で伝達されてもよい。
上記通信装置は、適応変調および交差偏波消去の無線リンクに適した変復調装置であってもよい。
上記目的および目標は、直交偏波を伴う無線信号を伝達するための無線リンクであって、ローカル通信チャネルを共有する垂直偏波通信装置および水平偏波通信装置を含む上記無線リンクによっても、達成される。
これらの通信装置の各々は、差動入力に基づいて上記ローカル通信チャネル上で第1のデータを伝達する少なくとも1つの差動インターフェースステージを備える。主な特徴は、これらの垂直偏波通信装置および水平偏波通信装置の各々が、上記差動インターフェースステージに接続される手段であって、上記差動インターフェースステージのコモンモードを変調することによって上記ローカル通信チャネル上で第2のデータを伝達する上記手段を備える、ということである。
上記差動インターフェースステージは、上記通信チャネル上で上記第1のデータの互いに直交する成分を送信する第1の差動インターフェースステージおよび第2の差動インターフェースステージを含んでもよい。上記差動インターフェースステージは、上記通信チャネルからの上記第1のデータの互いに直交する成分を受信する第3の差動インターフェースステージおよび第4の差動インターフェースステージをさらに含んでもよい。
さらに、上記少なくとも1つの差動インターフェースステージは、少なくとも1つの第1のバッファを含んでもよい。
上記第2のデータを伝達する上記手段であって、上記差動インターフェースステージに接続される上記手段は、第2のバッファを含んでもよい。
上記垂直偏波通信装置および上記水平偏波通信装置の各々は、上記差動入力に接続される少なくとも1つの直交振幅変調(QAM)復調器を備えてもよい。少なくとも1つの交差偏波間干渉補償器(XPIC)は、上記第3の差動インターフェースステージおよび上記第4の差動インターフェースステージの出力に接続されてもよい。
上記第2のデータは、好ましくは、マンチェスタ符号または33/66%のパルス幅変調符号を通して符号化されるデジタルデータであってもよく、固定長の構造化されたフレームの中で伝達されてもよい。
上記無線リンクは、適応変調および交差偏波消去の無線リンクであってもよい。
本発明のさらなる形態によれば、直交偏波を伴う無線信号を伝達するための複数の無線リンクを含む無線通信ネットワークが提供される。各無線リンクは、ローカル通信チャネルを共有する垂直偏波通信装置および水平偏波通信装置を含む。これらの通信装置の各々は、差動入力に基づいて上記ローカル通信チャネル上で第1のデータを伝達する少なくとも1つの差動インターフェースステージを備える。主な特徴は、これらの垂直偏波通信装置および水平偏波通信装置の各々が、上記差動インターフェースステージに接続される手段であって、上記差動インターフェースステージのコモンモードを変調することによって上記ローカル通信チャネル上で第2のデータを伝達する上記手段を備える、ということである。
上記差動インターフェースステージは、上記通信チャネル上で上記第1のデータの互いに直交する成分を送信する第1の差動インターフェースステージおよび第2の差動インターフェースステージを含んでもよい。
上記差動インターフェースステージは、上記通信チャネルからの上記第1のデータの互いに直交する成分を受信する第3の差動インターフェースステージおよび第4の差動インターフェースステージも含んでもよい。
さらに、上記差動インターフェースステージは、少なくとも1つの第1のバッファを含んでもよい。
上記第2のデータを伝達する上記手段であって、上記差動インターフェースステージに接続される上記手段は、第2のバッファを含んでもよい。
上記垂直偏波通信装置および上記水平偏波通信装置の各々は、上記差動入力に接続される少なくとも1つの直交振幅変調(QAM)復調器をさらに備えてもよい。少なくとも1つの交差偏波間干渉補償器(XPIC)は、上記第3の差動インターフェースステージおよび上記第4の差動インターフェースステージの出力に接続されてもよい。
上記第2のデータは、好ましくは、マンチェスタ符号または33/66%のパルス幅変調符号を通して符号化されるデジタルデータであってもよく、固定長の構造化されたフレームの中で伝達されてもよい。
上記垂直偏波通信装置および上記水平偏波通信装置の各々は、適応変調および交差偏波消去の無線リンクに適した変復調装置であってもよい。
本発明の目的および目標は、無線通信ネットワークにおいて複数の無線リンク間で無線信号を伝達する方法によっても達成される。各無線リンクは、垂直偏波通信装置および水平偏波通信装置を含む。上記垂直偏波通信装置は垂直偏波無線信号を受信し、上記水平偏波通信装置は、水平偏波無線信号を受信する。
各無線リンクにおいて、上記垂直偏波通信装置と上記水平偏波通信装置との間で共有されるローカル通信チャネルが提供される。
第1のデータが、差動入力に基づいて個々の差動インターフェースステージを通してこれらの水平偏波通信装置および垂直偏波通信装置の各々により上記ローカルチャネル上で伝達される。
上記方法は、上記垂直偏波通信装置および上記水平偏波通信装置のいずれかで、上記差動インターフェースステージのコモンモードを変調することにより上記ローカル通信チャネル上で第2のデータを伝達するステップを特徴とする。
ローカル通信チャネルを提供する上記ステップは、好ましくは、上記垂直偏波通信装置と上記水平偏波通信装置との間のデジタル通信チャネルを組み込むことを含んでもよい。
さらに、第1のデータを伝達する上記ステップは、受信された無線信号を2つの互いに直交する成分へと復調するステップと、上記差動インターフェースステージの上記差動入力にこれらの直交する成分の各々を送るステップと、上記ローカル通信チャネル上で上記第1のデータの上記直交する成分を送信するステップとを含んでもよい。
第1のデータを伝達する上記ステップは、また、上記差動入力で、上記ローカル通信チャネルからの上記第1のデータの互いに直交する成分を受信するステップと、クロストーク補償信号を取得するためにこれらの互いに直交する成分を交差偏波間干渉補償器に送信するステップとを含んでもよい。
上記方法は、上記垂直偏波通信装置で、復調された受信された上記無線信号から、上記水平通信装置からの上記クロストーク補償信号を差し引くステップと、上記水平偏波通信装置で、復調された受信された上記無線信号から、上記垂直通信装置からの上記クロストーク補償信号を差し引くステップとをさらに含む。
第2のデータを伝達する上記ステップは、上記垂直偏波通信装置および上記水平偏波通信装置の各々で、上記垂直偏波通信装置および上記水平偏波通信装置により共有される情報を含むデジタルデータストリームを符号化するステップを含んでもよい。上記ステップは、上記ローカル通信チャネル上で送信されるように、符号化された上記デジタルデータストリームを、上記差動インターフェースステージのコモンモードノードに送るステップも含んでもよい。
第2のデータを伝達する上記ステップは、上記垂直偏波通信装置および上記水平偏波通信装置の各々で、上記差動インターフェースステージのコモンモードノードで上記第2のデータを受信するステップを含んでもよい。上記第2のデータは、上記垂直偏波通信装置および上記水平偏波通信装置により共有される情報を含んでもよい。さらに、第2のデータを伝達する上記ステップは、上記第2のデータをデジタルデータストリームに復号するステップを含んでもよい。
上記方法は、マンチェスタ符号または33/66%のパルス幅変調符号に従って符号化するステップをさらに含んでもよい。
上記方法は、固定長の構造化されたフレームの中で上記第2のデータを伝達するステップを含んでもよい。
本発明は、好都合に、XPICの構成の中で動作する2つの変復調装置の間の組み込まれたデジタルデータチャネルを供給し、追加のデジタル相互通信チャネルを提供する、ということがわかる。例えば適応変調の特徴がサポートされなければならずまたはサポートされるべきである場合に必要な情報を2つの変復調装置の間で共有するために、組み込まれたチャネルは追加の通信パスを供給する。実際に、XPICおよび適応変調の特徴の両方が必要である場合に、2つの変復調器の間で実行時間内に、変調次数およびトラフィックレート等の情報を交換するための適切な手段を提供することが必須である。
約1Mbps以下のビットレートで動作する通信チャネルを使用して、リンクの状態、監視、アラーム等の情報も共有することができる。この賢明なソリューションを用いて、例えば、障害または高いフェージングレベルがちょうど1つの偏波パスに発生する場合に、直交するものを使用して、偏波チャネルの状態についてのホップ情報上でのハンドシェイクにより無線リンクのパフォーマンスを最適化することもできる。
ここで説明される、組み込まれるチャネルのさらなる恩恵は、全てのXPICケーブル検出回路(XPICケーブルの正しい接続についてのアラームを提供できる回路)を除去する可能性である。この回路を、「データトグリング検出」または「フレーム整合アラーム」(2つのXPIC変復調装置の間のデジタルチャネル上の動作性に基づく検出部)として全デジタルのソリューションに置き換えることができる。これは、ボードのコスト低減、信頼性および平均故障間隔の観点から明らかな利点を与える。
本発明は、2つの変復調装置の間でこのデジタルサービスチャネルを実行するための新規で、容易で、かつ安価なソリューションを供給する。実際に、いずれの追加の物理的な接続(ケーブルまたはワイヤ)も、XPICおよび適応変調の機能性を同時に実行するための2つの機器の基盤の間に提供されない。この技術は、XPICの機能性を実行するために必要な必須の既存の接続を利用する。このように、容易に導入でき、かつ安価な無線リンクを提供することができる。実際に、追加のケーブルがないことにより、完全なソリューションの機器を供給することが可能になる。結果として、システムは、より効率的であり、またより信頼性が高い。
さらに、本発明は、非常により柔軟なマイクロ波リンクのソリューションを提供する。マイクロ波リンクのソリューションは、XPIC機能を達成するために、バックプレーンを介した変復調装置内の通信、または同一の基盤上での追加の受信機の実装を必要とする変復調装置内の通信を提供する。実際に、バックパネルの設計を単純化し、したがって、生産コストを下げ、システムの平均故障間隔を上げることに加えて、上記ソリューションは、必ずしも(典型的には互いに隣接する)固定のスロット位置のみではなく変復調装置を導入する可能性もユーザに与える。これは、段階的な特徴のシステムアップグレードが予測される場合に特に重要である。このソリューションにより、シェルフ内の変復調装置の配置の変更を要することなく適応変調の機能性も追加する、適切なシェルフマガジンに導入されたXPIC無線リンクシステムのアップグレードが可能になる。実際には、本発明を採用するXPICおよび適応変調の特徴の同時存在は、変復調装置が導入されるスロットの位置から完全に独立している。
好都合に、2つのXPIC変復調装置が2つの異なるシェルフマガジンに配置される場合に、顧客は、ハードウェアを変更することなく、コンポーネントを連続して導入することができる。例えば、シェルフマガジンにおけるいずれかの変復調装置の変更または基盤の再構成を必要とすることなく、XPICの後に適応変調を導入することができる。
本発明のさらなる特徴および利点は、特定の排他的ではない実施形態の詳細な説明からより明らかになるであろう。当該実施形態は、添付の図面の中で限定しない例として説明される。
従来技術に従った典型的なXPIC受信機の高レベルのブロック図である。 本発明に従った無線通信ネットワークのブロック図である。 本発明に従った受信機ステージの高レベルのブロック図である。 本発明の好適な実施形態に従った受信機ステージである。 本発明に従った方法を示すフロー図である。 本発明の実施形態に従った組み込まれた通信チャネル上で送信されるデジタルデータのマンチェスタ符号化を示す。 本発明の別の実施形態に従った組み込まれた通信チャネル上で送信されるデジタルデータの33/66%のパルス幅変調符号化を示す。 本発明の実施形態に従った組み込まれたデジタルデータチャネルのためのフレーム構造を示す。 本発明の実施形態に従った組み込まれたデジタルデータチャネルのための整合シーケンスを表現するフロー図である。
図2は、CCDPを伴うRF信号のような、直交偏波を伴う無線信号を伝達するための複数の無線リンクを含む無線通信ネットワーク10を示す。
単純化の目的で、これらの無線リンクのうちの1組のみが示され、特に第1の無線リンク11および第2の無線リンク12が示される。第1の無線リンクは、受信機ステージとして機能し、垂直偏波通信装置11aおよび水平偏波通信装置11bを含む。また、同様に、第2の無線リンク12は、送信機ステージとして機能し、垂直偏波通信装置12aおよび水平偏波通信装置12bを含む。好都合に、垂直偏波通信装置および水平偏波通信装置は、変復調装置であり、以下の説明ではそのように呼ばれる。
各無線リンクについての水平変復調装置および垂直変復調装置は、第1の無線リンク11について11cと示され、また第2の無線リンク12について12cと示されるローカル通信チャネルを共有する。
第1の無線リンク11は、第1の交差偏波アンテナ14を提供される。同様に、第2の無線リンク12は、第2の交差偏波アンテナ15を提供される。
第1の交差偏波アンテナ15は、2つの直交偏波成分13aおよび13bを伴う無線信号13を送信するのに適している。無線信号13は、第2の交差偏波アンテナ14により受信されることが可能である。
図3は、垂直変復調装置11aから水平変復調装置11bへのローカル通信チャネル11cを提供する一般的な構成を詳細に示す。
垂直変復調装置11aは、ローカル通信チャネル11c上で第1のデータを送信するように適合される。ローカル通信チャネル11cは、両方の変復調装置のインターフェースステージ間でケーブルを接続することにより得られる。特に、垂直変復調装置11aは、少なくとも1つの復調器を備える。当該復調器は、第1の交差偏波アンテナ14から受信される垂直偏波無線信号13aを復調し、ローカル通信チャネル16上で送信される第1のデータを取得する。
本発明の好適な実施形態では、第1の交差偏波アンテナ14により受信される垂直偏波無線信号13aの(I信号およびQ信号で示される)個々の直交位相成分を復調するために、2つのQAM復調器22および23が垂直変復調装置11aにおいて提供される。
QAM復調器22および23の下流には、送信差動インターフェースステージが接続される。第1の差動インターフェースステージ21aは、第1のQAM復調器22により出力されるI成分に対して動作する。一方、第2の差動インターフェースステージ31aは、第2のQAM復調器23により出力されるQ成分に対して動作する。
垂直変復調装置11aは、符号化されていない第2のデータを生成するTXデータストリームソース24を備える。当該符号化されていない第2のデータは、ローカル通信チャネル11cの中に組み込まれるチャネルの中で送信される。符号化されていない第2のデータは、デジタルデータストリームであり得る。当該デジタルデータストリームは、組み込まれた通信チャネル上での送信の前に適切に符号化され得る。この目的に向けて、垂直変復調装置11aは、クロックデータ符号器25を備え得る。クロックデータ符号器25は、TXデータストリームソース24の下流に接続され、TXクロック生成器26を提供される。符号化方法の候補は、後に説明される。
クロックデータ符号器25の出力は、バッファのような適切な手段27を通してコモンモード信号として第1の差動インターフェースステージ21aに与えられる第2のデータを表す。QAM復調器のために、第2のデータは、第2の差動インターフェースステージ31aにも与えられる。したがって、第2のデータは、差動インターフェースステージのコモンモードを復調する。そうでなければ、0またはグランドに関する一定の電圧である。
既に説明されたように、組み込まれた通信チャネルを既存のローカルチャネル11cに追加することにより、2つの変復調装置の間に追加のケーブルまたは相互接続が必要とされない、ということが分かる。
水平変復調装置11bでは、通信チャネル11c上で垂直変復調装置11aにより送信される第1のデータおよび第2のデータを受信する手段が提供される。より具体的には、2つの受信差動インターフェースステージ21bおよび31bは、垂直変復調装置11aからの復調されたデータのI成分およびQ成分をそれぞれ受信する。
水平変復調装置11bは、受信差動インターフェースステージ21bおよび31bの両方からのコモンモード成分を抽出するために、受信差動インターフェースステージ21bに接続される、バッファのような手段37も備える。コモンモード信号は垂直変復調装置11aにより2つの直交位相デジタル信号IおよびQとして送信されるので、差動インターフェースステージ31bから手段37により抽出されるコモンモード信号Vcmは、否定される。
自らのRXクロック36を提供されることが可能であるクロックデータ復号器35は、バッファ37の下流に接続される。クロックデータ復号器35は、符号化されていない第2のデータを復元することができ、当該第2のデータをデータストリーム受信器34に与える。そして、データストリーム受信器34は、例えば適応変調のために当該第2のデータを利用する。
コモンモード成分の抽出とは別に、差動インターフェースステージ21bおよび31bの出力は、それぞれのXPIC補償器32および33に接続される。XPIC補償器32および33は、従来技術に従って、XPIC消去のために2つの直交信号を処理する。
図4は、垂直変復調装置11aおよび水平変復調装置11bのコンポーネントのより詳細な図を与える。当該図は、ローカル通信チャネル11c上の両方の情報フローを含む。特に、第1の通信チャネル16は、垂直変復調装置11aから水平変復調装置11bに情報を搬送する。一方、第2の通信チャネル17は、水平変復調装置11bから水平変復調装置11aに情報を搬送する。
第1の通信チャネル16は、第1のデータを搬送する復調された信号のI成分およびQ成分、並びに第2のデータを搬送するコモンモード信号のための、個々の差動相互接続161および162を含む。同様に、第2の通信チャネル17も、後に説明されるように、水平変復調装置から垂直変復調装置への第1のデータおよび第2のデータが送信される個々の差動相互接続171および172を含む。
垂直変復調装置11aでは、上記のように、アンテナ14により受信される垂直偏波無線信号13aのI成分を、例えば当該信号とサイン信号とを掛け合わせることによって復調するために、第1のQAM復調器22が提供される。一方、第2のQAM復調器23は、同一の垂直偏波信号13aのQ成分を、当該信号13aと直交位相信号(例えば、コサイン信号)とを掛け合わせることによって復調する。
差動インターフェースステージ21aおよび31aは、好ましくは、バッファの構成の中における、差動信号の処理のための演算増幅器である。当該演算増幅器により、(それぞれ28、38で示される)自らのピンに適切にバイアスを与え、中間周波数の帯域幅内に動かすことにより、コモンモードの出力電圧を設定することが可能となる。
低い出力電圧振幅を伴う差動デジタル駆動器27は、第2のデータを伝達する手段として用いられ、特に、組み込まれた通信チャネルを駆動するように適合される。好ましくは、共通の安価な低電圧差動信号(LVDS)のバッファを、この目的のために使用することができる。図4には示されていないが、当該駆動器27は、図3のクロックデータ符号器25の出力に接続される入力を有する。
バッファ27の2つの差動出力は、それぞれ、コンデンサC1およびC2を介して、アナログ差動インターフェースステージ21aおよび31aのコモンモードノード28および38と交流結合される。減結合コンデンサC1およびC2の容量は、組み込まれた通信チャネルに必要とされる最大周波数に基づいて選択される。
水平変復調装置11bの受信差動インターフェースステージ21bおよび31bは、I復調ベースバンド信号およびQ復調ベースバンド信号をバッファリングするように、バッファの構成の中における、差動信号の処理のための演算増幅器であり得る。
水平変復調装置11bにより受信されるI信号およびQ信号からコモンモード信号を抽出するために、等しい抵抗値を伴う一連のレジスタR1−R2およびR3−R4が、ステージ21bおよび31bの差動入力に与えられる2つの差動ラインの適切な終結を供給する。
特に、一連のレジスタR1−R2およびR3−R4は、それぞれ、当該中間地点の電圧を調べるように適合されるバッファ37の差動入力に接続される個々の中間点AおよびBを含む。上記接続は個々のコンデンサC3およびC4を介して現れ、それにより電圧の変化が検出されることが可能である。このように、バッファ27を介して送信機側に適用されるコモンモードの電圧は、2つの一連のレジスタネットワークR1−R2およびR3−R4の中間地点AおよびBでも受け取られる。
バッファ37は、点AおよびBにおける2つのコモンモード電圧の間の差動値を受信するために使用される差動低振幅電圧バッファである。したがって、バッファ37自体により出力される、バッファ37の入力間の電圧差は、確かに、入力27で垂直変復調装置11aにおける送信機側で供給されたものと同一の復元されたデジタルデータストリームである。バッファ37の出力に接続されるクロックデータ復号器35で、当該データを復号し、元の符号化されていない第2のデータを復元することができる。
上記説明は、垂直変復調装置11aから水平変復調装置11bへの第1の通信チャネル16に言及した。垂直変復調装置11aの送信機側および水平変復調装置11bの受信機側が関与した。しかしながら、第2の逆向きの通信チャネル17も、垂直変復調装置におけるXPIC消去を実行するために存在する。この目的に向けて、反対の方向(水平変復調装置11bから垂直変復調装置11aへの方向)で機能するものの、チャネル16を参照して説明された装置に同様に対応する装置が提供される。受信器側は、垂直変復調装置11aが提供され、送信機側は、水平変復調装置11bが提供される。このように、双方向のデジタルデータリンクが得られる。
水平変復調装置11bは、通信チャネル17上で水平偏波無線信号13bにより搬送される情報に対応する第1のデータを伝達する。また、そのようにするために、水平変復調装置11bは、2つの復調器を含む。本発明の好適な実施形態によれば、当該2つの復調器は、QAM復調器42および43であり得る。これらのQAM復調器の出力は、第1の差動インターフェースステージ41bおよび第2の差動インターフェースステージ51bの個々の差動入力に与えられる。第1の差動インターフェースステージ41bおよび第2の差動インターフェースステージ51bは、上記ステージ21aおよびステージ31bと同じである。すなわち、第1の差動インターフェースステージ41bおよび第2の差動インターフェースステージ51bは、バッファの構成における、差動信号の処理のための演算増幅器である。当該ステージ41bおよび51bは、それらの出力において、個々の差動相互接続171および172に接続される。差動相互接続171および172は、別々のケーブルであり得る。
LVDSバッファのような、低い出力電圧振幅を伴う差動デジタル駆動器47は、用いられて、デジタルの組み込まれた通信チャネルを駆動する。コンデンサC7およびC8は、使用されて、アナログバッファ41bおよび51bのコモンモードノード48および58に、バッファ47の2つの差動出力を結合する。減結合コンデンサの値は、デジタルの組み込まれた通信チャネルに必要とされる最大周波数によって決まる。
垂直変復調装置11aの受信機側は、2つのさらなる差動インターフェースステージ41aおよび51aを備える。差動インターフェースステージ41aおよび51aの差動入力は、それぞれ差動相互接続171および172に接続される。これらの2つのステージは、用いられて、I復調ベースバンド信号およびQ復調ベースバンド信号をバッファリングする。
そして、2つの直交信号は、従来技術に従って、XPIC消去のためにXPIC補償器52および53により処理される。
同じ一連のレジスタR5−R6およびR7−R8が、適切に2つの差動ラインの終結を供給する。送信機側11bに適用されるコモンモード電圧は、2つの一連のレジスタネットワークR5−R6およびR7−R8の中間点C並びにDにおいても受け取られる。コンデンサC5およびC6を介して結合される電圧の変化は、落とされて、差動低振幅電圧バッファ57により点CおよびDを調べる。差動低振幅電圧バッファ57は、使用されて、IブランチおよびQブランチからの2つのコモンモード電圧の間の差動値を受け取る。したがって、バッファ57から出力される、バッファ57の入力の間の差は、確かに、水平変復調装置11bにおける送信機側で47の入力で供給されたものと同一の復元されたデジタルデータストリームである。
CCDPのRF信号の通信を用いる無線リンク11内でデータを通信する方法200は、基本的に3つのステップを含む、ということが分かる。当該ステップは、図5に示される。
ステップ201で、無線リンクで、水平偏波通信装置11bおよび垂直偏波通信装置11aの間で共有されるローカル通信チャネル11cが提供される。
ステップ202で、無線リンクの水平偏波通信装置11bおよび垂直偏波通信装置11aは、上記のように差動モードを介してローカル通信チャネル上で第1のデータを伝達する。
ステップ203で、無線リンクの水平偏波通信装置11bおよび垂直偏波通信装置11aは、コモンモードを介してローカル通信チャネル上で第2のデータを伝達する。
新たな固有のチャネルの組み込み技術が使用されて、2つのXPIC変復調装置の間で共有される2つの主要なIブランチおよびQブランチのコモンモード電圧VCMを扱うことによりデジタルデータが送受信される、ということに留意する。2つのXPIC変復調装置を接続するために使用されるデジタルデータチャネルは、低電圧振幅標準(LVDSが適当なものである)に基づく。2つの差動Iアナログ信号および差動Qアナログ信号のコモンモード電圧(VCM)は、第2のデータと呼ばれている特定のデータ情報を運ぶための媒体として使用される。2つのI−QAMブランチおよびQ−QAMブランチのVCMは、コンデンサを介して、バッファ27および47のような差動デジタルデータ送信機の正および負に結合される。VCMに加えられる低振幅電圧標準の使用は、2つの変復調装置の間で交換されるI信号およびQ信号を妨げない。換言すると、差動モードで動作するように設計されたデジタルの組み込まれた通信チャネルの送信機は、変復調装置により共有される主要なIブランチおよびQブランチを干渉することも妨げることもなく、基準値のまわりでコモンモード電圧を弱く駆動する。これは、アナログI手段およびアナログQ手段は差動信号であり、広い許容範囲内でコモンモードの変化に影響されないためである。
このソリューションは、まさに差動駆動器の本来のコモンモードの除去率を利用し、ハードウェア外部回路を単純化する。
受信側で、通信チャネル11cの中に組み込まれるデジタルデータチャネルは、差動受信機バッファを使用して落とされる。送信機側により駆動されるVCMは、受信機側で容易に復元されることが可能である。差動信号が使用される場合に通常現れる100オームである、送信ラインの最後に配置されたマッチング抵抗器は、用いられて、追加のデジタルデータチャネルを落とすことが可能である。終端抵抗が一連の構成の中で同じ抵抗器からなる場合に、それらの中間点は差動リンクのVCMを供給する。LVDS標準受信機のような差動受信機にコモンモードを結合することは、(おおよそ1Mbps以下の)中間周波数のデジタルデータ通信リンクをもたらすことができる。
LVDS信号は、Iアナログ信号およびQアナログ信号のように、差動手法でチャネル11cの中で運ばれる。これは、外部の電磁気の妨げに対する輸送データの高い耐性を保証する。
図6は、各変復調装置の送信側での第2のデータの符号化アルゴリズムの候補の1つであるマンチェスタ符号化を詳細に示す。
マンチェスタ符号は、低から高への遷移で論理状態「0」の符号を付与して機能する。論理状態「1」は、高から低への遷移として得られる。各ビットは、複数のTXクロック期間により与えられる固定の期間61で送信される。図6は、このアルゴリズムがどのように符号化されたストリームの中の入力ビットを変換するかを伝える。
各符号化されたビットは、期間61の中間点での遷移を含む。符号化されていないデータビット「1」62は、ビット64としてマンチェスタ符号化される。当該ビット64は、最初に「1」であり、そして「0」状態への高から低への遷移を示す。
符号化されていないデータビット「0」63は、ビット65としてマンチェスタ符号化される。当該ビット65は、最初に「0」であり、そして「0」状態への低から高への遷移を示す。
データ送信技術によって、符号化されたストリームは、コモンモード電圧として受信機側により受信され、復号器ブロックの入力に提供される。
必要であれば、クロック復元機能を実装することができる。例えば、RXクロック36の可用性を考慮して、図3によれば、当該クロックは、デジタルチャネルのビットデータレートよりも高い周波数を有するように選択される場合に、クロック復元プロセスのためのオーバーサンプリングの技術を当然に使用するようになる。RXクロック36のより高い周波数によって、符号化されたデータをオーバーサンプリングすることが可能となり、データ受信機の内容を定義する遷移を区別する(低から高への遷移は0を意味し、高から低への遷移は1を識別する)。したがって、復号されたデータは、RXクロック36と同期し、または複数の周波数で同期する。
代替のクロック/データの復元は、プラットフォームシステムのクロックの可用性に基づくことが可能である。このソリューションは、プラットフォームレベルでの共通の同期クロックが利用可能である場合に適用され得る。換言すると、プラットフォーム、そしてまた2つのXPIC変復調装置において機能している全てのブランチにおいて、共通のシステムクロックが存在する。この同期クロックは、TX符号化ブロック25およびRX復号ブロック35の両方で用いられる。したがって、既に自己同期されたRX/TX構造が得られる。
図7は、各変復調装置の送信側におけるデジタルデータの符号化アルゴリズムの別の候補、すなわち33/66%のパルス幅変調符号を詳細に示す。
また、この場合に、ビットは、固定の期間で比例的にTXクロックに送信される。符号は、論理状態「0」71を、期間の33%で高であり残りの時間(66%)で低であるパルス73に変換する。逆もまた同様に、状態論理「1」72は、期間の66%で高であり残り(期間の33%)で低であるパルス74として生成される。マンチェスタ符号のように、33/66%パルス幅変調(PWM)符号は、各送信ビットについて、高から低への繊維または低から高への少なくとも1つの遷移を供給する。この特徴は、(垂直変復調装置または水平変復調装置である)RX側においてクロック復元ブロックの実装を容易にする。実際に、RXクロック36を用いたオーバークロック技術を使用して、組み込まれたデジタルチャネルのレートのN倍として定義される場合に、低から高への遷移を検出するビット(トリガビット75)の開始が識別されることが可能である。そして、トリガビット75の開始からRXクロック36のN/2個の期間△tの後、すなわちRXサンプリング点76でサンプリングされる復号されたビットの値は、まさに受信機で符号化されたデータの値である。この手続、すなわち、トリガビットッ信号75を識別し、RXクロック36のN/2個の期間の後に、符号化されたストリームをサンプリングすることは、受信された各符号化されたビットについて実行されるべきである。クロック復元動作の後に、通信チャネル11cの中に組み込まれた情報は、同期クロック(RXクロック36または複数のRXクロック36)と結合されるように利用可能であり、下流ブロックにより処理される準備ができている。
また、この場合に、RX同期は、代わりに、利用可能であれば、共通プラットフォームクロックを使用して得ることができる。
本発明の上記説明から留意できるように、この開示の中で提案される物理的なトランスポート層の装置は極めて柔軟であり、したがって、この文書で説明された実装とは異なる他のデータ/クロック符号化でも機能できる。しかしながら、マンチェスタ符号または33/66%のPWM符号を使用するソリューションは、実装の単純さおよび低コストの観点での本来の特徴のために最良のものとなる。
本発明の好適な実施形態に従った、第2のデータを搬送する組み込まれた通信チャネルの実装は、2つの変復調装置の間で交換される情報をフォーマットする適切なプロトコル層を提供する。ソリューションは、同期フレームプロトコルに基づく。その中で、送られるデータは、順々に送信される構造化されたフレームの中にカプセル化される。フレーム構造は、図8の中に詳細に報告される。2つの変復調装置間で交換される情報でリアルタイムの動作を実行するために、各フレーム81は、運ばれるデータの品質とこのデータが各フレームでリフレッシュされる割合との間の良好なトレードオフとなるように選択される特定の長さを有する。
各フレーム81は、順次配置される様々なビットのグループにより形成される。第1のグループは、ヘッダ82である。ヘッダ82は、16ビット長であり得る。ヘッダ82は、フレームの開始を識別するために変復調装置の受信機側で必要とされる。ビットの第2のグループは、アラーム、制御、状態信号(ACS)フレーム83である。ACSフレーム83の中には、本発明に従った第2のデータ、すなわち2つのXPIC変復調装置の間で交換される情報が、カプセル化される。ACSフレーム83は、47ビット長であり得る。
ACSフレーム83により搬送される情報は、無線リンクの不動作時間を回避し、または少なくとも制限するために、QAM変調次数、無線チャネルの品質、トラフィックレート、障害およびアラームの検出、または交差偏波XPIC変復調装置による即応を必要とするいずれかの他の情報等の、無線リンクの信頼性のための重要なデータであり得る。
したがって、図示されていない受信側における処理装置は、ACSフレーム83の中で運ばれるビットの値に基づいて、全てのリアルタイムの動作を実行することができる。
フレーム81は、汎用の通信に用いられるペイロードフィールド84も含み、例えば、16ビットの4つのレジスタの中に配置される64ビットである。典型的には、ペイロードフィールド84がローカルのマイクロプロセッサにより使用されて、交差偏波XPIC変復調装置からの情報が送信され、交差偏波XPIC変復調装置への情報が受信されることが可能である。
フレーム81の最後のフィールド85は、使用されて、パリティビットを運ぶ。このビットの値は、各変復調装置の送信側でフレームの構築の間に自動的に挿入され、フレームの中に含まれるデータの偶数ビット検査の結果である。換言すると、フィールド85のビットの値は、フレームの中の1の数が奇数であれば1に設定され、そうでなければ0に設定される。変復調装置の受信機側で、偶数パリティ検査が実行されて、いくつかのビットエラーが送信の中で発生したかが検出される。パリティビット85が期待するものと合わない場合に、フレーム81の中のデータ全体が廃棄される。上記説明から明らかなように、フレームの全長は128ビットである。
チャネルのロバスト性を改善するために、各変復調装置の受信機側で、アライナシーケンスも実装されてもよい。アルゴリズムは、図9の中で概略を述べられる。フレーム81の有効性確認は、まさに、3つの連続するヘッダワードの検出の後に発生する。アルゴリズム300は、ステップ301で開始する。そして、ステップ302で、第1のヘッダビットシーケンスが検出されたかが検査される。そうであれば、状態マシンは、第1の同期前状態303にステップインし、カウンタは、0から128(フレーム長)までの計算を開始する。カウントの終わりに、ステップ304で、ヘッダワードの新たな検査が実行される。結果が肯定的であれば、アルゴリズムは、ステップ305で以下の第2の同期前状態に移動することを規定する。当該第2の同期前状態は、カウンタをリセットし、再度開始する。
この第2のカウント(128ステップ)の終わりに、ステップ306での新たなヘッダワードの検査が別の肯定的な結果を与える場合に、ステップ307で、フレームは確かに有効にされ、チャネルは有効であるとみなされることが可能である。整合または有効な状態に到達した場合であっても、カウンタは、(ヘッダと同期する)その計算の各128ステップを開始し、整合状態を維持するために、各計算の終わりにヘッダビットワードが検出されるべきである。
上記同期前状態および上記整合状態の両方で、ヘッダビットシーケンスが(各128ビットで)正しい位置に検出されない場合に、状態マシンはリセットされ、プロセスは最初のステップ301に戻る。
本発明は対象とする目的および目標を達成することに留意する。明らかに、いくつかの変更は、当業者にとって明白であり、また本発明の範囲から逸脱することなく当業者により容易に行われることが可能である。したがって、特許請求の範囲の範囲は、例示の形で説明の中で与えられた説明または好適な実施形態により限定されるべきではない。むしろ、特許請求の範囲は、当業者により等価なものとして扱われる全ての特徴を含む、本発明の中に存在する特許性のある新規性の特徴の全てを包含すべきである
いずれかの請求項の中で言及される技術的な特徴に続いて参照符号がある場合に、これらの参照符号は、請求項のわかりやすさを高めるというただ一つの目的のために含まれている。したがって、当該参照符号は、当該参照符号による例によって識別される各要素の解釈にいずれの限定的な影響も有しない。

Claims (21)

  1. ローカル通信チャネル(11c)を通して対応する第2の通信装置(11a、11b)と接続可能な第1の通信装置(11a、11b)であって、受信された無線信号の交差偏波間干渉消去を実行する前記第1の通信装置において、
    前記第1の通信装置(11a)は、交差偏波無線信号の2つの直交する成分のうちの第1の成分を復調する第1のQAM復調器(22、42)および第2のQAM復調器(23、43)を備え、
    前記第1の通信装置(11a)は、前記第1のQAM復調器および前記第2のQAM復調器(22、23;42、43)の各々の下流に接続される第1のアナログ差動インターフェースステージ(21a、41b)および第2のアナログ差動インターフェースステージ(31a、51b)であって、前記交差偏波無線信号の前記第1の成分の個々のQAM復調された成分を差動アナログ信号として前記ローカル通信チャネル(11c)上で送信する前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージを備えることを特徴とし、
    前記第1の通信装置(11a)は、前記第2の通信装置(11b)と共有される情報を含むデジタルデータストリームを生成するデジタルデータストリームソース(24)を備え、
    当該デジタルデータストリームは、前記ローカル通信チャネル(11)の中に組み込まれるデジタルチャネルの中で前記情報を伝達するためのコモンモード信号として、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージに与えられる、
    第1の通信装置。
  2. 前記ローカル通信チャネル(16、17)からの前記交差偏波無線信号の前記2つの互いに直交する成分のうちの第2の成分の互いに直交するQAM復調された成分を受信する第3の差動インターフェースステージおよび第4の差動インターフェースステージ(21b、31b、41a、51a)をさらに含む、請求項1の第1の通信装置。
  3. 前記データストリームソース(24)の下流に接続されるクロックデータ符号器(25)であって、送信前に前記デジタルデータストリームを符号化する前記クロックデータ符号器と、
    クロック生成器(26)と、
    をさらに備え、
    前記クロックデータ符号器(25)は、バッファ(27)を通して、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージに接続される、
    請求項1の第1の通信装置。
  4. 前記第1の通信装置は、前記第3の差動インターフェースステージおよび前記第4の差動インターフェースステージ(21b、31b、41a、51a)の出力に接続される少なくとも1つの交差偏波間干渉補償器(XPIC)(32、33、52、53)を備える、請求項2の第1の通信装置。
  5. 前記デジタルデータストリームは、マンチェスタ符号または33/66%のパルス幅変調符号を通して符号化される、請求項1の第1の通信装置。
  6. 前記情報は、変調次数、トラフィックレート、無線チャネルの品質、障害およびアラームの検出のうちのいずれか1つである、請求項1〜5のいずれか1項の第1の通信装置。
  7. 前記通信装置は、適応変調および交差偏波消去の無線リンクに適した変復調装置である、請求項1の第1の通信装置。
  8. 直交偏波を伴う無線信号を受信するための無線リンク(11、12)の受信機ステージであって、
    交差偏波無線信号(13)の垂直成分(13a)を復調する垂直偏波通信装置(11a、12a)および前記交差偏波無線信号(13)の水平成分(13b)を復調する水平偏波通信装置(11b、12b)
    を含み、
    前記垂直偏波通信装置および前記水平偏波通信装置(11a、12a)は、XPIC消去を提供するためにローカル通信チャネル(11c、12c)を共有し、
    前記通信装置(11a、12a、11b、12b)の各々は、前記交差偏波無線信号の2つの直交する成分の各々を復調する第1のQAM復調器(22、42)および第2のQAM復調器(23、43)を備え、
    前記交差偏波無線信号の2つの直交する成分は、前記垂直偏波通信装置のための前記垂直成分および前記水平偏波通信装置のための前記水平成分であり、
    前記通信装置(11a、12a、11b、12b)の各々は、前記第1のQAM復調器および前記第2のQAM復調器(22、23;42、43)の各々の下流に接続される第1のアナログ差動インターフェースステージ(21a、41b)および第2のアナログ差動インターフェースステージ(31a、51b)であって、前記交差偏波無線信号の個々の前記成分の個々のQAM復調された成分を差動アナログ信号として前記ローカル通信チャネル(16、17)上で前記通信装置(11a、12a、11b、12b)の他方に向けて送信する前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージをさらに備え、
    前記垂直偏波通信装置および前記水平偏波通信装置(11a、12a、11b、12b)の各々は、他方の通信装置(11b、12b)と共有される情報を含むデジタルデータストリームを生成するデジタルデータストリームソース(24)を備え、
    当該デジタルデータストリームは、前記ローカル通信チャネル(16、17)の中に組み込まれるデジタルチャネルの中で前記情報を前記垂直偏波通信装置および前記水平偏波通信装置(11b、12b、11a、12a)のうちの他方に伝達するためのコモンモード信号として、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージ(21a、31a)に与えられる、
    ことを特徴とする受信機ステージ。
  9. 前記垂直偏波通信装置および前記水平偏波通信装置の各々は、前記ローカル通信チャネル(16、17)からの前記交差偏波無線信号の前記2つの成分のうちの他方の成分の互いに直交するQAM復調された成分を受信する第3の差動インターフェースステージおよび第4の差動インターフェースステージ(21b、31b、41a、51a)をさらに含む、請求項8の受信機ステージ。
  10. 前記垂直偏波通信装置および前記水平偏波通信装置の各々は、
    前記データストリームソース(24)の下流に接続されるクロックデータ符号器(25)であって、送信前に前記デジタルデータストリームを符号化する前記クロックデータ符号器と、
    クロック生成器(26)と、
    をさらに備え、
    前記クロックデータ符号器(25)は、バッファ(27)を通して、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージに接続される、
    請求項8の受信機ステージ。
  11. 前記垂直偏波通信装置および前記水平偏波通信装置の各々は、前記第3の差動インターフェースステージおよび前記第4の差動インターフェースステージ(21b、31b、41a、51a)の出力に接続される少なくとも1つの交差偏波間干渉補償器(XPIC)(32、33、52、53)をさらに備える、請求項9の受信機ステージ。
  12. 前記デジタルデータストリームは、マンチェスタ符号または33/66%のパルス幅変調符号を通して符号化される、請求項8の受信機ステージ。
  13. 前記情報は、変調次数、トラフィックレート、無線チャネルの品質、障害およびアラームの検出のうちのいずれか1つである、請求項8から12のうちの1つ以上の受信機ステージ。
  14. 前記垂直偏波通信装置および前記水平偏波通信装置の各々は、適応変調および交差偏波消去の無線リンクに適した変復調装置である、請求項8の受信機ステージ。
  15. 直交偏波を伴う無線信号を伝達するための複数の無線リンク(11、12)
    を含み、
    各無線リンク(11、12)は、請求項8から14のいずれか1項の受信機ステージを含む、
    無線通信ネットワーク(10)。
  16. 無線通信ネットワーク(10)において複数の無線リンク(11、12)間で無線信号を伝達する方法であって、
    各無線リンクは、請求項8から14のいずれか1項の受信機ステージを含む
    ことを特徴とし、前記方法は:
    −各無線リンク(11、12)において、前記垂直偏波通信装置(11a、12a)と前記水平偏波通信装置(11b、12b)との間で共有される前記ローカル通信チャネル(11c、12c)を提供するステップと;
    −前記ローカル通信チャネル(16、17)上で、前記垂直偏波通信装置(11a、12a)から前記水平偏波通信装置(11b、12b)に向けて、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージ(21a、31a、41b、51b)を通して、前記交差偏波無線信号の前記垂直成分の前記個々のQAM復調された成分を差動アナログ信号として送信するステップと;
    −前記ローカル通信チャネル(16、17)上で、前記水平偏波通信装置(11a、12a)から前記垂直偏波通信装置(11b、12b)に向けて、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージ(21a、31a、41b、51b)を通して、前記交差偏波無線信号の前記水平成分の前記個々のQAM復調された成分を差動アナログ信号として送信するステップと;
    を含み、
    前記方法は、前記垂直偏波通信装置(11a、12a)および前記水平偏波通信装置(11b、12b)のいずれかで、
    −他方の通信装置(11b、12b)と共有される情報を含む前記デジタルデータストリームを生成し、前記ローカル通信チャネル(16、17)の中に組み込まれるデジタルチャネルの中で前記垂直偏波通信装置および前記水平偏波通信装置(11b、12b、11a、12a)のうちの他方に前記情報を伝達するためのコモンモード信号として、前記第1のアナログ差動インターフェースステージおよび前記第2のアナログ差動インターフェースステージ(21a、31a、41b、51b)に前記デジタルデータストリームを与えるステップ
    をさらに特徴とする、方法。
  17. −前記交差偏波無線信号の前記垂直成分の前記個々のQAM復調された成分は、クロストーク補償信号を取得するために、前記水平偏波通信装置の交差偏波間干渉補償器(32、33、52、53)に送信され、
    −前記交差偏波無線信号の前記水平成分の前記個々のQAM復調された成分は、クロストーク補償信号を取得するために、前記垂直偏波通信装置の交差偏波間干渉補償器(32、33、52、53)に送信される、
    請求項16の方法。
  18. −前記垂直偏波通信装置(11a、12a)で、前記交差偏波無線信号の前記垂直成分の前記個々のQAM復調された成分から、前記水平偏波通信装置からの前記クロストーク補償信号を差し引くステップと;
    −前記水平偏波通信装置(11a、12a)で、前記交差偏波無線信号の前記水平成分の前記個々のQAM復調された成分から、前記垂直偏波通信装置(11a、12a)からの前記クロストーク補償信号を差し引くステップと;
    をさらに含む、請求項17の方法。
  19. 前記デジタルデータストリームを与える前記ステップは、前記垂直偏波通信装置および前記水平偏波通信装置(11a、12a、11b、12b)の各々で:
    −前記デジタルデータストリームを符号化することと;
    −前記ローカル通信チャネル(11c、12c)上で前記コモンモード信号として送信されるように、符号化された前記デジタルデータストリームを、前記第1及び第2のアナログ差動インターフェースステージの各々のコモンモードノードに送ることと;
    を含む、請求項16の方法。
  20. 前記垂直偏波通信装置および前記水平偏波通信装置(11a、12a、11b、12b)の各々で:
    −前記ローカル通信チャネル(16、17)からの前記コモンモード信号を受信することと;
    −前記コモンモード信号をデジタルデータストリームに復号することと;
    をさらに含む、請求項19の方法。
  21. 前記符号化するステップは、マンチェスタ符号または33/66%のパルス幅変調符号に従って符号化することを含む、請求項20の方法。
JP2012502463A 2009-03-30 2009-03-30 無線アプリケーションのためのxpicの構成における変復調装置間の通信 Expired - Fee Related JP5302455B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/053754 WO2010112061A1 (en) 2009-03-30 2009-03-30 Communication between modems in xpic configuration for wireless applications

Publications (2)

Publication Number Publication Date
JP2012522442A JP2012522442A (ja) 2012-09-20
JP5302455B2 true JP5302455B2 (ja) 2013-10-02

Family

ID=41394928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502463A Expired - Fee Related JP5302455B2 (ja) 2009-03-30 2009-03-30 無線アプリケーションのためのxpicの構成における変復調装置間の通信

Country Status (4)

Country Link
US (1) US8615055B2 (ja)
EP (1) EP2415180B1 (ja)
JP (1) JP5302455B2 (ja)
WO (1) WO2010112061A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800678B (zh) * 2010-03-12 2012-05-23 华为技术有限公司 应用ccdp和xpic的微波传输方法、装置和系统
CN102893543B (zh) * 2010-05-07 2015-12-02 日本电气株式会社 传输设备、传输方法及传输系统
EP2429114B1 (en) * 2010-09-13 2013-03-27 Alcatel Lucent Coupling arrangement for phantom-mode transmission
US9380645B2 (en) 2011-11-30 2016-06-28 Broadcom Corporation Communication pathway supporting an advanced split microwave backhaul architecture
EP2795975B1 (en) 2011-12-22 2015-12-16 Telefonaktiebolaget LM Ericsson (PUBL) Automatic transmit power control in xpic configuration for wireless applications
US9882679B2 (en) * 2012-07-02 2018-01-30 Maxlinear, Inc. Method and system for improved cross polarization rejection and tolerating coupling between satellite signals
US9054941B2 (en) * 2013-07-18 2015-06-09 Rf Micro Devices, Inc. Clock and data recovery using dual manchester encoded data streams
CN106921510A (zh) * 2015-12-28 2017-07-04 中兴通讯股份有限公司 一种应用ccdp和xpic微波传输时避免干扰的方法及装置
JP6420934B2 (ja) * 2016-07-07 2018-11-07 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0418781B1 (en) * 1989-09-18 1995-12-13 Nec Corporation Dual polarization transmission system
CA2073082C (en) * 1991-07-08 1997-09-09 Takanori Iwamatsu Fractionally spaced cross-polarization interference canceller
JP3225560B2 (ja) * 1991-11-27 2001-11-05 日本電気株式会社 交差偏波干渉補償装置
US5710799A (en) * 1992-06-01 1998-01-20 Fujitsu Limited Cross polarization interference canceler and cross polarization interference eliminating apparatus using the same
JPH07177123A (ja) * 1993-12-17 1995-07-14 Fujitsu Ltd 交差偏波間干渉補償装置及び補償方法
JPH09214461A (ja) * 1996-01-30 1997-08-15 Fujitsu Ltd ディジタル多重無線の交差偏波伝送受信機
US6366609B1 (en) * 1996-07-29 2002-04-02 Compaq Computer Corporation Method for reliable exchange of modem handshaking information over a cellular radio carrier
JP3616706B2 (ja) * 1997-06-19 2005-02-02 富士通株式会社 交差偏波間干渉補償機能を備えた復調器
US5905574A (en) * 1998-10-06 1999-05-18 Hughes Electronics Corporation Method and apparatus for canceling cross polarization interference
US6782211B1 (en) * 1998-11-05 2004-08-24 Mark T. Core Cross polarization interface canceler
US6295323B1 (en) * 1998-12-28 2001-09-25 Agere Systems Guardian Corp. Method and system of data transmission using differential and common mode data signaling
JP3362706B2 (ja) * 1999-08-17 2003-01-07 日本電気株式会社 交差偏波干渉除去装置
JP3859909B2 (ja) * 1999-08-20 2006-12-20 富士通株式会社 交差偏波干渉除去装置及び交差偏波干渉除去用のビットシフト方法
US6650289B2 (en) * 2000-09-21 2003-11-18 Microwave Networks Incorporated Point to point communication system with parallel links
JP3565160B2 (ja) * 2000-11-17 2004-09-15 日本電気株式会社 交差偏波間干渉補償回路
JP2002204272A (ja) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd 信号伝送装置および信号伝送システム
ITMI20020371A1 (it) * 2002-02-26 2003-08-26 Cit Alcatel Sincronizzazione e cancellazione di due o piu' segnali interferenti in trasmissioni radio con riuso di frequenza
US20040132414A1 (en) * 2002-11-29 2004-07-08 Sendyk Andrew M. Method, apparatus and system for multiple signal transmission, reception, and restoration
JP4492920B2 (ja) * 2003-05-27 2010-06-30 ルネサスエレクトロニクス株式会社 差動信号伝送システム
US7509141B1 (en) 2005-09-29 2009-03-24 Rockwell Collins, Inc. Software defined radio computing architecture
US7613260B2 (en) * 2005-11-21 2009-11-03 Provigent Ltd Modem control using cross-polarization interference estimation
US20080063129A1 (en) * 2006-09-11 2008-03-13 Nokia Corporation System and method for pre-defined wake-up of high speed serial link
US8095088B2 (en) * 2007-05-17 2012-01-10 Harris Stratex Networks Operating Corporation Compact wide dynamic range transmitter for point to point radio
US8275071B2 (en) * 2007-05-17 2012-09-25 Harris Stratex Networks Operating Corporation Compact dual receiver architecture for point to point radio
US7532562B2 (en) * 2007-02-26 2009-05-12 Provigent Ltd. High-data-rate communication link using multiple lower rate modems
US8315574B2 (en) * 2007-04-13 2012-11-20 Broadcom Corporation Management of variable-rate communication links
US8170158B2 (en) * 2007-10-01 2012-05-01 Viasat, Inc. Digital cross-polar interference cancellation
US8014686B2 (en) * 2008-03-20 2011-09-06 Infinera Corporation Polarization demultiplexing optical receiver using polarization oversampling and electronic polarization tracking
EP2112772B1 (en) * 2008-04-24 2016-08-31 Alcatel Lucent Method for reducing interference in a radio network equipment and equipment performing the method
CN102301626B (zh) * 2009-01-28 2014-07-16 日本电气株式会社 双极化传输系统、双极化传输方法、接收装置、发射装置、接收方法和发射方法

Also Published As

Publication number Publication date
WO2010112061A1 (en) 2010-10-07
US20120039372A1 (en) 2012-02-16
WO2010112061A8 (en) 2011-04-07
EP2415180A1 (en) 2012-02-08
US8615055B2 (en) 2013-12-24
EP2415180B1 (en) 2016-11-30
JP2012522442A (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5302455B2 (ja) 無線アプリケーションのためのxpicの構成における変復調装置間の通信
US12063128B2 (en) Ethernet link extension method and device
CN108737024B (zh) 多通道通信方法和通信收发器
US8199798B2 (en) Method and modem for subsea power line communication
US20240137128A1 (en) Optical transmission system and transmission mode selecting method
JP6057383B2 (ja) 高速光通信用のフレームフォーマット化
US6320900B1 (en) Methods and arrangements for transmitting high speed data over reduced bandwidth communication resources
EP2493085B1 (en) Coexistence in communication system
CN100452744C (zh) 物理层数据的发送方法及接收方法和物理层芯片
CN107409038B (zh) 无线隧道传送系统中的全双工无线电
JP2018515956A5 (ja)
JP4529628B2 (ja) 無線通信システム、送信装置および受信装置
EP1343279B1 (en) Synchronisation in communication systems
JP2008193305A (ja) 通信システム並びに通信装置
US9124471B2 (en) Systems and methods for transceiver communication
EP2384071B1 (en) Communications system
JP2009194570A (ja) 通信システム並びに通信装置
US7596186B2 (en) Devices and methods of modulation and demodulation enabling the extension or replacement of a communications link, corresponding sender and receiver
US10044470B2 (en) Header alignment in communication system
CN100411328C (zh) 无线基地站装置
EP1432139A2 (en) Digital data distribution system
JP3362706B2 (ja) 交差偏波干渉除去装置
JP2003273822A (ja) Adslアネックスc送受信機のttr同期
JP5474875B2 (ja) 無線通信システム
JP2000278245A (ja) データ伝送装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5302455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees