JP5293584B2 - 捩り管形熱交換器および捩り管形熱交換器の製造方法 - Google Patents

捩り管形熱交換器および捩り管形熱交換器の製造方法 Download PDF

Info

Publication number
JP5293584B2
JP5293584B2 JP2009282776A JP2009282776A JP5293584B2 JP 5293584 B2 JP5293584 B2 JP 5293584B2 JP 2009282776 A JP2009282776 A JP 2009282776A JP 2009282776 A JP2009282776 A JP 2009282776A JP 5293584 B2 JP5293584 B2 JP 5293584B2
Authority
JP
Japan
Prior art keywords
pipe
tube
heat exchanger
refrigerant
spiral groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009282776A
Other languages
English (en)
Other versions
JP2011122797A (ja
Inventor
満貞 早川
正史 瀬在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009282776A priority Critical patent/JP5293584B2/ja
Publication of JP2011122797A publication Critical patent/JP2011122797A/ja
Application granted granted Critical
Publication of JP5293584B2 publication Critical patent/JP5293584B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、ヒートポンプ式給湯機用の水冷媒熱交換器に関するものである。
水冷媒熱交換器は、外周に螺旋状溝を有した捩り管を水配管に用い、水配管の螺旋状溝に沿って冷媒配管を外周側から巻き付け、水配管と冷媒配管とを伝熱接合したものであり、水配管内を流れる水と冷媒配管内を流れる冷媒との間で熱交換を行う熱交換器である。
ここで用いられる一般的な捩り管またはコルゲート管は、肉厚と外径の比が7%以下の金属素管を用い、円周外縁工具によって金属素管の外周に溝を成形している。しかし、その成形時に角張りが発生したり深い溝が成形できなかったりするという課題がある。これに対して、円周外縁工具に非圧延部を設けて、角張り抑制と深い溝を作る手段が提案されている。(特許文献1記載)
同様に、金属直管あるいは樹脂パイプからなる管路を路面下に埋設する道路融雪装置では、管路の曲げ加工が困難で施工性が悪い課題を解決するため、大径部外径と肉厚の割合が0.05(5%)以下で、かつ大径部のピッチと、大径部半径と小径部半径の差との割合が0.5以下であるステンレススチール製のコルゲート管を用いることが提案されている。(特許文献2記載)
同様に、伝熱管内を通過する流体の応力を減らし伝熱管の応力割れを防止した造水装置を得るため、管端部の平滑部の肉厚を管径の6〜7%、管長を管径の約90倍以下としたコルゲート形伝熱管を用いることが提案されている。(特許文献3記載)
一方で、管軸方向の引張強さと管周方向の引張強さの比1.05以上とした拡管加工性に優れた溶接鋼管について提案されている。(特許文献4記載)
さらに、管軸方向の引張強さと管周方向の引張強さの比を0.9以上1.1以下とした耐座屈性能、耐内圧破壊性能を有する鋼管について提案されている。(特許文献5記載)
特開平10−249445号公報(第3−4頁、第3図、第6図) 実開平5−67606号号公報(第4−6頁、第1図) 特開昭58−64493号公報(第2頁、第1−3図) 特開2001−96315号公報(第2−3頁、第1−5図) 特開2002−206140号公報(第3−5頁)
従来のコルゲート管に使用する鋼管やSUS管は、簡単に曲げ加工が行えない、あるいは、ヒートポンプ式給湯機などの銅管を使用した配管や配管部品と簡単に溶接ができないという課題があった。
また、外径が約φ12〜15mm程度、長さが約5000mm以上の従来の銅管を素管とし、素管内に芯金を通し素管を捩じるネジリ加工を行った水配管は、水配管の外周側から冷媒配管を巻き付け、水配管と冷媒配管とを接合できる螺旋状溝が成形できないという課題があった。
また、素管に従来の銅管を用いたネジリ加工では、捩じられた素管が芯金に絡みつくトラブルが多く、生産性が低いという課題があった。
この発明は、上記のような課題を解決するためになされたもので、捩り管形熱交換器の水配管の素管に銅管を用いたネジリ加工を行う場合、ネジリ加工にて素管が芯金に絡みつくトラブルを防止し生産性の高い捩り管形熱交換器を得ることが目的である。
この発明の捩り管形熱交換器は、偏肉率が7.5%以下であって管軸引張強度/管周引張強度比が0.9±0.02以内の銅管を用ネジリ加工を行うようにしたものである。
この発明は、偏肉率が7.5%以下であって管軸引張強度/管周引張強度比が0.9±0.02以内の銅管を用ネジリ加工を行うようにしたので、ネジリ加工にて管が芯金に絡みつくトラブルを防止し生産性の高い捩り管形熱交換器を得ることができる。
この発明の実施の形態1による捩り管形熱交換器の斜視図。 この発明の実施の形態1による水配管の捩り形状を説明する平面図。 この発明の実施の形態1による水配管に冷媒配管の巻き付け状態を説明する図。 この発明の実施の形態1による水配管の素管にネジリ加工を行う手順を説明する図。 この発明の実施の形態1による捩り管形熱交換器の断面図。 この発明の実施の形態1によるネジリ加工後の水配管の斜視図。 この発明の実施の形態1による水配管の偏肉率と山部傾斜度および山部ピッチの標準偏差の関係を説明する図。 この発明の実施の形態1による水配管の外径/肉厚比と山部傾斜度および山部ピッチの標準偏差の関係を説明する図。 この発明の実施の形態2による水配管の素管の引張強度方向を説明する図。 この発明の実施の形態2による水配管の管軸/管周引張強度比と山部傾斜度および山部ピッチの標準偏差の関係を説明する図。
実施の形態1.
図1はこの発明の実施の形態1における捩り管形熱交換器の斜視図、図2は捩り管形熱交換器に用いる水配管の素管の捩り形状を説明する平面図、図3は水配管に冷媒配管の巻き付け状態を説明する図、図4は水配管の素管にネジリ加工を行う手順を説明する図、図5は捩り管形熱交換器の断面図、図6はネジリ加工後の水配管の斜視図、図7は水配管の肉厚寸法の偏りを表す偏肉率と山部傾斜度および山部ピッチの標準偏差の関係を説明する図である。
捩り管形熱交換器の構成を説明する。図1は捩り管形熱交換器1の全体の斜視図であり、捩り管形熱交換器1は冷媒配管3を螺旋状溝に巻き付けながら嵌め込んだ水配管2を長円コイル状にした熱交換器である。冷媒配管3は、冷媒分流部5aと冷媒合流部5bにより、冷媒配管3a、3b、3cに分流し、合流される。冷媒配管3の先は接続口7、8となっており、図示しない冷媒回路と接続され冷媒を循環させている。水配管2の先も、接続口9、10となっており、捩り管形熱交換器1が収納されている装置の外部にある図示しない装置と接続され、捩り管形熱交換器1と外部の装置との間で水を循環させている。
水配管2は、外部の装置と接続するため、接続口9、10に別の配管をろう付け延長し、捩り管形熱交換器1が収納されている装置の外部へ取り出すための接続口やバルブを延長した配管に取り付ける。一般的に、ヒートポンプ式給湯機の配管や配管に接続する部品には、熱伝導率が良く、ろう付けや曲げ加工が容易にできるりん脱酸銅管を使用するが、水配管2が鋼管やSUS管の場合、りん脱酸銅管とのろう付けが容易ではない上に、素管が硬いため長円コイル状に加工することは容易ではなく、熱伝導率も悪い。よって、ヒートポンプ式給湯機の捩り管形熱交換器に使う水配管にも、熱伝導率が良く、他の配管や配管部品とろう付けや曲げ加工が容易なりん脱酸銅管を使用している。
また、水配管2は、図2に示すように、山部2a、谷部2bからなる山谷、すなわち連続した溝が水配管2の両端部を除いて水配管2の全長に渡って水配管2の外周に複数条、螺旋状に設けられており、この連続した螺旋状溝に複数の冷媒配管3が山谷の形状に沿って巻き付けられながらその螺旋状溝に嵌め込まれる。つまり、図3のように冷媒配管3が水配管2の外周の連続した螺旋状溝に外周側から巻き付けられながらその螺旋状溝に嵌め込まれる。生産工程では、約250rpm程度の速度で冷媒配管3が水配管2の連続した螺旋状溝に巻き付けられ嵌め込まれる。冷媒配管3が固定された水配管2を図1のように長円コイル状に曲げ加工を行い、目的の寸法とする。最後に、水配管2と冷媒配管3の熱伝導性をより高めるため、半田を溶融させた槽にディッピングさせ、水配管2と冷媒配管3とを半田にて接合し、捩り管形熱交換器1としている。また、他にも半田にて接合する方法として、半田を流し込む方法や半田ペーストを塗布する方法などがある。なお、水配管2の複数条の連続した螺旋状溝は、図1、2、3のすべて、3条の例で説明しているが、3条の螺旋状溝を形成し冷媒配管を3条に分配するのは、1条に比べると冷媒圧損が少なくなる効果と伝熱面積が多くなる効果を有しており、生産性(ろう付け点数)と圧力損失の影響を考慮して、最適な条数が3条であるため、この構成を用いて説明を行っている。また、水配管2の両端部は後から別の配管をろう付けするため螺旋状溝を設けていない。
以上のような構成にて捩り管形熱交換器1は、冷媒配管3内の冷媒と水配管2内の水との熱交換が行われる。例えば、捩り管形熱交換器1の外部にある冷媒回路で加熱された冷媒が捩り管形熱交換器1の冷媒配管3に流入する。冷媒配管3の熱は捩り管形熱交換器1の外部にある装置から流入し水配管2内を通過する水を温め、湯を生成する。生成された湯は、捩り管形熱交換器1の水配管2から外部にある装置に送られる。捩り管形熱交換器1の冷媒配管3を通過し水配管2を介して水を温めた冷媒は、再び捩り管形熱交換器1の外部にある冷媒回路に戻り、加熱され循環する。したがって、捩り管形熱交換器1の湯を生成する性能、すなわち、熱交換特性は、水配管2と冷媒配管3が接触する接触面積とその結果得られる伝熱特性によって左右される。
次に、水配管の素管の外周に連続した螺旋状溝を成形するネジリ加工について図4にて説明する。まず初めに、りん脱酸銅管でできた水配管2の素管の端部に、打痕Cを素管の外周側から3箇所打つ。打痕Cを打つ位置は、素管の端から素管の中心に向かって50mm程度離れた素管の外周上で、3個の打痕がそれぞれ120°異なる位置すなわち素管の円周上に等間隔となる位置であり、打痕Cの形状は例えば3mm×10mm程度の楕円形で、楕円の長軸方向を素管の管軸方向に対して約40°傾けた形状である。
次に、打痕Cが打たれた素管内に芯金20を通し、素管を捩じったとき素管が回転しないように打痕Cを打った側の素管の端(図4のA側)から素管の中心に向かって50mm程度の部分まで、すなわち素管端部の外周表面を全て覆う形で固定治具にてチャックする。すなわち、固定治具にて素管端部を把持し素管を固定する。素管を固定後、固定した側とは反対側である図4のB側も同様に素管の端から素管の中心に向かって50mm程度の部分まで、すなわち素管端部の外周表面を全て覆う形で回転治具にてチャックする。すなわち、回転治具にて素管端部を把持する。
次に、回転治具を回転させることによって把持された素管のB側を回転させる。例えば300rpm程度の速度で回転治具を回転し素管のB側を回転させ、素管を捩っていく。素管を捩る力により、素管に打った3箇所の打痕Cを起点にB側に向かって3条の螺旋状溝の連続した山谷の山部が素管表面部より隆起する形で、成形開始される。なお、素管のA側、B側の両端部、すなわち固定治具と回転治具に把持された部分すなわち素管端部は素管外周表面を覆う形で把持され、素管表面部から山部が隆起できないので、螺旋状溝は形成されない。なお、素管内には芯金が通されているので、山部が隆起する形で溝は成形される。また、ここでは素管端部の外周を覆う形で把持している説明をしたが、素管の端から所定位置まで全てを覆う形で把持する必要は無く、素管の端から所定寸法分は覆わず素管の任意の箇所を任意の寸法分だけ覆う形で把持する方法でも構わない。例えば、素管の端から20mm間は把持されず、素管の端から20mm進んだ位置から打痕を打った約50mmまで位置の区間の素管外周表面を全て覆う形で把持する仕組みでも螺旋状溝の成形には支障なく効果は変わらない。また、芯金20を通しているので、素管を捩る応力により、素管の内径が狭くなったり、素管が曲がったりすることが防止される。
約200回程度回転させると、螺旋状溝が全長約5000mm以上ある素管の全長に渡って成形される。素管のB側を把持した部分すなわちB側の素管端部まで螺旋状溝が成形できたところで、完了とする。なお、このとき、全長約5000mm以上ある素管は螺旋状溝の山部形成などにより収縮し、全長約4000mm程度となる。また、3条の螺旋状溝を成形する方法なので打痕も3箇所としたが、複数の溝の場合は溝の数だけ打痕を素管の外周に等間隔に打てば良い。また、打痕は楕円状としたが長方形でも良く、楕円の長軸方向を素管の管軸方向に対して約40°傾けて打つとしているが、傾ける角度は螺旋状溝の角度であり、熱交換器が最も性能が出せる角度に設定されれば良い。
螺旋状溝の成形完了後、素管の両端からチャックを外し、素管を芯金20から外す。これにより、従来のように素管の外周に円周外縁工具のような治具を押し当てることなく、水配管2の複数条の連続した螺旋状溝を成形することができる。しかしながら、素管の種類、素管の肉厚、ネジリ加工の捩る応力により、素管に成形される螺旋状溝の山谷が等間隔ピッチに成形されなかったり、山部が倒れ溝の成形ができなかったり、素管の一部に応力が集中して素管の内径がつぶれ素管が芯金20に絡みついたりする課題がある。
図5は捩り管形熱交換器1の水配管2とその水配管2の連続した3条の螺旋状溝に冷媒配管3a、3b、3cがそれぞれ巻き付けられた図3の捩り管形熱交換器1の断面図とその拡大図である。
図5において、水配管2の外周に設けた3条の連続した螺旋状溝は、山部2a、谷部2bから構成されている。図5のように、冷媒配管3が螺旋状溝の山部2aの斜面(図5中b点とc点)と谷部2bの底面(図5中a点)とにしっかり接触し螺旋状溝に収めるためには、まず、山部2aの高さHは、冷媒配管3の直径Roの1/2以上直径Ro以下となる寸法が必要である。また、螺旋状溝の山部2aと山部2aとの間隙であるピッチPは、山部2aの傾斜と厚みを考慮して、ピッチP>直径Ro+(D+D)の寸法が必要である。例えば、冷媒配管3の直径Ro=φ3.8mmの場合、山部ピッチP=7.8mm程度の寸法に成形する。なお、螺旋状溝の谷部2bの底部は冷媒配管3の直径Roは必要なく、例えば、山部2aの高さH=冷媒配管3の直径Ro=φ3.8mm、山部ピッチP=7.8mmの場合、2.0mm程度確保すると、冷媒配管3は螺旋状溝の谷部2bの底面1箇所(図5中a点)と山部2bの斜面中央部2箇所(図5中b点とc点)の合計3箇所で、水配管2としっかり接触でき、伝熱面積を確保できる。
また、最後に半田付けにて接合する際も、水配管2と冷媒配管3との接触していない隙間を半田が埋めて、確実に水配管2と冷媒配管3との間で熱交換ができ、水配管2と冷媒配管3とが外れないように接合される。
以上により、冷媒配管3が水配管2にしっかり嵌め込まれ接触しているので、半田付けにて固定する際にも、螺旋状溝から冷媒配管3が外れたり浮き上がったりすることなく、必要な接触面積を保ちながら半田が冷媒配管3と水配管2との隙間を埋める形で半田にて接合され、熱交換に必要な伝熱特性が得られる。
しかしながら、螺旋状溝の山部2aと山部2aのピッチPが広がりすぎると冷媒配管3が図5中のb点とc点で接触しない。また、螺旋状溝の山部2aと山部2aのピッチPが狭すぎると冷媒配管3が図5中のa点と接触しない。山部2aは倒れすぎないように、山部2aの倒れを山部傾斜度θとして山部傾斜度θを90°とし、山部ピッチPは所定の設計目標値どおり成形されている必要がある。
これに対して、捩り管形熱交換器1の生産工程では、1日の生産数を確保するため約250rpm程度で水配管2の螺旋状溝に冷媒配管3を巻き付けながら嵌め込んでいく。そのため、螺旋状溝の山部傾斜度θや山部ピッチPに公差を持った余裕が必要である。生産前の事前検討調査では、冷媒配管3の直径Ro=φ3.8mm、山部ピッチP=7.8mmの場合、山部傾斜度θを90°±5°以内、山部ピッチPの標準偏差σが0.1mm以下の成形品では、水配管2の螺旋状溝に冷媒配管3を外れたり浮き上がったりすることなく嵌め込むことができ、図5の螺旋状溝のa,b,c点の3箇所でしっかり接触できているという結果が得られている。この条件にて成形された水配管2では冷媒配管3と必要な接触面積を保ちながら、半田付け接合が可能で、熱交換に必要な伝熱特性を持った熱交換性能の良い捩り管形熱交換器が得られる。なお、山部ピッチPの標準偏差σ=0.1mmのとき、山部傾斜度θ=90°±5°は山部ピッチPの3σ程度の許容値である。
よって、水配管2のネジリ加工時、螺旋状溝の成形の設計目標値を、山部の高さHが冷媒配管3の直径Roの1/2以上直径Ro以下、山部傾斜度θを90°±5°以内、冷媒配管3の直径φ3.8mmを嵌め込む場合で山部ピッチPの標準偏差σが0.1mm以下(許容値は3σ程度)とし、成形管理している。
また、従来からある通常生産のネジリ加工品は、全長が600〜2000mm程度の管が一般的であり、図1にあるように冷媒配管3を巻き付けた水配管2をコイル状に加工する場合、水配管2の長さが短く、つなぎ合わせる必要がある。その場合、つなぎ合わせの不良によりガス漏れや素管内を流れる水の圧損増加による効率低下も予想される。一本の素管をネジリ加工し冷媒配管3を巻き付けコイル状に曲げ加工することが望ましく、その場合、素管は一本当たり約5000mm以上の長さが必要である。すなわち、全長約5000mm以上の素管をネジリ加工し、設計目標値どおりの螺旋状溝を素管の全長に成形する。
次に全長約5000mm以上のりん脱酸銅管を素管に使い素管内に芯金を通して3条の連続した螺旋状溝を成形するネジリ加工において、素管の内径がつぶれ芯金に絡みつかず、設計目標値である螺旋状溝の山部2aの高さHが冷媒配管3の直径Roの1/2以上直径Ro以下、山部2aの山部傾斜度θを90°±5°以内、山部2aと山部2aとのピッチPの標準偏差σを0.1mm以下(許容値は3σ程度)の製造を行う方法について説明する。
図6は3条の連続した螺旋状溝が成形された水配管2の素管の斜視図である。素管の肉厚寸法である肉厚t0は、素管全体で一様ではなく、肉厚の厚い部分、薄い部分のような僅かな肉厚寸法のバラツキがある。僅かな肉厚寸法のバラツキはネジリ加工の捩る応力を均等にできず、設計目標値どおりの高さの螺旋状溝の山部2aが得られなかったり、螺旋状溝の山谷の等間隔ピッチを乱したり、山部2aの倒れが著しく溝が成形できていなかったり、部分的に応力の集中を起こし素管の内径がつぶれ芯金に絡みついたりする。そのため、素管の設計値である素管全体の肉厚の平均寸法を公称肉厚t、素管の肉厚の最大寸法をtMAX、最小寸法をtMINとし、これらから(tMAX−tMIN)/tで表される比を偏肉率とし、偏肉率を測定・算出することによって素管の肉厚寸法を管理しネジリ加工の捩る応力が素管に対して部分的に集中しない加工を行う。
図7は、ネジリ加工の捩る応力を全長約5000mm以上ある水配管2の素管に加えたときの素管の偏肉率と設計目標値である山部傾斜度θおよび山部ピッチPの標準偏差σを測定し、山部傾斜度θおよび山部ピッチPの標準偏差σが設計目標値どおりの螺旋状溝が成形できたかどうかを事前検討調査したものである。
一般的なJIS基準のりん脱酸銅管の素管は、外径寸法φ15mmのもので偏肉率0〜15%(肉厚許容差±0.06mm)である。また、一般的に生産されている偏肉率の少ない素管で、0〜10%である。しかしながら、これら従来品は、素管に設計目標値どおりの高さの螺旋状溝の山部2aが成形されなかったり、山部と山部とが等間隔ピッチに成形されなかったり、山部が倒れ溝の成形ができなかったり、素管の一部に応力が集中して素管の内径がつぶれ素管が芯金に絡みついたりする課題を持つ素管を含むため課題は解消されていない。
図7の素管の偏肉率に対する分布を見ていくと、偏肉率7.5〜15%の素管では、設計目標値どおりの連続した螺旋状溝が成形された成形品は少なく、山部2aの倒れや山部2aと山部2aとのピッチPのバラツキが増大する螺旋状溝成形不良が多数発生し、設計目標値どおりの高さの螺旋状溝の山部2aが得られなかったり、ネジリ加工のときに芯金に絡みついたりなどのトラブルが頻度多いという結果が得られている。これは、ネジリ加工の捩る応力が均等に分散せず、素管の肉厚寸法の偏った部分に集中するためと考えられる。これに対して、偏肉率0〜7.5%の素管は、設計目標値どおりの山部高さHと山部傾斜度θと山部ピッチPとなる連続した螺旋状溝が成形でき、素管が芯金に絡みつくことがない少ないという結果が得られている。また、設計目標どおりの成形品は、約250rpm程度の速度で冷媒配管3を巻き付けながら螺旋状溝に嵌め込んだとき、螺旋状溝から外れたり、浮き上がったりすることはないことも確認されている。
なお、図7は山部傾斜度θおよび山部ピッチPの標準偏差σと加工良好領域および加工不具合領域の関係を表しているが、加工良好領域の成形品はすべて螺旋状溝の山部2aの高さHが設計目標値にどおりに成形できており、加工不具合領域の成形品は螺旋状溝の山部2aの高さHが設計目標値に成形できなかったものがあるということを含んでいる。
したがって、ネジリ加工の捩る応力を素管全体に均等に分散し設計目標値どおりの螺旋状溝を得るためには、偏肉率0〜7.5%の素管が必要である。
このように、捩る速度を約300rpm程度でネジリ加工を行う場合、偏肉率を7.5%以下のりん脱酸銅管を選定し使用していくと、全長約5000mm以上の素管の外周に3条の連続した設計値どおりの山部の高さHを有した螺旋状溝が成形でき、その山部傾斜度θと山部ピッチPのバラツキは少なく、約250rpm程度で冷媒配管3を巻き付けながら嵌め込んだとき、螺旋状溝から外れたり、浮き上がったりすることなく、水配管2と冷媒配管3との十分な接触面積を確保した伝熱接合が可能である。また、その条件ではネジリ加工のときに芯金に絡みつくというトラブルも少ない。
一方、捩る速度すなわち捩る応力を変えても、その応力に応じて偏肉率のりん脱酸銅管を選定することにより、水配管2の螺旋状溝に冷媒配管3がしっかりと嵌め込まれた熱交換特性が良い捩り管形熱交換器1は得られる。
ただし、偏肉率に応じて、素管のネジリ加工の捩る応力すなわち捩る速度を約300rpm程度から変更・制御し全長約5000mm以上ある素管の山部2aの倒れや山部2aと山部2aとのピッチPのバラツキの増大を抑制する方法では、生産速度がバラバラで1日の生産数の生産管理が難しい。1日の生産数を確保するために約40秒程度で1台作成しているが、そのためには捩る速度は約300rpm程度必要である。
特に、全長約5000mm以上ある素管の捩る応力を捩る速度で制御することは、容易ではない。
また、全長約5000mm以上ある素管で、素管の全長に渡り、素管の押出、抽伸、圧延加工する段階で、肉厚を調整することは容易ではない。特に、管の外径寸法と管の真円度を確保し、管の曲がりない素管を押出、抽伸、圧延にて成形するので、素管の素材を伸縮できない歪が肉厚寸法誤差として残る場合が多い。よって、素管完成後またはネジリ加工前に素管の偏肉率を検査し、偏肉率7.5%以下のものだけをネジリ加工するようにしている。
以上により、偏肉率7.5%以下のりん脱酸銅管の素管を用いることにより、山部の高さH、山部傾斜度θ、山部ピッチPが設計目標の範囲内となる3条の連続した螺旋状溝を全長約5000mm以上の素管に成形した水配管の製造が可能となり、成形される螺旋状溝の山部傾斜度θと山部ピッチPのバラツキが小さいため水配管と冷媒配管との確実に接合され接触面積が十分確保できた熱交換特性が良い捩り管形熱交換器が得られる。
また、ネジリ加工において、芯金に絡みつくというトラブルを防止し、生産効率を向上させることができる。
また、捩り管形熱交換器の水配管にりん脱酸銅管を用いることができるので、他の配管やバルブのような配管部品と簡単にろう付けができ、曲げ加工が容易になるとともに、熱伝導率の高い捩り管形熱交換器を得ることができる。
また、ネジリ加工の捩る速度や水配管の螺旋状溝に冷媒配管を巻き付けながら嵌め込んでいく速度は変更する必要なく、従来の装置と生産工程にて生産可能で大きな設備投資も必要としない。
また、水配管の素管の偏肉率を管理する以外に、素管の外径φと公称肉厚tの比を管理することで、素管の肉厚寸法のバラツキを管理し、螺旋状溝の山部2aの高さHが冷媒配管3の直径Roの1/2以上直径Ro以下、山部傾斜度θを90°±5°以下、冷媒配管3の直径φ3.8mmを嵌め込む場合で山部2aと山部2aとのピッチPの標準偏差σを0.1mm以下(許容値は3σ程度)とした水配管を得ることができる。図6の斜視図において、φは水配管の素管の外径寸法であるが、素管全体では素管の肉厚寸法同様にバラツキがある。素管の偏肉率と同様、このバラツキがネジリ加工の捩る応力を均等にできず、設計目標値どおりの高さの螺旋状溝の山部2aが得られなかったり、螺旋螺旋状溝の山谷の等間隔ピッチを乱したり、山部の倒れが著しく溝が成形できていなかったり、部分的に応力の集中を起こし素管の内径がつぶれ芯金に絡みついたりする。そのため、水配管の素管の外径寸法φと素管の公称肉厚tとし、これらからφ/tで表される外径寸法φと公称肉厚tとの寸法比すなわち外径/公称肉厚比を測定・算出することによって素管の肉厚寸法を管理しネジリ加工の捩る応力が素管に対して部分的に集中しない加工を行う。
図8は、ネジリ加工の捩る応力を全長約5000mm以上ある水配管2の素管に加えたときの素管の外径/公称肉厚比と山部傾斜度θおよび山部ピッチPの標準偏差σを測定し、山部傾斜度θおよび山部ピッチPの標準偏差σが設計目標値どおりの螺旋状溝が成形できたかどうかを事前検討調査したものである。
一般的なりん脱酸銅管の素管は、外径寸法φ15mmのもので、外径/公称肉厚比4.0〜6.0%であり、従来の課題を持つ素管を含むため課題は解消されていない。
図8の素管の外径/公称肉厚比に対する分布を見ていくと、外径/公称肉厚比4.0〜4.7%の素管や外径/公称肉厚比5.3〜6.0%の素管では、設計目標値どおりの連続した螺旋状溝が成形された成形品は少なく、螺旋溝成形不良やネジリ加工時のトラブルが多いという結果が得られている。これに対して、外径/公称肉厚比4.7〜5.3%の素管では、設計目標値どおりの連続した螺旋状溝が成形でき、素管が芯金に絡みつくことが少ないという結果が得られている。また、設計目標どおりの成形品は、約250rpm程度の速度で冷媒配管3を巻き付けながら螺旋状溝に嵌め込んだとき、螺旋状溝から外れたり、浮き上がったりすることはないことも確認されている。
なお、図8は山部傾斜度θおよび山部ピッチPの標準偏差σと加工良好領域および加工不具合領域の関係を表しているが、加工良好領域の成形品はすべて螺旋状溝の山部2aの高さHが設計目標値にどおりに成形できており、加工不具合領域の成形品は螺旋状溝の山部2aの高さHが設計目標値に成形できなかったものがあるということを含んでいる。
したがって、ネジリ加工の捩る応力を素管全体に均等に分散し設計目標値どおりの螺旋状溝を得るためには、外径/公称肉厚比4.7〜5.3%の素管が必要である。
このように、捩る速度を約300rpm程度でネジリ加工を行う場合、外径/公称肉厚比を5%±0.3%以内のりん脱酸銅管を選定し使用していくと、全長約5000mm以上の素管の外周に3条の連続した設計値どおりの山部の高さHを有した螺旋状溝が成形でき、その山部傾斜度θと山部ピッチPのバラツキは少なく、約250rpm程度で冷媒配管3を巻き付けながら螺旋状溝に嵌め込んだとき、螺旋状溝から外れたり、浮き上がったりすることなく、水配管2と冷媒配管3との十分な接触面積を確保した伝熱接合が可能である。また、その条件ではネジリ加工のときに芯金に絡みつくというトラブルも少ない。
一方、捩る速度すなわち捩る応力を変えても、その応力に応じた外径/公称肉厚比のりん脱酸銅管を選定することにより、水配管2の螺旋状溝に冷媒配管3がしっかりと嵌め込まれた熱交換特性が良い捩り管形熱交換器1が得られる。
ただし、偏肉率同様、外径/公称肉厚比に応じて、捩る速度を約300rpm程度から変更・制御する方法は生産速度の管理が難しく、1日の生産数を確保が困難となる。
特に、全長約5000mm以上ある素管の捩る応力を捩る速度で制御することは、容易ではない。
また、全長約5000mm以上ある素管で、素管の全長に渡り、素管の押出、抽伸、圧延加工する段階で、外径や肉厚を調整することは容易ではない。特に、管の真円度を確保し、管の曲がりない素管を押出、抽伸、圧延にて成形するので、素管の素材を伸縮できない歪が肉厚寸法誤差として残る場合が多い。よって、素管完成後またはネジリ加工前に素管の外径/公称肉厚比を検査し、5%±0.3%以内のものだけをネジリ加工するようにしている。
以上により、外径/公称肉厚比5%±0.3%以内のりん脱酸銅管の素管を用いることにより、山部の高さH、山部傾斜度θ、山部ピッチPが設計目標の範囲内となる3条の連続した螺旋状溝を全長約5000mm以上の素管に成形した水配管の製造が可能となり、半田付けによって水配管と冷媒配管との確実に接合され接触面積が十分確保できた熱交換特性が良い捩り管形熱交換器が得られるとともに、ネジリ加工において芯金に絡みつくというトラブルが防止でき生産効率は向上し、水配管にりん脱酸銅管を用いることができるのでろう付けや曲げ加工が容易で熱伝導率の高い捩り管形熱交換器を得ることができる。
また、ネジリ加工の捩る速度や水配管の螺旋状溝に冷媒配管を巻き付けながら嵌め込んでいく速度は変更する必要なく、従来の装置と生産工程にて生産可能で大きな設備投資も必要としない。
さらに、水配管の素管の偏肉率を7.5%以下でかつ外径/公称肉厚比を5%±0.3%以内に管理することにより、山部傾斜度θと山部ピッチPのバラツキ、分散をさらに絞り込むことができる。すなわち、山部傾斜度θが90°±5°で、山部ピッチPの標準偏差σが0.1mmの限界値できた螺旋状溝より、山部傾斜度θが90°に近く、山部ピッチPの標準偏差σが0に近いものが、多く成形できる。これにより、水配管2の螺旋状溝に冷媒配管3がしっかりと嵌め込まれた捩り管形熱交換器1の生産性が向上できる。
実施の形態2.
実施の形態1では、ネジリ加工を行う水配管の素管の肉厚寸法を管理する方法を説明したが、素管の持っている特性である管軸引張強度と管周引張強度を管理してネジリ加工を行っても構わない。その方法を説明する。図9は水配管の素管の管軸引張強度と管周引張強度のそれぞれの方向を示した斜視図、図10は水配管の素管の管軸/管周引張強度比と山部傾斜度および山部ピッチの標準偏差の関係を示す図である。
図9において、TSPLは水配管の素管の管軸引張強度、TSPCは水配管の素管の管周引張強度である。管軸引張強度とは、図9に示すように管の軸方向、すなわち長手方向に引っ張り・伸ばしたとき、管が破壊するまでの強度であり、管周引張強度とは、管を外周方向に引っ張り・広げたとき、管が破壊するまでの強度である。この引張強度が素管毎にバラツキがあり、一様ではないため、ネジリ加工の捩る応力を均等に保てず、設計目標値どおりの高さの螺旋状溝の山部2aが得られなかったり、螺旋状溝の山谷の等間隔ピッチを乱したり、山部2aの倒れが著しく溝が成形できていなかったり、部分的に応力の集中を起こし素管の内径がつぶれ芯金に絡みついたりする。そのため、管軸引張強度TSPLと管周引張強度TSPCから、TSPL/TSPCで表される管軸引張強度/管周引張強度比を得ることによって応力に対する素管の強度を管理しネジリ加工の捩る応力が素管に対して部分的に集中しない加工を行う。
図10は、ネジリ加工の捩る応力を全長約5000mm以上ある水配管2の素管に加えたときの素管の管軸引張強度/管周引張強度比と山部傾斜度θおよび山部ピッチPの標準偏差σを測定し、山部傾斜度θおよび山部ピッチPの標準偏差σが設計目標値である螺旋状溝が成形できたかどうかを事前検討調査したものである。
一般的なりん脱酸銅管の素管は、外径寸法φ15mmのもので、管軸引張強度/管周引張強度比0.84〜0.96%であり、従来の課題を持つ素管を含むため課題は解消されていない。
図10の素管の管軸引張強度/管周引張強度比に対する分布を見ていくと、管軸引張強度/管周引張強度比0.84〜0.88%の素管や管軸引張強度/管周引張強度比0.92〜0.96%の素管では、設計目標値どおりの連続した螺旋状溝が成形された成形品は少なく、螺旋溝成形不良やネジリ加工時のトラブルが多いという結果が得られている。これに対して、管軸引張強度/管周引張強度比0.88〜0.92%の素管では、設計目標値どおりの連続した螺旋状溝が成形でき、素管が芯金に絡みつくことが少ないという結果が得られている。また、設計目標どおりの成形品は、約250rpm程度の速度で冷媒配管3を巻き付けながら螺旋状溝に嵌め込んだとき、螺旋状溝から外れたり、浮き上がったりすることはないことも確認されている。
なお、図10は山部傾斜度θおよび山部ピッチPの標準偏差σと加工良好領域および加工不具合領域の関係を表しているが、加工良好領域の成形品はすべて螺旋状溝の山部2aの高さHが設計目標値にどおりに成形できており、加工不具合領域の成形品は螺旋状溝の山部2aの高さHが設計目標値に成形できなかったものがあるということを含んでいる。
したがって、ネジリ加工の捩る応力を素管全体に均等に分散し設計目標値どおりの螺旋状溝を得るためには、管軸引張強度/管周引張強度比0.88〜0.92%の素管が必要である。
このように、捩る速度を約300rpm程度でネジリ加工を行う場合、管軸引張強度/管周引張強度比が0.9±0.02以内のりん脱酸銅管を選定し使用していくと、全長約5000mm以上の素管の外周に3条の連続した設計値どおりの山部の高さHを有した螺旋状溝が成形でき、その山部傾斜度θと山部ピッチPのバラツキは少なく、冷媒配管3を約250rpm程度で冷媒配管3を巻き付けながら嵌め込んだとき、螺旋状溝から外れたり、浮き上がったりすることなく、水配管2と冷媒配管3との十分な接触面積を確保した伝熱接合が可能である。また、その条件ではネジリ加工のときに芯金に絡みつくというトラブルも少ない。
同様に、捩る速度すなわち捩る応力を変えても、その応力に応じた管軸引張強度/管周引張強度比のりん脱酸銅管を選定することにより、水配管2の螺旋状溝に冷媒配管3がしっかりと嵌め込まれた熱交換特性が良い捩り管形熱交換器1が得られる。
ただし、偏肉率や外径/公称肉厚比同様、管軸引張強度/管周引張強度比に応じて捩る速度を約300rpm程度から変更・制御する方法は生産速度の管理が難しく、1日の生産数を確保が困難になる。
特に、素管毎の管軸引張強度や管周引張強度の測定方法は破壊検査のため、素管を破壊する以外に測る術はないので素管毎の個別の制御は困難であり、素管ロット毎に一律同じ制御となる。
同様に、管軸引張強度や管周引張強度の検査は、破壊検査であるため、生産工程のネジリ加工前に1本1本検査を行うことはできない。また、管軸引張強度や管周引張強度は、金属組成や結晶構造によるもので、素管製造時の押出や抽伸、圧延加工するときに容易に調整できるものではない。よって、事前に素管ロットからサンプルを抜き取り、管軸引張強度や管周引張強度の破壊検査を行い、サンプルを抜き取った素管ロットが管軸引張強度/管周引張強度比が0.9±0.02以内であることを検査確認し、その素管ロットのものだけをネジリ加工するようにする。
一方、生産工程で、素管の肉厚や外径を検査する手間がなくなるため、生産効率は向上する。
以上により、管軸引張強度/管周引張強度比0.9±0.02以内のりん脱酸銅管の素管を用いることにより、山部の高さH、山部傾斜度θ、山部ピッチPが設計目標の範囲内となる3条の連続した螺旋状溝を全長約5000mm以上の素管に成形した水配管の製造が可能となり、半田付けによって水配管と冷媒配管との確実に接合され接触面積が十分確保できた熱交換特性が良い捩り管形熱交換器が得られるとともに、ネジリ加工において芯金に絡みつくというトラブルが防止でき生産効率は向上し、水配管にりん脱酸銅管を用いることができるのでろう付けや曲げ加工が容易で熱伝導率の高い捩り管形熱交換器を得ることができる。
また、ネジリ加工の捩る速度や水配管の螺旋状溝に冷媒配管を巻き付けながら嵌め込んでいく速度は変更する必要なく、従来の装置と生産工程にて生産可能で大きな設備投資も必要としない。
また、事前に素管の管軸引張強度/管周引張強度比を0.9±0.02以内とされた素管において、偏肉率あるいは外径/公称肉厚比のいずれか一方または両方の検査を行い、偏肉率を7.5%以下あるいは外径/公称肉厚比を5%±0.3%以内のいずれかの管理または両方の管理を行っても構わない。このような管理によって、さらに、ネジリ加工を行ったときの山部傾斜度θや山部ピッチPのバラツキ、分散を絞り込むことができ、芯金に絡みつくというトラブルも防止でき生産効率が向上する。
以上により、偏肉率7.5%以下のりん脱酸銅管あるいは外径/公称肉厚比5%±0.3%以内のりん脱酸銅管の素管を用いることにより、山部の高さHが冷媒配管3の直径Roの1/2以上直径Ro以下、山部傾斜度θを90°±5°以内、ピッチPの標準偏差σを0.1mm以下(許容値は3σ程度)の3条の連続した螺旋状溝を全長約5000mm以上の素管に成形した水配管の製造が可能となり、成形される螺旋状溝の山部傾斜度θと山部ピッチPのバラツキが小さいため水配管と冷媒配管とは確実に嵌め込まれ、半田付けにて接合でき、接触面積が十分確保できた熱交換特性が良い捩り管形熱交換器が得ることができる。また、事前に素管の管軸引張強度/管周引張強度比を0.9±0.02以内とされた素管を使用することにより、さらにバラツキの精度が向上する。
1 熱交換器
2 水配管
2a 山部
2b 谷部
3 冷媒配管
3a 第1冷媒配管
3b 第2冷媒配管
3c 第3冷媒配管
5a 冷媒分流部
5b 冷媒合流部
7 冷媒配管接続口
8 冷媒配管接続口
9 水配管接続口
10 水配管接続口
20 芯金

Claims (8)

  1. 偏肉率が7.5%以下で管軸引張強度/管周引張強度比が0.9±0.02以内の銅管と、前記銅管の管内に芯金を通し前記銅管の両端を把持し把持した把持部を所定の速度で回転させ捩ることにより外周に連続した螺旋状溝が成形された水配管と、前記螺旋状溝に沿って嵌め込み前記水配管と接合された冷媒配管と、を備えたことを特徴とする捩り管形熱交換器。
  2. 前記水配管の前記螺旋状溝の山部の高さは前記冷媒配管の外径の1/2以上、かつ、前記冷媒配管の外径以下であることを特徴とする請求項1に記載の捩り管形熱交換器。
  3. 前記水配管の前記螺旋状溝は複数の連続した溝から構成されたことを特徴とする請求項1または2に記載の捩り管形熱交換器。
  4. 前記銅管の外径/公称肉厚比は5%±0.3%以内であることを特徴とする請求項1乃至3のいずれかに記載の捩り管形熱交換器。
  5. 外周に連続した螺旋状溝を有する水配管と、前記水配管の前記螺旋状溝に沿って嵌め込み接合され冷媒配管と、を備え、前記水配管の前記螺旋状溝は前記冷媒配管の外径の1/2以上、かつ、前記冷媒配管の外径以下の高さであって、ピッチPの標準偏差σが0.1mm以下の山部を有し、前記水配管の素管は偏肉率が7.5%以下であって、外径/公称肉厚比が5%±0.3%以内の銅管または管軸引張強度/管周引張強度比0.9±0.02以内の銅管であることを特徴とする捩り管形熱交換器。
  6. 複数条の連続した前記螺旋状溝を有しそれぞれの前記螺旋状溝に前記冷媒配管が嵌め込まれ接合された少なくとも1本の前記水配管が長円コイル状の熱交換器を形成したことを特徴とする請求項に記載の捩り管形熱交換器。
  7. 請求項1乃至のいずれかに記載の銅管において、前記銅管の端部から所定寸法離れた前記銅管の外周上に複数の打痕を等間隔に打つステップと、前記打痕を打った前記銅管の管内に芯金を通し前記銅管の前記端部を固定治具で把持し固定するステップと、前記端部とは反対側の前記銅管の端部を回転治具で把持し前記回転治具を所定速度と所定回転数で回転させることによって前記銅管を捩るステップと、を有し、前記銅管を捩ることによって前記銅管に打った複数の前記打痕を起点に前記打痕と同数の溝が螺旋状に成形されることを特徴とする捩り管形熱交換器の製造方法。
  8. 前記銅管に成形された螺旋状の前記溝に沿って冷媒配管を嵌め込むステップと、前記冷媒配管を嵌め込んだ前記銅管を所定寸法の長円コイル状に曲げ加工を行うステップと、長円コイル状に曲げ加工を行った前記銅管と前記冷媒配管を半田にて接合するステップと、を有することを特徴とする請求項に記載の捩り管形熱交換器の製造方法。
JP2009282776A 2009-12-14 2009-12-14 捩り管形熱交換器および捩り管形熱交換器の製造方法 Active JP5293584B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282776A JP5293584B2 (ja) 2009-12-14 2009-12-14 捩り管形熱交換器および捩り管形熱交換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282776A JP5293584B2 (ja) 2009-12-14 2009-12-14 捩り管形熱交換器および捩り管形熱交換器の製造方法

Publications (2)

Publication Number Publication Date
JP2011122797A JP2011122797A (ja) 2011-06-23
JP5293584B2 true JP5293584B2 (ja) 2013-09-18

Family

ID=44286853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282776A Active JP5293584B2 (ja) 2009-12-14 2009-12-14 捩り管形熱交換器および捩り管形熱交換器の製造方法

Country Status (1)

Country Link
JP (1) JP5293584B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656786B2 (ja) * 2011-09-22 2015-01-21 三菱電機株式会社 異径捩り管形熱交換器の製造方法
WO2014199479A1 (ja) * 2013-06-13 2014-12-18 三菱電機株式会社 ヒートポンプ装置
JP5935763B2 (ja) * 2013-06-14 2016-06-15 三菱電機株式会社 捩り管形熱交換器及び捩り管形熱交換器の製造方法
JP6203079B2 (ja) * 2014-02-25 2017-09-27 三菱電機株式会社 捩り管形熱交換器の製造方法
JP6448771B2 (ja) * 2015-04-09 2019-01-09 三菱電機株式会社 捩り管形熱交換器
WO2017141307A1 (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 捩り管形熱交換器及び捩り管形熱交換器の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1104073A (en) * 1977-09-29 1981-06-30 Robert W. Perkins Corrugated tubing with variable depth corrugations and method of making the same
JP2001096315A (ja) * 1999-09-27 2001-04-10 Kawasaki Steel Corp 拡管加工性に優れた溶接鋼管
JP2002206140A (ja) * 2000-12-28 2002-07-26 Nkk Corp 鋼管及びその製造方法
JP4435008B2 (ja) * 2005-03-31 2010-03-17 三菱電機株式会社 捩り管形熱交換器の製造方法
JP4211041B2 (ja) * 2005-05-31 2009-01-21 三菱電機株式会社 ヒートポンプ給湯機
JP4745896B2 (ja) * 2006-06-14 2011-08-10 三菱電機株式会社 熱交換器の製造方法
JP2008241217A (ja) * 2007-03-29 2008-10-09 Mitsubishi Electric Corp 熱交換器の製造方法及びこの製造方法によって製造した熱交換器
JP2009243722A (ja) * 2008-03-28 2009-10-22 Kobelco & Materials Copper Tube Inc 内面溝付管

Also Published As

Publication number Publication date
JP2011122797A (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5293584B2 (ja) 捩り管形熱交換器および捩り管形熱交換器の製造方法
JP3953074B2 (ja) 熱交換器
RU2522261C2 (ru) Способ формирования, введения и закрепления ребер в бойлерных трубах
JP2006090697A (ja) 捩り管形熱交換器
JP4819765B2 (ja) 捩り管形熱交換器の製造方法
JP2008045868A (ja) 給湯機用熱交換器及びその製作方法
JP5404589B2 (ja) 捩り管形熱交換器
JP3927700B2 (ja) 熱交換器の製造方法
JP5289088B2 (ja) 熱交換器及び伝熱管
JP6861848B2 (ja) 熱交換器の製造方法及び熱交換器
JP2006284009A (ja) 捩り管形熱交換器の製造方法
JP2010091266A (ja) 捩り管形熱交換器
JP5656786B2 (ja) 異径捩り管形熱交換器の製造方法
JP2008241217A (ja) 熱交換器の製造方法及びこの製造方法によって製造した熱交換器
JP3908974B2 (ja) 内面溝付管及びその製造方法
JP2009097810A (ja) 熱交換器
JP6016350B2 (ja) 給湯用熱交換器の製造方法
JP4412795B2 (ja) 熱交換器
JP6701386B2 (ja) 捩り管形熱交換器の製造方法
JP2007218566A (ja) 内面溝付き管及びその製造方法並びに溝付きプラグ
JP5794952B2 (ja) 捩り管形熱交換器
JP4127246B2 (ja) 熱交換装置の製造方法
JP2011106776A (ja) 二重管式熱交換器
JP2008023537A (ja) 曲部を有する二重管の製造方法
JP2015218992A (ja) 熱交換器及びそれを備えた給湯機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250