JP5286565B2 - 半導体装置の製造方法、基板処理方法および基板処理装置 - Google Patents

半導体装置の製造方法、基板処理方法および基板処理装置 Download PDF

Info

Publication number
JP5286565B2
JP5286565B2 JP2008137831A JP2008137831A JP5286565B2 JP 5286565 B2 JP5286565 B2 JP 5286565B2 JP 2008137831 A JP2008137831 A JP 2008137831A JP 2008137831 A JP2008137831 A JP 2008137831A JP 5286565 B2 JP5286565 B2 JP 5286565B2
Authority
JP
Japan
Prior art keywords
film
processing chamber
silicon substrate
forming
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008137831A
Other languages
English (en)
Other versions
JP2009021560A (ja
Inventor
有人 小川
邦彦 岩本
裕之 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hitachi Kokusai Electric Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008137831A priority Critical patent/JP5286565B2/ja
Priority to US12/155,773 priority patent/US8367560B2/en
Priority to KR1020080055573A priority patent/KR101178856B1/ko
Priority to TW97122291A priority patent/TWI469216B/zh
Publication of JP2009021560A publication Critical patent/JP2009021560A/ja
Application granted granted Critical
Publication of JP5286565B2 publication Critical patent/JP5286565B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体装置の製造方法および基板処理装置に関する。
例えば、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)すなわち金属酸化膜半導体電界効果トランジスタにおいて高誘電率のゲート絶縁膜を形成するのに利用して有効なものに関する。
MOSFETの高集積化および高性能化に伴って、ゲート絶縁膜への高誘電率絶縁膜の適用が検討されている。移動度や信頼性の観点からは、高誘電率絶縁膜とシリコン(Si)基板の界面に酸化シリコン(SiO2 )層によって形成される界面層を用いるのが、一般的である。
しかしながら、界面層としてSiO2 膜を用いた場合、その誘電率が低いために0.8nm以下へのEOT(Equivalent Oxide Thickness)すなわち等価酸化膜換算膜厚の薄膜化が非常に困難になる。
また、界面層を用いずに、Si基板上に高誘電率絶縁膜を直接に形成した場合、多くのダングリングボンドが存在するため、電気特性への影響が懸念される。かつ、LSIプロセス形成時に高誘電率絶縁膜とシリコン基板との界面にSiOx層が形成される。その結果、EOTの薄膜化が困難になる。
本発明の目的は、電気特性への悪影響を防止しつつEOTを薄くすることができる半導体装置の製造方法および基板処理装置を提供することにある。
本発明の一態様によれば、シリコン基板上に金属酸化膜を形成し、この金属酸化膜と前記シリコン基板とを熱処理により固相反応させることでシリケート膜を形成する工程と、このシリケート膜上に高誘電率絶縁膜を形成する工程と、を有する半導体装置の製造方法、が提供される。
本発明の他の態様によれば、シリコン基板上に高誘電率絶縁膜を形成し、この高誘電率絶縁膜と前記シリコン基板とを熱処理により固相反応させ、これを繰り返すことでシリケート膜を形成する工程と、このシリケート膜上に高誘電率絶縁膜を形成する工程と、を有する半導体装置の製造方法、が提供される。
本発明の更に他の態様によれば、シリコン基板上に酸化ハフニウム膜を形成し、この酸化ハフニウム膜と前記シリコン基板とを熱処理により固相反応させ、これを繰り返すことでハフニウムシリケート膜を形成する工程と、このハフニウムシリケート膜上に酸化ハフニウム膜を形成する工程と、を有する半導体装置の製造方法、が提供される。
本発明の更に他の態様によれば、シリコン基板上に高誘電率絶縁膜を形成する第1処理室と、前記シリコン基板を熱処理する第2処理室と、前記第1処理室と前記第2処理室との間に設けられ、前記第1処理室と前記第2処理室との間で前記シリコン基板が搬送される搬送室と、前記搬送室内に設けられ前記シリコン基板を搬送する搬送ロボットと、前記シリコン基板を前記搬送ロボットにより前記第1処理室内に搬送し、前記第1処理室内で前記シリコン基板上に前記高誘電率絶縁膜を形成し、前記高誘電率絶縁膜が形成された前記シリコン基板を前記搬送ロボットにより前記第1処理室内から前記第2処理室内に搬送し、前記第2処理室内で前記高誘電率絶縁膜が形成された前記シリコン基板を熱処理することで前記高誘電率絶縁膜と前記シリコン基板とを固相反応させてシリケート膜を形成し、これを繰り返し実施することで前記シリコン基板表面に所定膜厚のシリケート膜を形成し、その後、前記所定膜厚のシリケート膜形成後の前記シリコン基板を前記第2処理室内から前記第1処理室内に搬送し、前記第1処理室内で前記所定膜厚のシリケート膜上に高誘電率絶縁膜を形成するように制御するコントローラと、を有する基板処理装置、が提供される。
前記手段によれば、電気特性への悪影響を防止しつつEOTを薄くすることができる半導体装置の製造方法および基板処理装置を提供することができる。
以下、本発明の一実施の形態を図面に即して説明する。
図1は本発明の一実施の形態であるMOSFETにおいて高誘電率のゲート絶縁膜を形成する方法を示すフローチャートである。
図2〜図4は本発明の一実施の形態に係る基板処理装置を示している。
まず、本発明の一実施の形態に係る基板処理装置について説明する。
本実施の形態において、本発明に係る基板処理装置は、構造的には図2に示されているようにクラスタ装置として構成されており、機能的には、MOSFETの高誘電率ゲート絶縁膜形成方法に使用されるように構成されている。
なお、本実施の形態に係るクラスタ装置においては、シリコン基板としてのシリコンウエハ2(以下、単にウエハ2ともいう場合もある。)を搬送するためのウエハ搬送用キャリア(基板収納容器)としては、FOUP(front opening unified pod 。以下、ポッドという。)1が使用されている。
図2に示されているように、クラスタ装置10は第一ウエハ移載室(以下、負圧移載室という。)11を形成した筐体12を備えている。負圧移載室11は大気圧未満の圧力(負圧)に耐える構造の搬送室として構成されている。負圧移載室11を形成した筐体(以下、負圧移載室筐体という。)12は、平面視が七角形で上下両端が閉塞した箱形状に形成されている。
負圧移載室11の中央部には、負圧下においてウエハ2を移載する搬送ロボットとしてのウエハ移載装置(以下、負圧移載装置という。)13が設置されており、負圧移載装置13はスカラ形ロボット(selective compliance assembly robot arm SCARA)によって構成されている。
負圧移載室筐体12の7枚の側壁のうち長い側壁には、搬入用予備室(以下、搬入室という。)14と搬出用予備室(以下、搬出室という。)15とがそれぞれ隣接して連結されている。
搬入室14の筐体と搬出室15の筐体とは、それぞれ平面視が略菱形で上下両端が閉塞した箱形状に形成されているとともに、負圧に耐え得るロードロックチャンバ構造に構成されている。
搬入室14および搬出室15の負圧移載室11と反対側には、筐体16Aが隣接して連結されている。筐体16Aは第二ウエハ移載室(以下、正圧移載室という。)16を構成している。正圧移載室16は大気圧以上の圧力(以下、正圧という。)を維持可能な構造に構成されている。正圧移載室16の筐体16Aは平面視が横長の長方形で上下両端が閉塞した箱形状に形成されている。
搬入室14と正圧移載室16との境にはゲートバルブ17Aが設置されており、搬入室14と負圧移載室11との間にはゲートバルブ17Bが設置されている。
搬出室15と正圧移載室16との境にはゲートバルブ18Aが設置されており、搬出室15と負圧移載室11との間にはゲートバルブ18Bが設置されている。
正圧移載室16には正圧下でウエハ2を移載する第二ウエハ移載装置(以下、正圧移載装置という。)19が設置されており、正圧移載装置19はスカラ形ロボットによって構成されている。
正圧移載装置19は正圧移載室16に設置されたエレベータによって昇降されるとともに、リニアアクチュエータによって左右方向に往復移動される。
正圧移載室16の左側端部にはノッチ合わせ装置20が設置されている。
正圧移載室16の正面壁には3つのウエハ搬入搬出口(以下、ウエハ搬入口という。)21、22、23が、隣合わせに並べられて開設されている。これらのウエハ搬入口21、22、23は、ウエハ2を正圧移載室16に搬入したり、ウエハを正圧移載室16から搬出したりする。
これらのウエハ搬入口21、22、23にはポッドオープナ24がそれぞれ設置されている。
ポッドオープナ24はポッド1を載置する載置台25と、載置台25に載置されたポッド1のキャップを着脱するキャップ着脱機構26とを備えている。キャップ着脱機構26は載置台25に載置されたポッド1のキャップを着脱することにより、ポッド1のウエハ出し入れ口を開閉する。
図示しない工程内搬送装置(RGV)は、ポッド1をポッドオープナ24の載置台25に供給したり、ポッド1をポッドオープナ24の載置台25から排出したりする。
図2に示されているように、負圧移載室筐体12の7枚の側壁のうち正圧移載室16と反対側に位置する2枚の側壁には、第一処理ユニット31と第二処理ユニット32とがそれぞれ隣接して連結されている。
第一処理ユニット31と負圧移載室11との間にはゲートバルブ44(図3参照)が設置されている。
第二処理ユニット32と負圧移載室11との間にはゲートバルブ118(図4参照)が設置されている。
また、負圧移載室筐体12における7枚の側壁のうちの他の2枚の側壁には、第一クーリングユニット35と、第二クーリングユニット36とがそれぞれ連結されており、第一クーリングユニット35および第二クーリングユニット36はいずれも処理済みのウエハ2を冷却する。
クラスタ装置10はコントローラ37を備えている。コントローラ37は後述するシーケンスフローを統括的に制御する。
本実施の形態においては、第一処理ユニット31は、構造的には図3に示されているように、枚葉式ウォームウオール形基板処理装置として構成されており、機能的にはALD(Atomic Layer Deposition )装置(以下、ALD装置という。)40として構成されている。
図3に示されているように、ALD装置40は処理室41を形成する筐体42を備えており、筐体42には処理室41の壁面を加熱するためのヒータ(図示せず)が内蔵されている。
筐体42にはウエハ搬入搬出口(以下、ウエハ搬入口という。)43が負圧移載室11との境に開設されている。ゲートバルブ44はウエハ搬入口43を閉じたり開いたりする。
処理室41の底面上には昇降駆動装置45が設置されており、昇降駆動装置45は昇降軸46を昇降させる。昇降軸46の上端にはウエハ2を保持する保持具47が水平に支持されている。
保持具47にはウエハ2を加熱するヒータ47aが設けられている。
ウエハ搬入口43および処理室41の底壁には、パージガス供給口48Aおよびパージガス供給口48Bがそれぞれ開設されており、パージガス供給口48Aおよびパージガス供給口48Bには、パージガス供給ラインとしてのアルゴンガス供給ライン58が止め弁64Aおよび止め弁64Bを介してそれぞれ接続されている。アルゴンガス供給ライン58にはアルゴンガス供給源59が接続されている。
筐体42には排気口49がウエハ搬入口43と反対側の部位に開設されており、排気口49には真空ポンプ等の排気装置50に接続された排気ライン51が接続されている。
筐体42の天井壁には処理ガス供給口52が処理室41に連通するように開設されており、処理ガス供給口52には第一処理ガス供給ライン53Aおよび第二処理ガス供給ライン53Bが接続されている。
第一処理ガス供給ライン53Aには上流側止め弁54Aおよび下流側止め弁55Aを介して第一バブラ56Aが接続されている。第一バブラ56Aのバブリング管57Aはアルゴンガス供給源59に接続されたアルゴンガス供給ライン58に接続されている。
第一処理ガス供給ライン53Aの上流側止め弁54Aと下流側止め弁55Aとの間には、アルゴンガス供給ライン58が止め弁60Aを介して接続されている。第一処理ガス供給ライン53Aのアルゴンガス供給ライン58の接続点と下流側止め弁55Aとの間には、ベントライン61Aの上流側端が接続されており、ベントライン61Aの下流側端は止め弁62Aを介して排気装置50に接続された排気ライン51に接続されている。
なお、第一処理ガス供給ライン53Aにはアルゴンガス供給ライン58が、下流側止め弁55Aよりも下流側に止め弁63を介して接続されている。
第二処理ガス供給ライン53Bには上流側止め弁54Bおよび下流側止め弁55Bを介して第二バブラ56Bが接続されている。第二バブラ56Bのバブリング管57Bはアルゴンガス供給源59に接続されたアルゴンガス供給ライン58に接続されている。
第二処理ガス供給ライン53Bの上流側止め弁54Bと下流側止め弁55Bとの間には、アルゴンガス供給ライン58が止め弁60Bを介して接続されている。第二処理ガス供給ライン53Bのアルゴンガス供給ライン58の接続点と下流側止め弁55Bとの間には、ベントライン61Bの上流側端が接続されており、ベントライン61Bの下流側端は止め弁62Bを介して排気装置50に接続された排気ライン51に接続されている。
なお、第二処理ガス供給ライン53Bは下流側止め弁55Bよりも下流側部分が、第一処理ガス供給ライン53Aの下流側止め弁55Aよりも下流側部分に接続されており、第一処理ガス供給ライン53Aおよび第二処理ガス供給ライン53Bは、その接続点よりも下流側において一本になって、処理ガス供給口52に接続している。
本実施の形態においては、第二処理ユニット32には、図4に示されたRTP(Rapid Thermal Processing)装置110が使用されている。
図4に示されているように、RTP装置110はウエハ2を処理する処理室111を形成した筐体112を備えている。筐体112は上下面が開口した円筒形状に形成された側壁部113と、側壁部113の上面開口部を閉塞する円盤形状のトッププレート114と、側壁部113の下面開口部を閉塞する円盤形状のボトムプレート115とが組み合わされて、円筒中空体形状に構築されている。
側壁部113の上部側壁の一部には排気口116が処理室111の内外を連通するように開設されており、排気口116には処理室111を大気圧未満(以下、負圧という。)に排気し得る排気装置(図示せず)が接続されている。
側壁部113にはウエハ2を処理室111に搬入搬出するためのウエハ搬入搬出口(以下、ウエハ搬入口という。)117が、上部側壁の排気口116と反対側の位置に開設されている。ゲートバルブ118はウエハ搬入口117を開いたり閉じたりする。
ボトムプレート115下面の中心線上には昇降駆動装置119が設置されている。昇降駆動装置119は昇降軸120を昇降させる。昇降軸120はボトムプレート115に挿通されてボトムプレート115に対して上下方向に摺動自在に支持されている。
昇降軸120の上端には昇降板121が水平に固定されており、昇降板121の上面には複数本(通常は3本または4本)のリフタピン122が垂直に立脚されて固定されている。各リフタピン122は昇降板121の昇降に伴って昇降することにより、ウエハ2を下から水平に支持して昇降させる。
ボトムプレート115上面には支持筒123が昇降軸120の外側に突設されており、支持筒123の上端面上には冷却プレート124が水平に架設されている。
冷却プレート124の上方には、複数本の加熱ランプから構成された第一加熱ランプ群125および第二加熱ランプ群126が下から順に配置されて、それぞれ水平に架設されている。第一加熱ランプ群125および第二加熱ランプ群126は第一支柱127および第二支柱128によってそれぞれ水平に支持されている。
第一加熱ランプ群125および第二加熱ランプ群126の電力供給電線129はボトムプレート115を挿通して外部に引き出されている。
処理室111にはタレット131が処理室111と同心円状に配置されている。タレット131は内歯平歯車133の上面に内歯平歯車133と同心円状に固定されており、内歯平歯車133はボトムプレート115に介設されたベアリング132によって水平に支承されている。
内歯平歯車133には原動側平歯車134が噛合されており、原動側平歯車134はボトムプレート115に介設されたベアリング135によって水平に支承されている。原動側平歯車134はボトムプレート115の下に設置されたサセプタ回転装置136によって回転駆動される。
タレット131上端面上には平板の円形リング形状に形成されたアウタプラットホーム137が水平に架設されており、アウタプラットホーム137の内側にはインナプラットホーム138が水平に架設されている。
インナプラットホーム138内周下端部にはサセプタ140が、インナプラットホーム138内周面下端部に径方向内向きに突設された係合部139に係合されて保持されている。サセプタ140の各リフタピン122に対向する位置には挿通孔141がそれぞれ開設されている。
トッププレート114にはアニールガス供給管142および不活性ガス供給管143が処理室111に連通するようにそれぞれ接続されている。
また、トッププレート114には放射温度計のプローブ144が複数本、互いに半径方向にウエハ2の中心から周辺にかけてずらされて配置されてウエハ2の上面と対向するように挿入されている。放射温度計は複数本のプローブ144がそれぞれ検出した放射光に基づく計測温度をコントローラに逐次送信する。
トッププレート114の他の場所には放射率測定装置145が設置されている。放射率測定装置145はウエハ2の放射率を非接触にて測定する。放射率測定装置145はレファレンスプローブ146を備えており、レファレンスプローブ146はレファレンスプローブ用モータ147によって垂直面内で回転される。
レファレンスプローブ146の上側にはレファレンスランプ148がレファレンスプローブ146の先端に対向するように設置されており、レファレンスランプ148は参照光を照射する。レファレンスプローブ146は放射温度計に光学的に接続されている。放射温度計はウエハ2からの光子密度とレファレンスランプ148からの参照光の光子密度とを比較することにより、計測温度を校正する。
次に、半導体装置(デバイス)の製造工程の一工程として前記構成に係るクラスタ装置10を使用して、シリコン基板表面に界面層としてのシリケート膜を形成し、このシリケート膜上に高誘電率絶縁膜を形成する方法について図1に沿って説明する。
本実施形態では、界面層としてのシリケート膜は、金属酸化膜をシリコン基板上に形成し、この金属酸化膜とシリコン基板のシリコンとを熱処理により固相反応させることで、シリコン基板表面に形成される。
本実施形態では、シリコン基板上に金属酸化膜として酸化ハフニウム(HfO2 )膜を形成し、この酸化ハフニウム膜とシリコン基板とを熱処理により固相反応させることで、シリコン基板表面にシリケート膜としてハフニウムシリケート(HfSiOx)膜を形成し、このハフニウムシリケート膜上に高誘電率絶縁膜として酸化ハフニウム(HfO2 )膜を形成する例について説明する。以下、これを具体的に説明する。
なお、以下の説明において、クラスタ装置10を構成する各部の動作は、コントローラ37により制御される。
クラスタ装置10に投入されるシリコン基板としてのウエハ2は、予め、弗化水素(HF)クリーニング工程において洗浄されている(図1参照)。
図1に示されたウエハ投入ステップにおいては、クラスタ装置10の載置台25に供給されたポッド1のキャップが、キャップ着脱機構26によって取り外され、ポッド1のウエハ出し入れ口が開放される。
ポッド1が開放されると、正圧移載室16に設置された正圧移載装置19はウエハ搬入口(21または22または23)を通してポッド1からウエハ2を1枚ずつピックアップし、搬入室14に投入し、ウエハ2を搬入室用仮置き台に移載して行く。
この移載作業中には、搬入室14の正圧移載室16側はゲートバルブ17Aによって開かれており、また、搬入室14の負圧移載室11側はゲートバルブ17Bによって閉じられている。負圧移載室11内の圧力は、大気圧未満の圧力、例えば、100Paに維持されている。
図1に示されたウエハローディングステップにおいては、搬入室14の正圧移載室16側がゲートバルブ17Aによって閉じられ、搬入室14が排気装置(図示せず)によって負圧に排気される。
搬入室14内が予め設定された圧力値に減圧されると、搬入室14の負圧移載室11側がゲートバルブ17Bによって開かれる。
次に、負圧移載室11の負圧移載装置13は搬入室用仮置き台からウエハ2を1枚ずつピックアップして負圧移載室11に真空下で搬入する。
その後、搬入室14の負圧移載室11側がゲートバルブ17Bによって閉じられる。
続いて、第一処理ユニット31のゲートバルブ44が開かれ、負圧移載装置13はウエハ2を第一処理ユニット31に真空下で搬送して、第一処理ユニット31の処理室へ搬入(ウエハローディング)する。
なお、第一処理ユニット31の処理室は、予め設定された圧力値となるように減圧排気されている。
また、ウエハの第一処理ユニット31への搬入に際しては、搬入室14および負圧移載室11が負圧に排気されることによって内部の酸素や水分が予め除去されているため、外部の酸素や水分がウエハの第一処理ユニット31への搬入に伴って第一処理ユニット31の処理室に侵入することは確実に防止される。
次に、第一処理ユニット31のALD装置40を使用してALD法により金属酸化膜としての酸化ハフニウム(HfO2 )膜をシリコン基板としてのシリコンウエハ2上に形成する工程を、図3を参照しつつ説明する。
本実施の形態においては、ハフニウム(Hf)系プリカーサーとしては、TDMAH(Tetrakis-Dimethyl-Amino-Hafnium : Hf[N(CH3 24 )を用い、酸化剤としては、水蒸気(H2 O)を用いる。
本実施の形態に係るALD装置40においては、液体原料であるTDMAHは第一バブラ56Aに収容されており、TDMAHを気化するのに第一バブラ56Aが使用される。この第一バブラ56Aのバブリングに使用されるアルゴンガスの流量は、例えば、0.5〜1SLM(スタンダード・リットル毎分)である。
本実施の形態に係るALD装置40においては、酸化剤としての水蒸気を発生させるのに、第二バブラ56Bが使用される。この第二バブラ56Bのバブリングに使用されるアルゴンガスの流量も、例えば、0.5〜1SLMである。
図3において、第一処理ユニット31であるALD装置40のウエハ搬入口43は、ゲートバルブ44によって開放される。このとき、保持具47はウエハ搬送位置まで下降されている。ウエハ搬入口43が開放されると、負圧移載装置13はウエハ2を処理室41に搬入する。
ウエハ2を処理室41に搬入し、図示しない突き上げピン上に載置させた後、負圧移載装置13は処理室41の外へ退避する。続いて、ゲートバルブ44はウエハ搬入口43を閉じる。
昇降駆動装置45は保持具47を、ウエハ搬送位置からそれよりも上方の図3に示すウエハ処理位置まで、昇降軸46を介して上昇させる。その間に、保持具47は突き上げピン上のウエハ2を掬い上げ、保持具47上に載置する。
ゲートバルブ44が閉じられた後に、排気装置50は処理室41内を排気する。処理室41内は、例えば10〜100Paの範囲内の所定の圧力例えば30Paとなるように調圧される。
また、保持具47に内蔵されたヒータ47aはウエハ2を、例えば150℃〜350℃の範囲内の所定の温度となるように均一に加熱する。この間、すなわち、温度および圧力調整の際、止め弁63、64A、64Bは開状態とされ、処理室41内および処理室41内の保持具47より下方の空間には、パージガスとしてのアルゴンガスが処理ガス供給口52、両パージガス供給口48A、48Bより供給されつつ、排気口49、排気ライン51より排気される。これにより、処理室41内は不活性ガス雰囲気とされる。
ウエハ2が搬入された時点では、止め弁54A、55A、54B、55Bはそれぞれ閉状態であり、止め弁60A、62A、60B、62B、63、64A、64Bは開状態である。
ここで、原料を供給する準備のために、止め弁60A、55A、60B、55Bが閉じられるとともに、止め弁54A、62A、54B、62Bが開かれることにより、気化したハフニウム原料および水蒸気が、第一処理ガス供給ライン53Aおよび第二処理ガス供給ライン53Bにそれぞれ詰められる。
また、止め弁63が開かれることにより、処理室41内にはパージガスとしてのアルゴンガスが供給される。また、止め弁64A、64Bが開かれることにより、処理室41内の保持具47より下方の空間にもパージガスとしてのアルゴンガスが、パージガス供給口48A、48Bから流される。アルゴンガスの流量は、例えば0.1〜1.5SLMである。
ウエハ2の温度が安定化し、処理室41内の圧力が安定化した後に、次のステップ(1)〜(4)を1サイクルとして、酸化ハフニウム膜が目標の膜厚になるまで、このサイクルが繰り返される。
(1)原料供給ステップ
止め弁62Aが閉じられるとともに、止め弁55Aが開かれ、そのままの状態が例えば0.5〜5秒間保持される。これにより、気化したハフニウム原料が処理室41に供給されつつ、排気口49より排気される。
処理室41内に供給されたハフニウム原料はウエハ2上に吸着する。
(2)原料排気ステップ
次に、止め弁54Aが閉じられるとともに、止め弁60Aが開かれ、そのままの状態が例えば0.5〜10秒間保持される。これにより、第一処理ガス供給ライン53A内と処理室41内にアルゴンガスが供給されつつ排気口49より排気される。すなわち、第一処理ガス供給ライン53A内と処理室41内とがアルゴンガスによりパージされ、第一処理ガス供給ライン53A内と処理室41内とに供給された原料が排気される。
続いて、止め弁60A、55Aが閉じられ、止め弁54A、62Aが開かれて、第一処理ガス供給ライン53Aに気化したハフニウム原料が詰められる。
(3)酸化剤供給ステップ
第一処理ガス供給ライン53Aへの気化したハフニウム原料の充填と同時に、止め弁62Bが閉じられるとともに、止め弁55Bが開かれ、そのままの状態が、例えば0.5〜15秒間保持される。これにより、処理室41に酸化剤としての水蒸気が供給されつつ排気口49より排気される。
これにより、ステップ(1)でウエハ2の表面上に吸着したハフニウム原料と、水蒸気とが反応して、ウエハ2上に1オングストローム(Å)程度の膜厚の酸化ハフニウム膜が形成される。
(4)酸化剤の排気ステップ
止め弁54Bが閉じられるとともに、止め弁60Bが開かれ、その状態が例えば0.5〜15秒間保持される。これにより、第二処理ガス供給ライン53B内および処理室41内にアルゴンガスが供給されつつ排気口49より排気される。すなわち、第二処理ガス供給ライン53B内および処理室41内がアルゴンガスによりパージされ、第二処理ガス供給ライン53B内および処理室41内に供給された酸化剤が排気される。
続いて、止め弁60B、55Bが閉じられ、止め弁54B、62Bが開かれて第二処理ガス供給ライン53Bに水蒸気が詰められる。
通常、ALD法により成膜する場合には、1サイクルで1Å程度成膜され、2〜3サイクルで1原子層程度成膜される。
すなわち、図13に示されているように、1サイクル目でアイランド状(島状)に膜が形成され、2〜3サイクル目で連続した1原子層程度の膜が形成される。
以上のステップ(1)〜(4)を1サイクルとして、この1サイクルを1〜3サイクル程度実施することにより、所定膜厚すなわち、1原子層程度以下の酸化ハフニウム膜を形成する。
酸化ハフニウム膜の形成が終了すると、処理室41内の真空引きがなされ、処理室41内の残留ガスが排除される。その後、処理室41内に不活性ガスが導入され、処理室41内は不活性ガス雰囲気とされる。
また、保持具47がウエハ処理位置からウエハ搬送位置まで下降することで、成膜済のウエハ2が突き上げピン上に載置される。
その後、ALD装置40のゲートバルブ44が開かれることで、ウエハ搬入口43が開放され、成膜済みのウエハ2は負圧移載装置13によって第一処理ユニット31から負圧に維持された負圧移載室11に搬出(ウエハアンローディング)される。
負圧移載装置13はウエハ2を第二処理ユニット32に真空下で搬送して、第二処理ユニット32の処理室へ搬入(ウエハローディング)する。
次に、第二処理ユニット32のRTP装置110を使用して、酸化ハフニウム膜を形成したウエハ2に熱処理を施す工程を、図4を参照しつつ説明する。
図4において、第二処理ユニット32であるRTP装置110のゲートバルブ118が開かれると、ウエハ2は処理室111にウエハ搬入口117から負圧移載装置13によって搬入され、複数本のリフタピン122の上端間に移載される。
ウエハ2をリフタピン122に移載した負圧移載装置13が処理室111の外へ退避すると、ウエハ搬入口117がゲートバルブ118により閉じられる。
昇降軸120が昇降駆動装置119によって下降されることにより、リフタピン122の上のウエハ2がサセプタ140の上に受け渡される。図4はこの状態を示している。
処理室111が気密に閉じられた状態で、処理室111内は1〜4000Pa、例えば1〜1000Paの範囲内の所定の圧力となるように排気口116を通じて排気される。
ウエハ2がサセプタ140に受け渡されると、ウエハ2をサセプタ140によって保持したタレット131が内歯平歯車133および原動側平歯車134を介してサセプタ回転装置136によって回転される。
サセプタ140に保持されたウエハ2はサセプタ回転装置136によって回転されながら、600〜850℃、例えば650〜850℃の範囲内の所定の温度となるように第一加熱ランプ群125および第二加熱ランプ群126によって急速に加熱される。サセプタ140に保持されたウエハ2の温度は、所定の熱処理温度に到達後、その温度に保持される。
この回転および加熱中に、アニールガス供給管142から処理室111内に窒素ガス等の不活性ガスが供給される。
サセプタ140がサセプタ回転装置136によって回転されながら、サセプタ140の上に保持されたウエハ2は第一加熱ランプ群125および第二加熱ランプ群126によって均一に加熱されるため、ウエハ2は全面にわたって均一に熱処理される。
この熱処理により、ウエハ2上に形成された酸化ハフニウム膜とシリコン基板であるシリコンウエハ2との間で固相反応が生じ、ウエハ2の表面にハフニウムシリケート(HfSiOx)膜が形成される。
RTP装置110において予め設定された所定の処理時間が経過すると、コントローラ37は第一加熱ランプ群125および第二加熱ランプ群126による加熱を終了し、ウエハ2の急冷を開始する。
そして、処理室111が排気口116によって所定の負圧となるように排気された後に、ゲートバルブ118が開かれる。続いて、熱処理が施されたウエハ2が、負圧移載装置13によって搬入時と逆の手順で処理室111から負圧移載室11に搬出(ウエハアンローディング)される。
負圧移載装置13は熱処理後のウエハ2を、再度、第一処理ユニット31に真空下で搬送し、第一処理ユニット31のALD装置40の処理室41へ再び搬入(ウエハローディング)する。
以降、ALD装置40による酸化ハフニウム膜形成工程と、RTP装置110による熱処理工程とが、図1に示されているように、所定回数繰り返される。
この酸化ハフニウム膜形成工程と熱処理工程との繰り返しにより、ウエハ2表面に極薄で良好な特性の界面層としてのハフニウムシリケート膜(以下、極薄ハフニウムシリケート膜という。)を形成することができる。
なお、酸化ハフニウム膜形成工程と熱処理工程とを繰り返す回数は、後述する理由により5回が望ましい。
予め設定された回数の繰り返しが終了すると、極薄ハフニウムシリケート膜が形成されたウエハ2は、負圧移載装置13によって、第二処理ユニット32のRTP装置110の処理室111から負圧移載室11に搬出(ウエハアンローディング)され、更に、第一処理ユニット31に真空下で搬送され、第一処理ユニット31のALD装置40の処理室41へ搬入(ウエハローディング)される。
そして、図1に示された高誘電率絶縁膜形成工程としての酸化ハフニウム膜形成工程では、高誘電率絶縁膜としての酸化ハフニウム膜が界面層としての極薄ハフニウムシリケート膜上に、ALD装置40によって形成される。
極薄ハフニウムシリケート膜上に高誘電率絶縁膜としての酸化ハフニウム膜を形成する工程のALD装置40によるシーケンスは、前述したALD装置40による金属酸化膜としての酸化ハフニウム膜を形成する工程のALDシーケンスと同様である。
すなわち、高誘電率絶縁膜として必要な厚さの酸化ハフニウム膜が形成されるまで、前述したステップ(1)〜(4)を1サイクルとしたALDサイクルが繰り返される。
高誘電率絶縁膜形成工程においてALDサイクルが所定回数繰り返されることで、所定膜厚の酸化ハフニウム膜が形成される。この後、処理室41内の残留ガスが排除されると、ALD装置40のゲートバルブ44が開かれ、成膜済みのウエハ2は負圧移載装置13によって第一処理ユニット31から負圧に維持された負圧移載室11に搬出(ウエハアンローディング)される。
クラスタ装置10での高誘電率絶縁膜形成工程としての酸化ハフニウム膜形成工程後の図1に示されたウエハアンローディングステップにおいては、搬出室15の負圧移載室11側がゲートバルブ18Bによって開かれる。負圧移載装置13はウエハ2を負圧移載室11から搬出室15へ真空下で搬送し、搬出室15の搬出室用仮置き台上に移載する。
この際には、事前に、搬出室15の正圧移載室16側がゲートバルブ18Aによって閉じられ、搬出室15が排気装置(図示せず)により負圧に排気される。搬出室15が予め設定された圧力値に減圧されると、搬出室15の負圧移載室11側がゲートバルブ18Bによって開かれ、ウエハアンローディングステップが実施される。
ウエハアンローディングステップ後に、ゲートバルブ18Bは閉じられる。
搬入室14から第一処理ユニット31へ、第一処理ユニット31から第二処理ユニット32へ、第二処理ユニット32から第一処理ユニット31へ、第一処理ユニット31から搬出室15へ、ウエハをそれぞれ搬送する場合において、搬送作業はいずれも搬送経路が真空下に維持された状態で実施される。このために、この間、ウエハ2は大気に晒されることはなく、ウエハ2に形成された膜の表面に自然酸化膜が生成されたり、有機物等の不純物や異物等が付着したりするのは防止される。
以上の作動が繰り返されることにより、搬入室14に一括して搬入された25枚のウエハ2に対して、第一処理ユニット31による酸化ハフニウム膜形成工程と、第二処理ユニット32による熱処理工程との繰り返しによる界面層としてのハフニウムシリケート膜形成工程、第一処理ユニット31による高誘電率絶縁膜としての酸化ハフニウム膜形成工程が順次に実施されて行く。
図1に示されたウエハ排出ステップにおいては、負圧に維持された搬出室15内に窒素ガスが供給され、搬出室15内が大気圧となった後に、搬出室15の正圧移載室16側が、ゲートバルブ18Aによって開かれる。
次いで、載置台25に載置された空のポッド1のキャップが、ポッドオープナ24のキャップ着脱機構26によって開かれる。
続いて、正圧移載室16の正圧移載装置19は搬出室15からウエハ2をピックアップして正圧移載室16に搬出し、正圧移載室16のウエハ搬入搬出口23を通してポッド1に収納(チャージング)して行く。
処理済みの25枚のウエハ2のポッド1への収納が完了すると、ポッド1のキャップがポッドオープナ24のキャップ着脱機構26によってウエハ出し入れ口に装着され、ポッド1が閉じられる。
本実施の形態においては、クラスタ装置10における一連の工程が終了したウエハ2は、ポッド1に気密に収納された状態で、ゲート電極膜形成ステップを実施する成膜装置に、図1に示されたポッドの工程内搬送ステップにより搬送されて行く。
ゲート電極膜形成ステップを実施する成膜装置としては、例えば、バッチ式縦形ホットウオール形CVD装置、枚葉式ALD装置、枚葉式CVD装置等がある。
そして、図1に示されたパターニングステップ等を経て、ウエハ2にゲート構造の電極が形成されて行く。
本実施形態によれば、シリコン基板上に形成した金属酸化膜とシリコン基板とを熱処理によって固相反応させてシリケート膜を形成することにより、界面層として良好なシリケート膜を形成することができ、かつ、極薄でフラットな膜を形成することができる。
また、金属酸化膜とシリコン基板とを固相反応させるため、ダングリングボンドを少なくできる。かつ、シリケート膜なのでSiO2 膜と比べて、その誘電率を高くすることができるため、EOTスケーリングと良好な界面特性を両立することができる。
特に、ALD法にて金属酸化膜を成膜する場合には、1−3サイクル以内の成膜毎に熱処理を施すことにより、良好なシリケート膜を形成することができる。すなわち、1原子層程度以下の成膜毎に熱処理を施すことにより、良好なシリケート膜を形成することができる。
ここで、1原子層程度以下(1〜3サイクルALD)の成膜毎に熱処理による固相反応を生じさせるメリットを説明する。
金属酸化膜としてのHfO2 膜には膜中のO(酸素原子)が脱離し易いという性質がある。膜厚が厚いほど膜中から多くのOが脱離し、膜厚が薄いほど膜中から脱離するOの量が少なくなる。
よって、比較的厚い膜厚、例えば数十原子層の成膜毎に熱処理による固相反応を生じさせるようにした場合には、シリケート化の反応が生じる前に、HfO2 膜から脱離したOがシリコン基板としてのシリコンウエハを酸化するために、低誘電率な膜(SiOx膜および/またはSiリッチなHfSiOx膜)が形成されてしまう。
これに対して、1原子層程度以下(1〜3サイクルALD)の成膜毎に熱処理による固相反応を生じさせる場合には、HfO2 膜から脱離するOの量が比較的少ないことにより、低誘電率な膜が形成されることなくシリケート化の反応が生じるために、適正なHfSiOx膜を形成することができる。
また、金属酸化膜が厚いと、金属酸化膜とシリコン基板とを熱処理してもシリケート化し難い。充分にシリケート化させるには、金属酸化膜をある程度薄く形成する必要があり、少なくとも1原子層程度以下が好ましく、1原子層未満がより好ましい。
ALD法によれば、2−3サイクルで1原子層程度成膜される。
したがって、ALD法により成膜する場合、1−3サイクル以内の成膜毎に熱処理を行うことにより、1原子層程度の良好なシリケート膜を形成することができる。特に、1サイクルの成膜毎に熱処理を行うことで、効率よく金属酸化膜とシリコン基板とを反応させることができ、良好なシリケート膜を形成することができる。このため、ALD法により成膜する場合、1サイクルの成膜毎に熱処理を行うのが望ましい。
以下に、前述した実施形態の方法により、シリコン基板としてのシリコンウエハ表面に界面層として極薄ハフニウムシリケート膜を形成し、その上に高誘電率ゲート絶縁膜として酸化ハフニウム膜を形成してMOSFETを形成する場合の実施例を、図11および図12を参照して具体的に説明する。
まず、シリコンウエハをHFクリーニングにより洗浄する(HF−cleaning) 。
HFクリーニング終了後、界面層としての極薄ハフニウムシリケート膜をシリコンウエハ表面に形成する(HfSiOx−IL formation) 。
すなわち、洗浄後のシリコンウエハ上に金属酸化膜としての酸化ハフニウム膜をALD装置によって1サイクルのみ成膜する(ALD−HfO2 )。
処理条件としては、成膜温度:150〜350℃、成膜圧力:30Pa、1サイクル当たりの膜厚:1Å、が例示される。
次いで、RTP装置によって窒素ガス雰囲気にてRTA(Rapid Thermal Annealing)による熱処理を実施し、酸化ハフニウム膜とシリコンウエハとを固相反応させ、ハフニウムシリケート膜を形成する(RTA)。
ところで、ALD法による成膜の成膜温度、例えば、150〜350℃のような低温では、酸化ハフニウム膜とシリコンウエハとの間の固相反応は生じない。逆に、900℃のような高温では、固相反応は生じるが、シリサイド化してしまう(HfSiOxのOが脱離してHfSiとなる)ために、絶縁膜として機能しなくなる。つまり、酸化ハフニウム膜とシリコンウエハとの間に固相反応を生じさせながら、ハフニウムシリケート膜を形成するには、熱処理温度をALD法による成膜の成膜温度より高く、シリサイド化する温度よりも低くする必要がある。
このことから、熱処理温度は600〜850℃、例えば650〜850℃が望ましい。本実施形態では熱処理温度を750℃とした。
1サイクルALDによる酸化ハフニウム成膜工程および熱処理工程を5回繰り返し、シリコンウエハ表面に極薄ハフニウムシリケート膜を界面層として形成する(HfSiOx−IL formation) 。
ここで、図14を参照して、極薄ハフニウムシリケート(HfSiOx)膜を形成する際に、シリコンウエハ上に形成された酸化ハフニウム(HfO2 )膜とシリコンウエハとの間で固相反応が生じるメカニズムについて説明する。
図14(a)のHFクリーニング(HF treatment)工程終了後に、
図14(b)の酸化ハフニウム膜形成工程(1回目)において、シリコンウエハ上に1サイクルALDによりHfO2 膜が形成される。
図14(c)の熱処理工程(1回目)において、HfO2 膜中のHf原子がシリコンウエハ内に拡散する。その際に、シリコンウエハ中のSi(シリコン原子)が放出され、Hf−O−Si結合が形成される。また、一部のOはシリコンウエハを酸化し、同時にシリコンウエハ中のSiを放出させる。
このようにして、シリコンウエハの表面にはHfSiOx膜が形成される。この段階では、1原子層未満のHfSiOx膜が形成されることとなる。
図14(d)の酸化ハフニウム膜形成工程(2回目)において、シリコンウエハの表面に形成された1原子層未満のHfSiOx膜上に、1サイクルALDによりHfO2 膜が形成される。
図14(e)の熱処理工程(2回目)において、HfO2 膜中のHf原子がシリコンウエハ内に拡散する。その際、シリコンウエハ中のSiが放出され、Hf−O−Si結合が形成される。また、一部のOはシリコンウエハを酸化し、同時にシリコンウエハ中のSiを放出させる。この段階で、シリコンウエハの表面に1原子層程度のHfSiOx膜が形成されることとなる。
3回目以降は、HfSiOx膜とシリコンウエハとの反応、および、HfO2 膜とHfSiOx膜との反応になるので、シリコンウエハ中からHfSiOx膜中へのSiの拡散は抑制され、また、HfSiOx膜中からHfO膜中へのSiの拡散も同様に抑制される。このため、この固相反応は数回で終わり、ある回数を超えると生じなくなる。
本実施例では、固相反応を5回繰り返している。
以上のようにして、HfO2 膜とシリコンウエハとの間で固相反応が生じ、HfSiOx膜が形成されることとなる。
なお、1サイクルALDによる酸化ハフニウム成膜工程および熱処理工程を5回繰り返すと、極薄ハフニウムシリケート膜が形成されたが、これを6回繰り返しても、極薄ハフニウムシリケート膜上に酸化ハフニウム膜が形成されるだけであった。
これは、次の理由による。
すなわち、HfO2 膜とシリコンウエハとの熱処理によるシリケート化は、1回目および/または2回目は、主にシリコンウエハとHfO2 膜との純粋な固相反応により生じるが、3回目以降は、それ以前に形成されたHfSiOx膜と、シリコンウエハ、HfO2 膜と、の固相反応により生じることとなる。そもそも、HfO2 膜はHfSiOx膜とは反応し難く、シリコンウエハもHfSiOx膜とは反応しにくく、それゆえ、3回目以降はそれ以前よりも固相反応が生じ難くなる(SiがHfO2 膜に吸い上がり難くなる)。そのため、繰り返し回数が増えるにつれ、HfSiOx膜の最表面のSi濃度が低下し、その最表面はHfリッチなHfSiOx膜となる。本実施例では、5回繰り返したところで、HfSiOx膜とHfO2 膜との間における各元素の濃度勾配が殆どない状態(極僅かな状態)となり、固相反応、すなわちシリケート化が生じなくなるものと、考えられる。
したがって、1サイクルALDによる酸化ハフニウム成膜工程および熱処理工程を繰り返す回数は、5回以下がよい。膜厚で言うと、0.4nm以下がよい。
なお、シリコンウエハは単結晶である。単結晶とはSi原子が互いに規則正しく結合し合って配列されている結晶であり、結晶方位が規則正しく一定方向に揃っている。それゆえ、シリコンウエハには、欠陥が少なく、不純物の混入量も少なく、トラップも少ない。このシリコンウエハとHfO2 膜とを熱処理により直接固相反応させると、シリコンウエハの当該特性により、欠陥や不純物やトラップが少なく、膜中のHf、Si濃度分布のバラツキも少ない良好な膜質のHfSiOx膜を形成することができる。
前述したように、シリコンウエハとHfO2 膜との熱処理による固相反応は、5回繰り返したところで(膜厚が0.4nmとなったところで)生じなくなることから、HfSiOx膜の膜厚を薄く制御することができるというメリットもある。
これに対して、SiON(酸窒化シリコン)膜やSi3 4 (窒化シリコン)膜やSiO2 膜はアモルファス(非晶質)である。アモルファスとは、Si原子の配列が不規則でバラバラの状態であり、欠陥や不純物やトラップが比較的多い。このようなSiON膜やSi3 4 膜と、HfO2 膜と、を反応させる場合には、SiON膜やSi3 4 膜の前述した特性により、欠陥や不純物やトラップが多く、更には、膜中のHf、Si濃度分布のバラツキも多い膜質の膜が形成されることとなる。
また、シリコンウエハ上にSi3 4 膜を形成し、その上に水素を含むHfO2 膜を形成した後(このときSi3 4 膜は酸化剤によりSiONとなる)、熱処理を行うことにより、シリコンウエハ側からSiをHfO2 膜中に拡散させてSi含有HfO2 膜を形成する方法が、ある。
しかし、この方法の場合には、熱処理によりSiON膜および/またはHfO2 膜から水素(H)が脱離して空孔(void)が形成され、この空孔を介してシリコンウエハまたはSiON膜に含まれるSiがHfO2 膜中に拡散し、HfO2 膜に含まれるHfがSiON膜中に拡散する。よって、それぞれの膜からSiやHfが抜けた箇所に、SiやHfが抜けた分だけ(すなわち水素が抜けた分だけ)空孔すなわちトラップが形成される。また、水素はそれぞれの膜中にランダムに存在することから、それぞれの膜中のSi濃度やHf濃度にバラツキが生じるものと、考えられる。
これに対して、本実施例の場合には、水素の脱離により形成された空孔を介してSiおよび/またはHfを拡散させるのではなく、HfO2 膜とシリコンウエハとの固相反応、すなわち、HfO2 膜とシリコンウエハのお互いの原子同士が拡散して置き換わる反応を利用しているので、前述の方法に比べ、トラップが少なく、膜中のSi濃度やHf濃度のバラツキも少ないというメリットがある。
極薄ハフニウムシリケート膜形成後、極薄ハフニウムシリケート膜上に高誘電率絶縁膜として酸化ハフニウム膜を形成する(High-k films formation)。
すなわち、シリコンウエハ表面に形成された極薄ハフニウムシリケート膜上に、ALD装置によって高誘電率絶縁膜としての酸化ハフニウム膜を形成する。
処理条件としては、成膜温度:150〜350℃、成膜圧力:30Pa、サイクル数:20〜40サイクル、膜厚:2〜4nm、が例示される。
高誘電率絶縁膜としての酸化ハフニウム膜を形成後、酸化ハフニウム膜上にゲート電極としてニッケルシリサイド(NiSi)を形成してパターンニングを行ない(Si&Ni deposition、patterning)、その後、配線工程等を経て、MOSFETを形成した。
そして、そのようにして形成したMOSFETの、MOSFET特性を測定した。
図5は界面層として本実施例によるHfSiOx層を形成した直後にXPS分析によって観察したスペクトルを示している。
図6は本実施例の極薄ハフニウムシリケート膜を界面層に用いた場合の高誘電率ゲートスタック構造における断面TEM写真を示している。
図7、図8、図9および図10はMOSFET特性をそれぞれ示している。
なお、MOSFET特性は、比較例として本実施例によるHfSiOx層を持たない構造も作成し、その結果を記載した。
図5のXPSスペクトルから、次のことを、確認することができる。本実施例によれば、酸化ハフニウム膜とシリコンウエハとの間で固相反応が起こり、ハフニウムシリケート膜が形成されている。
図6の断面TEM写真からは、約0.4nm程度の極薄でフラットなハフニウムシリケート膜が形成されているのを、確認することができる。
図7は界面層として本実施例によるHfSiOx層を用いたHigh−kゲートスタックMOSキャパシタのCV特性を示すグラフである。
図7のグラフからは、本実施例による極薄ハフニウムシリケート膜を用いた高誘電率ゲートスタック構造によれば、大きな容量(キャパシタンス)が得られ、約0.6nmのEOTが得られること、が判る。
図8は酸化ハフニウム物理膜厚に対するEOTの関係を示すグラフである。
界面層のEOTを示す切片から、次のことを、確認することができる。
ハフニウムシリケート膜を用いた高誘電率ゲートスタック構造では、界面層分のEOTは0.24nmとなり、断面TEM写真の観察結果から得られた物理膜厚(約0.4nm)を用いて誘電率を算出すると、本実施例によって形成した極薄ハフニウムシリケート膜は約7の誘電率を有すると見積もられ、約30%のハフニウムを有するハフニウムシリケート膜が形成されている。
また、極薄ハフニウムシリケート膜を持たない高誘電率ゲートスタック構造では、EOTが0.38nm分の界面層を有し、誘電率の低いSiOx層が形成されていることが予想される。
図9は界面層として本実施例によるHfSiOx層を用いたHigh−kゲートスタックMOSキャパシタのEOT−Jg特性を示すグラフである。
本実施例による極薄ハフニウムシリケート膜を用いた高誘電率ゲートスタック構造では、酸化シリコン(SiO2 )膜をゲート絶縁膜に適用したゲートスタックと比較して約6桁近いJgメリットがある。
また、本実施例による極薄ハフニウムシリケート膜を持たない高誘電率ゲートスタック構造と比較しても約3桁のJgメリットが得られる。
図10は界面層として本実施例によるHfSiOx層を用いたHigh−kゲートスタックMOSFETの実効電子移動度の電界依存性を示すグラフである。
本実施例による極薄ハフニウムシリケート膜を持たない高誘電率ゲートスタック構造と比較して高い実効電子移動度が得られている。
以上の通り、本実施例による極薄ハフニウムシリケート膜を界面層として用いて高誘電率ゲートスタック構造を形成した場合、非常に薄いEOTが得られ、そのリーク電流メリットも非常に大きく、良好なMOSFET特性が得られる。
なお、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において、種々に変更が可能であることはいうまでもない。
例えば、前記実施形態ではALD装置とRTP装置とをインテグレートしたクラスタ装置を用いて酸化ハフニウム膜形成工程と熱処理工程とを行う例について説明したが、本発明はこれに限らず、酸化ハフニウム膜形成工程と熱処理工程とを同一処理室内にて行う場合にも適用することができる。
また、枚葉式成膜装置および熱処理装置を使用するに限らず、バッチ式成膜装置および熱処理装置を使用することもできる。
例えば、前記実施の形態においては、ゲート絶縁膜について説明したが、絶縁膜はゲート絶縁膜に限らず、キャパシタ絶縁膜であってもよい。
また、前記実施形態では界面層形成のために形成する金属酸化膜と、界面層の上に形成する高誘電率絶縁膜とを同じ膜としたが、異なる膜としてもよい。
また、界面層形成のための金属酸化膜および/または高誘電率絶縁膜としては、酸化ハフニウムを使用するに限らない。
金属酸化膜および/または高誘電率絶縁膜の形成材料としては、Hf、Ta、Al、Zr、LaおよびYからなる群から選択される単数もしくは複数の元素を含む酸化物、あるいは、それらの酸化物を上下に配置したスタック構造を有する酸化物等がある。
例えば、HfSiOx、Ta2 5 、Al2 3 、ZrO2 、HfAlOx、HfAlON、HfON、La23 、Y2 3 、HfO2 /Al2 3 、HfO2 /ZrO2 、HfO2 /Al23 /HfO2 等がある。
また、キャパシタ絶縁膜の形成材料としては、BST(Ba−Sr−TiO3 )、STO(Sr−TiO3 )、がある。
被処理基板はウエハに限らず、LCD装置の製造工程におけるガラス基板や液晶パネル等の基板であってもよい。
本発明の好ましい態様を付記する。
本発明の一態様によれば、シリコン基板上に金属酸化膜を形成し、この金属酸化膜と前記シリコン基板とを熱処理により固相反応させることでシリケート膜を形成する工程と、このシリケート膜上に高誘電率絶縁膜を形成する工程と、を有する半導体装置の製造方法、が提供される。
好ましくは、前記シリケート膜は、前記金属酸化膜の形成と、前記熱処理による前記固相反応と、を繰り返すことで形成する。
好ましくは、前記シリケート膜は、1原子層以内の前記金属酸化膜の形成と、前記熱処理による前記固相反応と、を繰り返すことで形成する。
好ましくは、前記シリケート膜は、1〜3サイクルのALD法による前記金属酸化膜の形成と、前記熱処理による前記固相反応と、を繰り返すことで形成する。
好ましくは、前記熱処理は、前記金属酸化膜を形成する際の温度よりも高い温度であって、前記シリケート膜がシリサイド化する温度よりも低い温度で行われる。
好ましくは、前記金属酸化膜は、前記高誘電率絶縁膜と同じ膜である。
好ましくは、前記金属酸化膜および前記高誘電率絶縁膜は、酸化ハフニウム膜であり、前記シリケート膜はハフニウムシリケート膜である。
本発明の他の態様によれば、シリコン基板上に高誘電率絶縁膜を形成し、この高誘電率絶縁膜と前記シリコン基板とを熱処理により固相反応させ、これを繰り返すことでシリケート膜を形成する工程と、このシリケート膜上に高誘電率絶縁膜を形成する工程と、を有する半導体装置の製造方法、が提供される。
本発明の更に他の態様によれば、シリコン基板上に酸化ハフニウム膜を形成し、この酸化ハフニウム膜と前記シリコン基板とを熱処理により固相反応させ、これを繰り返すことでハフニウムシリケート膜を形成する工程と、このハフニウムシリケート膜上に酸化ハフニウム膜を形成する工程と、を有する半導体装置の製造方法、が提供される。
本発明の更に他の態様によれば、シリコン基板上に高誘電率絶縁膜を形成する第一処理室と、前記シリコン基板を熱処理する第二処理室と、前記第一処理室と前記第二処理室との間に設けられ、前記第一処理室と前記第二処理室との間で前記シリコン基板が搬送される搬送室と、前記搬送室内に設けられ前記シリコン基板を搬送する搬送ロボットと、前記シリコン基板を前記搬送ロボットにより前記第一処理室内に搬送し、前記第一処理室内で前記シリコン基板上に前記高誘電率絶縁膜を形成し、前記高誘電率絶縁膜が形成された前記シリコン基板を前記搬送ロボットにより前記第一処理室内から前記第二処理室内に搬送し、前記第二処理室内で前記高誘電率絶縁膜が形成された前記シリコン基板を熱処理することで前記高誘電率絶縁膜と前記シリコン基板とを固相反応させてシリケート膜を形成し、これを繰り返し実施することで前記シリコン基板表面に所定膜厚のシリケート膜を形成し、その後、前記所定膜厚のシリケート膜形成後の前記シリコン基板を前記第二処理室内から前記第一処理室内に搬送し、前記第一処理室内で前記所定膜厚のシリケート膜上に高誘電率絶縁膜を形成するように制御するコントローラと、を有する基板処理装置、が提供される。
本発明の一実施の形態であるMOSFETのゲート絶縁膜を形成する工程を示すフローチャートである。 本発明の一実施の形態であるクラスタ装置を示す平面断面図である。 本発明の一実施の形態であるクラスタ装置におけるALD装置を示す正面断面図である。 本発明の一実施の形態であるクラスタ装置におけるRTP装置を示す正面断面図である。 実施例におけるHfSiOx層を形成した直後にXPS分析によって観察したスペクトルを示すグラフである。 実施例の極薄ハフニウムシリケート膜を界面層に用いた場合の高誘電率ゲートスタック構造を示す断面TEM写真である。 実施例および比較例におけるMOSFETのキャパシタのCV特性を示すグラフである。 実施例および比較例における酸化ハフニウム物理膜厚に対するEOTの関係を示すグラフである。 実施例および比較例におけるEOT−Jg特性を示すグラフである。 実施例および比較例における実効電子移動度の電界依存性を示すグラフである。 実施例におけるMOSFETを形成する工程を示すフローチャートである。 実施例におけるMOSFETのゲート絶縁膜を形成するまでの工程を示すフローチャートおよびその断面図である。 ALD法による成膜の過程を示す断面図である。 固相反応が生じる過程およびメカニズムを説明するフローチャートおよびその断面図である。
符号の説明
1…ポッド、2…ウエハ(被処理基板)、
10…クラスタ装置(基板処理装置)、11…負圧移載室(基板移載室)、13…負圧移載装置(ウエハ移載装置)、14…搬入室(搬入用予備室)、15…搬出室(搬出用予備室)、16…正圧移載室(ウエハ移載室)、19…正圧移載装置(ウエハ移載装置)、24…ポッドオープナ、25…載置台、31…第一処理ユニット、32…第二処理ユニット、33…第三処理ユニット、34…第四処理ユニット、37…コントローラ。
40…ALD装置。
110…RTP装置。

Claims (18)

  1. 単結晶のシリコン基板上に金属酸化膜を形成する第1工程と、
    前記金属酸化膜と前記シリコン基板表面の単結晶シリコンとを熱処理により固相反応させる第2工程と、
    を繰り返すことでシリケート膜を形成する工程と、
    前記シリケート膜形成後に、前記シリケート膜上に高誘電率絶縁膜を形成する工程と、 を有することを特徴とする半導体装置の製造方法。
  2. 単結晶のシリコン基板上に1原子層以内の金属酸化膜を形成する第1工程と、
    前記金属酸化膜と前記シリコン基板表面の単結晶シリコンとを熱処理により固相反応させる第2工程と、
    を繰り返すことでシリケート膜を形成する工程と、
    前記シリケート膜形成後に、前記シリケート膜上に高誘電率絶縁膜を形成する工程と、 を有することを特徴とする半導体装置の製造方法。
  3. 単結晶のシリコン基板上に1〜3サイクルのALD法により金属酸化膜を形成する第1工程と、
    前記金属酸化膜と前記シリコン基板表面の単結晶シリコンとを熱処理により固相反応させる第2工程と、
    を繰り返すことでシリケート膜を形成する工程と、
    前記シリケート膜形成後に、前記シリケート膜上に高誘電率絶縁膜を形成する工程と、 を有することを特徴とする半導体装置の製造方法。
  4. 請求項1乃至3のいずれか1項において、前記第2工程における前記熱処理は、前記第1工程における前記金属酸化膜を形成する際の温度よりも高い温度であって、前記シリケート膜がシリサイド化する温度よりも低い温度で行われることを特徴とする半導体装置の製造方法。
  5. 請求項1乃至4のいずれか1項において、前記金属酸化膜と前記高誘電率絶縁膜とは、何れも同じ材料で構成されることを特徴とする半導体装置の製造方法。
  6. 請求項1乃至4のいずれか1項において、前記金属酸化膜および前記高誘電率絶縁膜は、酸化ハフニウム膜であり、前記シリケート膜はハフニウムシリケート膜であることを特徴とする半導体装置の製造方法。
  7. 単結晶のシリコン基板上に高誘電率絶縁膜を形成する第1工程と、
    前記高誘電率絶縁膜と前記シリコン基板表面の単結晶シリコンとを熱処理により固相反応させる第2工程と、
    を繰り返すことでシリケート膜を形成する工程と、
    前記シリケート膜形成後に、前記シリケート膜上に高誘電率絶縁膜を形成する工程と、 を有することを特徴とする半導体装置の製造方法。
  8. 単結晶のシリコン基板上に酸化ハフニウム膜を形成する第1工程と、
    前記酸化ハフニウム膜と前記シリコン基板表面の単結晶シリコンとを熱処理により固相反応させる第2工程と、
    繰り返すことでハフニウムシリケート膜を形成する工程と、
    前記ハフニウムシリケート膜形成後に、前記ハフニウムシリケート膜上に酸化ハフニウム膜を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  9. 請求項1または2において、前記第1工程では、前記金属酸化膜を、
    (a)前記シリコン基板表面に原料を吸着させる工程と、
    (b)前記シリコン基板表面に吸着させた前記原料と酸化剤とを反応させる工程と、
    を1サイクルとしてこのサイクルを1〜数サイクル行うことにより形成する、
    ことを特徴とする半導体装置の製造方法。
  10. 請求項1または2において、前記第1工程は処理室内で行われ、前記金属酸化膜を、
    (a)前記処理室内に原料を供給する工程と、
    (b)前記処理室内をパージして前記処理室内から前記原料を排気する工程と、
    (c)前記処理室内に酸化剤を供給する工程と、
    (d)前記処理室内をパージして前記処理室内から前記酸化剤を排気する工程と、
    を1サイクルとしてこのサイクルを1〜数サイクル行うことにより形成する
    ことを特徴とする半導体装置の製造方法。
  11. 請求項1または2において、前記第1工程では、前記金属酸化膜を、
    (a)前記シリコン基板表面に原料を吸着させる工程と、
    (b)前記シリコン基板表面に吸着させた前記原料と酸化剤とを反応させる工程と、
    を1サイクルとしてこのサイクルを1〜3サイクル行うことにより形成する、
    ことを特徴とする半導体装置の製造方法。
  12. 請求項1または2において、前記第1工程は処理室内で行われ、前記金属酸化膜を、
    (a)前記処理室内に原料を供給する工程と、
    (b)前記処理室内をパージして前記処理室内から前記原料を排気する工程と、
    (c)前記処理室内に酸化剤を供給する工程と、
    (d)前記処理室内をパージして前記処理室内から前記酸化剤を排気する工程と、
    を1サイクルとしてこのサイクルを1〜3サイクル行うことにより形成する、
    ことを特徴とする半導体装置の製造方法。
  13. 請求項1または2において、前記第1工程では、前記金属酸化膜を、
    (a)前記シリコン基板表面に原料を吸着させる工程と、
    (b)前記シリコン基板表面に吸着させた前記原料と酸化剤とを反応させる工程と、
    を1サイクルとしてこのサイクルを1サイクル行うことにより形成する、
    ことを特徴とする半導体装置の製造方法。
  14. 請求項1または2において、前記第1工程は処理室内で行われ、前記金属酸化膜を、
    (a)前記処理室内に原料を供給する工程と、
    (b)前記処理室内をパージして前記処理室内から前記原料を排気する工程と、
    (c)前記処理室内に酸化剤を供給する工程と、
    (d)前記処理室内をパージして前記処理室内から前記酸化剤を排気する工程と、
    を1サイクルとしてこのサイクルを1サイクル行うことにより形成する、
    ことを特徴とする半導体装置の製造方法。
  15. 請求項1乃至3のいずれか1項において、前記シリケート膜を形成する工程における、前記第1工程と前記第2工程とを繰り返す回数が5回以下である、
    ことを特徴とする半導体装置の製造方法。
  16. 請求項1乃至3のいずれか1項において、前記シリケート膜の膜厚が0.4nm以下である
    ことを特徴とする半導体装置の製造方法。
  17. 単結晶のシリコン基板上に金属酸化膜を形成する第1工程と、
    前記金属酸化膜と前記シリコン基板表面の単結晶シリコンとを熱処理により固相反応させる第2工程と、
    を繰り返すことでシリケート膜を形成する工程と、
    前記シリケート膜形成後に、前記シリケート膜上に高誘電率絶縁膜を形成する工程と、 を有することを特徴とする基板処理方法。
  18. 単結晶のシリコン基板上に高誘電率絶縁膜を形成する第1処理室と、
    前記シリコン基板を熱処理する第2処理室と、
    前記第1処理室と前記第2処理室との間に設けられ、前記第1処理室と前記第2処理室との間で前記シリコン基板を搬送する搬送室と、
    前記搬送室内に設けられ前記シリコン基板を搬送する搬送ロボットと、
    前記シリコン基板を前記搬送ロボットにより前記第1処理室内に搬送し、前記第1処理室内で前記シリコン基板上に前記高誘電率絶縁膜を形成する第1処理と、前記高誘電率絶縁膜が形成された前記シリコン基板を前記搬送ロボットにより前記第1処理室内から前記第2処理室内に搬送し、前記第2処理室内で前記高誘電率絶縁膜が形成された前記シリコン基板を熱処理することで前記高誘電率絶縁膜と前記シリコン基板表面の単結晶シリコンとを固相反応させる第2処理と、を繰り返し実施することで前記シリコン基板表面に所定膜厚のシリケート膜を形成し、その後、前記所定膜厚のシリケート膜形成後の前記シリコン基板を前記第2処理室内から前記第1処理室内に搬送し、前記第1処理室内で前記所定膜厚のシリケート膜上に高誘電率絶縁膜を形成するように制御するよう構成されるコントローラと、
    を有することを特徴とする基板処理装置。
JP2008137831A 2007-06-15 2008-05-27 半導体装置の製造方法、基板処理方法および基板処理装置 Active JP5286565B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008137831A JP5286565B2 (ja) 2007-06-15 2008-05-27 半導体装置の製造方法、基板処理方法および基板処理装置
US12/155,773 US8367560B2 (en) 2007-06-15 2008-06-10 Semiconductor device manufacturing method
KR1020080055573A KR101178856B1 (ko) 2007-06-15 2008-06-13 반도체 장치의 제조 방법 및 기판 처리 장치
TW97122291A TWI469216B (zh) 2007-06-15 2008-06-13 半導體裝置之製造方法及基板處理裝置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007159176 2007-06-15
JP2007159176 2007-06-15
JP2008137831A JP5286565B2 (ja) 2007-06-15 2008-05-27 半導体装置の製造方法、基板処理方法および基板処理装置

Publications (2)

Publication Number Publication Date
JP2009021560A JP2009021560A (ja) 2009-01-29
JP5286565B2 true JP5286565B2 (ja) 2013-09-11

Family

ID=40360897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137831A Active JP5286565B2 (ja) 2007-06-15 2008-05-27 半導体装置の製造方法、基板処理方法および基板処理装置

Country Status (3)

Country Link
JP (1) JP5286565B2 (ja)
KR (1) KR101178856B1 (ja)
TW (1) TWI469216B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247619B2 (ja) * 2009-07-28 2013-07-24 キヤノンアネルバ株式会社 誘電体膜、誘電体膜を用いた半導体装置の製造方法及び半導体製造装置
WO2012165263A1 (ja) * 2011-06-03 2012-12-06 東京エレクトロン株式会社 ゲート絶縁膜の形成方法およびゲート絶縁膜の形成装置
JP6544555B2 (ja) 2015-01-15 2019-07-17 国立研究開発法人物質・材料研究機構 抵抗変化型素子の製造方法
US9595593B2 (en) 2015-06-29 2017-03-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with interfacial layer and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062116B2 (ja) * 1996-07-12 2000-07-10 東京エレクトロン株式会社 成膜・改質集合装置
US6753556B2 (en) 1999-10-06 2004-06-22 International Business Machines Corporation Silicate gate dielectric
TW468212B (en) * 1999-10-25 2001-12-11 Motorola Inc Method for fabricating a semiconductor structure including a metal oxide interface with silicon
JP2003332566A (ja) * 2002-05-14 2003-11-21 Fujitsu Ltd 半導体装置およびその製造方法
US6632729B1 (en) * 2002-06-07 2003-10-14 Advanced Micro Devices, Inc. Laser thermal annealing of high-k gate oxide layers
JP2004158481A (ja) 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP4507232B2 (ja) * 2003-03-24 2010-07-21 ローム株式会社 半導体装置の製造方法
WO2006009025A1 (ja) * 2004-07-20 2006-01-26 Nec Corporation 半導体装置及び半導体装置の製造方法
JP5039396B2 (ja) * 2007-02-19 2012-10-03 ローム株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
TW200913062A (en) 2009-03-16
JP2009021560A (ja) 2009-01-29
KR20080110524A (ko) 2008-12-18
TWI469216B (zh) 2015-01-11
KR101178856B1 (ko) 2012-08-31

Similar Documents

Publication Publication Date Title
JP5410174B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理システム
KR101177366B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
US8367560B2 (en) Semiconductor device manufacturing method
JPWO2006137287A1 (ja) 半導体装置の製造方法および基板処理装置
JP5721952B2 (ja) 半導体装置、半導体装置の製造方法および基板処理装置
TWI558839B (zh) A substrate processing apparatus, a manufacturing method and a program for a semiconductor device
JP3023982B2 (ja) 成膜方法
JP4809175B2 (ja) 半導体装置の製造方法
JP4694209B2 (ja) 基板処理装置及び半導体装置の製造方法
KR20210134737A (ko) 성막 방법 및 성막 장치
JP5286565B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
WO2007132884A1 (ja) 半導体装置の製造方法および基板処理装置
JP2009049316A (ja) 半導体装置の製造方法および基板処理装置
JP2012104569A (ja) 半導体装置の製造方法及び基板処理装置
JPWO2006090645A1 (ja) 半導体装置の製造方法および基板処理装置
JP5457287B2 (ja) 基板処理装置、基板処理方法及び半導体デバイスの製造方法
JP5944549B2 (ja) 半導体装置の製造方法、基板処理装置および半導体装置
JP2011066187A (ja) 成膜方法及び処理システム
JP2011066345A (ja) 半導体装置の製造方法及び基板処理システム
JP2010212391A (ja) 半導体装置の製造方法及び基板処理装置
JP2011134909A (ja) 半導体装置の製造方法及び基板処理システム
JP2009044088A (ja) 半導体装置の製造方法
JP5204809B2 (ja) 基板処理装置、基板処理方法及び半導体デバイスの製造方法
JP2012064857A (ja) 半導体装置の製造方法及び基板処理装置
JP3181570B2 (ja) 金属酸化膜の形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Ref document number: 5286565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250