JP5249089B2 - 電動車両のモータ制御方法および電動車両用駆動装置 - Google Patents

電動車両のモータ制御方法および電動車両用駆動装置 Download PDF

Info

Publication number
JP5249089B2
JP5249089B2 JP2009049346A JP2009049346A JP5249089B2 JP 5249089 B2 JP5249089 B2 JP 5249089B2 JP 2009049346 A JP2009049346 A JP 2009049346A JP 2009049346 A JP2009049346 A JP 2009049346A JP 5249089 B2 JP5249089 B2 JP 5249089B2
Authority
JP
Japan
Prior art keywords
switching
shock
current value
target current
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009049346A
Other languages
English (en)
Other versions
JP2010206924A (ja
Inventor
博史 胡本
宣英 瀬尾
敬 米盛
龍一郎 天野
英則 原
進也 森本
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Yaskawa Electric Corp
Original Assignee
Mazda Motor Corp
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Yaskawa Electric Corp filed Critical Mazda Motor Corp
Priority to JP2009049346A priority Critical patent/JP5249089B2/ja
Publication of JP2010206924A publication Critical patent/JP2010206924A/ja
Application granted granted Critical
Publication of JP5249089B2 publication Critical patent/JP5249089B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両の駆動輪を回転駆動する電動モータの出力特性を、所定の切替回転速度を境に、低回転寄りの運転領域に対応する低速モードと、これよりも高回転寄りの運転領域まで対応可能な高速モードとの間で切り替える電動車両のモータ制御方法等に関する。
従来から、自動車の分野では、エミッション性や燃費性能等のさらなる向上を目的として、ガソリンエンジンやディーゼルエンジン等の内燃機関を用いた従来の自動車に代えて、電動モータを動力源としたいわゆる電気自動車や、内燃機関と併用して電動モータを用いるいわゆるハイブリッド自動車等が開発されてきたのは周知の通りである。
このように、動力源の少なくとも一部として電動モータを用いた車両(以下、このような車両のことを電動車両という)では、車両の様々な走行シーンに電動モータの出力特性を対応させるために、比較的幅広い範囲の回転速度をカバーできるように電動モータを制御することが望まれる。
例えば、下記特許文献1では、電動モータの回転速度が所定の閾値を越えること等の条件が成立すると、電動モータの巻線の結線状態を切り替えたり、界磁制御方式を切り替えたりすることにより、電動モータの出力特性をより高回転寄りの領域まで対応可能な特性に変化させることが行われている。
特開平6−225588号公報
ところで、上記のような結線の切り替え等に応じて、電動モータの出力特性が、低回転寄りの運転領域に対応した出力特性と、高回転寄りの運転領域に対応した出力特性との間で切り替わる際には、切替わりの前後で要求トルクが同じであるにもかかわらず実際の出力トルクがばらつくことにより、車両の駆動輪に伝達されるトルクが一時的に変動すると考えられる。このとき、車両のギヤトレインにおけるモータ側ギアと車両側ギアとのギア噛みが瞬間的に離れると、このギアが再度噛み合う際に車両に大きなショックが発生して乗員の快適性が損なわれるため、上記のようなトルクの変動を軽減して車両に発生するショックをできるだけ緩和することが望まれる。
本発明は、上記のような事情に鑑みてなされたものであり、車両の駆動輪を回転駆動する電動モータの出力特性が切り替わる際に発生するショックを低減して乗員の快適性を良好に維持することを目的とする。
上記課題を解決するためのものとして、本発明は、車両の駆動輪を回転駆動する電動モータの出力特性を、所定の切替回転速度を境に、低回転寄りの運転領域に対応する低速モードと、これよりも高回転寄りの運転領域まで対応可能な高速モードとの間で切り替える電動車両のモータ制御方法であって、前記出力特性の切り替え時に車両に発生するショックを切替ショックとして計測する計測ステップと、前記計測された切替ショックが所定値以上と判定されると、次回の出力特性の切り替え時に、前記電動モータの目標電流値を増大方向に変更する変更ステップとを含むことを特徴とするものである(請求項1)。
本発明によれば、電動モータの出力特性を切り替える際に切替ショックを計測し、その値が所定値以上であると、電動モータの目標電流値を増大方向に変更するようにしたため、切替ショックを小さいレベルに抑えることができ、出力特性の切り替え時に乗員に伝わるショックを低減して乗員の快適性を良好に維持できるという利点がある。
また、モータ個々に出力のばらつきがあった場合でも、切替ショックの実際の計測値に基づく学習により目標電流値を変更することで、個体毎に目標電流値を最適化して切替ショックを効果的に低減できるという利点がある。
本発明において、好ましくは、前記変更ステップによる目標電流値の変更前と変更後の切替ショックを比較する比較ステップを含み、この比較ステップでの比較の結果、前記目標電流値の増大方向への変更により前記切替ショックが前回よりも小さくなったことが確認された場合には、前記目標電流値の増大方向への変更を、前記切替ショックが所定値を下回るまで繰り返す(請求項2)。
このようにすれば、例えば乗員が違和感を覚えない程度のレベルに切替ショックが低減するまで上記制御パラメータを繰り返し変更することにより、乗員の快適性を確実に向上させることができるという利点がある。
前記比較ステップでの比較の結果、前記目標電流値の増大方向への変更により前記切替ショックが前回よりも大きくなったことが確認された場合には、それ以降における目標電流値の増大方向への変更を禁止することが好ましい(請求項3)。
このようにすれば、切替ショックが所定値未満にならない場合でも、可能な範囲で最小限の切替ショックに抑えることができ、それ以上の目標電流値の変更に伴う切替ショックの増大を抑制できるという利点がある。
この場合において、前記比較ステップでの比較の結果、前記目標電流値の増大方向への変更により前記切替ショックが前回よりも大きくなったことが確認された場合には、上記切替回転速度の値を変更することが好ましい(請求項4)。
このようにすれば、目標電流値の変更により十分な切替ショックの低減効果が得られない場合でも、切替ショックを確実に所定値未満に抑えて乗員の快適性を十分に確保できるという利点がある。
また、本発明は、車両の駆動輪を回転駆動する電動モータと、この電動モータの出力特性を、所定の切替回転速度を境に、低回転寄りの運転領域に対応する低速モードと、これよりも高回転寄りの運転領域まで対応可能な高速モードとの間で切り替える制御手段とを備えた電動車両用駆動装置であって、前記制御手段は、前記出力特性の切り替え時に車両に発生するショックを切替ショックとして計測する計測手段と、前記計測された切替ショックが所定値以上と判定されると、次回の出力特性の切り替え時に、前記電動モータの目標電流値を増大方向に変更する変更手段とを備えることを特徴とするものである(請求項5)。
本発明による場合でも、上述したモータ制御方法による場合と同様の作用効果を得ることができる。
以上説明したように、本発明によれば、車両の駆動輪を回転駆動する電動モータの出力特性が切り替わる際に発生するショックを低減して乗員の快適性を良好に維持することができる。
本発明の一実施形態にかかるモータ制御方法が適用される電動車両用駆動装置の全体構成を示す概略平面図である。 上記電動車両用駆動装置の制御系を示すブロック図である。 上記電動車両用駆動装置における電動モータやインバータ等の電気的な構成を示す回路図である。 上記電動モータの出力特性を説明するための図である。 低速モードから高速モードへの切り替え時における要求トルクと実際の出力トルクとの関係の一例を示す図である。 上記切り替え時に要求トルクを変更した場合の実際の出力トルクの変化を示す図である。 上記切り替え時の目標電流値の変化を示す図である。 上記電動モータの駆動中に行われる制御動作の内容を示すフローチャートである。 上記目標電流値の変更に伴い切替ショックが変化する様子を説明するためのグラフであり、(a)が切替ショック、(b)が目標電流値を示している。
図1は、本発明の一実施形態にかかるモータ制御方法が適用される電動車両用駆動装置の全体構成を示す概略平面図、図2は、電動車両用駆動装置の制御系を示すブロック図である。これらの図に示される電動車両用駆動装置は、ハイブリッド型自動車からなる電動車両1(以下、単に車両1という)を駆動するための駆動装置として構成されている。具体的に、この電動車両用駆動装置は、発電用の動力源として設けられたガソリンエンジンまたはディーゼルエンジン等からなるエンジン2と、必要時にエンジン2を始動するとともに、エンジン2から駆動力を得て発電を行うジェネレータ3と、このジェネレータ3で発電された電力を蓄える蓄電装置としてのバッテリ9と、走行用の動力源として設けられ、上記バッテリ9から電力の供給を受けて車両1を駆動する電動モータ5と、上記バッテリ9からの供給電力を交流に変換して上記ジェネレータ3および電動モータ5を駆動する第1インバータ11および第2インバータ12と、これら各部を統括的に制御するコントローラ15(本発明にかかる制御手段に相当)とを備えている。
上記電動モータ5は、ギヤトレイン6および差動装置7を介してドライブシャフト8と連動連結されており、これらギヤトレイン6、差動装置7、およびドライブシャフト8を含む動力伝達経路を経由することにより、上記電動モータ5の駆動力が、上記ドライブシャフト8に連結された左右一対の駆動輪16に伝達されるようになっている。なお、当実施形態の車両1では、その前後左右に備わる4つの車輪のうち2つが駆動輪16であり、残りの車輪は従動輪17である。
上記電動モータ5は、例えば3相の交流同期モータ等からなり、必要時にバッテリ9から第2インバータ12を介して電力の供給を受けることにより、上記ギヤトレイン6等を介してドライブシャフト8および駆動輪16を駆動する一方、減速時や下り坂走行時等には、上記ドライブシャフト8から駆動力を得て発電を行い、その発電電力を上記バッテリ9に蓄電するように構成されている。
上記ジェネレータ3は、エンジン2の始動時にバッテリ9から第1インバータ11を介して電力の供給を受けることにより、エンジン2のクランク軸を強制回転させてエンジン2を始動するスタータとしての機能、および、エンジン2のクランク軸から駆動力を得て発電するオルタネータとしての機能の両方を兼ね備えたものである。
上記コントローラ15は、周知のCPU、ROM、RAM、およびI/O(入出力インターフェース)等からなり、このうちROMには、車両1の運転に必要な各種制御プログラム等があらかじめ格納されている。なお、RAMには制御プログラムの実行に必要な種々のワークメモリが格納されている。
図2に示すように、上記コントローラ15には、車両1の各部に設けられた種々のセンサ類が電気的に接続されている。具体的に、コントローラ15には、車両1の走行速度(車速)を検出する車速センサ30と、ドライバーにより踏み込み操作される図外のアクセルペダルの開度TVOを検出するアクセル開度センサ31と、エンジン2のクランク軸の回転速度を検出するエンジン回転速度センサ32と、ジェネレータ3の軸回転速度を検出するジェネレータ回転速度センサ33と、バッテリ9からジェネレータ3に入力される入力電流またはジェネレータ3で発電されてバッテリ9に出力される出力電流を検出するジェネレータ電流センサ34と、電動モータ5の軸回転速度Nを検出するモータ回転速度センサ35と、電動モータ5の入出力電流を検出するモータ電流センサ36と、バッテリ9の残容量を検出するバッテリセンサ37と、車両1に作用する加減速度αを検出するGセンサ38とがそれぞれ接続されており、これら各センサ30〜38により検出された各種制御情報が上記コントローラ15に電気信号として入力されるようになっている。
そして、上記コントローラ15は、上記各センサ30〜38からの入力情報に基づいて種々の演算を実行し、その結果に基づいて上記エンジン2、ジェネレータ3、電動モータ5、およびインバータ11,12等の動作を統括的に制御する。そして、このようにコントローラ15によって各部が制御されることにより、当実施形態の車両1では、ドライバーのアクセル操作等に基づき電動モータ5が駆動制御されて車両1の走行速度等が調節されるとともに、例えばバッテリ9の残容量が少なくなったとき等に、エンジン2の始動およびジェネレータ3による発電が行われ、その発電電力がバッテリ9に補充されるように構成されている。
図3は、上記ジェネレータ3、電動モータ5、およびインバータ11,12の回路図である。本図に示すように、上記電動モータ5の各相(U相、V相、W相)には、直列に接続された第1巻線L1および第2巻線L2からなる2つの巻線がそれぞれ設けられており、これら各相の巻線L1,L2に流れる電流の経路を切り替える手段として、上記第2インバータ12には、スイッチング素子Swが設けられている。そして、このスイッチング素子Swによるスイッチング動作に応じて、上記第2インバータ12からの電流Imが上記第1および第2巻線L1,L2の両方を流れる状態と、このうちの第1巻線L1のみに電流Imが流れる状態との間で電流経路が切り替わるようになっている。
図4は、電動モータ5の出力特性を示す図である。この図4において、太線で示す特性線A1は、上記第1および第2巻線L1,L2の両方に電流を流したときの出力特性を、細線で示す特性線A2は、上記第1巻線L1のみに電流を流したときの出力特性を、それぞれ示している。本図に示すように、第1巻線L1のみに電流を流した場合(特性線A2の場合)には、両巻線L1,L2に電流を流した場合(特性線A1の場合)と比べて、電動モータ5の軸トルクTは低下するものの、より高い回転速度まで電動モータ5を駆動できるようになる。これは、以下の理由による。
すなわち、電動モータ5の第1および第2の巻線L1,L2に電流が流れているとき、この電動モータ5には、図3に示すように、モータ回転速度Nに応じた誘起電圧Vaが発生するが、この誘起電圧Vaがインバータ12側の電圧Vdcよりも小さい間は、その電位差によりインバータ12側から電動モータ5へと電流Imが流れる。ただし、この状態からさらにモータ回転速度Nが上昇し、上記誘起電圧Vaがインバータ側の電圧Vdcと略等しくなると、電動モータ5に電流Imが流れなくなり、図4の特性線A1の限界ラインALに示すように、電動モータ5のトルクTが急低下する。そこで、電流Imが流れなくなる前に、上記スイッチング素子Swにより電流経路を切り替えて、電流Imが第2巻線L2を迂回して第1巻線L1にのみ流れるようにすれば、その分だけ電動モータ5の誘起電圧Vaが低下するため、上記限界ラインALよりも高回転側の領域においても、インバータ12と電動モータ5の間に電位差を生じさせることができ、より高回転まで電動モータ5を駆動できるようになる。
このように、当実施形態では、直列に接続された複数の巻線L1,L2を電動モータ5の各相に設け、これら複数の巻線L1,L2の全部または一部に電流が流れるようにその経路を切り替えることにより、電動モータ5の出力特性を、低回転寄りの運転領域に対応する特性(図4の特性線A1)と、高回転寄りの運転領域に対応する特性(特性線A2)との間で適宜切り替えるようにしている。なお、以下では、上記第1および第2の巻線L1,L2の両方に電流を流すことにより、特性線A1のような出力特性が得られるように電動モータ5を制御した状態を低速モード、上記第1巻線L1のみに電流を流すことにより、特性線A2のような出力特性が得られるように電動モータ5を制御した状態を高速モードと称する。
図4に示すように、上記低速モードと高速モードとの間の切り替えは、電動モータ5の回転速度Nが、低速モードと高速モードとの重複部分にあらかじめ設定された切替ラインPを通過したときに実行される。具体的に、この切替ラインPは、上記電動モータ5の出力特性を低速モードと高速モードとの間で切り替える際の閾値となる切替回転速度Ntを、電動モータ5のトルク値との関係で多点状に定め、各トルク値ごとの切替回転速度Ntを連続的につないで形成したものである。なお、図4では、上記切替ラインPが若干右上がりに傾斜するように設定されているが、これは電気的な効率を考慮してのものである。
図4の矢印D1は、回転速度Nが上記切替ラインPよりも低回転側にあるために電動モータ5が低速モードで駆動されている状態で、上記回転速度Nが切替ラインPよりも高回転側の領域まで上昇した状況を示しており、このように切替ラインPを挟んで低回転側から高回転側へと回転速度Nが変化した場合には、電動モータ5の出力特性が低速モードから高速モードへと切り替えられる。一方、上記矢印D1とは逆に、電動モータ5が高速モードで駆動されている状態で、その回転速度Nが上記切替ラインPよりも低回転側の領域まで低下した場合には、上記電動モータ5の出力特性が高速モードから低速モードに切り替えられる。
上記のように切替ラインP(切替回転速度Nt)を境に、電動モータ5の出力特性を低速モードと高速モードとの間で切り替える際には、その切り替えに応じて車両1にショックが発生することがある。これは、以下の理由による。
図5は低速モードから高速モードへ切り替えた際の実際の出力トルクの一例を示す図である。図中の時点t1は、電動モータ5の出力特性を低速モードから高速モードに切り替えるために、図3に示したスイッチング素子Swを作動させて第1巻線L1のみに電流が流れるように電流経路を切り替えた時点を表わしている。この切替時点t1の直前の低速モードと直後の高速モードとで要求されるトルク値は同一であるが、実際の出力トルクは低速モードと高速モードとで全く同一であるとは限らず、ばらついている可能性がある。例えば図5に示されるように、要求トルク(コントローラ15からの指令トルク)T1に対して、低速モードにおける実際の出力トルクT2が高トルク側にばらつき、高速モードにおける実際の出力トルクT3が低トルク側にばらついている場合、その差が大きいと、切替時に車両1のギヤトレインにおけるモータ側ギアと車両側ギアとのギア噛みが瞬間的に離れてしまう。すると、離れたギアが再度噛み合う際に、車両1に比較的大きなショックが発生してこれが乗員に伝わってしまう。したがって、切替直前の低速モードにおける実際の出力トルクと切替直後の高速モードにおける実際の出力トルクとの差を小さくし、上記のギアの噛み合わせが瞬間的に離れることを防ぐことが、車両1に発生するショックを軽減する上で重要である。
そこで、当実施形態では、図6の2点鎖線に示すように、切替時点t1の直後の高速モードの要求トルクT1bを、切替直前の低速モードの要求トルクT1aよりも所定の補正量をもって大きく設定することにより、切替時点t1で高速モードに切り替わった直後の実際の出力トルクT3を増大させる。これにより、切替前の低速モードの実際の出力トルクT2との差が小さくなり、車両1に発生するショックが軽減される。
上記トルクの制御は目標電流値Imaを制御することで実現できる。図7は図6に示す要求トルクに対応した目標電流値の制御を示した図である。切替直前及び直後の同一の要求トルクに対し、切替直前の低速モード目標電流がIma0、切替直後の高速モードの目標電流がIma1である場合、両者の実際の出力トルクにばらつきがないか、もしくは同方向に同じ量だけばらついている分にはショックは発生しない。一方で、図5に示されるようにそのばらつきにより切替直前の低速モードにおける実際の出力トルクと切替直後の高速モードにおける実際の出力トルクとの差が大きくなるとシッョクが発生するため、切替直後の高速モードの目標電流をIma1よりも所定量大きい目標電流値Ima2に設定することにより、切替直後の高速モードにおける実際の出力トルクが増大する。これにより、切替直前の低速モードにおける実際の出力トルクとの差が小さくなり、車両1に発生するショックが軽減される。
以上の説明では、電動モータ5の出力特性が低速モードから高速モードに切り替わる際に設定される目標電流値Imaの動きについて述べたが、上記電動モータ5の出力特性を高速モードから低速モードに切り替える際にも、その切り替え時のショックを軽減するために、上記と同様の目標電流値Imaの補正が行われる。ただし、高速モードから低速モードへの切り替え時にショックが発生するのは、実際の出力トルクのばらつきにより、切り替わり直前の高速モード時の出力トルクに対し低速モード切り替り直後の出力トルクが下がる場合であり、その際は切り替り直後の低速モードにおける目標電流値Ima0を増大方向に補正すればよい。
再び図2に戻って、上記電動モータ5の目標電流値Imaの設定に関するコントローラ15の機能について具体的に説明する。本図に示すように、上記コントローラ15は、その機能要素として、計測手段15a、変更手段15b、および比較手段15cを有している。
上記計測手段15aは、電動モータ5の出力特性が低速モードと高速モードとの間で切り替わったときに、車両1に発生するショックを切替ショックとして計測するものである。具体的に、上記計測手段15aは、Gセンサ38(図2)の検出値に基づいて、上記電動モータ5の出力特性が切り替わった時に生じる加減速度αの変化を計測し、この加減速度αの変化を上記切替ショックとして取得する。なおショックの検出はモータの出力軸にトルクセンサを設置したり、車両に磁気式ショックセンサを取り付ける方法もある。その他にショックに起因して信号が変化する電気量を検出するセンサ(例えばインバータ出力電流を検出する電流検出器の電流信号)と連動してショックを検出することもできる。
上記変更手段15bは、上記計測手段15aにより計測された切替ショックが所定の閾値以上であると、次回の出力特性の切り替え時に、上記切替ショックに影響する制御パラメータとして、目標電流値Imaを変更するものである。すなわち、上記変更手段15bは、電流経路の切替時点t1の直後に一時的に設定される目標電流値Imaを、本来の目標電流値Ima1に対し増大方向に変更し、目標電流値Ima2に設定するように構成されている(図7参照)。
上記比較手段15cは、上記変更手段15bによって目標電流値が変更される1つ前に計測された切替ショックと、変更された後に計測された切替ショックとを比較するものである。
次に、以上のように構成されたコントローラ15により行われる制御動作の具体的内容について、図8のフローチャートを用いて説明する。このフローチャートがスタートすると、コントローラ15は、まず、アクセル開度センサ31およびモータ回転速度センサ35の検出値に基づいて、電動モータ5の回転速度Nおよびアクセルペダルの開度TVOを読み込む制御を実行する(ステップS1)。
次いで、コントローラ15は、第2インバータ12のスイッチング素子Swの作動状態に基づいて、現時点での電動モータ5の出力特性が低速モードに設定されているか否かを判定する制御を実行する(ステップS2)。すなわち、先にも説明したように、スイッチング素子Swの作動状態に応じて、電動モータ5の2つの巻線L1,L2の両方に電流が流れるように電流経路が設定されていれば、上記電動モータ5の出力特性として低速モードが選択されていることになるため、スイッチング素子Swが上記のような作動状態にあるときに、電動モータ5が低速モードで駆動されていると判定する。
上記ステップS2でYESと判定されて電動モータ5の出力特性が低速モードに設定されていることが確認された場合、コントローラ15は、上記ステップS1で読み込まれた電動モータ5の回転速度Nが、図4に示した切替回転速度Nt以上であるか否かを判定する制御を実行する(ステップS3)。すなわち、上記電動モータ5の回転速度Nと、アクセル開度TVO等から求まる現時点での要求トルクとに基づいて、現時点での電動モータ5の駆動状態が図4の特性図上でどの位置に相当するかを特定し、その位置が上記切替ラインPよりも高回転側にあるか否かを判定することにより、モータ回転速度Nが上記切替回転速度Nt以上であるか否かを判定する。
上記ステップS3でYESと判定されてN≧Ntであることが確認された場合、コントローラ15は、上記電動モータ5の出力特性を低速モードから高速モードに切り替えるための準備として、切り替え時に設定すべき目標電流値Imaを読み出す制御を実行する(ステップS4)。具体的に、ここでの目標電流値Imaは、現時点でのモータ回転速度Nと要求トルクとに基づいて基本的に決定されるが、このとき、後述するステップS15,S16で変更済みの目標電流値(例えば図7に示したIma2)が既に存在する場合には、その値が上記目標電流値Imaとして読み出される一方、存在しない場合には、上記モータ回転速度Nおよび要求トルクとの関係であらかじめ設定されたデフォルト値が上記目標電流値Imaとして読み出される。なお、このデフォルト値は高速モード切り替え後に本来必要な目標電流値であり、図7の例ではIma1である。
このようにして出力特性切り替え時の目標電流値Imaが決定されると、コントローラ15は、第2インバータ12のスイッチング素子Swを作動させ、電動モータ5の第1および第2巻線L1,L2のうち第1巻線L1のみに電流が流れるように電流経路を切り替えることにより、電動モータ5の出力特性を低速モードから高速モードに切り替える制御を実行する(ステップS5)。
一方、上記ステップS3でNOと判定されてモータ回転速度Nが未だ切替回転速度Nt以上に達していないことが確認された場合には、上記のような切り替え動作を行うことなくリターンし、電動モータ5の出力特性を低速モードのまま維持する。
次に、上記ステップS2でNOと判定された場合、つまり、現時点での電動モータ5の出力特性が高速モードに設定されている場合の制御動作について説明する。この場合、コントローラ15は、上記ステップS1で読み込まれた電動モータ5の回転速度Nが、図4に示した切替回転速度Ntよりも小さいか否かを判定する制御を実行する(ステップS6)。
そして、このステップS6でYESと判定されてN<Ntであることが確認されると、コントローラ15は、上記電動モータ5の出力特性を高速モードから低速モードに切り替えるための準備として、切り替え時に設定すべき目標電流値Imaを読み出す制御を実行する(ステップS7)。このときの目標電流値Imaは、上記ステップS4のときと同様、既に変更済みの目標電流値(ステップS15,S16で変更された目標電流値)が存在する場合にはその値に、存在しない場合にはデフォルト値(例えば図7に示したIma0)に設定される。
このようにして出力特性切り替え時の目標電流値Imaが決定されると、コントローラ15は、上記スイッチング素子Swを作動させて第1・第2巻線L1,L2の両方に電流が流れるように電流経路を切り替えることにより、電動モータ5の出力特性を高速モードから低速モードに切り替える制御を実行する(ステップS8)。
一方、上記ステップS6でNOと判定されてモータ回転速度Nが未だ切替回転速度Nt未満に低下していないことが確認された場合には、上記のような切り替え動作を行うことなくリターンし、電動モータ5の出力特性を高速モードのまま維持する。
次に、上記ステップS5またはステップS8で電動モータ5の出力特性が低速モードから高速モードに、または高速モードから低速モードに切り替えられた後に行われる制御動作について説明する。上記ステップS5またはステップS8で出力特性を切り替えた後、コントローラ15は、上記Gセンサ38の検出値に基づいて、上記出力特性の切り替え前と切り替え後の加減速度αの変化を演算してこれを切替ショックとして取得するとともに(ステップ9)、その値があらかじめ定められた閾値以上であるか否かを判定する制御を実行する(ステップS10)。
上記ステップS10でYESと判定されて切替ショックが閾値以上であることが確認された場合、コントローラ15は、上記ステップS5またはステップS8で出力特性を切り替えたときの切替条件と、上記ステップS9で計測された切替ショックとを記憶する制御を実行する(ステップS11)。なお、ここでいう切替条件とは、切り替え時の目標電流値Imaの変更幅を決定する上で考慮すべき条件のことであり、その具体的な要素としては、例えば、出力特性の切替方向(つまり低速モードから高速モードに切り替えるのか、その逆かということ)や、切り替え時の要求トルクおよびモータ回転速度等が考えられる。なお、このうち少なくとも出力特性の切替方向については、切替条件として考慮することが望ましい。
次いで、コントローラ15は、同じ切替条件の下で計測された切替ショックが既に記憶されているか否かを判定する制御を実行する(ステップS12)。そして、同条件での切替ショックの記憶データが既に存在する場合には、目標電流値Imaが後述するステップS16で前回の値に戻された値であるか否かを判定する(ステップS13)。次に、以前にステップS16で戻された値である場合にはリターンし、そうでない場合は、今回記憶された切替ショックが前回記憶された切替ショックよりも小さいか否かを判定する制御を実行する(ステップS14)。
上記ステップS14でYESと判定されて前回の切替ショックより小さくなったことが確認された場合、コントローラ15は、目標電流値Imaを増大方向に変更する制御を実行する(ステップS15)。一方、上記ステップS14でNOと判定された場合には目標電流値Imaを前回の値に戻す。(ステップS16)。
また、上記ステップS12でNOと判定された場合、つまり、同じ切替条件下での切替ショックの記憶データが存在しない場合には、ステップS15に移行して目標電流値Imaを増大方向に変更する制御が実行される。
以上のようにして目標電流値Imaの変更処理が終了すると、コントローラ15は、この変更後の目標電流値Imaを記憶する制御を実行し(ステップS17)、リターンする。なお、この目標電流値Imaの記憶は切替条件ごとに別々の値を持っており、上記ステップS4およびステップS7ではその切替条件ごとに記憶されている目標電流値を読み出している。
上記ステップS14〜S17で説明したように、当実施形態の制御フローでは、切替ショックが発生した場合に目標電流値Imaが増大方向に変更され、その変更後に新たに計測された切替ショックが前回の切替ショックと比較され、今回の切替ショックが前回の切替ショックよりも小さくなっていれば、上記切替ショックが閾値を下回るまで(ステップS10でNOと判定されるまで)上記目標電流値Imaの変更が繰り返されることにより、切替ショックを閾値未満に低減し得る適切な目標電流値Imaが学習される。また、上記切替ショックが閾値を下回ることがなく、目標電流値Imaの変更によりかえってショックが増大した場合には、変更前の目標電流値に戻される。
図9(a)(b)は、上述した図8のフローチャートに基づく目標電流値Imaの変更処理に伴い切替ショックが変化する様子を例示するグラフである。なお、これらの図において、横軸の切替回数とは、同一切替条件下での切替回数を表わしている。
図9(a)(b)の例によると、目標電流値Imaがあらかじめ定められたデフォルト値、つまり本来必要な目標電流値に設定されている初回の切り替え時に、切替ショックが閾値を超えており、このことを受けて、目標電流値Imaが次回の切り替え時から変更されている。具体的には、まず2回目の切り替えにおいて、目標電流値Imaが増大方向に変更されているが、図9(a)によると、この目標電流値Imaの増大に伴い切替ショックが低減してはいるものの、閾値未満までは低下していないことから、さらに3回目の切り替えにおいて、目標電流値Imaが増大方向に変更されており、3回目の切り替えで切替ショックが閾値未満まで低下すると、それ以後は、3回目に設定されたのと同じ値が目標電流値Imaとして維持される。
以上説明したように、当実施形態の電動車両用駆動装置は、車両1の駆動輪16を回転駆動する電動モータ5と、この電動モータ5の出力特性を、所定の切替回転速度Ntを境に、低回転寄りの運転領域に対応する低速モードと、これよりも高回転寄りの運転領域まで対応可能な高速モードとの間で切り替えるコントローラ15(制御手段)とを備えている。そして、当実施形態では、上記電動モータ5に対する制御として、上記出力特性の切り替え時に車両1に発生するショックを切替ショックとして計測するステップ(S9)と、上記計測された切替ショックが所定の閾値以上と判定されると、次回の出力特性の切り替え時に目標電流値Imaを増大方向に変更するステップ(S15)とが実行されるようになっている。このような構成によれば、電動モータ5の出力特性が切り替わる際に発生するショックを低減して乗員の快適性を良好に維持できるという利点がある。
すなわち、上記実施形態では、電動モータ5の出力特性を切り替える際に切替ショックを計測し、その値が所定の閾値以上であると、切替ショックが小さくなる増大方向に目標電流値Imaを変更するようにしたため、切替ショックをより小さいレベルに抑えることができ、出力特性の切り替え時に乗員に伝わるショックを低減して乗員の快適性を良好に維持できるという利点がある。
特に、上記実施形態では、目標電流値Imaを増大方向に変更した後に計測された切替ショックを、変更前の切替ショックと比較し(ステップS14)、その比較の結果、切替ショックが小さくなったことが確認された場合(S14でYESの場合)には、切替ショックが上記閾値を下回るまで目標電流値Imaの増大方向への変更を繰り返すようにした。このような構成によれば、例えば乗員が違和感を覚えない程度のレベルに切替ショックが低減するまで目標電流値Imaを繰り返し変更することにより、乗員の快適性を確実に向上させることができるという利点がある。
また、上記実施形態では、上記ステップS14での比較の結果、目標電流値Imaの増大方向への変更により切替ショックがかえって大きくなったことが確認された場合(S14でNOの場合)には、目標電流値Imaを前回の値に戻すことにより、目標電流値Imaの増大方向への変更を禁止するようにした。このような構成によれば、切替ショックが所定の閾値未満に低下しない場合でも、可能な範囲で最小限の切替ショックに抑えることができ、目標電流値Imaがむやみに変更されることによる切替ショックの増大を効果的に防止できるという利点がある。
なお、上記実施形態において、ステップS14でNOと判定された場合、つまり、目標電流値Imaを増大方向に変更することでかえって切替ショックが増大してしまい、これ以上目標電流値Imaを変更しても切替ショックの低減が望めないような場合には、上記目標電流値Ima以外の制御パラメータとして、例えば図4に示した切替回転速度Ntの値を変更することによって上記切替ショックを低減するようにしてもよい。
すなわち、車両1に発生する切替ショックは、電動モータ5の出力特性を切り替える際の閾値となる上記切替回転速度Ntの値(切替ラインPの位置)によっても変化すると考えられるため、切り替え時の目標電流値Imaの変更だけでは切替ショックが十分に低減されない場合には、この目標電流値Imaの変更に加えて、上記切替回転速度Ntを適宜変更することにより、上記切替ショックのさらなる低減を図るようにしてもよい。これにより、目標電流値Imaの変更により十分な切替ショックの低減効果が得られない場合でも、切替ショックを確実に閾値未満に抑えて乗員の快適性を十分に確保できるという利点がある。
なお、切替ショックが閾値以上と判定された場合に、上記目標電流値Imaを変更することなく、いきなり切替回転速度Ntを変更することも考えられる。しかしながら、上記切替回転速度Ntの値は、電動モータ5の効率等を考慮して決定されているため、上記のようにいきなり切替回転速度Ntを変更することは、切替回転速度Ntの大幅な変更につながり、モータ効率等の悪化を招くおそれがある。
このため、切替ショックが閾値以上である場合には、上記切替回転速度Ntを元の値に維持したまま、まずは目標電流値Imaを変更し、それでも切替ショックが十分に低減されない場合にのみ、上記切替回転速度Ntを変更することが好ましい。すなわち、切替ショックが大きい場合に変更される制御パラメータに、少なくとも電動モータ5の目標電流値Imaが含まれていれば、まずはこの目標電流値Imaを変更することにより、電動モータ5の効率等を損なうことなく適正に切替ショックの低減を図ることが可能である。
また、上記実施形態では、エンジン2と電動モータ5とを動力源として併用したハイブリッド型自動車に対して本発明の制御方法を適用した例について説明したが、本発明の制御方法は、電動モータ5を動力源の少なくとも一部として用いた電動車両であれば、特にその種類を問わず適用可能である。
1 電動車両(車両)
5 電動モータ
15 コントローラ(制御手段)
15a 計測手段
15b 変更手段
15c 比較手段
16 駆動輪
Nt 切替回転速度
Ima 目標電流値

Claims (5)

  1. 車両の駆動輪を回転駆動する電動モータの出力特性を、所定の切替回転速度を境に、低回転寄りの運転領域に対応する低速モードと、これよりも高回転寄りの運転領域まで対応可能な高速モードとの間で切り替える電動車両のモータ制御方法であって、
    前記出力特性の切り替え時に車両に発生するショックを切替ショックとして計測する計測ステップと、
    前記計測された切替ショックが所定値以上と判定されると、次回の出力特性の切り替え時に、前記電動モータの目標電流値を増大方向に変更する変更ステップとを含むことを特徴とする電動車両のモータ制御方法。
  2. 請求項1記載の電動車両のモータ制御方法において、
    前記変更ステップによる目標電流値の変更前と変更後の切替ショックを比較する比較ステップを含み、
    この比較ステップでの比較の結果、前記目標電流値の増大方向への変更により前記切替ショックが前回よりも小さくなったことが確認された場合には、前記目標電流値の増大方向への変更を、前記切替ショックが所定値を下回るまで繰り返すことを特徴とする電動車両のモータ制御方法。
  3. 請求項2記載の電動車両のモータ制御方法において、
    前記比較ステップでの比較の結果、前記目標電流値の増大方向への変更により前記切替ショックが前回よりも大きくなったことが確認された場合には、それ以降における目標電流値の増大方向への変更を禁止することを特徴とする電動車両のモータ制御方法。
  4. 請求項3記載の電動車両のモータ制御方法において、
    前記比較ステップでの比較の結果、前記目標電流値の増大方向への変更により前記切替ショックが前回よりも大きくなったことが確認された場合には、前記切替回転速度の値を変更することを特徴とする電動車両のモータ制御方法。
  5. 車両の駆動輪を回転駆動する電動モータと、この電動モータの出力特性を、所定の切替回転速度を境に、低回転寄りの運転領域に対応する低速モードと、これよりも高回転寄りの運転領域まで対応可能な高速モードとの間で切り替える制御手段とを備えた電動車両用駆動装置であって、
    前記制御手段は、前記出力特性の切り替え時に車両に発生するショックを切替ショックとして計測する計測手段と、前記計測された切替ショックが所定値以上と判定されると、次回の出力特性の切り替え時に、前記電動モータの目標電流値を増大方向に変更する変更手段とを備えることを特徴とする電動車両用駆動装置。
JP2009049346A 2009-03-03 2009-03-03 電動車両のモータ制御方法および電動車両用駆動装置 Expired - Fee Related JP5249089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049346A JP5249089B2 (ja) 2009-03-03 2009-03-03 電動車両のモータ制御方法および電動車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049346A JP5249089B2 (ja) 2009-03-03 2009-03-03 電動車両のモータ制御方法および電動車両用駆動装置

Publications (2)

Publication Number Publication Date
JP2010206924A JP2010206924A (ja) 2010-09-16
JP5249089B2 true JP5249089B2 (ja) 2013-07-31

Family

ID=42967846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049346A Expired - Fee Related JP5249089B2 (ja) 2009-03-03 2009-03-03 電動車両のモータ制御方法および電動車両用駆動装置

Country Status (1)

Country Link
JP (1) JP5249089B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484213B1 (ko) 2012-12-28 2015-01-16 현대자동차 주식회사 모터 토크 제어장치 및 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632722Y2 (ja) * 1988-01-22 1994-08-24 トヨタ自動車株式会社 電気自動車用極数切替え誘導電動機
JP2504251B2 (ja) * 1990-01-19 1996-06-05 トヨタ自動車株式会社 電気自動車用誘導電動機の極数切替制御装置
JPH06225588A (ja) * 1993-01-21 1994-08-12 Toyota Motor Corp 巻線切替式永久磁石モータの制御装置
JPH09215115A (ja) * 1996-02-01 1997-08-15 Meidensha Corp 極数切替電動機の運転制御装置
JPH09233899A (ja) * 1996-02-29 1997-09-05 Meidensha Corp 電動機の極数切替駆動装置

Also Published As

Publication number Publication date
JP2010206924A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
US8198836B2 (en) Hybrid vehicle and method of controlling hybrid vehicle
CN109476235B (zh) 转矩控制方法以及转矩控制装置
JP4591588B2 (ja) 電動車両のモータ制御方法および電動車両用駆動装置
JP2010179882A (ja) 車両の再始動制御装置及び再始動制御方法
JP3214285B2 (ja) シリーズハイブリッド車における発電制御方法及び装置
JPH07298514A (ja) 車両用交流発電機制御装置
JP2000324607A (ja) ハイブリッド車両およびその制御方法
JP5637029B2 (ja) 車両用発電制御装置
EP1323564B1 (en) Control system for hybrid vehicle
JP5310106B2 (ja) 電動車両用駆動装置の制御方法および電動車両用駆動装置
JP5249089B2 (ja) 電動車両のモータ制御方法および電動車両用駆動装置
JP3931852B2 (ja) 電気自動車およびその制御方法
JP4661712B2 (ja) 車両の始動制御装置
JP4483697B2 (ja) 発電制御システム
JP5251608B2 (ja) 電動車両のモータ制御方法および電動車両用駆動装置
JP5407716B2 (ja) ハイブリッド車両の駆動制御装置
JP3931450B2 (ja) ハイブリッド車両およびその制御方法
JP5796384B2 (ja) ハイブリッド車両の制御装置
JPH099411A (ja) 電気自動車の走行用モータ制御装置
JP2006275175A (ja) ハイブリッド車の制御装置
JP5200836B2 (ja) 電動車両のモータ制御方法および電動車両用駆動装置
JP5307583B2 (ja) 電動車両のモータ制御方法および電動車両用駆動装置
CN107757627B (zh) 车辆用控制装置以及信息提供方法
JP5310105B2 (ja) 電動車両のモータ制御方法および電動車両用駆動装置
KR100440142B1 (ko) 하이브리드 전기 자동차의 동력 분배 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Ref document number: 5249089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees