JP5247487B2 - 固体撮像装置の製造方法及び放射線検出器の製造方法 - Google Patents

固体撮像装置の製造方法及び放射線検出器の製造方法 Download PDF

Info

Publication number
JP5247487B2
JP5247487B2 JP2009007699A JP2009007699A JP5247487B2 JP 5247487 B2 JP5247487 B2 JP 5247487B2 JP 2009007699 A JP2009007699 A JP 2009007699A JP 2009007699 A JP2009007699 A JP 2009007699A JP 5247487 B2 JP5247487 B2 JP 5247487B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
region
main surface
modified region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009007699A
Other languages
English (en)
Other versions
JP2010165917A (ja
Inventor
智也 田口
昌立 米田
徳之 村松
義磨郎 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2009007699A priority Critical patent/JP5247487B2/ja
Publication of JP2010165917A publication Critical patent/JP2010165917A/ja
Application granted granted Critical
Publication of JP5247487B2 publication Critical patent/JP5247487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像装置の製造方法及び放射線検出器の製造方法に関する。
固体撮像装置に用いられるフォトダイオードアレイとして、半導体基板の光入射面側に形成された複数のフォトダイオードと、半導体基板の光入射面に達して隣接するフォトダイオード間に形成された改質領域とを備えているフォトダイオードアレイが知られている(例えば、特許文献1,2参照)。特許文献1,2に記載されたフォトダイオードアレイでは、隣接するフォトダイオード間の領域に沿って半導体基板にレーザ光を照射することによって改質領域が形成されている。これにより、光入射面側からの入射光によって発生して隣接するフォトダイオードへ拡散するキャリアが改質領域にトラップされることとなり、隣接するフォトダイオード間のクロストークが抑制されている。
また、固体撮像装置に用いられるフォトダイオードとして、絶縁性基板上に形成された複数の画素電極と、画素電極上に形成され、光の入射によりキャリアを生じる光吸収層と、光吸収層上に形成された障壁層と、隣接する画素電極間の領域に沿って障壁層内に形成された改質領域(ポテンシャルバリア領域)とを備えているものが知られている(例えば、特許文献3参照)。特許文献3に記載されたフォトダイオードでは、隣接する画素電極間の領域に沿って障壁層内にレーザ光を照射することによって改質領域(ポテンシャルバリア領域)が形成されている。これにより、隣接する画素電極へ拡散するキャリアが改質領域(ポテンシャルバリア領域)で遮断されることとなり、隣接する画素電極間のクロストークが抑制されている。
特開2005−19465号公報 特開昭63−128677号公報 特開平10−70303号公報
本発明は、半導体基板の割れの発生を抑制しつつ、改質領域を容易に形成することが可能な固体撮像装置の製造方法及び放射線検出器の製造方法を提供することを目的とする。
上述の課題を解決するため、本発明に係る固体撮像装置の製造方法は、互いに対向する第1の主面及び第2の主面を有する第1導電型の半導体基板と、半導体基板の第2の主面側に並んで配置されていると共に、それぞれが半導体基板との接合によりフォトダイオードを構成する複数の第2導電型の半導体領域と、を備えるフォトダイオードアレイを準備する工程と、半導体基板の第2の主面上に配線基板を配置する工程と、配線基板を配置する工程の後、半導体基板の所定位置に集光点を合わせて第1の主面側からレーザ光を照射することによって改質領域を形成する工程と、を備えることを特徴とする。
ところで、フォトダイオードアレイにおける半導体基板の改質領域が形成された部分は、改質領域が形成されていない部分と比べて機械強度が低下している。そのため、フォトダイオードアレイと配線基板との実装時に改質領域が半導体基板に形成されている場合、配線基板を実装することによって半導体基板に外力が負荷され、応力が改質領域に局所的に集中してしまう。この場合、改質領域に接する半導体基板内部の機械強度が十分でないと、改質領域を起点に半導体基板に割れが生じてしまう。したがって、半導体基板の割れの発生を抑制することには限界があった。
また、配線基板が配置された主面側から半導体基板に対してレーザ光を照射すると、半導体基板へのレーザ光の照射が配線基板により妨げられてしまう。そのため、レーザ光が十分に半導体基板に照射されないこととなり、改質領域を容易に形成することには限界があった。
しかしながら、本発明に係る固体撮像装置の製造方法では、配線基板を配置する工程の後に半導体基板に改質領域を形成している。これにより、配線基板を配置する工程において、機械強度の低下した部分が半導体基板に形成されることが抑制されることとなる。したがって、配線基板を実装することによって半導体基板に外力が負荷される場合であっても、半導体基板の割れの発生を抑制することができる。
また、本発明に係る固体撮像装置の製造方法では、半導体基板の第2の主面上に配線基板を配置する工程の後、半導体基板の第1の主面側からレーザ光を照射することによって改質領域を形成している。これにより、配線基板に妨げられることなく十分にレーザ光を半導体基板に照射することができる。したがって、改質領域を容易に形成することができる。
また、フォトダイオードアレイは、隣接する第2導電型の半導体領域間における半導体基板の第2の主面上に配置された配線電極を備え、配線基板を配置する工程では、配線基板と配線電極とを接続することにより半導体基板の第2の主面上に配線基板を配置し、改質領域を形成する工程では、配線電極と半導体基板の第1の主面との間に改質領域を形成することが好ましい。この場合、配線電極が配置されて補強された半導体基板の内部に改質領域を形成することとなる。これにより、改質領域に応力が集中する場合であっても、配線電極の補強効果により、半導体基板の割れの発生をより一層抑制することができる。
また、フォトダイオードアレイは、隣接する第2導電型の半導体領域間における半導体基板の第2の主面上に配置された配線電極と、隣接する第2導電型の半導体領域間における半導体基板の第2の主面側に配置されると共に、半導体基板よりも不純物濃度が高く設定され、配線電極と電気的に接続された第1導電型の半導体領域と、を備え、第1導電型の半導体領域は、第1及び第2の部分を含み、第1及び第2の部分は、第2導電型の半導体領域の配置方向に離隔すると共に第2導電型の半導体領域の配置方向に交差する方向に延びており、配線基板を配置する工程では、配線基板と配線電極とを接続することにより半導体基板の第2の主面上に配線基板を配置し、改質領域を形成する工程では、第1の部分と第2の部分との間に、第2導電型の半導体領域の配置方向に交差する方向に延びて且つ半導体基板の第2の主面に達して改質領域を形成することが好ましい。この場合、入射光によって発生して第1の部分と第2の部分との間に拡散したキャリアが改質領域にトラップされ、再結合することにより消滅することとなる。したがって、隣接する第2導電型の半導体領域間においてキャリアが除去されるため、クロストークを抑制することができる。また、第1の部分と第2の部分との間に改質領域が形成されるものの、第1及び第2の部分が配線電極と電気的に接続されていることにより、隣接する第2導電型の半導体領域間を電気的に分離し続けることができる。
また、半導体基板は、単結晶シリコン基板であると共に、改質領域の形成位置に対応したパターンが第2の主面上に配置されており、改質領域を形成する工程は、フォトダイオードアレイが載置される載置台と、載置台に載置されたフォトダイオードアレイに赤外線を照射する赤外線照射手段と、フォトダイオードアレイの赤外線画像を撮像する撮像手段と、を有するレーザ加工装置を準備する工程と、半導体基板の第1の主面を撮像手段と対向させてフォトダイオードアレイを載置台上に載置する工程と、赤外線照射手段により赤外線を半導体基板の第1の主面側からフォトダイオードアレイに照射して、撮像手段により第2の主面の赤外線画像を撮像し、該赤外線画像からパターンを認識する工程と、認識したパターンに基づき半導体基板を移動させることにより、半導体基板の所定位置に集光点の位置を合わせる工程と、を含むことが好ましい。この場合、パターンに基づき半導体基板を移動させ、所定位置に集光点を合わせているため、所望の位置に容易に集光点を合わせることができる。したがって、改質領域を所望の位置に容易に形成することができる。
また、フォトダイオードアレイは、隣接する第2導電型の半導体領域間における半導体基板の第2の主面上に、パターンとして配置された配線電極を備えることが好ましい。
本発明に係る放射線検出器の製造方法は、上記本発明に係る固体撮像装置の製造方法により製造された固体撮像装置における半導体基板の第1の主面上にシンチレータを配置する工程を備えることを特徴とする。
本発明に係る放射線検出器の製造方法では、上記本発明に係る固体撮像装置の製造方法により製造された固体撮像装置を用いていることから、半導体基板の割れの発生を抑制しつつ、改質領域を容易に形成することが可能である。
本発明によれば、半導体基板の割れの発生を抑制しつつ、改質領域を容易に形成することが可能な固体撮像装置の製造方法及び放射線検出器の製造方法を提供することができる。
第1実施形態に係る放射線検出器の断面構成を示す模式図である。 図1におけるII−II線に沿った断面構成を示す模式図である。 第1実施形態に係る放射線検出器の製造方法を説明するための断面構成を示す模式図である。 レーザ加工装置の概略構成図である。 レーザ加工方法を説明するためのフローチャートである。 第1実施形態に係る放射線検出器の製造方法を説明するための断面構成を示す模式図である。 第2実施形態に係る放射線検出器の断面構成を示す模式図である。 加工対象物の斜視図である。 加工対象物の切断方法を説明するための断面構成を示す模式図である。 放射線検出器の製造方法の変形例を説明するための断面構成を示す模式図である。 放射線検出器の変形例の断面構成を示す模式図である。
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
[第1実施形態]
図1及び図2を参照して、第1実施形態に係る製造方法が適用される固体撮像装置1a及び放射線検出器100aについて説明する。図1は、第1実施形態に係る放射線検出器100aの断面構成を示す模式図である。図2は、図1におけるII−II線に沿った断面構成を示す模式図である。
第1実施形態に係る製造方法が適用される放射線検出器100aは、固体撮像装置1aと、シンチレータ73とを備えている。固体撮像装置1aは、裏面入射型のフォトダイオードアレイ2aと、配線基板81とを備えている。
フォトダイオードアレイ2aは、図1及び図2に示すように、n型(第1導電型)の半導体基板3と、p型(第2導電型)半導体領域5と、n型(第1導電型)半導体領域7と、配線電極25a,25bとを備えている。
半導体基板3は、互いに対向する表面(第1の主面)3aと裏面(第2の主面)3bとを有している。表面3aは、光入射面であり、裏面3bは、信号出力面である。半導体基板3は、例えば単結晶シリコン(Si)基板であり、その厚さが例えば150μmの正方形状の基板である。半導体基板3は、不純物(例えば、リン)を含み、その濃度は例えば5×1012/cmである。半導体基板3は、内部に後述する改質領域50を有している。
p型半導体領域5は、半導体基板3の裏面3b側において、互いに離隔して例えば2次元のマトリクス状に複数配置されている。各p型半導体領域5は、例えば単結晶Siにより正方形状に形成されており、その厚さは例えば0.55μmである。各p型半導体領域5は、不純物(例えば、ボロン)を含み、その濃度は例えば1×1019/cmである。各p型半導体領域5は、半導体基板3とのpn接合11により構成されたフォトダイオード13を含む画素部である。pn接合11は、半導体基板3に空乏層が広がることによりフォトダイオード13の光感応領域として機能する。
n型半導体領域7は、隣接するp型半導体領域5間の半導体基板3の裏面3b側において、各p型半導体領域5と離隔して、各p型半導体領域5を囲むように配置されている。n型半導体領域7は、例えば単結晶Siからなり、その厚さは例えば1.5μmである。n型半導体領域7は、不純物(例えば、リン)を含み、半導体基板3よりも不純物濃度が高く(例えば、1×1018/cm)設定されている。
半導体基板3の裏面3b上の略全面には、例えば周知のCVD(化学的蒸着)法、蒸着法、スパッタ法、熱酸化法により絶縁膜21が形成されている。絶縁膜21は、例えばSiO(酸化膜)やSiN(窒化膜)からなり、複数のコンタクトホール23が設けられている。
配線電極25aは、半導体基板3の裏面3bに垂直な方向から見て各p型半導体領域5が配置された位置の絶縁膜21上に配置されている。配線電極25aは、p型半導体領域5と物理的及び電気的に接続されている。配線電極25aは、コンタクトホール23を塞ぐように絶縁膜21上に配置された電極膜26aと、電極膜26a上に配置された電極パッド27aとを有している。電極膜26aは、金属材料(例えば、Al)によって形成されており、電極パッド27aは、例えばNi,Auを順次メッキすることにより形成されている。
配線電極25bは、半導体基板3の裏面3bに垂直な方向から見て隣接するp型半導体領域5間における絶縁膜21上に配置されている。配線電極25bは、p型半導体領域5の配置方向と交差する方向に延びており、n型半導体領域7と物理的及び電気的に接続されている。配線電極25bは、コンタクトホール23を塞ぐように配置された電極膜26bと、電極膜26b上に配置された電極パッド27bとを有している。電極膜26bは、金属材料(例えば、Al)によって形成されており、電極パッド27bは、例えばNi,Auを順次メッキすることにより形成されている。なお、配線電極25bは、後述するレーザ加工において、改質領域50の形成位置に対応したパターンとして用いられる。
電極パッド27a,27bが形成された部分を除く電極膜26a,26b上と、隣接する電極膜26a,26b間の領域とを覆うように層間絶縁膜28が配置されている。層間絶縁膜28は、ポリイミド等の絶縁性樹脂により形成されるので、隣接する配線電極25aと配線電極25bとが電気的に接続されることが抑制されている。
半導体基板3の裏面3bに垂直な方向から見て電極パッド27a上の各p型半導体領域5の略中央には、バンプ電極31が配置されている。半導体基板3の裏面3bに垂直な方向から見て電極パッド27a上の隣接する4つのp型半導体領域5間の領域の略中央には、バンプ電極33が配置されている。バンプ電極31,33は、後述する配線基板81に物理的及び電気的に接続される。バンプ電極31,33は、金属材料(例えば、はんだ)からなり、例えばはんだペーストのスクリーン印刷法により形成されている。
半導体基板3の表面3a側の略全面には、アキュムレーション領域41が配置されている。アキュムレーション領域41は、例えば単結晶Siからなり、その厚さは例えば1.0μmである。アキュムレーション領域41は、不純物(例えば、リン等)を含むn型の半導体領域であり、その濃度は例えば1×1015/cmである。
半導体基板3の表面3a上の略全面には、表面3aの被覆膜(保護膜)として、絶縁膜43が配置されている。絶縁膜43の半導体基板3側と反対側の表面43aは、フォトダイオードアレイ2aの光入射面を構成している。絶縁膜43は、例えば光透過膜である。絶縁膜43は、例えばSiO(酸化膜)やSiN(窒化膜)からなり、その厚さは例えば0.1μmである。絶縁膜43は、例えば周知のCVD法、蒸着法、スパッタ法、熱酸化法により形成されている。絶縁膜43は、半導体基板3の裏面3bに垂直な方向から見て、改質領域50が配置されている位置の半導体基板3の表面3a上に配置された部分と、改質領域50が配置されていない位置の半導体基板3の表面3a上に配置された部分とを含んでいる。
次に、改質領域50について説明する。改質領域50は、隣接するp型半導体領域5間の領域において、配線電極25bと半導体基板3の表面3aとの間にそれぞれ形成されている。ここで、「隣接するp型半導体領域5間の領域」とは、半導体基板3の表面3aに垂直な方向から見て隣接するp型半導体領域5間に位置する半導体基板3の内部の領域を意味する。すなわち、各改質領域50は、半導体基板3の表面3aと各n型半導体領域7との間に配置されている。各改質領域50は、半導体基板3の表面3a側の略半分の領域に形成されており、半導体基板3の表面3a及びn型半導体領域7に達することなく形成されている。更に、各改質領域50は、隣接する二つのp型半導体領域5のpn接合11からそれぞれ広がることにより一体に形成されている空乏層に達することなく形成されている。
各改質領域50は、半導体基板3内における表面3aから所定の深さ位置(半導体基板3の厚み方向における表面3a側の領域10〜60%が好ましく、10〜45%がより好ましく、10〜30%が更に好ましい。)にそれぞれ配置されている。また、各改質領域50の表面3a側の端部は、表面3aから所定の深さ(例えば、145μm以下が好ましく、75μm以下がより好ましく、20μm以下が更に好ましい。)にそれぞれ位置している。
各改質領域50は、隣接するp型半導体領域5間の領域において、p型半導体領域5の配置方向に交差する方向に延びる連続的な直線状部分として形成されている。改質領域50は、絶縁膜43の表面43aに垂直な方向から見て隣接する4つのp型半導体領域5に囲まれる領域において直線状部分同士が互いに交差し、格子状に形成されている。各直線状部分は、半導体基板3の各側面まで延びている。各直線状部分は、半導体基板3の側面と略平行な長手方向及び当該長手方向に直交する短手方向を有する部分が複数連なって形成されている。
改質領域50の直線状部分を長手方向に垂直な平面で切断した断面は、半導体基板3の厚み方向に長軸を有する楕円状を呈していると共に、短軸方向の幅が例えば3〜4μmに形成されている。各改質領域50は、後述するように半導体基板3の内部に集光点Fを合わせてレーザ光Laを照射することにより、例えば多光子吸収によってレーザ光Laが照射された領域全体に形成されている。なお、集光点Fとはレーザ光Laが集光した箇所のことである。
次に、シンチレータ73について説明する。シンチレータ73は、絶縁膜43上に配置されている。シンチレータ73は、絶縁膜43上に配置されたシンチレータ層75と、シンチレータ層75上に配置された耐湿保護膜77とにより構成されている。
シンチレータ層75は、入射した光(放射線)L1を所定波長の光に変換する柱状結晶が互いに接するように複数配置されて構成されている。シンチレータ層75は、CsI,CsBr等を常温〜150℃程度の抵抗加熱法によって、絶縁膜43の表面43a上に蒸着することにより形成されている。シンチレータ層75は、厚さが例えば400μmである。
耐湿保護膜77は、シンチレータ層75が水分の吸収により劣化し特性が低下することを抑制している。耐湿保護膜77は、その厚さが例えば10μmである。耐湿保護膜77は、X線透過性が高く、かつ、水蒸気,ガスの透過が極めて少ない、例えばポリパラキシリレン、ポリモノクロロパラキシリレン等のキシレン系樹脂からなる樹脂層である。耐湿保護膜77は、CVD法等を用いることで形成される。
次に、配線基板81について説明する。配線基板81は、例えばガラス基板が用いられ、互いに対向する信号入力面81aと信号出力面81bとを有している。配線基板81には、信号入力面81aから信号出力面81bに達する貫通孔81cが複数配置されている。貫通孔81cは、バンプ電極31,33と同一のピッチで複数配置されている。各貫通孔81cには、導電性部材83が設けられている。導電性部材83は、各貫通孔81cの内壁に配置されて信号入力面81aと信号出力面81bとの間を電気的に導通する導通部83cと、信号入力面81a上の各貫通孔81cの外周部に配置された入力部83aと、信号出力面81b上の各貫通孔81cの外周部に配置された出力部83bとにより構成されている。
配線基板81は、半導体基板3の裏面3bの上方に配置されており、入力部83aは、バンプ電極31,33と接続されている。各出力部83b上には、バンプ電極85がそれぞれ配置されている。配線基板81は、バンプ電極85を介して例えば後述する外部基板87と接続される。
次に、図3〜図6を用いて、第1実施形態に係る固体撮像装置1aの製造方法及び放射線検出器100aの製造方法について説明する。図3及び図6は、第1実施形態に係る放射線検出器100aの製造方法を説明するための断面構成を示す模式図である。図4は、レーザ加工装置500の概略構成図である。図5は、レーザ加工方法を説明するためのフローチャートである。
まず、図3(a)に示すように、改質領域50が形成されていないことを除き、図1に示すフォトダイオードアレイ2aと同様の構成を有する加工対象物(フォトダイオードアレイ)61bを準備する。
次に、図1に示すような構成の配線基板81を作製した後、フォトダイオードアレイ2aに配線基板81を例えばフリップチップ実装により接続する。フリップチップ実装においては、まず、バンプ電極31,33と入力部83aとが対向するようにフォトダイオードアレイ2aと配線基板81との位置合わせが行われる。この位置合わせの後、バンプ電極31,33と入力部83aとを互いに押し合わせ、熱圧着や超音波等によってバンプ結合する。これにより、配線基板81がバンプ電極31,33を介して加工対象物61bの配線電極25a,25bに接続された加工対象物550が得られる。そして、図3(b)に示すように、配線基板81の信号出力面81bにダイシングテープ(保持部材)63を貼り付ける。
次に、加工対象物550の半導体基板3内部に改質領域50を形成するためのレーザ加工装置500を準備する。図4を用いて、レーザ加工に使用されるレーザ加工装置500について説明する。
レーザ加工装置500は、レーザ光Laを発生するレーザ光源501と、レーザ光Laの出力やパルス幅等を調節するためにレーザ光源501を制御するレーザ光源制御部502と、レーザ光Laの反射機能を有しかつレーザ光Laの光軸の向きを90°変えるように配置されたダイクロイックミラー503と、ダイクロイックミラー503で反射されたレーザ光Laを集光する集光用レンズ505と、集光用レンズ505で集光されたレーザ光Laが照射される加工対象物550が載置される載置台507と、載置台507を回転させるためのθステージ508と、載置台507をX軸方向に移動させるためのX軸ステージ509と、載置台507をX軸方向に直交するY軸方向に移動させるためのY軸ステージ511と、載置台507をX軸及びY軸方向に直交するZ軸方向に移動させるためのZ軸ステージ513と、これら四つのステージ508,509,511,513の移動を制御するステージ制御部515とを備える。
Z軸方向は加工対象物550の半導体基板3の表面3aと直交する方向なので、半導体基板3に入射するレーザ光Laの焦点深度の方向となる。よって、Z軸ステージ513をZ軸方向に移動させることにより、半導体基板3の内部にレーザ光Laの集光点Fを合わせることができる。また、この集光点FのX(Y)軸方向の移動は、加工対象物550をX(Y)軸ステージ509(511)によりX(Y)軸方向に移動させることにより行う。
レーザ光源501はパルスレーザ光を発生するNd:YAGレーザである。レーザ光源501に用いることができるレーザとして、この他、Nd:YVO4レーザ、Nd:YLFレーザやチタンサファイアレーザがある。改質領域を形成する場合、Nd:YAGレーザ、Nd:YVO4レーザ、Nd:YLFレーザを用いるのが好適である。第1実施形態では、加工対象物550の加工にパルスレーザ光を用いているが、多光子吸収を起こさせることができるなら連続波レーザ光でもよい。
なお、レーザ光はレーザビームを含む意味である。集光用レンズ505は集光手段の一例である。Z軸ステージ513はレーザ光Laの集光点Fを半導体基板3の内部に合わせる手段の一例である。集光用レンズ505をZ軸方向に移動させることによっても、レーザ光Laの集光点Fを半導体基板3の内部に合わせることができる。
レーザ加工装置500は、載置台507上に載置された加工対象物550の半導体基板3に赤外線を照明するために赤外線を発生する赤外透過照明(赤外線照射手段)516と、ダイクロイックミラー503及び集光用レンズ505と同じ光軸上に配置された赤外線用のビームスプリッタ518とを備える。ビームスプリッタ518と集光用レンズ505との間にダイクロイックミラー503が配置されている。ビームスプリッタ518は、赤外線の約半分を反射し残りの半分を透過する機能を有し、かつ、赤外線の光軸の向きを90°変えるように配置されている。赤外透過照明516から発生した赤外線はビームスプリッタ518で約半分が反射され、この反射された赤外線がダイクロイックミラー503及び集光用レンズ505を透過し、加工対象物550の半導体基板3の表面3aを照明する。更に、この赤外線は、表面3aから半導体基板3内へ入射し、半導体基板3の内部を透過し、裏面3bにおいて反射する。
また、レーザ加工装置500は、載置台507に載置された加工対象物550の半導体基板3を可視光で照明するために可視光を発生する観察用光源517と、ダイクロイックミラー503、集光用レンズ505及びビームスプリッタ518と同じ光軸上に配置された可視光用のビームスプリッタ519とを備える。ビームスプリッタ519とダイクロイックミラー503との間にビームスプリッタ518が配置されている。ビームスプリッタ519は、可視光の約半分を反射し残りの半分を透過する機能を有しかつ可視光の光軸の向きを90°変えるように配置されている。観察用光源517から発生した可視光はビームスプリッタ519で約半分が反射され、この反射された可視光がビームスプリッタ518、ダイクロイックミラー503及び集光用レンズ505を透過し、半導体基板3の表面3aを照明する。
更に、レーザ加工装置500は、ビームスプリッタ518、ビームスプリッタ519、ダイクロイックミラー503、及び、集光用レンズ505と同じ光軸上に配置された撮像素子(撮像手段)521及び結像レンズ523を備える。撮像素子521としては、例えばCCD(charge−coupled device)カメラがある。撮像素子521としては、赤外線及び可視光のいずれによっても撮像可能な素子を用いることができる。また、撮像素子521として、赤外線及び可視光のそれぞれによって撮像可能な素子を付け替えて用いてもよい。赤外線によって撮像可能な素子は、加工対象物550の拡大画像等(赤外線画像)を撮像する。
半導体基板3の裏面3bを照明した赤外線の反射光、及び、半導体基板3の表面3aを照明した可視光の反射光は、集光用レンズ505、ダイクロイックミラー503、ビームスプリッタ518、ビームスプリッタ519を透過し、結像レンズ523で結像されて撮像素子521で撮像され、それぞれ撮像データとなる。
更に、レーザ加工装置500は、撮像素子521から出力された撮像データが入力される撮像データ処理部525と、レーザ加工装置500全体を制御する全体制御部527と、モニタ529とを備える。
撮像データ処理部525は、赤外線の反射光により得られた撮像データを基にして半導体基板3の裏面3bの拡大画像等の画像データを演算する。この画像データは全体制御部527に送られ、全体制御部527で各種処理がなされ、モニタ529に送られる。これにより、モニタ529に拡大画像等が表示される。そして、例えば、この拡大画像等に表示される配線電極25bの位置を基準となるパターンとして、ステージ制御部515によってX(Y)軸ステージ509(511)を移動制御し、レーザ光Laの集光点Fを改質領域50を形成する位置へ移動させる。
また、撮像データ処理部525は、可視光の反射光により得られた撮像データを基にして観察用光源517で発生した可視光の焦点を半導体基板3の表面3a上に合わせるための焦点データを演算する。この焦点データを基にしてステージ制御部515がZ軸ステージ513を移動制御することにより、可視光の焦点が半導体基板3の表面3aに合うようにする。よって、撮像データ処理部525はオートフォーカスユニットとして機能する。
全体制御部527には、ステージ制御部515からのデータ、撮像データ処理部525からの画像データ等が入力され、これらのデータも基にしてレーザ光源制御部502、観察用光源517、赤外透過照明516及びステージ制御部515を制御することにより、レーザ加工装置500全体を制御する。よって、全体制御部527はコンピュータユニットとして機能する。
次に、図4及び図5を用いて、多光子吸収により改質領域50を形成するためのレーザ加工方法について説明する。
ここで、多光子吸収について簡単に説明する。光子のエネルギーhνが、材料の吸収のバンドギャップEよりも小さい場合、光学的に透明となる。よって、hν>Eである場合には、材料に吸収が生じる。しかし、光学的に透明であっても、レーザ光の強度を非常に大きくした場合には、nhν>Eの条件(n=2,3,4,・・・)において材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm)で決まり、例えばピークパワー密度が1×10(W/cm)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm)で決まる。
多光子吸収により形成される改質領域50の一つの例として、溶融処理領域がある。
この場合には、レーザ光Laを半導体基板3の内部に集光点Fを合わせて、集光点Fにおける電界強度が1×10(W/cm)以上でかつパルス幅が1μs以下の条件で照射する。これにより、半導体基板3の内部は多光子吸収によって局所的に加熱される。この加熱により、半導体基板3の内部に溶融処理領域が形成される。
溶融処理領域とは一旦溶融後再固化した領域、溶融状態中の領域及び溶融から再固化する状態中の領域のうち少なくともいずれか一つを意味する。溶融処理領域は、相変化した領域や結晶構造が変化した領域ということもできる。溶融処理領域は、単結晶構造、非晶質構造又は多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。半導体基板3がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。なお、電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1〜200nsが好ましい。
まず、半導体基板3の光吸収特性を図示しない分光光度計等により測定する。この測定結果に基づいて、半導体基板3に対して透明な波長又は吸収の少ない波長のレーザ光Laを発生するレーザ光源501を選定する(S101)。次に、半導体基板3の厚さを測定する。厚さの測定結果及び半導体基板3の屈折率を基にして、加工対象物550のZ軸方向の移動量を決定する(S103)。これは、半導体基板3に対して透明な波長又は吸収の少ない波長のレーザ光Laの集光点Fを半導体基板3の内部に位置させるために、半導体基板3の表面3aに位置するレーザ光Laの集光点Fを基準とした加工対象物550のZ軸方向の移動量である。この移動量は、全体制御部527に入力される。
次に、半導体基板3の表面3aを撮像素子521と対向させて加工対象物550を載置台507上に載置する(S105)。そして、観察用光源517から可視光を発生させて加工対象物550の半導体基板3を照明する(S107)。照明された半導体基板3の表面3aを撮像素子521により撮像する。撮像素子521により撮像された撮像データは、撮像データ処理部525に送られる。この撮像データに基づいて撮像データ処理部525は、観察用光源517の可視光の焦点が表面3aに位置するような焦点データを演算する(S109)。なお、撮像データ処理部525は、撮像データに基づいて半導体基板3の表面3aの拡大画像データを演算する。この拡大画像データは全体制御部527を介してモニタ529に送られ、これによりモニタ529に半導体基板3の表面3aの拡大画像が表示される。
演算された焦点データはステージ制御部515に送られる。ステージ制御部515は、この焦点データを基にしてZ軸ステージ513をZ軸方向に移動させる(S111)。これにより、観察用光源517の可視光の焦点が半導体基板3の表面3aに位置する。
次に、赤外透過照明516から赤外線を発生させ、半導体基板3の表面3a側から加工対象物550の半導体基板3に赤外線を照射する(S113)。赤外線は、表面3aから半導体基板3内へ入射し、半導体基板3の内部を透過して裏面3bに達する。赤外線は、半導体基板3の裏面3bにおいて反射し、その反射光を撮像素子521によって撮像することにより、半導体基板3の裏面3bを撮像する。撮像素子521により撮像された撮像データは、撮像データ処理部525に送られる。撮像データ処理部525は、撮像データに基づいて半導体基板3の裏面3bの拡大画像データを演算する(S115)。この拡大画像データは全体制御部527を介してモニタ529に送られ、これによりモニタ529に半導体基板3の裏面3bの拡大画像が表示される。そして、この拡大画像により、改質領域50の形成位置に対応したパターンとしての配線電極25bの位置が認識される(S117)。
続いて、配線電極25bの形成方向がY軸ステージ511のストローク方向に一致するように、θステージ508により加工対象物550を回転させる(S119)。更に、レーザ光Laの集光点Fが半導体基板3の表面3aにおける改質領域50形成位置の直上の位置となるよう、X軸ステージ509、Y軸ステージ511及びZ軸ステージ513により載置台507を移動させて、加工対象物550を移動させる(S121)。これにより、配線電極25bに基づき、半導体基板3が移動されることとなる。
その後、ステップS103で決定され全体制御部527に予め入力された移動量データが、ステージ制御部515に送られる。ステージ制御部515は、この移動量データに基づいて、レーザ光Laの集光点Fが半導体基板3の内部に位置するように、Z軸ステージ513により加工対象物550をZ軸方向に移動させる(S123)。
続いて、レーザ光Laを多光子吸収が生じる条件に設定し、レーザ光Laをレーザ光源501から発生させる。そして、図6(a)に示すように、隣接するp型半導体領域5間における配線電極25bと半導体基板3の表面3aとの間の領域の所定位置に対し、半導体基板3の表面3a側より集光点Fを合わせてレーザ光Laを照射する。改質領域50は、集光点Fより半導体基板3の表面3a方向に向かって拡がることにより、断面が半導体基板3の厚み方向に長軸を有する楕円状を呈して形成される。レーザ光Laの集光点Fは半導体基板3の内部に位置しており、改質領域50は半導体基板3の内部に形成される。改質領域50は、半導体基板3の表面3a、絶縁膜43の表面43a及びn型半導体領域7に達することなく形成される。なお、改質領域50の深さ位置は、例えば半導体基板3とレーザ光Laを照射する光学系との相対的な位置関係を調節して、半導体基板3の厚み方向へ集光点Fを半導体基板3に対して相対移動させることにより調節することができる。
次に、X軸ステージ509やY軸ステージ511によって加工対象物550を移動させることにより、形成予定ライン(図示せず)に沿って集光点Fを半導体基板3に対して相対移動させる。なお、形成予定ラインは、直線状に延びた仮想線であり、各改質領域50の形成位置に対応するように、例えば隣接するp型半導体領域5間の領域に沿って半導体基板3の表面3a側に配置されている。
そして、同様に他の形成予定ラインに沿って集光点Fを半導体基板3に対して相対移動させることにより、それぞれの隣接するp型半導体領域5間の領域に改質領域50を形成する。以上により、半導体基板3における配線電極25bと半導体基板3の表面3aとの間に改質領域50が形成され(S125)、固体撮像装置1aが得られる。
次に、絶縁膜43上にシンチレータ73を配置する。例えば抵抗加熱法によって絶縁膜43の表面43a上にCsI,CsBr等を蒸着し、柱状結晶として成長させることによりシンチレータ層75を形成する。更に、例えばCVD法によって、シンチレータ層75を覆うように耐湿保護膜77を形成する。以上により、図6(b)に示すように、放射線検出器100aが得られる。
なお、配線基板81のバンプ電極85により外部基板87を更にフリップチップ実装し、図6(c)に示すような構成の放射線検出器200aとしてもよい。外部基板87には、例えば、外部基板87の内部に導電性部材が埋め込まれて形成された複数の内部配線89bと、信号入力面上に露出した導電性部材の外周部に配置された入力部89aとが配置されている。入力部89aがバンプ電極85と接続されることにより、配線基板81と外部基板87とが接続される。
以上のように、第1実施形態では、配線基板81を配置する工程の後に半導体基板3に改質領域50を形成している。これにより、配線基板81を配置する工程において、機械強度の低下した部分が半導体基板3に形成されることが抑制されることとなる。したがって、配線基板81を実装することによって半導体基板3に外力が負荷される場合であっても、半導体基板3の割れの発生を抑制することができる。
また、第1実施形態では、半導体基板3の裏面3b上に配線基板81を配置する工程の後、半導体基板3の表面3a側からレーザ光Laを照射することによって改質領域50を形成している。これにより、配線基板81に妨げられることなく十分にレーザ光Laを半導体基板3に照射することができる。したがって、改質領域50を容易に形成することができる。
また、第1実施形態では、半導体基板3の表面3a側に電極や遮光膜が配置されていないことから、半導体基板3の表面3a側からレーザ光Laを半導体基板3の内部に容易に照射することができる。これにより、所望の位置や形状に改質領域50を一層容易に形成することができる。また、絶縁膜43の膜厚が略均一である場合には、所望の形成位置や形状の改質領域50を更に容易に形成することができる。
また、第1実施形態では、フォトダイオードアレイ2aは、隣接するp型半導体領域5間における半導体基板3の裏面3b上に配置された配線電極25bを備え、配線基板81を配置する工程では、配線基板81と配線電極25bとを接続することにより半導体基板3の裏面3b上に配線基板81を配置し、改質領域50を形成する工程では、配線電極25bと半導体基板3の表面3aとの間に改質領域50を形成している。この場合、配線電極25bが配置されて補強された半導体基板3の内部に改質領域50を形成することとなる。これにより、改質領域50に応力が集中する場合であっても、配線電極25bの補強効果により、半導体基板3の割れの発生をより一層抑制することができる。
また、第1実施形態では、また、半導体基板3は、単結晶シリコン基板であると共に、改質領域50の形成位置に対応したパターン(配線電極25b)が裏面3bに配置されており、改質領域50を形成する工程は、フォトダイオードアレイ2aが載置される載置台507と、載置台507に載置されたフォトダイオードアレイ2aに赤外線を照射する赤外透過照明516と、フォトダイオードアレイ2aの赤外線画像を撮像する撮像素子521と、を有するレーザ加工装置500を準備する工程と、半導体基板3の表面3aを撮像素子521と対向させてフォトダイオードアレイ2aを載置台507上に載置する工程と、赤外透過照明516により赤外線を半導体基板3の表面3a側からフォトダイオードアレイ2aに照射して、撮像素子521により裏面3bの赤外線画像を撮像し、該赤外線画像からパターンを認識する工程と、認識したパターンに基づき半導体基板3を移動させることにより、半導体基板3の所定位置に集光点Fの位置を合わせる工程と、を含む。この場合、パターンに基づき半導体基板3を移動させ、所定位置に集光点Fを合わせているため、所望の位置に容易に集光点Fを合わせることができる。したがって、改質領域50を所望の位置に容易に形成することができる。
また、第1実施形態では、半導体基板3にレーザ光Laを透過させ半導体基板3の内部に多光子吸収を発生させて改質領域50を形成している。これにより、半導体基板3の表面3aや絶縁膜43の表面43aではレーザ光Laがほとんど吸収されないため、半導体基板3の表面3aや絶縁膜43の表面43aが溶融することはない。したがって、半導体基板3の機械強度の低下を抑制することができる。
ところで、配線基板81との実装によりフォトダイオードアレイ2aに反りが生じる等の場合には、改質領域50が所望の位置から外れて形成されてしまうことがある。しかしながら、第1実施形態では、n型半導体領域7に達することなく改質領域50を形成している。そのため、上記の実装不良が生じた場合であっても、改質領域50とpn接合11から広がる空乏層とが互いに干渉し難く、改質領域50を形成することによるノイズの発生を抑制することが可能である。更に、改質領域50と空乏層との干渉が抑制されていることから、改質領域50の形成におけるレーザ光Laの照射精度を緩和することや、改質領域50の形状の自由度を向上させることが可能である。
ところで、絶縁膜43の表面43aに凹凸部分が形成されていると、シンチレーション光が凹凸部分において反射してしまう。そして、反射した光が隣接するp型半導体領域5に達すると、出力信号のノイズとして検出されてしまう。しかしながら、第1実施形態では、絶縁膜43の表面43aに達することなく改質領域50が形成されていることにより、シンチレーション光の凹凸部分における反射を抑制することができる。したがって、出力信号のノイズの検出を抑制することができる。
また、絶縁膜43の表面43aに凹凸部分が形成されていると、凹凸部分にシンチレータ層75の構成成分が蒸着されることにより、柱状結晶が異常成長することとなる。しかしながら、第1実施形態では、凹凸部分が絶縁膜43の表面43aに形成されることが抑制されている。したがって、柱状結晶を異常成長させることなくシンチレータ層75を形成することが可能である。
[第2実施形態]
図7を参照して、第2実施形態に係る製造方法が適用される固体撮像装置1b及び放射線検出器100bの構成について説明する。図7は、第2実施形態に係る製造方法が適用される放射線検出器100bの断面構成を示す模式図である。
放射線検出器100bは、固体撮像装置1bと、シンチレータ73とを備えている。固体撮像装置1bは、フォトダイオードアレイ2bと、配線基板81とを備えている。フォトダイオードアレイ2bは、n型半導体領域7、改質領域50の構成がフォトダイオードアレイ2aと異なっている。また、フォトダイオードアレイ2b上には、バリア層71が配置されている。その他の構成は、第1実施形態と同様である。
n型半導体領域7は、隣接するp型半導体領域5間における半導体基板3の裏面3b側に配置されている。n型半導体領域7は、第1の部分7a及び第2の部分7bを含んでいる。第1及び第2の部分7a,7bは、絶縁膜21に設けられたコンタクトホール23を介して、配線電極25bと物理的及び電気的に接続されている。第1及び第2の部分7a,7bは、隣接するp型半導体領域5間の領域において、p型半導体領域5の配置方向に離隔すると共にp型半導体領域5間の配置方向に交差する方向に延びている。第1の部分7aと第2の部分7bとの間には、第1及び第2の部分7a,7bと接して改質領域50が配置されている。n型半導体領域7は、その他の点では、第1実施形態と同様である。
改質領域50は、隣接するp型半導体領域5間の領域において、p型半導体領域5の配置方向に交差する方向に延びている。改質領域50は、絶縁膜43の表面43a及び半導体基板3の裏面3bに達して形成されており、絶縁膜43の表面43aから半導体基板3の裏面3bにかけて一体に形成されている。改質領域50は、その他の点では、第1実施形態と同様である。
バリア層71は、フォトダイオードアレイ2bとシンチレータ73との間に配置されており、例えば腐食防止(防湿)作用を有する。バリア層71は、例えばポリイミド等からなる樹脂層であり、その厚さは例えば5μmである。バリア層71は、例えば樹脂材料を絶縁膜43の表面43aにスピンコートにより塗布し、硬化することにより形成される。
次に、第2実施形態に係る固体撮像装置1bの製造方法及び放射線検出器100bの製造方法について説明する。第2実施形態では、第1実施形態と同様に、半導体基板3の裏面3b上に配線基板81を配置した後、改質領域50を形成する。
第2実施形態では、図6(a)と同様に、隣接するp型半導体領域5間における配線電極25bと半導体基板3の表面3aとの間の領域の所定位置に対し、半導体基板3の表面3a側より集光点Fを合わせてレーザ光Laを照射する。そして、半導体基板3とレーザ光Laを照射する光学系との相対的な位置関係を調節して、半導体基板3の厚み方向へ集光点Fを半導体基板3に対して相対移動させることにより、半導体基板3の裏面3b及び絶縁膜43の表面43aに達して改質領域50を形成する。改質領域50が半導体基板3の裏面3bに達して形成されることにより、n型半導体領域7は、第1の部分7a及び第2の部分7bに分断される。
次に、形成予定ラインに沿って集光点Fを半導体基板3に対して相対移動させると共に、半導体基板3の厚み方向へ集光点Fを半導体基板3に対して相対移動させる。そして、同様に集光点Fを他の形成予定ラインに沿って半導体基板3に対して相対移動させ、他の隣接するp型半導体領域5間の領域に沿って改質領域50を形成する。以上のようにして、第1の部分7aと第2の部分7bとの間に、p型半導体領域5の配置方向に交差する方向に延びて且つ半導体基板3の裏面3bに達して改質領域50を形成することにより、固体撮像装置1bが得られる。
固体撮像装置1bを形成した後、例えばスピンコート法を用いて絶縁膜43の表面43a上にバリア層71を形成する。そして、バリア層71上にシンチレータ73を形成する。その他の工程を第1実施形態と同様に行うことにより、放射線検出器100bが得られる。
以上のように、第2実施形態では、第1実施形態と同様に、配線基板81を配置する工程の後に半導体基板3に改質領域50を形成している。したがって、配線基板81を実装することによって半導体基板3に外力が負荷される場合であっても、半導体基板3の割れの発生を抑制することができる。また、第2実施形態では、半導体基板3の裏面3b上に配線基板81を配置する工程の後、半導体基板3の表面3a側からレーザ光Laを照射することによって改質領域50を形成している。したがって、改質領域50を容易に形成することができる。更に、改質領域50を形成する工程では、配線電極25bと半導体基板3の表面3aとの間に改質領域50を形成している。したがって、改質領域50に応力が集中する場合であっても、配線電極25bの補強効果により、半導体基板3の割れの発生をより一層抑制することができる。
また、第2実施形態では、フォトダイオードアレイ2bは、隣接するp型半導体領域5間における半導体基板3の裏面3b上に配置された配線電極25bと、隣接するp型半導体領域5間における半導体基板3の裏面3b側に配置されると共に、半導体基板3よりも不純物濃度が高く設定され、配線電極25bと電気的に接続されたn型半導体領域7と、を備え、n型半導体領域7は、第1及び第2の部分7a,7bを含み、第1及び第2の部分7a,7bは、p型半導体領域5の配置方向に離隔すると共にp型半導体領域5の配置方向に交差する方向に延びており、配線基板81を配置する工程では、配線基板81と配線電極25bとを接続することにより半導体基板3の裏面3b上に配線基板81を配置し、改質領域50を形成する工程では、第1の部分7aと第2の部分7bとの間に、p型半導体領域5の配置方向に交差する方向に延びて且つ半導体基板3の裏面3bに達して改質領域50を形成している。この場合、光L1によって発生して第1の部分7aと第2の部分7bとの間に拡散したキャリアが改質領域50にトラップされ、再結合することにより消滅することとなる。したがって、隣接するp型半導体領域5間においてキャリアが除去されるため、クロストークを抑制することができる。また、第1の部分7aと第2の部分7bとの間に改質領域50が形成されるものの、第1及び第2の部分7a,7bが配線電極25bと電気的に接続されていることにより、隣接するp型半導体領域5間を電気的に分離し続けることができる。
ところで、絶縁膜43の表面43aの改質領域50が形成された部分に対し、シンチレータ層75が直接蒸着されると、その部分からシンチレータ層75のシンチレータ成分が半導体基板3の内部へ拡散することとなる。しかしながら、第2実施形態では、絶縁膜43上にバリア層71が配置されている。これにより、シンチレータ層75のシンチレータ成分の拡散がバリア層71により遮断されることとなる。したがって、シンチレータ層75のシンチレータ成分が半導体基板3の内部へ拡散することを抑制することができる。
また、バリア層71が絶縁膜43を補強することにより、フォトダイオードアレイ1の機械強度を向上させることも可能である。更に、絶縁膜43の表面43aの改質領域50が形成されている部分をバリア層71が覆うことにより、シンチレータ層75を配置する面を平坦化することができる。これにより、柱状結晶を異常成長させることなくシンチレータ層75を形成することができる。
また、第2実施形態では、各p型半導体領域5がバンプ電極31を介して配線基板81に接続されている。これにより、各p型半導体領域5の周囲の改質領域50が絶縁膜43の表面43a及び半導体基板3の裏面3bに達して形成されていても、各p型半導体領域5が個片化してしまうことを抑制することが可能である。
以上、本発明の放射線検出器の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
レーザ加工において、ステップS107〜S111の後にS113〜S121を行うことに限定されるものではなく、ステップS113〜S121の後にS107〜S111を行ってもよい。
また、加工対象物61bは、改質領域50の形成に用いたレーザ加工により、以下のようにして準備することができる。図8は、加工対象物の斜視図である。図9は、加工対象物の切断方法を説明するための断面構成を示す模式図である。
まず、図8に示すように、改質領域50及びバンプ電極31,33が形成されていないことを除き、加工対象物61bと同様の構成を有する構成単位がマトリクス状に連なった加工対象物61を準備する。加工対象物61には、直線状に延びた仮想線である切断予定ライン68が、切断位置に対応するように、例えば半導体基板3の表面3a側に配置されている。
また、加工対象物61の半導体基板3には、例えば切断のための溶融処理領域を形成すべき方向(例えば、単結晶シリコン基板における(111)面に沿った方向)、或いは切断のための溶融処理領域を形成すべき方向に直交する方向に沿ってオリエンテーションフラット(OF)69が形成されている。OF69を基準とすることで、所望の形成すべき方向に沿って容易且つ正確に溶融処理領域を半導体基板3に形成することが可能となる。
次に、加工対象物61にダイシングテープ(保持部材)63を貼り付ける。そして、絶縁膜43の表面43aが撮像素子521と対向するように載置台507上に加工対象物61を載置する。続いて、半導体基板3のOF69の方向がY軸ステージ511のストローク方向に一致するよう、θステージ508により加工対象物61を回転させる。
次に、レーザマーク70を形成するためのレーザ光を選定する。そして、半導体基板3の表面3aにレーザマーク70を形成するためのレーザ光の集光点が、半導体基板3の表面3aにおける基準原点直上の位置となるよう、X軸ステージ509、Y軸ステージ511及びZ軸ステージ513により加工対象物61を移動させる。更に、選定したレーザ光を照射し、半導体基板3の表面3aにおける基準原点直上の位置にレーザマーク70を形成する。
次に、図9(a)に示すように、半導体基板3の切断位置に集光点Fを合わせて半導体基板3の表面3a側からレーザ光Laを照射する。そして、半導体基板3の厚み方向に集光点Fを半導体基板3に対して相対移動させると共に、切断予定ライン68に沿って集光点Fを半導体基板3に対して相対移動させ、半導体基板3の内部に溶融処理領域を半導体基板3の裏面3b及び絶縁膜43の表面43aに達するように形成する。続いて、各切断予定ライン68に沿って溶融処理領域を形成する。
そして、ダイシングテープ63及び加工対象物61を除電しながら、ダイシングテープ63を拡張させる。これにより、ダイシングテープ63が拡張された状態にあるため、図9(b)に示すように、溶融処理領域を切断の起点として加工対象物61が切断予定ラインに沿って切断され、複数の加工対象物61aが得られる。
次に、各加工対象物61aにUV照射してダイシングテープ63を剥離した後、図9(c)に示すように、得られた複数の加工対象物61aの1つを取り出す。そして、例えばはんだペーストのスクリーン印刷法により所定の位置にバンプ電極31,33を形成することにより、図3(a)に示すような構成を有する加工対象物61bが得られる。
また、加工対象物61bは、加工対象物61をブレードを用いて切断することによっても得ることができる。この場合、切断予定ライン68を半導体基板3の裏面3b側に転写した後、図10(a)に示すように、絶縁膜43の表面43aにダイシングテープ63を貼り付ける。そして、図10(b)に示すように、切断予定ラインに沿って、ブレード67により加工対象物61を切断する。更に、イオンエアー洗浄装置や吸引装置を用いて、塵等を吸引して洗浄することにより、複数の加工対象物61aが得られる。その後、例えばはんだペーストのスクリーン印刷法により所定の位置にバンプ電極31,33を形成することにより、加工対象物61bが得られる。
改質領域50は、数、形状、半導体基板3の表面3aからの深さ位置、断面の短軸方向の幅、改質領域50の表面3a側の端部の位置は、上記実施形態に限定されるものではない。例えば、改質領域50の断面における短軸方向の幅を上記実施形態よりも広く(例えば6〜7μm)した場合には、半導体基板3に外力が加わった際における改質領域50に負荷される応力が局所的に集中することなく分散されることから、半導体基板3の機械強度の低下を抑制することができる。
また、改質領域50は、隣接するp型半導体領域5間の領域において、p型半導体領域5の配置方向に交差する方向に延びて1つ形成されていることに限定されるものではなく、p型半導体領域5の配置方向に離隔して且つp型半導体領域5の配置方向に交差する方向に延びて2つ以上形成されていてもよい。2つ以上の改質領域50は、半導体基板3の表面3aからのそれぞれの深さ位置が互いに等しくても、異なっていてもよい。2つ以上の改質領域50は、隣接するp型半導体領域5間の領域の2箇所の所定位置にそれぞれ集光点Fを合わせてレーザ光Laを照射することによって形成することができる。
改質領域50は、連続的な直線状に形成されることに限定されるものではなく、断続的な直線状であってもよい。例えば、改質領域50は、長手方向及び当該長手方向に直交する短手方向を有する部分が、その長手方向を同一方向へ向けて互いに離れて複数並ぶことにより、断続的な直線状に形成されていてもよい。
改質領域50は、断面が楕円状の直線状部分のみにより形成されていることに限定されるものではない。改質領域50は、断面が楕円状の直線状部分から半導体基板3の厚み方向に延びる線状部分を含んでいてもよい。また、改質領域50は、多光子吸収以外によって改質されて形成されていてもよい。
また、半導体基板3、p型半導体領域5及びn型半導体領域7の数、材料、形状、厚さ、不純物濃度及び不純物の種類は、上述した実施形態に限定されるものではない。例えば、p型半導体領域5は、2次元のマトリクス状に配置されることに限定されるものではなく、1次元に複数並んで配置されていてもよい。半導体基板3、p型半導体領域5及びn型半導体領域7は、上述した実施形態とは逆の導電型となる不純物を含んでいてもよい。半導体基板3は、単結晶Siによって形成されていることに限定されるものではなく、例えば半導体基板3とp型半導体領域5とが同一又は異なる化合物半導体(例えば、GaAs又はGaSb等)によって形成されていてもよい。
また、フォトダイオードアレイ2bにおいて、第1及び第2の部分7a,7bは、改質領域50と離れて位置していてもよい。この場合、隣接するp型半導体領域5間の領域に、p型半導体領域5の配置方向と交差する方向に延びる第1の部分7aと第2の部分7bとを予め離れた位置に形成しておく。その後、第1の部分7aと第2の部分7bとの間に改質領域50を形成すればよい。
また、第1及び第2の部分7a,7bは、一体に形成された配線電極25bに電気的に接続されていることに限定されるものではない。例えば、配線電極25bは、隣接するp型半導体領域5間において、p型半導体領域5の配置方向に離隔して2つ配置されており、第1及び第2の部分7a,7bが互いに異なる2つの配線電極25bの一方に物理的及び電気的に接続されていてもよい。
シンチレータ73は、絶縁膜43やバリア層71にシンチレータ層75を直接蒸着して形成するものに限定されるものではない。例えば、放射線透過性の基板(例えば、アルミニウム、アモルファスカーボン、FOP(ファイバオプティクプレート))に、常温〜150℃程度の抵抗加熱法によってCsI,CsBr等からなるシンチレータ層を形成したシンチレータを用いてもよい。この場合、放射線透過性の基板のシンチレータ層が配置されている面の反対側の面と、絶縁膜43の表面43aとを透明(光透過)樹脂(例えば、エポキシ樹脂、アクリル樹脂)により接着する。
また、シンチレータ73として、パネル型シンチレータを用いてもよい。図11は、パネル型シンチレータを用いた放射線検出器300の断面構成を示す模式図である。放射線検出器300は、絶縁膜43上に配置された透明(光透過)樹脂層72と、透明樹脂層72上に配置されたシンチレータパネル73とを備えている。
透明樹脂層72は、接着性を有する光学樹脂(例えば、ポリイミド)により形成されている。透明樹脂層72は、絶縁膜43とシンチレータパネル73との間の間隙を埋めるように配置されている。これにより、シンチレータ73内に光(放射線)が入射して所定波長のシンチレーション光が発生した場合に、シンチレーション光が絶縁膜43とシンチレータパネル73との間の間隙で反射することなくフォトダイオードアレイ1に入射する。
シンチレータパネル73は、透明樹脂層72上に配置されたシンチレータ層75と、シンチレータ層75を覆う耐湿保護膜77とにより構成されている。シンチレータ層75は、平板形状を呈している。シンチレータ層75は、GdS:PrやGdS:TbといったGOS(硫酸化ガドリニウム)や、TlをドープしたCsI、CdWO(CWO)等により形成されている。シンチレータ層75は、半導体基板3の表面3aに垂直な方向から見てp型半導体領域5全体が隠れるように、位置、形状及びサイズが設定されている。
耐湿保護膜77は、PETシートやTiOを混練したエポキシ樹脂等により形成されており、遮光膜としても機能する。耐湿保護膜77は、シンチレータ層75の側面と光入射面とを覆っているものの、シンチレータ層75の光出射面を覆っていないため、シンチレータ層75で発生した光は、耐湿保護膜77に遮光されることなくフォトダイオードアレイ1に入射する。
ところで、パネル型シンチレータ等を凹凸部分が形成された面に接着すると、凹凸部分において透明樹脂層にボイドが発生してしまう。しかしながら、放射線検出器100a,300では、改質領域50が絶縁膜43の表面43aに達することなく形成されており、放射線検出器100bでは、絶縁膜43の表面43a上にバリア層71が設けられている。そのため、パネル型シンチレータ等を凹凸部分が形成された面に接着することが抑制されている。したがって、ボイドの発生が抑制され、パネル型シンチレータ等を良好に接着することができる。
1a,1b…固体撮像装置、2a,2b…フォトダイオードアレイ、3…n型(第1導電型)の半導体基板、3a…表面(第1の主面)、3b…裏面(第2の主面)、5…p型(第2導電型)半導体領域、7…n型(第1導電型)半導体領域、7a…第1の部分、7b…第2の部分、11…pn接合、13…フォトダイオード、25b…電極配線、50…改質領域、73…シンチレータ、81…配線基板、100a,100b,200a,300…放射線検出器、500…レーザ加工装置、507…載置台、516…赤外透過照明(赤外線照射手段)、521…撮像素子(撮像手段)、F…集光点、La…レーザ光。

Claims (6)

  1. 互いに対向する第1の主面及び第2の主面を有する第1導電型の半導体基板と、前記半導体基板の前記第2の主面側に並んで配置されていると共に、それぞれが前記半導体基板との接合によりフォトダイオードを構成する複数の第2導電型の半導体領域と、を備えるフォトダイオードアレイを準備する工程と、
    前記半導体基板の前記第2の主面上に配線基板を配置する工程と、
    前記配線基板を配置する前記工程の後、前記半導体基板の所定位置に集光点を合わせて前記第1の主面側からレーザ光を照射することによって改質領域を形成する工程と、
    を備えることを特徴とする固体撮像装置の製造方法。
  2. 前記フォトダイオードアレイは、隣接する前記第2導電型の半導体領域間における前記半導体基板の前記第2の主面上に配置された配線電極を備え、
    前記配線基板を配置する前記工程では、前記配線基板と前記配線電極とを接続することにより前記半導体基板の前記第2の主面上に前記配線基板を配置し、
    前記改質領域を形成する前記工程では、前記配線電極と前記半導体基板の第1の主面との間に前記改質領域を形成することを特徴とする請求項1に記載の固体撮像装置の製造方法。
  3. 前記フォトダイオードアレイは、隣接する前記第2導電型の半導体領域間における前記半導体基板の前記第2の主面上に配置された配線電極と、前記隣接する第2導電型の半導体領域間における前記半導体基板の前記第2の主面側に配置されると共に、前記半導体基板よりも不純物濃度が高く設定され、前記配線電極と電気的に接続された第1導電型の半導体領域と、を備え、
    前記第1導電型の半導体領域は、第1及び第2の部分を含み、
    前記第1及び第2の部分は、前記第2導電型の半導体領域の配置方向に離隔すると共に前記第2導電型の半導体領域の配置方向に交差する方向に延びており、
    前記配線基板を配置する前記工程では、前記配線基板と前記配線電極とを接続することにより前記半導体基板の前記第2の主面上に前記配線基板を配置し、
    前記改質領域を形成する前記工程では、前記第1の部分と前記第2の部分との間に、前記第2導電型の半導体領域の配置方向に交差する方向に延びて且つ前記半導体基板の前記第2の主面に達して前記改質領域を形成することを特徴とする請求項1に記載の固体撮像装置の製造方法。
  4. 前記半導体基板は、単結晶シリコン基板であると共に、前記改質領域の形成位置に対応したパターンが前記第2の主面上に配置されており、
    前記改質領域を形成する前記工程は、前記フォトダイオードアレイが載置される載置台と、前記載置台に載置された前記フォトダイオードアレイに赤外線を照射する赤外線照射手段と、前記フォトダイオードアレイの赤外線画像を撮像する撮像手段と、を有するレーザ加工装置を準備する工程と、
    前記半導体基板の前記第1の主面を前記撮像手段と対向させて前記フォトダイオードアレイを前記載置台上に載置する工程と、
    前記赤外線照射手段により前記赤外線を前記半導体基板の前記第1の主面側から前記フォトダイオードアレイに照射して、前記撮像手段により前記第2の主面の前記赤外線画像を撮像し、該赤外線画像から前記パターンを認識する工程と、
    認識した前記パターンに基づき前記半導体基板を移動させることにより、前記半導体基板の所定位置に前記集光点の位置を合わせる工程と、を含むことを特徴とする請求項1に記載の固体撮像装置の製造方法。
  5. 前記フォトダイオードアレイは、隣接する前記第2導電型の半導体領域間における前記半導体基板の前記第2の主面上に、前記パターンとして配置された配線電極を備えることを特徴とする請求項4に記載の固体撮像装置の製造方法。
  6. 請求項1〜5のいずれか一項に記載の固体撮像装置の製造方法により製造された固体撮像装置における前記半導体基板の前記第1の主面上にシンチレータを配置する工程を備えることを特徴とする放射線検出器の製造方法。
JP2009007699A 2009-01-16 2009-01-16 固体撮像装置の製造方法及び放射線検出器の製造方法 Active JP5247487B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007699A JP5247487B2 (ja) 2009-01-16 2009-01-16 固体撮像装置の製造方法及び放射線検出器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007699A JP5247487B2 (ja) 2009-01-16 2009-01-16 固体撮像装置の製造方法及び放射線検出器の製造方法

Publications (2)

Publication Number Publication Date
JP2010165917A JP2010165917A (ja) 2010-07-29
JP5247487B2 true JP5247487B2 (ja) 2013-07-24

Family

ID=42581852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007699A Active JP5247487B2 (ja) 2009-01-16 2009-01-16 固体撮像装置の製造方法及び放射線検出器の製造方法

Country Status (1)

Country Link
JP (1) JP5247487B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828015B2 (ja) * 2000-07-13 2011-11-30 三菱電機株式会社 光モジュール作製方法
JP2003086827A (ja) * 2001-09-12 2003-03-20 Hamamatsu Photonics Kk ホトダイオードアレイ、固体撮像装置、及び、放射線検出器
JP4394904B2 (ja) * 2003-06-23 2010-01-06 浜松ホトニクス株式会社 フォトダイオードアレイの製造方法
JP5055026B2 (ja) * 2007-05-31 2012-10-24 富士フイルム株式会社 撮像素子、撮像素子の製造方法、及び、撮像素子用の半導体基板

Also Published As

Publication number Publication date
JP2010165917A (ja) 2010-07-29

Similar Documents

Publication Publication Date Title
JP6151557B2 (ja) レーザー加工方法
JP4133429B2 (ja) 半導体装置
EP1605515B1 (en) Photodiode array, method for manufacturing same, and radiation detector
WO2015072260A1 (ja) 放射線検出器、及び放射線検出器の製造方法
KR20160053783A (ko) 웨이퍼의 가공 방법
TW200307322A (en) Semiconductor substrate, semiconductor chip and production method for a semiconductor device
JP3935091B2 (ja) 半導体装置、及びそれを用いた放射線検出器
JP5027339B1 (ja) 撮像装置及び製造方法
TWI327780B (en) A photo electric diodes array and the manufacturing method of the same and a radiation ray detector
JP5247486B2 (ja) 裏面入射型フォトダイオードアレイ及び放射線検出器
JP5247487B2 (ja) 固体撮像装置の製造方法及び放射線検出器の製造方法
JP4855439B2 (ja) 放射線検出器
JP6535769B2 (ja) 放射線検出器の製造方法
JP2019164163A (ja) 放射線検出器
JP5247484B2 (ja) 裏面入射型フォトダイオードアレイ及び放射線検出器
JP5247483B2 (ja) フォトダイオードアレイ及び放射線検出器
JP5247485B2 (ja) 放射線検出器及びその製造方法
JP5247488B2 (ja) フォトダイオードアレイ及び放射線検出器
CN115274724B (zh) 光敏元件的制备方法、光敏探测器和成像装置
US11644581B2 (en) Radiation detector and method for manufacturing radiation detector
JP2017183357A (ja) 放射線検出素子の製造方法、放射線検出素子、およびそれを含む放射線検出器
TW202142893A (zh) 放射線檢測器及放射線檢測器的製造方法
JP2020177033A (ja) 放射線検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250