JP5245270B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5245270B2
JP5245270B2 JP2007084725A JP2007084725A JP5245270B2 JP 5245270 B2 JP5245270 B2 JP 5245270B2 JP 2007084725 A JP2007084725 A JP 2007084725A JP 2007084725 A JP2007084725 A JP 2007084725A JP 5245270 B2 JP5245270 B2 JP 5245270B2
Authority
JP
Japan
Prior art keywords
resin
conductive
bump
semiconductor device
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007084725A
Other languages
Japanese (ja)
Other versions
JP2008244277A (en
Inventor
明 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007084725A priority Critical patent/JP5245270B2/en
Publication of JP2008244277A publication Critical patent/JP2008244277A/en
Application granted granted Critical
Publication of JP5245270B2 publication Critical patent/JP5245270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Wire Bonding (AREA)

Description

本発明は、封止された半導体装置のうち、特にフリップチップ、CSPに関するものであり、高接続信頼性が必要な半導体装置の実装構造及び実装方法に関する。   The present invention relates to a flip chip and a CSP among sealed semiconductor devices, and more particularly to a semiconductor device mounting structure and mounting method that require high connection reliability.

電子機器の急速な発達に伴い、半導体装置にはこれまで以上に高機能化が求められるようになった。半導体装置の多機能化に伴い半導体装置の入出力端子数は増加し、また半導体装置を高速動作させるための配線長は短縮化が求められている。   With the rapid development of electronic devices, semiconductor devices have been required to have higher functionality than ever. As the number of functions of a semiconductor device increases, the number of input / output terminals of the semiconductor device increases, and the wiring length for operating the semiconductor device at high speed is required to be shortened.

こうした要求を実現するために開発された接続工法としてフリップチップ接続がある。フリップチップ接続は半導体装置の配線面のエリア上に接続パッドを設けることができるため多ピン化に適している。また、ワイヤボンディングやテープオートメイティッドボンディングのような他の半導体素子接続工法と比較し、引き出し線を必要としないため配線長の短縮化が可能である。   As a connection method developed to realize such a requirement, there is a flip chip connection. The flip chip connection is suitable for increasing the number of pins because a connection pad can be provided on the area of the wiring surface of the semiconductor device. In addition, compared with other semiconductor element connection methods such as wire bonding and tape automated bonding, the length of wiring can be shortened because no lead wire is required.

以上のような理由から電子機器に用いられる半導体素装置の実装には、フリップチップ接続を使用したものが増加している。   For the reasons described above, the number of semiconductor chip devices used in electronic devices using flip chip connection is increasing.

現在、フリップチップに使用される一般的なバンプ電極の材質としては、Auや半田等が用いられている。   At present, Au, solder, or the like is used as a material for a general bump electrode used in a flip chip.

半田の材質の例としてはSn−Pb共晶はんだがあるが、Sn−Pb共晶はんだに限定されず、たとえばSn−Pb(共晶を除く)、Sn−Ag、Sn−Cu、Sn−Sb、Sn−Zn、Sn−Biおよびこれら前記した材料に特定の添加元素をさらに加えた材料を挙げることができ、これらが適宜用いられる。   Examples of the solder material include Sn-Pb eutectic solder, but are not limited to Sn-Pb eutectic solder. For example, Sn-Pb (excluding eutectic), Sn-Ag, Sn-Cu, Sn-Sb. , Sn—Zn, Sn—Bi, and materials obtained by further adding specific additive elements to the above-described materials can be used, and these are used as appropriate.

一方、フリップチップ接続される半導体素子の多くは、半導体装置−配線基板間の熱膨張差による応力を緩和するため、半導体装置−配線基板の隙間を樹脂封止することにより、接続信頼性を確保する必要がある。このような例として、特許文献1などがある。 On the other hand, in many of the semiconductor elements that are flip-chip connected, the connection reliability is ensured by resin-sealing the gap between the semiconductor device and the wiring board in order to relieve stress due to the difference in thermal expansion between the semiconductor device and the wiring board. There is a need to. As such an example, there is Patent Document 1 or the like.

他のバンプ電極材質の例としては、例えば特許文献2のように導電性樹脂バンプを使用したものがある。
特開平11−233558号公報 特開2000−332053号公報
Examples of other bump electrode materials include those using conductive resin bumps as disclosed in Patent Document 2, for example.
Japanese Patent Laid-Open No. 11-233558 JP 2000-332053 A

前者の半田バンプを用いた従来例の場合、半導体装置−配線基板間の熱膨張差による応力を緩和するために樹脂封止を行うことで接続信頼性は高くなるが、半田バンプの弾性率の方が樹脂に比較してはるかに高い。例えばSn−3AG−0.5Cu半田の弾性率は約40GPaであるのに対し、エポキシ樹脂の弾性率は充填剤を混入して高弾性率化した場合でも10GPa程度である。   In the case of the former example using the former solder bump, the connection reliability is improved by performing resin sealing in order to relieve the stress due to the difference in thermal expansion between the semiconductor device and the wiring board. It is much higher than the resin. For example, the elastic modulus of Sn-3AG-0.5Cu solder is about 40 GPa, whereas the elastic modulus of epoxy resin is about 10 GPa even when a high elastic modulus is obtained by mixing a filler.

このため、弾性率の高い半田部分には応力が集中しやすくなるため高い応力となり、弾性率の低い樹脂部分は低い応力となる応力分布が発生する。つまり半導体装置と配線基板とをつなぐ電極部分には依然として高い応力が発生することとなり、場合によっては半田バンプにクラックが発生する等の不良を引き起こす原因となる。   For this reason, stress tends to concentrate on a solder portion having a high elastic modulus, resulting in a high stress, and a resin distribution having a low stress occurs in a resin portion having a low elastic modulus. That is, high stress is still generated in the electrode portion connecting the semiconductor device and the wiring board, which may cause defects such as cracks in the solder bumps.

半田バンプの接続信頼性を向上させるためには、樹脂部分の弾性率を上げる必要があるが、最も一般的な無機フィラーを混入する方法では、無機フィラーの混入量に限界があり、混入しすぎると、樹脂の粘度が異常に高くなる。このような場合には、樹脂の十分な流動性が確保できなくなり、半導体装置−配線基板間の樹脂封止自体が困難になるという問題がある。   In order to improve the connection reliability of solder bumps, it is necessary to increase the elastic modulus of the resin part. However, the most common method of mixing inorganic fillers has a limit on the amount of inorganic fillers mixed, and it is too mixed. And the viscosity of the resin becomes abnormally high. In such a case, sufficient fluidity of the resin cannot be ensured, and there is a problem that the resin sealing itself between the semiconductor device and the wiring board becomes difficult.

後者の導電性樹脂バンプによって半導体装置と配線基板とを接続する構造の場合、導電性樹脂を使用することによる応力緩和効果は期待できるが、バンプ自体の接合強度が弱いため、低い応力であっても接合部が破壊されてしまい、十分な接続信頼性を確保することが困難であるという課題がある。樹脂の接続強度を向上させた場合は、良好な導電性の確保が難しく、十分な接合強度の確保と良好な導電性の確保との両立が困難であるという問題がある。   In the case of the structure in which the semiconductor device and the wiring board are connected by the latter conductive resin bump, the stress relaxation effect by using the conductive resin can be expected, but since the bonding strength of the bump itself is weak, the stress is low. However, there is a problem that it is difficult to ensure sufficient connection reliability because the joint portion is destroyed. When the connection strength of the resin is improved, there is a problem that it is difficult to ensure good conductivity, and it is difficult to ensure both sufficient bonding strength and good conductivity.

以上述べたように、フリップチップ接続は、高性能化に適した構造であるため、将来的に需要増が見込まれるが、高信頼性確保の課題が残っている。   As described above, the flip chip connection is a structure suitable for high performance, so that demand is expected to increase in the future, but there remains a problem of ensuring high reliability.

本発明の目的は、フリップチップ接続やCSP接続において、重要な課題となっている高信頼の確保が可能となる半導体装置の実装構造及び実装方法を提供するものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device mounting structure and mounting method capable of ensuring high reliability, which is an important issue in flip chip connection and CSP connection.

上記目的を達成するため、本発明は、第1の態様として、導電性を有するバンプを介して半導体素子が配線基板と導通している半導体装置において、前記半導体素子と前記配線基板との間が第1の樹脂により封止され、前記第1の樹脂の弾性率が前記バンプの弾性率よりも大きく、前記バンプは複数の導電粒子と第2の樹脂からなり、前記導電粒子表面の少なくとも一部は少なくとも1層の導電物質層に覆われ、前記導電粒子の中心部は第3の樹脂からなることを特徴とする半導体装置を提供するものである。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a semiconductor device in which a semiconductor element is electrically connected to a wiring board through conductive bumps, wherein a gap between the semiconductor element and the wiring board is provided. Sealed with a first resin, and the elastic modulus of the first resin is larger than the elastic modulus of the bump, and the bump comprises a plurality of conductive particles and a second resin, and at least a part of the surface of the conductive particles Is provided with at least one conductive material layer, and the central portion of the conductive particles is made of a third resin.

以上の構成によれば、半導体装置と配線基板との熱膨張係数の差により熱応力が発生した場合でも、弾性率の高い第1の樹脂(絶縁樹脂)側に応力がかかりやすくなるため、導電性樹脂バンプ部分にかかる応力は小さくなり、その結果、導通部分であるバンプの寿命が長くなることから、高信頼性が確保可能となる。さらに導電性樹脂バンプの材料開発の課題として、低抵抗化と高密着強度との両立があるが、本実装構造を適用すれば、密着強度が低い導電性樹脂を使用した場合でも、熱応力のかかりやすい第1の樹脂の密着強度を強くすることで、高信頼性確保が可能となり、導電性樹脂バンプを使用した場合の課題であった高信頼性の確保と良好な導通の確保との両立が実現可能となる。さらに導電性樹脂バンプの弾性率を低くすることによる効果として、半導体装置と配線基板とを導電性樹脂バンプを介して接続後に不具合を確認した場合、第1の樹脂で封止する前であれば、導電性樹脂バンプがガラス転移温度以上になるように加熱して、導電性樹脂バンプの弾性率を可能な限り低くした状態として、半導体装置を取り外すことにより、配線基板や半導体装置を破壊することなくリペアすることが容易となる。さらに、導電性樹脂バンプのガラス転移点<第1の樹脂のガラス転移点の関係を付加することにより、温度条件に依存することなく、常に導電性樹脂バンプの弾性率<第1の樹脂の弾性率の関係を維持し、良好な状態を保つことが可能となる。   According to the above configuration, even when thermal stress is generated due to a difference in thermal expansion coefficient between the semiconductor device and the wiring board, stress is easily applied to the first resin (insulating resin) side having a high elastic modulus. As a result, the stress applied to the conductive resin bump portion is reduced, and as a result, the life of the bump that is the conductive portion is prolonged, so that high reliability can be ensured. Furthermore, as a material development issue for conductive resin bumps, there is a balance between low resistance and high adhesion strength, but if this mounting structure is applied, even if a conductive resin with low adhesion strength is used, thermal stress will be reduced. By increasing the adhesion strength of the first resin that is likely to be applied, it is possible to ensure high reliability, and to ensure both high reliability and good conduction, which were problems when using conductive resin bumps. Is feasible. Furthermore, as an effect of lowering the elastic modulus of the conductive resin bump, if a defect is confirmed after the semiconductor device and the wiring board are connected via the conductive resin bump, it is before sealing with the first resin. In order to destroy the wiring board or the semiconductor device by removing the semiconductor device with the conductive resin bump heated to the glass transition temperature or higher and the elastic modulus of the conductive resin bump being lowered as much as possible It is easy to repair without any problems. Further, by adding the relationship of the glass transition point of the conductive resin bump <the glass transition point of the first resin, the elastic modulus of the conductive resin bump <the elasticity of the first resin always without depending on the temperature condition. It is possible to maintain the relationship between the rates and maintain a good state.

さらに、本発明では、導電性樹脂バンプの弾性率に大きく影響する導電粒子が第3の樹脂であるコアの樹脂物性に依存するため、導電粒子自体の物性が金属ではなく樹脂に近くなり低弾性な導電性樹脂バンプを実現できる。従って、導電性樹脂バンプの弾性率<第1の樹脂の弾性率の関係を容易に得ることが可能となる。   Furthermore, in the present invention, the conductive particles that greatly affect the elastic modulus of the conductive resin bumps depend on the resin physical properties of the core, which is the third resin. A conductive resin bump can be realized. Therefore, it is possible to easily obtain the relationship of the elastic modulus of the conductive resin bump <the elastic modulus of the first resin.

また、第3の樹脂の周りに導電層を設けた場合のバンプ形成手法として、1個の樹脂コアボールをバンプとして用いる方法があるが、本発明の多数の粒子を用いる場合と比較すると次の課題がある。   In addition, as a bump forming method in the case where a conductive layer is provided around the third resin, there is a method using one resin core ball as a bump. Compared with the case where a large number of particles of the present invention are used, the following method is used. There are challenges.

まず、1個の樹脂コアボールをバンプとして用いる方法の場合の一つ目の課題は、適用する半導体装置のピッチに合わせて、それぞれ専用のサイズの樹脂コアボールを用意しなければならず、バンプの製造コストがかかるという点である。
ピッチに対してバンプサイズのバランスが悪くなり、ピッチに対してバンプサイズが大きすぎる場合は、隣のバンプとショートする問題があり、ピッチに対してバンプサイズが小さすぎる場合は、接続信頼性が低下するという問題がある。
First, the first problem in the method of using one resin core ball as a bump is that a resin core ball of a dedicated size must be prepared according to the pitch of the semiconductor device to be applied. The manufacturing cost of this is.
If the bump size balance becomes worse with respect to the pitch, and the bump size is too large with respect to the pitch, there is a problem of short-circuiting with the adjacent bump, and if the bump size is too small with respect to the pitch, the connection reliability is improved. There is a problem of lowering.

1個の樹脂コアボールをバンプとして用いる方法の場合の二つ目の課題は、バンプ形成性があげられる。本発明の場合、スクリーン印刷法を用いることによって樹脂コア粒子の入った導電性ペーストでバンプ形成することが可能であるが、1個の樹脂コアボールバンプの場合、個々のバンプをパッド上に整列させる必要があるため、バンプ形成コストの面でスクリーン印刷法の方が有利である。   A second problem in the method of using one resin core ball as a bump is bump formation. In the case of the present invention, it is possible to form a bump with a conductive paste containing resin core particles by using a screen printing method, but in the case of a single resin core ball bump, the individual bumps are aligned on the pad. Therefore, the screen printing method is more advantageous in terms of bump formation cost.

本発明の第1の態様においては、前記第2の樹脂は前記導電物質層の酸化膜を除去する成分を含むことが好ましい。このような構成とすれば、導電粒子表面の導電層を溶融させて結合させる際に、第2の樹脂が持つ酸化膜除去作用によって導電層表面の酸化膜を除去可能となるため、導電粒子表面の安定した結合を実現することが可能となる。   In the first aspect of the present invention, it is preferable that the second resin includes a component for removing an oxide film of the conductive material layer. With this configuration, when the conductive layer on the surface of the conductive particles is melted and bonded, the oxide film on the surface of the conductive layer can be removed by the oxide film removing action of the second resin. It is possible to realize a stable coupling.

本発明の第1の態様の上記のいずれの構成においても、前記第3の樹脂は熱硬化性樹脂であることが好ましい。このような構成とすれば、様々な温度条件下においても第3の樹脂が溶融することが無いため、常に安定した形状を保つことができる。従って導電粒子の表面が溶融して結合する状態においても、コアが安定していることにより導電粒子の配列および形状が大きく崩れることなく結合できるため、半導体装置と基板との間の導通確保が容易になる。   In any of the above-described configurations of the first aspect of the present invention, the third resin is preferably a thermosetting resin. With such a configuration, since the third resin does not melt even under various temperature conditions, a stable shape can always be maintained. Therefore, even when the surfaces of the conductive particles are melted and bonded, since the core is stable, the arrangement and shape of the conductive particles can be bonded without greatly breaking, so it is easy to ensure conduction between the semiconductor device and the substrate. become.

また、本発明の第1の態様の上記のいずれの構成においても、前記第2の樹脂にはナノ粒子が含まれていることが好ましい。このような構成とすれば、ナノ粒子による低融点化作用により、第2の樹脂の硬化時に導電粒子間の接合が可能となり、安定した導通特性を得ることが容易になる。   In any of the above configurations of the first aspect of the present invention, it is preferable that the second resin contains nanoparticles. With such a configuration, the low melting point action by the nanoparticles makes it possible to join the conductive particles when the second resin is cured, and it becomes easy to obtain stable conduction characteristics.

また、本発明の第1の態様の上記のいずれの構成においても、第1の樹脂には無機充填剤が混入されていることが好ましい。このような構成とすれば、第1の樹脂の弾性率をさらに向上させることができるため、本発明の効果をさらに引き出すことが可能となる。また、第1の樹脂単体の弾性率が導電性樹脂バンプの弾性率より低い場合でも、第1の樹脂に無機充填剤を添加し、第1の樹脂の弾性率を高くすることで、両者の関係を改善することが可能となる。   In any of the above configurations of the first aspect of the present invention, it is preferable that an inorganic filler is mixed in the first resin. With such a configuration, the elastic modulus of the first resin can be further improved, so that the effects of the present invention can be further extracted. Even when the elastic modulus of the first resin alone is lower than the elastic modulus of the conductive resin bump, by adding an inorganic filler to the first resin and increasing the elastic modulus of the first resin, The relationship can be improved.

また、上記目的を達成するため、本発明は、第2の態様として、半導体素子の接続電極に導電性を有する第1のバンプを供給する工程と、配線基板の接続電極に導電性を有する第2のバンプを供給する工程と、前記半導体素子と前記配線基板を位置合わせして搭載する工程と、加熱により前記第1のバンプと前記第2のバンプに含まれる複数の導電粒子の少なくとも一部を覆う導電物質層が一時的に溶融し、隣接する導電粒子を導通させる工程と、を含む半導体装置の製造方法であって、前記第1の樹脂の硬化後の弾性率が前記第1のバンプおよび前記第2のバンプの硬化後の弾性率よりも大きいことを特徴とする半導体装置の製造方法を提供するものである。   In order to achieve the above object, the present invention provides, as a second aspect, a step of supplying a first bump having conductivity to the connection electrode of the semiconductor element, and a step of supplying conductivity to the connection electrode of the wiring board. A step of supplying two bumps, a step of positioning and mounting the semiconductor element and the wiring board, and at least a part of the plurality of conductive particles contained in the first bump and the second bump by heating. A method of manufacturing a semiconductor device, comprising: a step of temporarily melting a conductive material layer covering the conductive layer and electrically connecting adjacent conductive particles, wherein the first bump has an elastic modulus after the first resin is cured. And providing a method of manufacturing a semiconductor device, wherein the elastic modulus of the second bump is greater than that after curing.

本発明の第2の態様によれば、良好な導通状態であり、かつ導電性樹脂バンプの弾性率<第1の樹脂の弾性率である半導体装置の実装構造を実現できる。   According to the second aspect of the present invention, it is possible to realize a mounting structure of a semiconductor device that is in a good conductive state and has an elastic modulus of the conductive resin bump <an elastic modulus of the first resin.

本発明によれば、フリップチップ接続やCSP接続において、重要な課題となっている高信頼の確保が可能となる半導体装置の実装構造及び実装方法を提供できる。   According to the present invention, it is possible to provide a mounting structure and a mounting method for a semiconductor device that can ensure high reliability, which is an important issue in flip chip connection and CSP connection.

フリップチップ実装工法を使った電子部品装置に関して、本発明を用いた実施の形態を示すが、適用する電子部品はCSP、BGA、ベアチップ等、いずれの形態でも良く特に限定されるものではない。   Although an embodiment using the present invention will be described with respect to an electronic component device using a flip chip mounting method, the applied electronic component may be any form such as CSP, BGA, bare chip, etc., and is not particularly limited.

まず、本発明の半導体装置の実装構造の一例について、図1を用いて詳細に説明する。
半導体装置1の電極パッド3と配線基板2の電極パッド4との間は、導電性樹脂バンプ7で接続されており、半導体装置1と配線基板2との電気的接続を達成している。配線基板2の電極パッド4の一例としては銅配線の表面にニッケルメッキを施し、さらにその上に金メッキを形成した構造があげられる。
First, an example of a mounting structure of a semiconductor device of the present invention will be described in detail with reference to FIG.
The electrode pads 3 of the semiconductor device 1 and the electrode pads 4 of the wiring board 2 are connected by conductive resin bumps 7 to achieve electrical connection between the semiconductor device 1 and the wiring board 2. An example of the electrode pad 4 of the wiring board 2 is a structure in which the surface of the copper wiring is plated with nickel, and further gold plating is formed thereon.

導電性樹脂バンプ7の基材となる第2の樹脂10は、アクリル樹脂、メラミン樹脂、エポキシ樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエーテル樹脂、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、ポリエステル樹脂、フェノール樹脂、フルオレン樹脂、ベンゾシクロブテン樹脂、シリコーン樹脂等様々な材料があるが、特に限定されるものではなく、これらを1種あるいは2種以上組み合わせて用いることもできる。粘度、コスト、耐熱性、接着性等の面に優れるエポキシ樹脂が一般に用いられるが、25℃の室温において液状である樹脂が望ましい。   The second resin 10 serving as the base material of the conductive resin bump 7 is an acrylic resin, a melamine resin, an epoxy resin, a polyolefin resin, a polyurethane resin, a polycarbonate resin, a polystyrene resin, a polyether resin, a polyamide resin, a polyimide resin, or a fluorine resin. There are various materials such as a polyester resin, a phenol resin, a fluorene resin, a benzocyclobutene resin, and a silicone resin, but there is no particular limitation, and these can be used alone or in combination of two or more. Epoxy resins that are excellent in terms of viscosity, cost, heat resistance, adhesiveness and the like are generally used, but resins that are liquid at room temperature of 25 ° C. are desirable.

また、導電粒子の表面を溶融させる場合、この導電性樹脂バンプ7の基材となる第2の樹脂10に酸化膜除去作用を付加することで粒子同士の接合性を飛躍的に向上させることができ、有効である。第2の樹脂10にフラックス作用を与えるには、(メタ)アクリル酸、マレイン酸などの不飽和酸、蓚酸、マロン酸などの有機二酸、クエン酸などの有機酸をはじめ、炭化水素の側鎖に、ハロゲン基、水酸基、ニトリル基、ベンジル基、カルボキシル基等を少なくとも一つ添加すればよい。第2の樹脂10にこれらの添加剤を3〜10wt%(重量%)加えても良いし、他の方法としては、エポキシ樹脂の硬化剤と主剤との反応時に生成される上記物質を利用して、酸化膜除去を行うことも可能である。   Further, when the surface of the conductive particles is melted, it is possible to drastically improve the bondability between the particles by adding an oxide film removing action to the second resin 10 which is the base material of the conductive resin bump 7. It is possible and effective. In order to give a flux action to the second resin 10, an unsaturated acid such as (meth) acrylic acid and maleic acid, an organic diacid such as oxalic acid and malonic acid, an organic acid such as citric acid, and the hydrocarbon side At least one halogen group, hydroxyl group, nitrile group, benzyl group, carboxyl group or the like may be added to the chain. These additives may be added to the second resin 10 in an amount of 3 to 10 wt% (weight%). As another method, the above-mentioned substance generated during the reaction between the curing agent of the epoxy resin and the main agent is used. It is also possible to remove the oxide film.

導電粒子5の形状は、針状、球状、フレーク状等、さまざまであるが、特に限定されない。図1(b)に示すように、第3の樹脂(樹脂コア)8に導電層9が施された導電粒子を使用することで、通常、金属である導電粒子自体の物性を第3の樹脂8の物性に限りなく近づけることが可能となり、導電性樹脂バンプのさらなる低弾性化が実現できる。導電層9は、ニッケル、金、はんだ等の金属メッキが施されているものが一般的である。上記物質で、導電物質が溶融しない場合は、各導電粒子5の表面が第2の樹脂10の硬化収縮力により接触し導通を確保する。   The shape of the conductive particles 5 is various, such as a needle shape, a spherical shape, and a flake shape, but is not particularly limited. As shown in FIG. 1 (b), by using conductive particles in which a conductive layer 9 is applied to a third resin (resin core) 8, the physical properties of the conductive particles themselves, which are usually metals, are changed to the third resin. Thus, the physical properties of the conductive resin bumps can be reduced as much as possible. The conductive layer 9 is generally subjected to metal plating such as nickel, gold, or solder. When the conductive material does not melt with the above substances, the surface of each conductive particle 5 is contacted by the curing shrinkage force of the second resin 10 to ensure conduction.

また、導電粒子5の周囲の金属を溶融させて粒子間を結合させる場合は、はんだが適しており、材質の例としてはSn/Pb共晶はんだがあるが、Sn/Pb共晶はんだに限定されず、たとえばSn/Pb(共晶を除く)、Sn/Ag、Sn/Cu、Sn/Sb、Sn/Zn、Sn/Biおよびこれら列記した材料に特定の添加元素をさらに加えた材料を挙げることができ、これらを適宜用いることができる。この場合、導電性樹脂バンプ7中の微細な多数の導電粒子5が樹脂によって一体化しており、各粒子の表面の導電物質が少なくとも一時的に溶融して、各粒子間を結合し、再び硬化した状態となっている。従って導電粒子5の表面が溶融して各粒子間で結合するため、安定した導通を確保可能であるとともに、導電粒子5のコアを弾性率の低い物質にしておくことでバンプ自体の弾性率を低くすることが可能となる。さらに微細な多数の導電粒子5のそれぞれの表面層が結合しているため、多くの結合点を有することから各結合点に応力が分散されることで、結合点への応力集中を防ぐことが可能となり、高信頼性が確保できる。   In addition, when the metal around the conductive particles 5 is melted to bond the particles, solder is suitable, and examples of the material include Sn / Pb eutectic solder, but are limited to Sn / Pb eutectic solder. Examples include Sn / Pb (excluding eutectic), Sn / Ag, Sn / Cu, Sn / Sb, Sn / Zn, Sn / Bi, and materials obtained by further adding specific additive elements to the listed materials. These can be used as appropriate. In this case, a large number of fine conductive particles 5 in the conductive resin bump 7 are integrated by the resin, and the conductive material on the surface of each particle is at least temporarily melted, and the particles are bonded and cured again. It has become a state. Accordingly, since the surface of the conductive particles 5 is melted and bonded between the particles, stable conduction can be ensured, and the elastic modulus of the bump itself can be increased by making the core of the conductive particles 5 a material having a low elastic modulus. It can be lowered. Furthermore, since the surface layers of a large number of fine conductive particles 5 are bonded, since there are many bonding points, stress is dispersed at each bonding point, thereby preventing stress concentration at the bonding points. It is possible to secure high reliability.

導電粒子5のコアに用いる第3の樹脂8としては、メラミン樹脂、エポキシ樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、ポリイミド樹脂、フッ素樹脂、ポリエステル樹脂、フェノール樹脂、シリコーン樹脂等があげられるが、熱硬化性樹脂であることがより好ましい。その理由は、様々な温度条件下においてもコアである第3の樹脂8が溶融することが無いため、常に安定した形状を保つことができるためである。従って導電粒子5の表面が溶融して結合する状態においても、コアが安定していることにより導電粒子5の配列及び形状が大きく崩れることなく結合できるため、半導体装置と基板間との導通確保が容易になる。さらに第3の樹脂8の周囲にメッキ等により、金属の導電層を形成する際に、層間の密着力を向上させる目的で第3の樹脂8の周囲を粗化させることが有効である。第3の樹脂8の周囲の導電層9は、例えば、第3の樹脂8の表面にCu層、Cu層の周囲にSn/Pbはんだ層のように2層以上形成しても良い。   Examples of the third resin 8 used for the core of the conductive particles 5 include melamine resin, epoxy resin, polyolefin resin, polyurethane resin, polyimide resin, fluororesin, polyester resin, phenol resin, and silicone resin. More preferably, it is a resin. The reason is that the third resin 8 that is the core does not melt even under various temperature conditions, so that a stable shape can always be maintained. Therefore, even when the surfaces of the conductive particles 5 are melted and bonded, since the core is stable, the arrangement and shape of the conductive particles 5 can be bonded without being greatly damaged, so that the conduction between the semiconductor device and the substrate can be ensured. It becomes easy. Further, when forming a metal conductive layer around the third resin 8 by plating or the like, it is effective to roughen the periphery of the third resin 8 for the purpose of improving the adhesion between the layers. Two or more conductive layers 9 around the third resin 8 may be formed, for example, a Cu layer on the surface of the third resin 8 and an Sn / Pb solder layer around the Cu layer.

導電粒子5の粒子径に関してもさまざまであるが、第3の樹脂8を有する導電粒子5の場合、平均粒径で10μm程度、周囲の導電層の厚さは1〜2μm程度が目安となる。ただし、バンプピッチが微細の場合には、粒径を小さくすることもある。さらに粒子径については、メインとなる導電粒子の他に金属ナノ粒子を第2の樹脂10に混在させることにより、ナノ粒子による低融点化作用により、第2の樹脂10の硬化時に導電粒子5間の接合が可能となり、安定した導通特性を得ることが容易になる。導電性樹脂バンプ7に添加されている導電粒子5の量に関しては、粒子形状や粒子材質、製造方法等により異なるので、一概に規定することはできないが、一例をあげるとすれば、樹脂に対する導電粒子の体積比率で考えた場合、40%程度であることが望ましい。金属ナノ粒子は、Agが一般的であるが特にこれに限定されない。サイズは、15nm以下が望ましい。添加量としては、5〜10wt%(重量%)程度が目安となる。   The particle diameter of the conductive particles 5 varies, but in the case of the conductive particles 5 having the third resin 8, the average particle diameter is about 10 μm, and the thickness of the surrounding conductive layer is about 1 to 2 μm. However, when the bump pitch is fine, the particle size may be reduced. Further, with respect to the particle size, by mixing metal nanoparticles in the second resin 10 in addition to the main conductive particles, the effect of lowering the melting point of the nanoparticles makes it possible to reduce the gap between the conductive particles 5 when the second resin 10 is cured. Therefore, it becomes easy to obtain stable conduction characteristics. The amount of the conductive particles 5 added to the conductive resin bumps 7 differs depending on the particle shape, particle material, manufacturing method, and the like, and thus cannot be defined in general. In view of the volume ratio of the particles, it is desirable to be about 40%. The metal nanoparticles are generally Ag, but are not particularly limited thereto. The size is desirably 15 nm or less. The amount added is about 5 to 10 wt% (weight%).

電極間を保護する第1の樹脂(絶縁樹脂)6に関しては、導電性樹脂バンプ7に比較して、硬化後の弾性率が大きいことが必要である。ガラス転移点についても導電性樹脂バンプ7のガラス転移点より高くしておくことが望ましい。これにより、樹脂のガラス転移温度を前後する条件で使用された場合でも、常に「導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率」の関係が維持されるため、温度条件に依存することなく、良好な状態を保つことが可能となる。   The first resin (insulating resin) 6 that protects between the electrodes needs to have a higher elastic modulus after curing than the conductive resin bumps 7. The glass transition point is preferably higher than the glass transition point of the conductive resin bump 7. As a result, even when the resin is used under conditions where the glass transition temperature of the resin is around, the relationship of “elastic modulus of the conductive resin bump 7 <elastic modulus of the first resin 6” is always maintained. It is possible to maintain a good state without depending on it.

第1の樹脂6の材質については、上記の関係(導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率)を満たしていれば、導電性樹脂バンプ7に使用した第2の樹脂10と同系統のものを用いることが可能である。第1の樹脂6に対しては、導電性樹脂バンプ7との弾性率の差をさらに大きくするために、無機充填剤を混入するなどして、硬化後の弾性率を上昇させることができる。無機充填剤は、球状シリカが一般的であり、平均粒径は2〜3μmが一般的であるが、これに限定されない。無機充填剤の充填量については、導電性樹脂バンプ7の弾性率を上回るように調整するが、取り扱い上、65wt%(重量%)以下に抑えることが望ましい。   As for the material of the first resin 6, the second resin used for the conductive resin bump 7 as long as the above relationship (the elastic modulus of the conductive resin bump 7 <the elastic modulus of the first resin 6) is satisfied. 10 and the same system can be used. For the first resin 6, in order to further increase the difference in elastic modulus with the conductive resin bump 7, the elastic modulus after curing can be increased by mixing an inorganic filler or the like. The inorganic filler is generally spherical silica, and the average particle size is generally 2 to 3 μm, but is not limited thereto. The filling amount of the inorganic filler is adjusted so as to exceed the elastic modulus of the conductive resin bump 7, but it is desirable to suppress it to 65 wt% (weight%) or less for handling.

次に本発明の実装構造を実現するための実装方法の一例を図2を用いて、詳細に説明する。
まず、図2(a)に示すように、半導体装置1及び配線基板2を用意し、それぞれの電極パッド上に導電性樹脂バンプ7を形成する。このとき、半導体装置1側のバンプは完全に硬化させ、配線基板2側のバンプは、未硬化の状態にしておく。続いて、半導体装置1と配線基板2とを位置合わせし、加熱荷重を加えた状態で配線基板2側の導電性樹脂バンプ7を硬化させ、半導体装置1と配線基板2との電極間を接続する(図2(b))。この際の加熱条件は使用する樹脂の硬化特性に合わせる必要があり、エポキシ樹脂を使用する場合であれば、150〜200℃で硬化するのが一般的であるが、低反り化等を考慮し、150℃以下で硬化する場合もある。ここで良好な接続を得るための重要な点は、半導体装置1と配線基板2との反りを極力無くすことであり、反りがあると、半導体装置1と配線基板2間との隙間が一定に保たれないので、未接続となる不良が発生しやすい。反りを抑える手段としては、実装時の半導体装置1や配線基板2を強く吸引したり、搭載時に所定の荷重をかけることにより、反りを矯正する等の方法がある。
これらの対策は、配線基板2の導電性樹脂バンプ7を硬化中も実施しておくほうが望ましい。配線基板2の導電性樹脂バンプ7の硬化が完了し、半導体装置1と配線基板2との電気的接続が取れた後、半導体装置1と配線基板2との隙間に第1の樹脂6を毛細管現象を利用して充填し、第1の樹脂6を硬化することで、本発明の実装構造が完了する(図2(c))。このとき、「導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率」の関係が成り立っている。
Next, an example of a mounting method for realizing the mounting structure of the present invention will be described in detail with reference to FIG.
First, as shown in FIG. 2A, a semiconductor device 1 and a wiring board 2 are prepared, and conductive resin bumps 7 are formed on the respective electrode pads. At this time, the bumps on the semiconductor device 1 side are completely cured, and the bumps on the wiring board 2 side are left uncured. Subsequently, the semiconductor device 1 and the wiring substrate 2 are aligned, the conductive resin bumps 7 on the wiring substrate 2 side are cured with a heating load applied, and the electrodes of the semiconductor device 1 and the wiring substrate 2 are connected. (FIG. 2B). The heating conditions at this time must be matched to the curing characteristics of the resin used, and if an epoxy resin is used, it is generally cured at 150 to 200 ° C., but considering low warpage and the like. In some cases, it may be cured at 150 ° C. or lower. Here, an important point for obtaining a good connection is to eliminate the warp between the semiconductor device 1 and the wiring board 2 as much as possible, and if there is a warp, the gap between the semiconductor device 1 and the wiring board 2 becomes constant. Since it is not maintained, a failure that is not connected tends to occur. As means for suppressing the warping, there are methods such as strongly sucking the semiconductor device 1 and the wiring board 2 at the time of mounting, and correcting the warping by applying a predetermined load at the time of mounting.
These countermeasures are preferably implemented even while the conductive resin bumps 7 of the wiring board 2 are cured. After the curing of the conductive resin bumps 7 on the wiring substrate 2 is completed and the electrical connection between the semiconductor device 1 and the wiring substrate 2 is established, the first resin 6 is inserted into the gap between the semiconductor device 1 and the wiring substrate 2 by a capillary tube. The mounting structure of the present invention is completed by filling using the phenomenon and curing the first resin 6 (FIG. 2C). At this time, the relationship of “elastic modulus of conductive resin bump 7 <elastic modulus of first resin 6” is established.

以上は、半導体装置1側の導電性樹脂バンプ7を硬化させてから、実装する例を示したが、以下に半導体装置1側及び配線基板2側の導電性樹脂バンプ7が両方共に未硬化の場合の実装方法について説明する。
まず、図2(a)に示すように、半導体装置1及び配線基板2を用意し、それぞれの電極パッド上に導電性樹脂バンプ7を形成する。半導体装置1側のバンプ及び配線基板2側のバンプは、未硬化の状態にしておく。なお、図2では半導体装置1及び配線基板2の両方の電極パッド3、4上に導電性樹脂バンプ7を形成した例を示しているが、本実装方法の場合、半導体装置1または配線基板2のどちらか一方の電極パッド3、4のみに導電性樹脂バンプ7を形成した場合(図示せず)でも実装が可能となる。
The above shows an example of mounting after the conductive resin bump 7 on the semiconductor device 1 side is cured, but both the conductive resin bumps 7 on the semiconductor device 1 side and the wiring board 2 side are uncured below. The mounting method in the case will be described.
First, as shown in FIG. 2A, a semiconductor device 1 and a wiring board 2 are prepared, and conductive resin bumps 7 are formed on the respective electrode pads. The bumps on the semiconductor device 1 side and the wiring substrate 2 side are left in an uncured state. 2 shows an example in which the conductive resin bumps 7 are formed on the electrode pads 3 and 4 of both the semiconductor device 1 and the wiring substrate 2, but in the case of this mounting method, the semiconductor device 1 or the wiring substrate 2 is used. Even when the conductive resin bumps 7 are formed only on one of the electrode pads 3 and 4 (not shown), mounting is possible.

次にこのまま半導体装置1の搭載を行う場合は、半導体装置1と配線基板2との位置合わせ後、マウンタの搭載高さ位置制御機能を使って、半導体装置1側のバンプと配線基板2側のバンプとが確実に接続し、かつバンプが潰れて隣同士のバンプがショートしない高さで保持したまま、少なくとも半導体装置1の自重で未硬化の導電性樹脂バンプ7が潰れなくなる程度まで導電性樹脂バンプ7の硬化を進める。   Next, when mounting the semiconductor device 1 as it is, after the alignment of the semiconductor device 1 and the wiring substrate 2, the mounting height position control function of the mounter is used to adjust the bumps on the semiconductor device 1 side and the wiring substrate 2 side. Conductive resin to the extent that uncured conductive resin bumps 7 are not crushed at least due to the weight of the semiconductor device 1 while the bumps are securely connected and held at such a height that the bumps are crushed and adjacent bumps are not short-circuited. The bump 7 is cured.

また、別の方法としては、半導体装置搭載時に半導体装置1の自重で未硬化のバンプが潰れない工夫をしておくことで、マウンタに高さ位置制御機能が無くても実装することが可能である。一例をあげると、導通を確保する必要がないパッド等に半導体装置1の自重を支えて高さの確保が可能なダミーバンプをあらかじめ形成しておけばよい。ダミ−バンプは荷重をかけた際に潰れなければ、金属、非金属にかかわらず使用可能である。   As another method, by mounting the semiconductor device so that uncured bumps are not crushed by the weight of the semiconductor device 1, the mounter can be mounted without a height position control function. is there. For example, dummy bumps that can secure the height by supporting the weight of the semiconductor device 1 on a pad or the like that does not need to ensure conduction may be formed in advance. The dummy bumps can be used regardless of whether they are metallic or non-metallic if they do not collapse when a load is applied.

導電性樹脂バンプ7の硬化温度は150〜200℃が一般的であるが、導電粒子5表面の金属を溶融させて接続する場合には、その金属の溶融温度以上の温度で加熱して、導電粒子5間を結合させる必要がある。一例をあげると、Pb/Sn共晶はんだの場合は、融点が183℃であるため、200℃程度に加熱すると良い。   The curing temperature of the conductive resin bump 7 is generally 150 to 200 ° C., but when the metal on the surface of the conductive particle 5 is melted and connected, the conductive resin bump 7 is heated at a temperature equal to or higher than the melting temperature of the metal to be conductive. It is necessary to bond between the particles 5. As an example, in the case of Pb / Sn eutectic solder, the melting point is 183 ° C., so it is preferable to heat to about 200 ° C.

半導体装置1及び配線基板2の導電性樹脂バンプ7の硬化が完了し、半導体装置1と配線基板2との電気的接続が取れた後、半導体装置1と配線基板2との隙間に第1の樹脂6を毛細管現象を利用して充填し、第1の樹脂6を硬化することで、本発明の実装構造が完了する(図2(c))。   After the conductive resin bumps 7 on the semiconductor device 1 and the wiring board 2 are cured and the electrical connection between the semiconductor device 1 and the wiring board 2 is established, the first gap is formed in the gap between the semiconductor device 1 and the wiring board 2. The mounting structure of the present invention is completed by filling the resin 6 using the capillary phenomenon and curing the first resin 6 (FIG. 2C).

本方法については、半導体装置1側の電極パッド3と配線基板2側の電極パッド4との両方に導電性樹脂バンプ7を形成したほうが、半導体装置1側の導電性樹脂バンプ7と配線基板2側の導電性樹脂バンプ7との硬化が同時に行なわれるため、両バンプが一体化しやすくなり、良好な導通性能を得ることが容易になる。特に導電粒子5の周囲の導電物質が溶融する構造の場合、本実装方法を用いることで半導体装置1側及び配線基板2側のバンプの境界で粒子表面間の濡れ不良なく実装可能となるため、極めて低抵抗かつ低弾性のバンプ構造を実現することができる。   In this method, the conductive resin bump 7 and the wiring board 2 on the semiconductor device 1 side are formed by forming the conductive resin bump 7 on both the electrode pad 3 on the semiconductor device 1 side and the electrode pad 4 on the wiring board 2 side. Since the curing with the conductive resin bump 7 on the side is performed at the same time, both the bumps are easily integrated, and it is easy to obtain good conduction performance. In particular, in the case of a structure in which the conductive material around the conductive particles 5 is melted, it is possible to mount without wet defects between the particle surfaces at the boundary between the bumps on the semiconductor device 1 side and the wiring substrate 2 side by using this mounting method. An extremely low resistance and low elasticity bump structure can be realized.

次に本発明の実装構造を実現する為の他の実装方法の一例を図3を用いて、詳細に説明する。
まず、図3(a)に示すように半導体装置1及び配線基板2を用意し、それぞれの電極パッド上に導電性樹脂バンプ7を形成する。このとき、半導体装置1側のバンプは完全に硬化させ、配線基板2側のバンプは、わずかに硬化を進めた状態にしておく。例えばエポキシ樹脂の場合の一例を述べると、150℃で1〜2分程度加熱しておく必要がある。
次に配線基板2上に第1の樹脂6を所定量塗布する(図3(b))。このとき、上記のように配線基板2側の導電性樹脂バンプ7の硬化を進める工程を実施しておかないと、配線基板1側の導電性樹脂バンプ7と第1の樹脂6とが混ざり合って、良好な接続ができない場合が多い。
続いて、半導体装置1と配線基板2とを位置合わせし、加熱荷重を加えた状態で第1の樹脂6、配線基板側の導電性樹脂バンプ7を硬化させ、半導体装置1と配線基板2との電極間を接続し、本発明の実装構造が完了する(図3(c))。このとき、「導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率」の関係が成り立っている。
Next, an example of another mounting method for realizing the mounting structure of the present invention will be described in detail with reference to FIG.
First, as shown in FIG. 3A, a semiconductor device 1 and a wiring board 2 are prepared, and conductive resin bumps 7 are formed on the respective electrode pads. At this time, the bumps on the semiconductor device 1 side are completely cured, and the bumps on the wiring board 2 side are kept slightly cured. For example, in the case of an epoxy resin, it is necessary to heat at 150 ° C. for about 1 to 2 minutes.
Next, a predetermined amount of the first resin 6 is applied onto the wiring board 2 (FIG. 3B). At this time, the conductive resin bump 7 on the side of the wiring board 1 and the first resin 6 are mixed unless the step of curing the conductive resin bump 7 on the side of the wiring board 2 is performed as described above. In many cases, a good connection cannot be established.
Subsequently, the semiconductor device 1 and the wiring substrate 2 are aligned, and the first resin 6 and the conductive resin bump 7 on the wiring substrate side are cured in a state where a heating load is applied. The electrodes are connected to complete the mounting structure of the present invention (FIG. 3C). At this time, the relationship of “elastic modulus of conductive resin bump 7 <elastic modulus of first resin 6” is established.

この方法の場合、良好な導通状態であり、かつ導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率である半導体装置1の実装構造を実現できると同時に、LSIを搭載した時点で既に第1の樹脂で封止された状態になるため、組み立て工程中に発生した応力で接合部を破壊してしまうことを防げる。さらに配線基板2側に塗布した導電性樹脂の硬化を進めて樹脂の粘度差をつけてから、配線基板2上に絶縁性樹脂を塗布することで、導電性樹脂と絶縁性樹脂とが混ざり合うことを防ぐことが可能となる。   In the case of this method, it is possible to realize the mounting structure of the semiconductor device 1 that is in a good conductive state and has the elastic modulus of the conductive resin bump 7 <the elastic modulus of the first resin 6, and at the same time when the LSI is mounted. Since it has already been sealed with the first resin, it is possible to prevent the joint from being destroyed by the stress generated during the assembly process. Further, the conductive resin applied to the wiring board 2 side is cured to make a difference in resin viscosity, and then the insulating resin is applied onto the wiring board 2 so that the conductive resin and the insulating resin are mixed. It becomes possible to prevent this.

また、導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率の関係を満たすために第1の樹脂6の弾性率をさらに高くする方法としては、多量のシリカフィラーを第1の樹脂に混入することが一般的である。しかしその場合、第1の樹脂の粘度が上昇するため、半導体装置と基板の隙間に第1の樹脂を充填することが困難になり、この点がこの構造を得るための課題になるが、本実装方法を適用する場合には、あらかじめ配線基板2上に絶縁性樹脂を塗布して実装することで狭い隙間に高粘度の樹脂を充填する必要が無くなり、導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率の関係を満たした構造が容易に実現可能となる。   As a method for further increasing the elastic modulus of the first resin 6 in order to satisfy the relationship of the elastic modulus of the conductive resin bump 7 <the elastic modulus of the first resin 6, a large amount of silica filler is used as the first resin. It is common to mix in. However, in this case, the viscosity of the first resin increases, so that it becomes difficult to fill the gap between the semiconductor device and the substrate with the first resin, and this is a problem for obtaining this structure. In the case of applying the mounting method, it is not necessary to fill the narrow gap with high-viscosity resin by applying the insulating resin on the wiring board 2 in advance, and the elastic modulus of the conductive resin bumps 7 Thus, a structure satisfying the relationship of the elastic modulus of one resin 6 can be easily realized.

フリップチップやCSPのように、半導体装置1と配線基板2の電極3、4が向かい合って接続する場合、半導体装置1と配線基板2との熱膨張係数の差により熱応力が発生した場合でも、導電性樹脂バンプ7の弾性率<第1の樹脂6の弾性率の関係を満たした実装構造にすることで、高信頼性確保可能な実装構造を実現できる。その理由は、本構造の場合、弾性率の高い第1の樹脂6側に応力がかかりやすくなるため、弾性率の低い導電性樹脂バンプ7部分にかかる応力は小さくなるためである。その結果、導通部分であるバンプの寿命が長くなることから、高信頼性が確保可能となる。さらに導電性樹脂バンプ7の材料開発の課題として、低抵抗化と高密着強度との両立があるが、本実装構造を適用すれば、密着強度は低いが電導性に優れた導電性樹脂を使用した場合でも、熱応力のかかりやすい第1の樹脂6の密着強度を強くすることで、高信頼性確保が可能となり、導電性樹脂バンプ7を使用した場合の課題であった高信頼性の確保と良好な導通の確保との両立が実現可能となる。   When the semiconductor device 1 and the electrodes 3 and 4 of the wiring board 2 are connected to face each other like a flip chip or CSP, even when thermal stress is generated due to the difference in thermal expansion coefficient between the semiconductor device 1 and the wiring board 2, By adopting a mounting structure that satisfies the relationship of the elastic modulus of the conductive resin bump 7 <the elastic modulus of the first resin 6, a mounting structure that can ensure high reliability can be realized. The reason is that, in the case of this structure, stress is easily applied to the first resin 6 side having a high elastic modulus, so that the stress applied to the conductive resin bump 7 portion having a low elastic modulus is small. As a result, the life of the bump which is the conductive portion is prolonged, so that high reliability can be ensured. Furthermore, as a material development issue for the conductive resin bump 7, there is compatibility between low resistance and high adhesion strength, but if this mounting structure is applied, a conductive resin with low adhesion strength but excellent electrical conductivity is used. Even in this case, it is possible to ensure high reliability by increasing the adhesion strength of the first resin 6 that is easily subjected to thermal stress, and ensuring high reliability, which was a problem when the conductive resin bumps 7 were used. And ensuring good conduction can be realized.

なお、上記実施形態は本発明の好適な実施の一例であり、本発明はこれに限定されること無く様々な変形が可能である。   In addition, the said embodiment is an example of suitable implementation of this invention, and various deformation | transformation are possible for this invention, without being limited to this.

本発明の好適な実施の形態にかかる半導体装置の実装構造の断面構造及び樹脂コア粒子の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the mounting structure of the semiconductor device concerning suitable embodiment of this invention, and the cross-section of the resin core particle. 本発明の好適な実施の形態にかかる半導体装置の実装方法を示す模式図である。It is a schematic diagram which shows the mounting method of the semiconductor device concerning suitable embodiment of this invention. 本発明の好適な実施の形態にかかる半導体装置の他の実装方法を示す模式図である。It is a schematic diagram which shows the other mounting method of the semiconductor device concerning suitable embodiment of this invention.

符号の説明Explanation of symbols

1 半導体装置
2 配線基板
3 電極パッド(LSI側)
4 電極パッド(配線基板側)
5 導電粒子
6 第1の樹脂(絶縁樹脂)
7 導電性樹脂バンプ
8 第3の樹脂(樹脂コア)
9 導電層
10 第2の樹脂(導電性樹脂を形成)
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Wiring board 3 Electrode pad (LSI side)
4 Electrode pads (wiring board side)
5 conductive particles 6 first resin (insulating resin)
7 Conductive resin bumps 8 Third resin (resin core)
9 Conductive layer 10 Second resin (forms conductive resin)

Claims (4)

導電性を有するバンプを介して半導体素子が配線基板と導通している半導体装置において、
前記半導体素子と前記配線基板との間が第1の樹脂により封止され、
前記バンプは、複数の導電粒子と第2の樹脂とからなり、
前記半導体素子及び前記配線基板のいずれか一方と電気的に接続される、前記複数の導電粒子のうちの一の粒子が、前記複数の導電粒子のうちの他の粒子を介して、前記半導体素子および前記配線基板のいずれか他方と電気的に接続され、
前記導電粒子表面の少なくとも一部は少なくとも1層の導電物質層に覆われ、前記導電粒子の中心部は熱硬化性樹脂である第3の樹脂からなり、
前記導電粒子の平均粒径は10μm程度、前記導電物質層の厚さは1〜2μmである半導体装置。
In a semiconductor device in which a semiconductor element is electrically connected to a wiring board via a conductive bump,
Between the semiconductor element and the wiring board is sealed with a first resin,
The bump is composed of a plurality of conductive particles and a second resin,
One particle of the plurality of conductive particles electrically connected to any one of the semiconductor element and the wiring board passes through another particle of the plurality of conductive particles, and the semiconductor element And electrically connected to either one of the wiring boards,
At least a part of the surface of the conductive particles is covered with at least one conductive material layer, and the central part of the conductive particles is made of a third resin that is a thermosetting resin,
The semiconductor device , wherein the conductive particles have an average particle size of about 10 μm and the conductive material layer has a thickness of 1 to 2 μm .
前記第1の樹脂の弾性率が前記バンプの弾性率よりも大きい請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein an elastic modulus of the first resin is larger than an elastic modulus of the bump. 前記第2の樹脂は、前記導電物質層の酸化膜を除去する成分を含み、
前記第2の樹脂にはナノ粒子が含まれ、
前記第1の樹脂には、無機充填剤が混入されている請求項1または2のいずれか1項記載の半導体装置。
The second resin includes a component that removes an oxide film of the conductive material layer,
The second resin includes nanoparticles,
The semiconductor device according to claim 1, wherein an inorganic filler is mixed in the first resin .
半導体素子の接続電極に導電性を有する第1のバンプを供給する工程と、
配線基板の接続電極に導電性を有する第2のバンプを供給する工程と、
加熱により前記第1のバンプと前記第2バンプとに含まれる複数の導電粒子の少なくとも一部を一時的に溶融させて、前記複数の導電粒子のうちの一の粒子を、前記半導体素子及び前記配線基板のいずれか一方と電気的に接続させて、前記複数の導電粒子のうちの他の粒子を介して、前記半導体素子および前記配線基板のいずれか他方と電気的に接続させる工程とを含み、
前記導電粒子表面の少なくとも一部は少なくとも1層の導電物質層に覆われ、前記導電粒子の中心部は熱硬化性樹脂である第3の樹脂からなり、
前記導電粒子の平均粒径は10μm程度、前記導電物質層の厚さは1〜2μmである半導体装置の製造方法。
Supplying a conductive first bump to the connection electrode of the semiconductor element;
Supplying a conductive second bump to the connection electrode of the wiring board;
At least a part of the plurality of conductive particles included in the first bump and the second bump is temporarily melted by heating, and one particle of the plurality of conductive particles is converted into the semiconductor element and the semiconductor element. Electrically connecting to any one of the wiring boards and electrically connecting to the other of the semiconductor element and the wiring board via other particles of the plurality of conductive particles. ,
At least a part of the surface of the conductive particles is covered with at least one conductive material layer, and the central part of the conductive particles is made of a third resin that is a thermosetting resin,
A method of manufacturing a semiconductor device , wherein the conductive particles have an average particle size of about 10 μm and the conductive material layer has a thickness of 1 to 2 μm .
JP2007084725A 2007-03-28 2007-03-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5245270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084725A JP5245270B2 (en) 2007-03-28 2007-03-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084725A JP5245270B2 (en) 2007-03-28 2007-03-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008244277A JP2008244277A (en) 2008-10-09
JP5245270B2 true JP5245270B2 (en) 2013-07-24

Family

ID=39915220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084725A Expired - Fee Related JP5245270B2 (en) 2007-03-28 2007-03-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5245270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263053B2 (en) * 2009-07-24 2013-08-14 株式会社村田製作所 Semiconductor package and semiconductor package module
JP2020123635A (en) * 2019-01-29 2020-08-13 Dic株式会社 Semiconductor device
CN116127905B (en) * 2023-04-06 2023-07-04 之江实验室 Method for designing substrate, substrate and wafer-level chip integrated structure

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817498A (en) * 1994-06-30 1996-01-19 Ind Technol Res Inst Composite bump junction
JP3183099B2 (en) * 1995-05-31 2001-07-03 松下電器産業株式会社 Method of forming bump
JP3698223B2 (en) * 1996-10-07 2005-09-21 富士通株式会社 Manufacturing method of semiconductor device
JPH10313022A (en) * 1997-03-10 1998-11-24 Toshiba Corp Semiconductor device
JPH11297878A (en) * 1998-04-08 1999-10-29 Sumitomo Metal Mining Co Ltd Method of forming solder bumps
JP2000133680A (en) * 1998-10-26 2000-05-12 Mitsui High Tec Inc Surface mounting joint member
JP2000332054A (en) * 1999-05-19 2000-11-30 Toray Eng Co Ltd Mounting method of ic chip
JP3890814B2 (en) * 1999-05-25 2007-03-07 株式会社デンソー Electronic component mounting method
JP2001015677A (en) * 1999-06-25 2001-01-19 Toshiba Corp Semiconductor device
JP2001170798A (en) * 1999-10-05 2001-06-26 Tdk Corp Flux for soldering, solder paste, electronic part device, electronic circuit module, electronic circuit device and soldering method
JP2001351947A (en) * 2000-06-07 2001-12-21 Citizen Watch Co Ltd Method of manufacturing semiconductor device and method of mounting the device
JP3606253B2 (en) * 2001-11-27 2005-01-05 松下電工株式会社 Epoxy resin composition and semiconductor device
JP3792627B2 (en) * 2002-08-28 2006-07-05 ナガセケムテックス株式会社 Flip chip device manufacturing method and semiconductor mounting reinforcing composition
JP4192554B2 (en) * 2002-10-25 2008-12-10 株式会社デンソー Multilayer circuit board manufacturing method
JP2005167274A (en) * 2005-01-21 2005-06-23 Seiko Epson Corp Semiconductor device, method for manufacturing same, and liquid crystal display device
WO2006120997A1 (en) * 2005-05-11 2006-11-16 Namiki Seimitsu Houseki Kabushikikaisha Cylindrical coil and cylindrical micro-motor using the same
CN101208173B (en) * 2005-05-25 2010-05-19 千住金属工业株式会社 Lead-free solder paste and its manufacture method
JP2007053212A (en) * 2005-08-17 2007-03-01 Denso Corp Circuit board manufacturing method

Also Published As

Publication number Publication date
JP2008244277A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP3905100B2 (en) Semiconductor device and manufacturing method thereof
JP5510795B2 (en) Electronic component mounting structure, electronic component mounting method, and electronic component mounting substrate
JP4605155B2 (en) Semiconductor device and manufacturing method thereof
JP4659262B2 (en) Electronic component mounting method and paste material
TWI431746B (en) Semiconductor device
KR20090052300A (en) Electronic components mounting adhesive and electronic components mounting structure
JPWO2008136419A1 (en) Semiconductor device, manufacturing method, and repair method
JP2008218643A (en) Semiconductor device and its manufacturing method
JP4887997B2 (en) Electronic component mounting method
JP5569676B2 (en) Electronic component mounting method
JP2009099669A (en) Mounting structure of electronic component, and mounting method thereof
JP2007251053A (en) Mounting structure of semiconductor device and method of manufacturing mounting structure
JP5562438B2 (en) Electronic component mounting body, electronic component, board
KR102006637B1 (en) Method Of Forming Bump And Semiconductor device including The Same
JP4887879B2 (en) Electronic component mounting structure and manufacturing method thereof
JP2009200067A (en) Semiconductor chip and semiconductor device
JP5245270B2 (en) Semiconductor device and manufacturing method thereof
JP2015008254A (en) Circuit board, method of manufacturing the same, method of manufacturing semiconductor device, and method of manufacturing mounting substrate
JP5560713B2 (en) Electronic component mounting method, etc.
JP5333220B2 (en) Semiconductor device mounting structure and semiconductor device mounting method
JP5541157B2 (en) Mounting substrate, substrate, and manufacturing method thereof
JP2013031864A (en) Solder ball and semiconductor device using solder ball
JP5113390B2 (en) Wiring connection method
JP4065264B2 (en) Substrate with relay substrate and method for manufacturing the same
JP2013062472A (en) Semiconductor package and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees