JP2009200067A - Semiconductor chip and semiconductor device - Google Patents

Semiconductor chip and semiconductor device Download PDF

Info

Publication number
JP2009200067A
JP2009200067A JP2008036749A JP2008036749A JP2009200067A JP 2009200067 A JP2009200067 A JP 2009200067A JP 2008036749 A JP2008036749 A JP 2008036749A JP 2008036749 A JP2008036749 A JP 2008036749A JP 2009200067 A JP2009200067 A JP 2009200067A
Authority
JP
Japan
Prior art keywords
semiconductor chip
insulating film
electrode pad
metal layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008036749A
Other languages
Japanese (ja)
Inventor
Takatoshi Osumi
貴寿 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008036749A priority Critical patent/JP2009200067A/en
Publication of JP2009200067A publication Critical patent/JP2009200067A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To surely suppress cracking or peeling of a pad portion and prevent shortcircuiting among metal bumps. <P>SOLUTION: In the structure of a semiconductor chip electrode, the level of the surface of a base metal layer is made lower by 0.0-0.4 μm than that of a second insulation film, so that a stress by a flux print mask can be dispersed and cracking or peeling of an electrode pad can be suppressed in circuits in the periphery of the electrode pad. In addition, no flux is supplied to the outer side than a diameter of the base metal layer, so as to prevent shortcircuiting among metal bumps. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体チップをフリップチップ実装してなる半導体装置および実装される半導体チップに関する。   The present invention relates to a semiconductor device formed by flip-chip mounting a semiconductor chip and a semiconductor chip to be mounted.

近年、情報通信機器や事務用電子機器の小型化および高機能化が進展するのに伴って、これらの機器に搭載される半導体集積回路装置等の半導体装置について、小型化とともに、入出力のための外部端子の数を増加することが要求されている。しかし、半導体装置に搭載される半導体チップの周辺に電極パッドを形成してワイヤボンディング方式で外部回路と接続する方式では、外部端子数の増加と半導体チップの小型化の両立が困難になってきている。   In recent years, as information communication equipment and office electronic equipment have been reduced in size and functionality, semiconductor devices such as semiconductor integrated circuit devices mounted on these equipment have been reduced in size and input / output. There is a demand to increase the number of external terminals. However, in the method in which electrode pads are formed around a semiconductor chip mounted on a semiconductor device and connected to an external circuit by a wire bonding method, it is difficult to simultaneously increase the number of external terminals and downsize the semiconductor chip. Yes.

これらの要求を実現させる技術として、電極パッドを能動領域上に形成し、ワイヤボンディングやインナーリードボンディングを行うパッドオンエレメントと呼ばれる技術がある。さらに、能動領域上に形成された電極パッド上にバンプと呼ばれる外部接続端子を形成し、バンプを介して外部回路と接続するフリップチップ技術が採用されるようになってきた。   As a technique for realizing these requirements, there is a technique called a pad-on element in which an electrode pad is formed on an active region and wire bonding or inner lead bonding is performed. Furthermore, flip-chip technology has been adopted in which external connection terminals called bumps are formed on electrode pads formed on the active region and are connected to external circuits via the bumps.

以下、図6〜図12を用いて従来の半導体装置について説明する。
図6は従来の半導体チップの電極構造におけるクラック発生状況を説明する断面図、図7は従来の半導体チップの電極構造におけるショート発生状況を説明する断面図である。図8,図9は従来の半導体チップにおける金属バンプの形成工程を示す工程断面図である。図10は従来の半導体装置の製造工程を説明する工程断面図である。図11は従来のBGA(Ball Grid Array)型の半導体チップの電極構造を示す断面図である。図12は従来のBGA型半導体装置の構造を示す断面図であり、図11に示す電極を備えた半導体チップ1を配線基板12にフリップチップ実装し、アンダーフィル(under fill)樹脂13を注入した状態を示す断面図である。
A conventional semiconductor device will be described below with reference to FIGS.
FIG. 6 is a cross-sectional view for explaining the occurrence of cracks in the electrode structure of a conventional semiconductor chip, and FIG. 8 and 9 are process cross-sectional views showing a process of forming metal bumps in a conventional semiconductor chip. FIG. 10 is a process cross-sectional view illustrating a manufacturing process of a conventional semiconductor device. FIG. 11 is a cross-sectional view showing an electrode structure of a conventional BGA (Ball Grid Array) type semiconductor chip. FIG. 12 is a cross-sectional view showing the structure of a conventional BGA type semiconductor device. The semiconductor chip 1 having the electrodes shown in FIG. 11 is flip-chip mounted on a wiring board 12, and an underfill resin 13 is injected. It is sectional drawing which shows a state.

図11に示すように、半導体チップ1には、半導体チップ1上に形成される半導体素子に電気的に接続された電極パッド2と、この電極パッド2の上側に開口部を有する第1絶縁膜3と第2絶縁膜4が形成されている。第2絶縁膜4の上部および開口部を含む電極パッド2上に下地金属層5が形成されている。下地金属層5上には、半田からなる金属バンプ14が形成されている。半導体チップ1は、図12に示すように、配線基板12にフェイスダウン搭載され、半導体チップ1の電極パッド2と配線基板12の電極ランド12aとが金属バンプ14を介して機械的および電気的に接続されている。そして、半導体チップ1と配線基板12との隙間で金属バンプ14間にアンダーフィル樹脂13が充填されている。また、配線基板12の半導体チップ搭載面に対する反対側の面には半田ボール10が形成されている。   As shown in FIG. 11, the semiconductor chip 1 includes an electrode pad 2 electrically connected to a semiconductor element formed on the semiconductor chip 1, and a first insulating film having an opening above the electrode pad 2. 3 and the second insulating film 4 are formed. A base metal layer 5 is formed on the electrode pad 2 including the upper portion of the second insulating film 4 and the opening. Metal bumps 14 made of solder are formed on the base metal layer 5. As shown in FIG. 12, the semiconductor chip 1 is mounted face-down on the wiring board 12, and the electrode pads 2 of the semiconductor chip 1 and the electrode lands 12 a of the wiring board 12 are mechanically and electrically connected via metal bumps 14. It is connected. An underfill resin 13 is filled between the metal bumps 14 in the gap between the semiconductor chip 1 and the wiring board 12. Solder balls 10 are formed on the surface of the wiring board 12 opposite to the semiconductor chip mounting surface.

アンダーフィル樹脂13を充填するのは、次の理由による。半導体チップ1と配線基板12とでは熱膨張係数に差があることから、熱履歴等を受けた場合には、接合部とりわけ金属バンプ14のチップ側根元部分に応力がかかることになる。この応力集中を緩和するため、半導体チップ1と配線基板12との間の金属バンプ14以外の部分に封止樹脂としてアンダーフィル樹脂13を注入し、硬化することによって補強している。このアンダーフィル樹脂13には、エポキシ系樹脂などのベースとなる樹脂13aの他に、半導体チップ1の熱膨張係数と似た熱膨張係数とするための適当な大きさのフィラー成分13bが添加されている(filler:詰め物)。そして、フィラー成分13bの添加量や粒径を調整することによって熱膨張係数を調整している。アンダーフィル樹脂13には、外部からの水分の浸入を抑制し、耐湿性を高める役割もある。   The underfill resin 13 is filled for the following reason. Since there is a difference in coefficient of thermal expansion between the semiconductor chip 1 and the wiring substrate 12, when a thermal history is received, stress is applied to the joint, particularly the chip-side root portion of the metal bump 14. In order to alleviate this stress concentration, the underfill resin 13 is injected as a sealing resin into a portion other than the metal bumps 14 between the semiconductor chip 1 and the wiring board 12 and is reinforced by curing. In addition to the resin 13a serving as a base such as an epoxy resin, the underfill resin 13 is added with a filler component 13b having an appropriate size for making the thermal expansion coefficient similar to that of the semiconductor chip 1. (Filler). And the thermal expansion coefficient is adjusted by adjusting the addition amount and particle size of the filler component 13b. The underfill resin 13 also has a role of suppressing moisture permeation from the outside and improving moisture resistance.

ここで、ボール搭載方式による半導体チップの金属バンプ形成方法について、図8,図9を用いて説明する。
まず、図8(a)に示すように、上述の電極パッド2,第1絶縁膜3,第2絶縁膜4および下地金属層5を形成した後、電極パッド2上が開口したフラックス印刷マスク8を設置する。
Here, a method for forming metal bumps on a semiconductor chip by a ball mounting method will be described with reference to FIGS.
First, as shown in FIG. 8A, after the electrode pad 2, the first insulating film 3, the second insulating film 4 and the base metal layer 5 are formed, the flux printing mask 8 having an opening on the electrode pad 2 is formed. Is installed.

次に、図8(b)に示すように、スキージ7にてフラックス6をフラックス印刷マスク8開口部に入れ込み印刷する。
次に、図8(c)に示すように、フラックス印刷マスク8を取り除く。
Next, as shown in FIG. 8 (b), the squeegee 7 puts the flux 6 into the opening of the flux printing mask 8 for printing.
Next, as shown in FIG. 8C, the flux printing mask 8 is removed.

次に、図8(d)に示すように、フラックス6が印刷された電極パッド2上が開口したボール搭載マスク9を搭載する。
次に、図9(a)に示すように、金属バンプ14をボール搭載マスク9開口部に入れ込み仮接合する。
Next, as shown in FIG. 8D, a ball mounting mask 9 having an opening on the electrode pad 2 on which the flux 6 is printed is mounted.
Next, as shown in FIG. 9A, the metal bumps 14 are inserted into the openings of the ball mounting mask 9 and temporarily joined.

次に、図9(b)に示すように、フラックス6で仮接着された金属バンプ14を、図9(c)に示すように、リフローにより電極パッド2に接合する。
最後に、図9(d)に示すように、洗浄により余分なフラックス6を除去する。
Next, as shown in FIG. 9B, the metal bumps 14 temporarily bonded with the flux 6 are joined to the electrode pad 2 by reflow as shown in FIG. 9C.
Finally, as shown in FIG. 9D, excess flux 6 is removed by cleaning.

以上により、電極へのバンプ形成が完成する。
また、前述したようなフリップチップ実装方式による半導体装置の製造方法について、図10を用いて説明する。
Thus, bump formation on the electrode is completed.
Further, a method for manufacturing a semiconductor device by the flip chip mounting method as described above will be described with reference to FIG.

まず、図10(a)に示すように、電極パッド2上に電気めっき法や印刷法やボール搭載法などの方法で金属バンプ14を形成したバンプ付の半導体チップ1と、金属バンプ14に対応する位置に金属パッド12aが形成された配線基板12とを用意する。そして、半導体チップ1を配線基板12に対してフリップチップで搭載する。   First, as shown in FIG. 10A, the bumped semiconductor chip 1 in which the metal bumps 14 are formed on the electrode pads 2 by a method such as electroplating, printing, or ball mounting, and the metal bumps 14 are supported. A wiring board 12 on which metal pads 12a are formed is prepared. Then, the semiconductor chip 1 is mounted on the wiring substrate 12 by flip chip.

次に、図10(b)に示すように、半導体チップ1の金属バンプ14をリフローすることにより、半田を溶融し、金属バンプ14により半導体チップ1と配線基板12とを接続する。   Next, as shown in FIG. 10B, the solder bumps are melted by reflowing the metal bumps 14 of the semiconductor chip 1, and the semiconductor chip 1 and the wiring substrate 12 are connected by the metal bumps 14.

その後、図10(c)に示すように、半導体チップ1と配線基板12との隙間を清浄化し、ディスペンサ11を用いてその隙間にアンダーフィル樹脂13を注入する。注入はチップの周辺部から行うが、毛細管現象により全面に浸入し、半導体チップ1と配線基板12との隙間にアンダーフィル樹脂13が充填される。   Thereafter, as shown in FIG. 10C, the gap between the semiconductor chip 1 and the wiring substrate 12 is cleaned, and the underfill resin 13 is injected into the gap using the dispenser 11. The injection is performed from the peripheral portion of the chip, but it enters the entire surface by a capillary phenomenon, and the gap between the semiconductor chip 1 and the wiring substrate 12 is filled with the underfill resin 13.

その後、熱処理を行い、アンダーフィル樹脂13を硬化することによって封止する。
最後に、図10(d)に示すように、チップ搭載面と反対側の面に引き出された金属パッドに半田ボール10を形成し、リフローする。
Thereafter, heat treatment is performed, and the underfill resin 13 is cured to be sealed.
Finally, as shown in FIG. 10 (d), solder balls 10 are formed on the metal pads drawn out on the surface opposite to the chip mounting surface and reflowed.

以上により、BGA型の半導体装置が完成する。
特開平11−340265号公報
Thus, a BGA type semiconductor device is completed.
Japanese Patent Laid-Open No. 11-340265

前述したような半田ボール搭載方式では、図6(a)のように下地金属層5が第2保護膜4より高い場合、図6(b)に示すようにフラックス6を供給する際にフラックス印刷マスク8の開口径を下地金属層5の全径より小さくし、フラックス印刷マスク8と下地金属層5が接触するようにしている。これは、フラックス6の供給量が過多になり、周辺の電極にフラックス6がブリッジしてリフロー時に金属バンプ14同士がショートすることを防ぐために供給量を制御するためである。一方、半導体製造プロセスの著しい進化に伴って、半導体チップの構造も微細化、高集積化が進み、配線材料として比較的抵抗の小さい銅配線が用いられたり、層間絶縁膜として比誘電率の低い、いわゆる低誘電率(low−k)材料が用いられたりするケースが多くなってきている。しかし、低誘電率材料は機械的強度が弱いため、実装後に低誘電率膜にクラックや剥離が生じてしまうことが多くなってきた。そのため、フラックス印刷マスク8と下地金属層5が局所的に接触するようにしていると、図6(c)のように下部に応力が集中し、結果として図6(d)のようにクラック15が発生する可能性がある。   In the solder ball mounting method as described above, when the base metal layer 5 is higher than the second protective film 4 as shown in FIG. 6A, the flux printing is performed when the flux 6 is supplied as shown in FIG. 6B. The opening diameter of the mask 8 is made smaller than the entire diameter of the base metal layer 5 so that the flux printing mask 8 and the base metal layer 5 are in contact with each other. This is because the supply amount of the flux 6 is excessive, and the supply amount is controlled in order to prevent the flux 6 from bridging to peripheral electrodes and short-circuiting the metal bumps 14 during reflow. On the other hand, with the remarkable progress of the semiconductor manufacturing process, the structure of the semiconductor chip is also miniaturized and highly integrated, and copper wiring having a relatively low resistance is used as a wiring material, and the relative dielectric constant is low as an interlayer insulating film. In many cases, so-called low dielectric constant (low-k) materials are used. However, since the low dielectric constant material has low mechanical strength, the low dielectric constant film is often cracked or peeled after mounting. Therefore, if the flux printing mask 8 and the underlying metal layer 5 are in local contact, stress concentrates in the lower portion as shown in FIG. 6C, and as a result, cracks 15 as shown in FIG. May occur.

クラック15の発生を抑制する方法として、図7(a),図7(b)に示すように、下地金属層5より第2絶縁膜4を高く調整する方法がある(例えば、特許文献1参照)。フラックス印刷マスク8と下地金属層5が局所的に接触せず、第2絶縁膜4と接触していることから応力が分散しクラックは低減できる。しかし、図7(c)に示すようにフラックス6を印刷すると、下地金属層5の径より外側にフラックス6が供給されるために必要量以上のフラックス6が多量に供給されることになり、図7(d)に示すようにフラックス印刷マスク8を取り除いた際にフラックス6が電極周辺に濡れ広がり、周辺電極に供給されたフラックス6とブリッジすることでリフロー時に金属バンプ14同士がショートする可能性がある。   As a method of suppressing the generation of the crack 15, there is a method of adjusting the second insulating film 4 higher than the base metal layer 5 as shown in FIGS. 7A and 7B (for example, see Patent Document 1). ). Since the flux printing mask 8 and the underlying metal layer 5 are not in local contact but in contact with the second insulating film 4, stress is dispersed and cracks can be reduced. However, when the flux 6 is printed as shown in FIG. 7 (c), the flux 6 is supplied outside the diameter of the base metal layer 5, so that a larger amount of flux 6 than necessary is supplied. As shown in FIG. 7D, when the flux printing mask 8 is removed, the flux 6 wets and spreads around the electrode, and the metal bumps 14 can be short-circuited during reflow by bridging with the flux 6 supplied to the peripheral electrode. There is sex.

本発明は、このような事情に鑑みて創作したものであり、パッド部のクラックや剥離の発生を確実に抑制し、かつ金属バンプ間のショートを防止することを目的としている。   The present invention has been created in view of such circumstances, and an object thereof is to reliably suppress the occurrence of cracks and peeling of the pad portion and to prevent a short circuit between metal bumps.

上記目的を達成するために、請求項1記載の半導体チップは、配線基板に金属バンプを介して接続されることにより半導体装置が形成される半導体チップであって、前記金属バンプと接続する電極部が、前記半導体チップの外部端子となる電極パッドと、前記電極パッド上の少なくとも一部を開口するように形成される第1絶縁膜と、前記第1絶縁膜上に少なくとも前記電極パッド上を開口するように形成される第2絶縁膜と、前記電極パッド上および前記第1絶縁膜の一部の上に形成される下地金属層とを有し、前記下地金属層の前記電極パッド表面からの表面高さが前記第2絶縁膜の前記電極パッド表面からの表面高さより0.0〜0.4μm低いことを特徴とする。   To achieve the above object, a semiconductor chip according to claim 1 is a semiconductor chip in which a semiconductor device is formed by being connected to a wiring board via a metal bump, and an electrode portion connected to the metal bump. An electrode pad serving as an external terminal of the semiconductor chip, a first insulating film formed so as to open at least a part on the electrode pad, and an opening on at least the electrode pad on the first insulating film. And a base metal layer formed on the electrode pad and on a part of the first insulating film, the base metal layer extending from the surface of the electrode pad. The surface height is 0.0 to 0.4 μm lower than the surface height of the second insulating film from the electrode pad surface.

請求項2記載の半導体チップは、請求項1記載の半導体チップにおいて、前記電極パッドの端部が前記下地金属層の端部より隣接する電極部方向に突出することを特徴とする。
請求項3記載の半導体チップは、請求項2記載の半導体チップにおいて、前記第2絶縁膜の端部が前記電極パッドの端部より内側に形成されることを特徴とする。
According to a second aspect of the present invention, in the semiconductor chip according to the first aspect, an end portion of the electrode pad protrudes in an adjacent electrode portion direction from an end portion of the base metal layer.
According to a third aspect of the present invention, in the semiconductor chip according to the second aspect, the end of the second insulating film is formed inside the end of the electrode pad.

請求項4記載の半導体チップは、請求項3記載の半導体チップにおいて、前記第2絶縁膜の端部が前記第1絶縁膜の端部より前記下地金属層の膜厚の2倍の長さだけ内側に形成されることを特徴とする。   The semiconductor chip according to claim 4 is the semiconductor chip according to claim 3, wherein an end portion of the second insulating film is twice as long as a thickness of the base metal layer from an end portion of the first insulating film. It is formed inside.

請求項5記載の半導体装置は、請求項1から請求項4のいずれかに記載の半導体チップを前記配線基板に前記金属バンプを介して機械的および電気的に接続して搭載することを特徴とする。   A semiconductor device according to a fifth aspect is characterized in that the semiconductor chip according to any one of the first to fourth aspects is mounted on the wiring board through mechanical and electrical connection via the metal bumps. To do.

以上により、パッド部のクラックや剥離の発生を確実に抑制し、かつ金属バンプ間のショートを防止することができる。   By the above, the generation | occurrence | production of the crack of a pad part and peeling can be suppressed reliably, and the short circuit between metal bumps can be prevented.

以上のように、半導体チップの電極構造において、下地金属層の表面高さを第2絶縁膜の表面高さより0.0〜0.4μm低く構成し、マスク設置時にはマスクが下地金属層と第2絶縁膜との両方に接触するようにすることにより、フラックス印刷マスクによる応力が分散され、電極パッド部の周辺の回路部でのクラックや剥離を確実に抑制することができ、かつ、フラックスが下地金属層の径より外側に供給されることがないため、余分なフラックスの供給が抑制され、金属バンプ間のショートを防止することができる。   As described above, in the electrode structure of the semiconductor chip, the surface height of the base metal layer is configured to be 0.0 to 0.4 μm lower than the surface height of the second insulating film. By making contact with both of the insulating films, the stress due to the flux printing mask is dispersed, and cracks and peeling in the circuit portion around the electrode pad portion can be reliably suppressed, and the flux is the base. Since it is not supplied outside the diameter of the metal layer, supply of excess flux is suppressed, and a short circuit between metal bumps can be prevented.

以下、本発明にかかわる半導体チップの電極構造と半導体装置の実施の形態について図面を用いて詳細に説明する。
(実施の形態1)
図1は実施の形態1における半導体チップの電極構造を示す断面図である。図2は実施の形態1における半導体装置の構造を示す断面図であり、図1に示す半導体チップを配線基板にフリップチップ実装し、アンダーフィル樹脂を注入した状態を示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a semiconductor chip electrode structure and a semiconductor device according to the present invention will be described below in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is a sectional view showing an electrode structure of a semiconductor chip in the first embodiment. FIG. 2 is a cross-sectional view showing the structure of the semiconductor device according to the first embodiment, and is a cross-sectional view showing a state where the semiconductor chip shown in FIG. 1 is flip-chip mounted on a wiring board and underfill resin is injected.

半導体チップ1には複数の半導体素子が形成されており、図1に示すように、各半導体素子とそれに電気的に接続されて外部端子となり、アルミニウム(Al)からなる端子部分の表面形状が円形の電極パッド2と、この電極パッド2の上側に円形の開口部を有し、チッ化シリコンからなる第1絶縁膜3とが形成されている。また、第1絶縁膜3の上側にはさらに第1絶縁膜3上に円形の開口部を有し、ポリイミドからなる第2絶縁膜4が形成されている。この第2絶縁膜4は、電極パッド2の上部領域にかぶらないように、電極パッド2の外側で電極パッド2の近傍に形成されている。また、第1絶縁膜3の上部の一部および開口部を含む電極パッド2上に電極パッド2に接する面の裏面の平面形状が円形の下地金属層5が形成されている。下地金属層5は、第2絶縁膜4に接しないように形成され、例えばスパッタ法によって形成されたチタン(Ti)からなるバリアメタルと胴(Cu)からなる下部金属膜と、その上方に電気めっき法によって形成されたニッケル(Ni)からなる上部金属膜によって構成されている。または、無電解めっき法によって形成されたニッケル(Ni/Au)からなる金属膜によって構成されている。さらに、下地金属層5上には、半田からなる金属バンプが形成される(図示せず)。   The semiconductor chip 1 is formed with a plurality of semiconductor elements. As shown in FIG. 1, each semiconductor element is electrically connected to an external terminal, and the surface shape of a terminal portion made of aluminum (Al) is circular. The electrode pad 2 and a first insulating film 3 having a circular opening on the upper side of the electrode pad 2 and made of silicon nitride are formed. Further, on the upper side of the first insulating film 3, a second insulating film 4 having a circular opening on the first insulating film 3 and made of polyimide is formed. The second insulating film 4 is formed outside the electrode pad 2 and in the vicinity of the electrode pad 2 so as not to cover the upper region of the electrode pad 2. A base metal layer 5 having a circular planar shape on the back surface of the surface in contact with the electrode pad 2 is formed on the electrode pad 2 including a part of the upper portion of the first insulating film 3 and the opening. The base metal layer 5 is formed so as not to be in contact with the second insulating film 4. For example, a barrier metal made of titanium (Ti) and a lower metal film made of a body (Cu) formed by sputtering, for example, and an electric power above the lower metal film The upper metal film made of nickel (Ni) formed by plating is used. Or it is comprised by the metal film which consists of nickel (Ni / Au) formed by the electroless-plating method. Further, metal bumps made of solder are formed on the base metal layer 5 (not shown).

なお、第1絶縁膜3を構成する材料はチッ化シリコンに限られず、酸化シリコンやポリイミドなどでもよい。第2絶縁膜4を構成する材料についてもポリイミドに限られず、BCB(ベンゾシクロブテン)膜などでもよい。下部金属層5aのバリアメタルを構成する材料はTiに限られず、第1絶縁膜3との強い密着性を有する材料であればよく、例えばTiWやCr等を用いてもよい。また、下地金属層5の構成要素のCuについてもこれに限られず、導電性を有する材料であればよい。   The material constituting the first insulating film 3 is not limited to silicon nitride, and may be silicon oxide, polyimide, or the like. The material constituting the second insulating film 4 is not limited to polyimide, but may be a BCB (benzocyclobutene) film. The material constituting the barrier metal of the lower metal layer 5a is not limited to Ti, and any material having strong adhesion to the first insulating film 3 may be used. For example, TiW or Cr may be used. Further, Cu as a constituent element of the base metal layer 5 is not limited to this, and any material having conductivity may be used.

以上の本実施の形態において、下地金属層5の表面高さを第2絶縁膜4の表面高さより0.0〜0.4μm低くすることにより、フラックス印刷時に、フラックス印刷マスク上よりスキージ圧力が加わったときに、フラックス印刷マスクを下地金属層5だけでなく第2絶縁膜4にも接触させることができるため、応力を分散することができる。その結果として、半導体チップ1の内部に進展するようなクラックや低誘電率膜の剥離の発生が抑制される。   In the present embodiment described above, the squeegee pressure is higher than that on the flux printing mask during flux printing by making the surface height of the base metal layer 5 0.0 to 0.4 μm lower than the surface height of the second insulating film 4. When applied, the flux printing mask can be brought into contact not only with the underlying metal layer 5 but also with the second insulating film 4, so that the stress can be dispersed. As a result, occurrence of cracks that progress inside the semiconductor chip 1 and peeling of the low dielectric constant film are suppressed.

さらに、フラックスが下地金属層5の径より外側に供給されることがないことから、下地金属層が絶縁膜より大幅に低い場合のフラックス供給量過多とリフロー時のフラックスの粘性低下による周辺電極のフラックスまでのはい上がりとブリッジすることが無くなるため、リフロー時に金属バンプ同士がショートすることを抑制することができる。   Furthermore, since the flux is not supplied to the outside of the diameter of the base metal layer 5, an excess of the flux supply amount when the base metal layer is significantly lower than the insulating film, and the peripheral electrode due to the decrease in the viscosity of the flux during reflow. Since it does not bridge with the rising up to the flux, it is possible to suppress short circuit between the metal bumps during reflow.

以上の説明では、電極パッド2,下地金属層5,第1絶縁膜3の開口部ならびに第2絶縁膜4の開口部が円形の場合を例に説明したが、必ずしも円形にする必要はなく、半導体素子から金属バンプ14の接続が十分確保できれば平面形状は任意である。   In the above description, the case where the electrode pad 2, the base metal layer 5, the opening of the first insulating film 3 and the opening of the second insulating film 4 are circular has been described as an example. The planar shape is arbitrary as long as the connection of the metal bumps 14 from the semiconductor element can be secured sufficiently.

(実施の形態2)
図3は実施の形態2における半導体チップの電極構造を示す断面図である。図3において、実施の形態1の図1におけるのと同じ符号は同一構成要素を指している。本実施の形態に特有の構成は、次のとおりである。
(Embodiment 2)
FIG. 3 is a cross-sectional view showing the electrode structure of the semiconductor chip in the second embodiment. In FIG. 3, the same reference numerals as those in FIG. 1 of the first embodiment indicate the same components. The configuration specific to the present embodiment is as follows.

実施の形態1の構成において、さらに、下地金属層5の径を、電極パッド2の径より小さくし、電極パッド2の端部が下地金属層5の端部より隣接する電極方向に突出する構成とする。その他の構成については、実施の形態1と同様であるので、説明を省略する。   In the configuration of the first embodiment, the diameter of the base metal layer 5 is further smaller than the diameter of the electrode pad 2, and the end of the electrode pad 2 protrudes in the direction of the adjacent electrode from the end of the base metal layer 5. And Since other configurations are the same as those in the first embodiment, description thereof is omitted.

本実施の形態においては、フラックス印刷マスクが電極パッド2上の下地金属層5および第2絶縁膜4上に形成されるため、フラックス印刷マスクの開口端直下に電極パッド2が存在して応力を支え、半導体チップ内部に応力が伝わりにくくなり、半導体チップ内部に進展するようなクラックや低誘電率膜の剥離の発生がより抑制される。その他の効果については、実施の形態1の場合と同様である。   In the present embodiment, since the flux printing mask is formed on the base metal layer 5 and the second insulating film 4 on the electrode pad 2, the electrode pad 2 exists just below the opening end of the flux printing mask and stress is applied. The stress is less likely to be transmitted to the inside of the semiconductor chip, and the occurrence of cracks that progress into the semiconductor chip and the peeling of the low dielectric constant film are further suppressed. Other effects are the same as those in the first embodiment.

(実施の形態3)
図4は実施の形態3における半導体チップの電極構造を示す断面図である。図4において、実施の形態1の図1におけるのと同じ符号は同一構成要素を指している。本実施の形態に特有の構成は、次のとおりである。
(Embodiment 3)
FIG. 4 is a cross-sectional view showing the electrode structure of the semiconductor chip in the third embodiment. In FIG. 4, the same reference numerals as those in FIG. 1 of the first embodiment indicate the same components. The configuration specific to the present embodiment is as follows.

実施の形態1の構成において、さらに、下地金属層5の径が電極パッド2の径より小さく、かつ第2絶縁膜4の開口径を電極パッド2の径より小さくして第2絶縁膜4の端部が電極パッド2の端部より内側となる構成とする。その他の構成については、実施の形態1と同様であるので、説明を省略する。   In the configuration of the first embodiment, the diameter of the base metal layer 5 is further smaller than the diameter of the electrode pad 2 and the opening diameter of the second insulating film 4 is smaller than the diameter of the electrode pad 2 so that the second insulating film 4 The end portion is configured to be inside the end portion of the electrode pad 2. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

本実施の形態においては、実施の形態2と同様に、第2絶縁膜の開口端直下に電極パッドが存在して応力を支え、半導体チップ内部に応力が伝わりにくくなるため、半導体チップ内部に進展するようなクラックや低誘電率膜の剥離の発生がより抑制される。その他の効果については、実施の形態1の場合と同様である。   In the present embodiment, as in the second embodiment, the electrode pad exists immediately below the opening end of the second insulating film to support the stress, and it is difficult for the stress to be transmitted to the inside of the semiconductor chip. Occurrence of cracks and peeling of the low dielectric constant film are further suppressed. Other effects are the same as those in the first embodiment.

(実施の形態4)
図5は実施の形態4における半導体チップの電極構造を示す断面図である。図5において、実施の形態1の図1におけるのと同じ符号は同一構成要素を指している。本実施の形態に特有の構成は、次のとおりである。
(Embodiment 4)
FIG. 5 is a sectional view showing an electrode structure of a semiconductor chip in the fourth embodiment. In FIG. 5, the same reference numerals as those in FIG. 1 of the first embodiment indicate the same components. The configuration specific to the present embodiment is as follows.

実施の形態1の構成において、さらに、下地金属層5の径が電極パッド2の径より小さく、かつ第2絶縁膜4の開口径が電極パッド2の径より小さく、かつ第2絶縁膜4の開口径=第1絶縁膜の開口径3+下地金属層5の膜厚×2となり、第2絶縁膜4の端部が第1絶縁膜3の端部より下地金属層5の膜厚の2倍の長さだけ内側に形成される構成とする。その他の構成については、実施の形態1と同様であるので、説明を省略する。   In the configuration of the first embodiment, the diameter of the base metal layer 5 is smaller than the diameter of the electrode pad 2, the opening diameter of the second insulating film 4 is smaller than the diameter of the electrode pad 2, and the second insulating film 4 The opening diameter = the opening diameter 3 of the first insulating film + the film thickness of the base metal layer 5 × 2. The end of the second insulating film 4 is twice the film thickness of the base metal layer 5 from the end of the first insulating film 3. It is set as the structure formed inside only the length of. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

本実施の形態においては、無電解めっき方法の場合に膜厚方向と平面方向の金属成長が等距離であることから、第2絶縁膜の開口径の内部に隙間無く下地金属層が形成され、かつ表面高さが同様であることから、より半導体チップ内部に応力が伝わりにくくなるため、半導体チップ内部に進展するようなクラックや低誘電率膜の剥離の発生が抑制される。さらに、フラックスが下地金属層の径より外側に供給されることがないため、余分なフラックスの供給が抑制され、金属バンプ間のショートを防止することができる。その他の効果については、実施の形態1の場合と同様である。   In the present embodiment, in the case of the electroless plating method, since the metal growth in the film thickness direction and the planar direction is equidistant, the base metal layer is formed without a gap inside the opening diameter of the second insulating film, Moreover, since the surface height is the same, stress is less likely to be transmitted to the inside of the semiconductor chip, so that the occurrence of cracks that progress inside the semiconductor chip and the peeling of the low dielectric constant film are suppressed. Furthermore, since the flux is not supplied to the outside of the diameter of the base metal layer, the supply of excess flux is suppressed and a short circuit between the metal bumps can be prevented. Other effects are the same as those in the first embodiment.

本発明は、パッド部のクラックや剥離の発生を確実に抑制し、かつ金属バンプ間のショートを防止することができ、半導体チップをフリップチップ実装してなる半導体装置および実装される半導体チップ等に有用である。の半導体装置の電極構造は、電極パッド部近傍および周辺の回路部でのクラックや剥離を抑制することが可能になるので、信頼性の高い半導体装置を歩留まり良く製造するための技術として有用である。   INDUSTRIAL APPLICABILITY The present invention can reliably suppress the occurrence of cracks and peeling of the pad portion and prevent shorts between metal bumps. Useful. The electrode structure of this semiconductor device is useful as a technique for manufacturing a highly reliable semiconductor device with high yield because cracks and separation in the vicinity of the electrode pad portion and in the peripheral circuit portion can be suppressed. .

実施の形態1における半導体チップの電極構造を示す断面図Sectional drawing which shows the electrode structure of the semiconductor chip in Embodiment 1 実施の形態1における半導体装置の構造を示す断面図Sectional drawing which shows the structure of the semiconductor device in Embodiment 1 実施の形態2における半導体チップの電極構造を示す断面図Sectional drawing which shows the electrode structure of the semiconductor chip in Embodiment 2 実施の形態3における半導体チップの電極構造を示す断面図Sectional drawing which shows the electrode structure of the semiconductor chip in Embodiment 3 実施の形態4における半導体チップの電極構造を示す断面図Sectional drawing which shows the electrode structure of the semiconductor chip in Embodiment 4 従来の半導体チップの電極構造におけるクラック発生状況を説明する断面図Sectional drawing explaining the crack generation situation in the electrode structure of the conventional semiconductor chip 従来の半導体チップの電極構造におけるショート発生状況を説明する断面図Sectional drawing explaining the short circuit occurrence situation in the electrode structure of the conventional semiconductor chip 従来の半導体チップにおける金属バンプの形成工程を示す工程断面図Process cross-sectional view showing the process of forming metal bumps in a conventional semiconductor chip 従来の半導体チップにおける金属バンプの形成工程を示す工程断面図Process cross-sectional view showing the process of forming metal bumps in a conventional semiconductor chip 従来の半導体装置の製造工程を説明する工程断面図Process sectional view explaining the manufacturing process of a conventional semiconductor device 従来のBGA型の半導体チップの電極構造を示す断面図Sectional drawing which shows the electrode structure of the conventional BGA type semiconductor chip 従来のBGA型半導体装置の構造を示す断面図Sectional drawing which shows the structure of the conventional BGA type semiconductor device

符号の説明Explanation of symbols

1 半導体チップ
2 電極パッド
3 第1絶縁膜
4 第2絶縁膜
5 下地金属層
6 フラックス
7 スキージ
8 フラックス印刷マスク
9 ボール搭載マスク
10 半田ボール
11 ディスペンサ
12 配線基板
12a 電極ランド
13 アンダーフィル樹脂
13a 樹脂
13b フィラー成分
14 金属バンプ
15 クラック
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Electrode pad 3 1st insulating film 4 2nd insulating film 5 Base metal layer 6 Flux 7 Squeegee 8 Flux printing mask 9 Ball mounting mask 10 Solder ball 11 Dispenser 12 Wiring board 12a Electrode land 13 Underfill resin 13a Resin 13b Filler component 14 Metal bump 15 Crack

Claims (5)

配線基板に金属バンプを介して接続されることにより半導体装置が形成される半導体チップであって、前記金属バンプと接続する電極部が、
前記半導体チップの外部端子となる電極パッドと、
前記電極パッド上の少なくとも一部を開口するように形成される第1絶縁膜と、
前記第1絶縁膜上に少なくとも前記電極パッド上を開口するように形成される第2絶縁膜と、
前記電極パッド上および前記第1絶縁膜の一部の上に形成される下地金属層と
を有し、前記下地金属層の前記電極パッド表面からの表面高さが前記第2絶縁膜の前記電極パッド表面からの表面高さより0.0〜0.4μm低いことを特徴とする半導体チップ。
A semiconductor chip in which a semiconductor device is formed by being connected to a wiring board via a metal bump, and an electrode portion connected to the metal bump is
An electrode pad serving as an external terminal of the semiconductor chip;
A first insulating film formed so as to open at least part of the electrode pad;
A second insulating film formed on the first insulating film so as to open at least the electrode pad;
A base metal layer formed on the electrode pad and on a part of the first insulating film, and a surface height of the base metal layer from the surface of the electrode pad is the electrode of the second insulating film A semiconductor chip characterized by being 0.0 to 0.4 μm lower than the surface height from the pad surface.
前記電極パッドの端部が前記下地金属層の端部より隣接する電極部方向に突出することを特徴とする請求項1記載の半導体チップ。   2. The semiconductor chip according to claim 1, wherein an end portion of the electrode pad protrudes toward an adjacent electrode portion from an end portion of the base metal layer. 前記第2絶縁膜の端部が前記電極パッドの端部より内側に形成されることを特徴とする請求項2記載の半導体チップ。   The semiconductor chip according to claim 2, wherein an end portion of the second insulating film is formed inside an end portion of the electrode pad. 前記第2絶縁膜の端部が前記第1絶縁膜の端部より前記下地金属層の膜厚の2倍の長さだけ内側に形成されることを特徴とする請求項3記載の半導体チップ。   4. The semiconductor chip according to claim 3, wherein an end portion of the second insulating film is formed inside the end portion of the first insulating film by a length twice as long as a thickness of the base metal layer. 請求項1から請求項4のいずれかに記載の半導体チップを前記配線基板に前記金属バンプを介して機械的および電気的に接続して搭載することを特徴とする半導体装置。   5. A semiconductor device, wherein the semiconductor chip according to claim 1 is mounted on the wiring board in a mechanically and electrically connected manner via the metal bumps.
JP2008036749A 2008-02-19 2008-02-19 Semiconductor chip and semiconductor device Pending JP2009200067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036749A JP2009200067A (en) 2008-02-19 2008-02-19 Semiconductor chip and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008036749A JP2009200067A (en) 2008-02-19 2008-02-19 Semiconductor chip and semiconductor device

Publications (1)

Publication Number Publication Date
JP2009200067A true JP2009200067A (en) 2009-09-03

Family

ID=41143309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036749A Pending JP2009200067A (en) 2008-02-19 2008-02-19 Semiconductor chip and semiconductor device

Country Status (1)

Country Link
JP (1) JP2009200067A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058680A1 (en) * 2009-11-12 2011-05-19 パナソニック株式会社 Semiconductor device
JP2012253058A (en) * 2011-05-31 2012-12-20 Mitsubishi Electric Corp Semiconductor device
CN107346743A (en) * 2016-05-06 2017-11-14 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and its manufacture method
CN110379717A (en) * 2015-12-31 2019-10-25 台湾积体电路制造股份有限公司 Connecting-piece structure and forming method thereof
US10461049B2 (en) 2015-12-14 2019-10-29 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor
US10693438B2 (en) 2017-01-05 2020-06-23 Samsung Electro-Mechanics Co., Ltd. Acoustic wave resonator and method for manufacturing the same
JP2021034557A (en) * 2019-08-23 2021-03-01 三菱電機株式会社 Semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058680A1 (en) * 2009-11-12 2011-05-19 パナソニック株式会社 Semiconductor device
JP2012253058A (en) * 2011-05-31 2012-12-20 Mitsubishi Electric Corp Semiconductor device
US10461049B2 (en) 2015-12-14 2019-10-29 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor
CN110379717A (en) * 2015-12-31 2019-10-25 台湾积体电路制造股份有限公司 Connecting-piece structure and forming method thereof
US10861811B2 (en) 2015-12-31 2020-12-08 Taiwan Semiconductor Manufacturing Company Ltd. Connector structure and method of forming same
CN110379717B (en) * 2015-12-31 2021-06-15 台湾积体电路制造股份有限公司 Connector structure and forming method thereof
US11824026B2 (en) 2015-12-31 2023-11-21 Taiwan Semiconductor Manufacturing Company Ltd. Connector structure and method of forming same
CN107346743A (en) * 2016-05-06 2017-11-14 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and its manufacture method
US10693438B2 (en) 2017-01-05 2020-06-23 Samsung Electro-Mechanics Co., Ltd. Acoustic wave resonator and method for manufacturing the same
JP2021034557A (en) * 2019-08-23 2021-03-01 三菱電機株式会社 Semiconductor device
JP7226186B2 (en) 2019-08-23 2023-02-21 三菱電機株式会社 semiconductor equipment

Similar Documents

Publication Publication Date Title
US10068873B2 (en) Method and apparatus for connecting packages onto printed circuit boards
US7087458B2 (en) Method for fabricating a flip chip package with pillar bump and no flow underfill
KR100545008B1 (en) Semiconductor element and a producing method for the same, and a semiconductor device and a producing method for the same
JP2009064812A (en) Electrode structure in semiconductor device and related technology thereof
JP5649805B2 (en) Manufacturing method of semiconductor device
JP4305430B2 (en) Component mounting method and component mounting body
JP2006279062A (en) Semiconductor element and semiconductor device
JP2009200067A (en) Semiconductor chip and semiconductor device
US20070120268A1 (en) Intermediate connection for flip chip in packages
JP2008218629A (en) Semiconductor package and electronic component
JP5562438B2 (en) Electronic component mounting body, electronic component, board
JP2009004454A (en) Electrode structure, forming method thereof, electronic component, and mounting substrate
JP2008042104A (en) Electronic device, and its manufacturing method
WO2011125434A1 (en) Electronic device
JP2008218759A (en) Electrode structure for semiconductor chip, semiconductor device to which semiconductor chip is flip-chip bonded, and manufacturing method therefor
JP2019186330A (en) Wiring board, semiconductor package and manufacturing method of wiring board
JP4525148B2 (en) Semiconductor device and manufacturing method thereof
TWI483360B (en) Method for manufacturing package substrate
JP2007142187A (en) Semiconductor device
JP2005038932A (en) Semiconductor device, and method for manufacturing the same
TWI424545B (en) Method for manufacturing package substrate
JP2010040891A (en) Wiring board with built-in component
JP2008071792A (en) Method of manufacturing semiconductor device
JPH05136216A (en) Semiconductor mounting device
JP4963890B2 (en) Resin-sealed circuit device