JP4525148B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4525148B2
JP4525148B2 JP2004117458A JP2004117458A JP4525148B2 JP 4525148 B2 JP4525148 B2 JP 4525148B2 JP 2004117458 A JP2004117458 A JP 2004117458A JP 2004117458 A JP2004117458 A JP 2004117458A JP 4525148 B2 JP4525148 B2 JP 4525148B2
Authority
JP
Japan
Prior art keywords
layer
connection
opening
chip
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004117458A
Other languages
Japanese (ja)
Other versions
JP2005303021A (en
Inventor
研 大類
浅見  博
祐司 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004117458A priority Critical patent/JP4525148B2/en
Publication of JP2005303021A publication Critical patent/JP2005303021A/en
Application granted granted Critical
Publication of JP4525148B2 publication Critical patent/JP4525148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、例えば、半導体ICチップのフリップチップ実装用の配線基板、その実装体でなる半導体装置およびこれらの製造方法に関し、更に詳しくは、外部接続用の接続ランド上に、樹脂でなる応力緩和層を内部に有する突起電極が設けられた配線基板、半導体装置およびこれらの製造方法に関する。   The present invention relates to, for example, a wiring board for flip chip mounting of a semiconductor IC chip, a semiconductor device including the mounting body, and a manufacturing method thereof, and more specifically, stress relaxation made of resin on a connection land for external connection. The present invention relates to a wiring board provided with a protruding electrode having a layer inside, a semiconductor device, and a manufacturing method thereof.

従来、高信頼性のフリップチップ接続には、高鉛はんだバンプ(95Pb−5Sn)が用いられていたが、近年における環境負荷低減の要請から、いわゆる無鉛はんだを電子機器の製造に使用する動きが強まっている。無鉛はんだ材料としては、例えば、Sn−Ag系、Sn−Ag−Cu系、Sn−Ag−Bi−Cu系、Sn−Cu系、Sn−Zn系等が提案されている。ところが、このような無鉛はんだ材料には、高鉛はんだと同等の融点および機械的特性を有する材料が存在しないため、フリップチップ接続部の無鉛化は容易でない。   Conventionally, high lead solder bumps (95Pb-5Sn) have been used for flip chip connection with high reliability. However, in recent years, there has been a movement to use so-called lead-free solder for manufacturing electronic devices due to a demand for reducing environmental burden. It is getting stronger. As lead-free solder materials, for example, Sn-Ag, Sn-Ag-Cu, Sn-Ag-Bi-Cu, Sn-Cu, Sn-Zn, and the like have been proposed. However, in such lead-free solder materials, there is no material having the same melting point and mechanical characteristics as high-lead solder, so it is not easy to lead-free the flip chip connection part.

また、昨今のデジタル機器の急速な普及、発展に伴い、使用されるICは大サイズ化、多ピン化する傾向にある。このことは、即ち、はんだ接続部はより大きな熱応力をより小さな接続面積で受けることを意味し、従って、高信頼性のはんだ接続手法を確立することが急務な状況にある。   In addition, with recent rapid spread and development of digital devices, ICs used tend to be larger and have more pins. This means that the solder joint is subjected to a larger thermal stress with a smaller connection area, and therefore there is an urgent need to establish a reliable solder connection technique.

一方、ICチップと配線基板との間の高信頼性接続には、IC−配線基板間のギャップ(スタンドオフ)を確保することと、熱応力を緩和するようなバンプ構造にすることが有効である。その手段として、樹脂でなる応力緩和層をはんだ接続部近傍に設ける提案がなされている(下記特許文献1〜3参照)。   On the other hand, for highly reliable connection between the IC chip and the wiring board, it is effective to secure a gap (standoff) between the IC and the wiring board and to form a bump structure that relieves thermal stress. is there. As a means for that, a proposal has been made to provide a stress relaxation layer made of resin in the vicinity of the solder connection portion (see Patent Documents 1 to 3 below).

下記特許文献1,2では、ウェーハ側にこのような応力緩和層を形成する構造が提案されている。図8は下記特許文献2に記載の半導体パッケージの要部断面図である。図8において、1はSiウェーハ(IC)、2はAlパッド、3はパッシベーション膜、4は絶縁層、5は電気めっき用のシード層、6は応力緩和層、7はCuめっき層、8は封止樹脂層、9は外部端子、10ははんだバンプであり、ウェーハレベルの再配線処理により、ウェーハ1上の電極パッド2から応力緩和層6上へCu配線7および外部端子9を形成している。   Patent Documents 1 and 2 below propose a structure in which such a stress relaxation layer is formed on the wafer side. FIG. 8 is a cross-sectional view of a principal part of a semiconductor package described in Patent Document 2 below. In FIG. 8, 1 is a Si wafer (IC), 2 is an Al pad, 3 is a passivation film, 4 is an insulating layer, 5 is a seed layer for electroplating, 6 is a stress relaxation layer, 7 is a Cu plating layer, 8 is A sealing resin layer, 9 is an external terminal, 10 is a solder bump, and Cu wiring 7 and external terminal 9 are formed on the stress relaxation layer 6 from the electrode pad 2 on the wafer 1 by a wafer level rewiring process. Yes.

また、下記特許文献3では、図9に示すように、Siウェーハ(IC)11のAlパッド12と配線基板13の接続ランド14との間を、ポリイミド樹脂を芯体(コア)とする導電用バンプ15で接続した構造が開示されている。この導電用バンプ15は、応力緩和層を構成するポリイミドコア16とその周囲を被覆する金属層17とでなるもので、ウェーハプロセスにおいて、Alパッド12上にこのパッド径よりも小径のポリイミドコア16を形成した後、Alパッド12のコア16で覆われていない部分とポリイミドコア表面とにAl膜17を被覆することによって形成される。なお、導電用バンプ15の接続ランド14側の端部は更に、配線基板13の接続ランド14とのはんだ接続を行うためのTi,Ni,Auの3層金属層17で被覆されている。   Further, in Patent Document 3 below, as shown in FIG. 9, between the Al pad 12 of the Si wafer (IC) 11 and the connection land 14 of the wiring substrate 13, the conductive material using polyimide resin as the core (core). A structure connected by bumps 15 is disclosed. The conductive bump 15 is composed of a polyimide core 16 constituting a stress relaxation layer and a metal layer 17 covering the periphery thereof. In the wafer process, the polyimide core 16 having a diameter smaller than the pad diameter is formed on the Al pad 12. Then, the Al film 17 is formed by covering the portion of the Al pad 12 not covered with the core 16 and the polyimide core surface. The end of the conductive bump 15 on the connection land 14 side is further covered with a three-layer metal layer 17 of Ti, Ni, and Au for solder connection with the connection land 14 of the wiring board 13.

特開2003−179183号公報JP 2003-179183 A 国際公開第00/077844号パンフレットInternational Publication No. 00/077844 Pamphlet 特開平8−102467号公報JP-A-8-102467

しかしながら、上記特許文献1,2の構成では、応力緩和層6,16の形成をウェーハプロセスで行うようにしているので、ウェーハのタクトタイムが長く、歩留まり低下要因にもなり得るため、相対的にコスト高であるという問題がある。   However, in the configuration of Patent Documents 1 and 2, since the stress relaxation layers 6 and 16 are formed by the wafer process, the tact time of the wafer is long, which can cause a decrease in yield. There is a problem that the cost is high.

また、上記特許文献2の構成では、導電用バンプ15のバンプ径が電極パッド12のパッド径よりも小さくなる構成であるので、電極パッド12の小径化に伴って、導電用バンプ15のバンプ径も更に小さくなり、ICチップと配線基板との間の接続信頼性が低下する。このため、電極パッド12のパッド径の小径化が抑制され、これが配線密度向上の妨げとなり、今後の更なるIC多ピン化、パッケージ小型化等への対応が困難になるという問題を有している。   Further, in the configuration of Patent Document 2, since the bump diameter of the conductive bump 15 is smaller than the pad diameter of the electrode pad 12, the bump diameter of the conductive bump 15 is reduced as the electrode pad 12 is reduced in diameter. The connection reliability between the IC chip and the wiring board is lowered. For this reason, the reduction of the pad diameter of the electrode pad 12 is suppressed, which hinders the improvement of the wiring density and has a problem that it becomes difficult to cope with further increase in the number of IC pins and the downsizing of the package in the future. Yes.

本発明は上述の問題に鑑みてなされ、高信頼性のはんだ接続部構造を低コストで形成でき、IC多ピン化、パッケージ小型化等にも十分に対応することができる配線基板、半導体装置およびこれらの製造方法を提供することを課題とする。   The present invention has been made in view of the above-described problems, and can form a highly reliable solder connection structure at a low cost, and can sufficiently cope with an increase in the number of IC pins, a reduction in package size, and the like. It is an object to provide these manufacturing methods.

以上の課題を解決するに当たり、本発明の配線基板は、基板表面に、外部接続用の接続ランドと、この接続ランドを開口させる開口部を有する絶縁層とが形成され、接続ランド上に、樹脂でなる応力緩和層を内部に有する突起電極が設けられた配線基板であって、この突起電極は、上記開口部を閉塞し接続ランドへ接続された第1接続部と、この第1接続部よりも径大に絶縁層上に形成された第2接続部とでなることを特徴とする。   In solving the above problems, the wiring board of the present invention has a connection land for external connection and an insulating layer having an opening for opening the connection land formed on the substrate surface. A wiring board provided with a projecting electrode having a stress relaxation layer formed therein, the projecting electrode comprising: a first connection portion that closes the opening and is connected to a connection land; and And a second connection portion formed on the insulating layer with a large diameter.

本発明の配線基板の製造方法は、外部接続用の接続ランドが形成された基板表面に絶縁層を形成した後、接続ランドを開口させる開口部を絶縁層に形成する工程と、この開口された接続ランドを第1の導体層で被覆する工程と、第1の導体層の上に樹脂層を形成した後、開口部の開口径よりも径大の応力緩和層をパターニングする工程と、この応力緩和層を第2の導体層で被覆する工程とを有する。   In the method for manufacturing a wiring board according to the present invention, an insulating layer is formed on a substrate surface on which a connection land for external connection is formed, and then an opening for opening the connection land is formed in the insulating layer. The step of covering the connection land with the first conductor layer, the step of patterning the stress relaxation layer having a diameter larger than the opening diameter of the opening after forming the resin layer on the first conductor layer, and the stress Covering the relaxation layer with the second conductor layer.

また、本発明の半導体装置は、配線基板の一表面に、ICチップの電極パッドと接続される接続ランドと、この接続ランドを開口させる開口部を有する絶縁層とが形成され、これら接続ランドと電極パッドとが、樹脂でなる応力緩和層を内部に有する突起電極を介して接続されている半導体装置であって、この突起電極は、上記開口部を閉塞し接続ランドへ接続された第1接続部と、この第1接続部よりも径大に絶縁層上に形成された第2接続部とでなることを特徴とする。   In the semiconductor device of the present invention, a connection land connected to the electrode pad of the IC chip and an insulating layer having an opening for opening the connection land are formed on one surface of the wiring board. A semiconductor device in which an electrode pad is connected via a protruding electrode having a stress relaxation layer made of resin therein, and the protruding electrode closes the opening and is connected to a connection land And a second connection portion formed on the insulating layer with a diameter larger than that of the first connection portion.

本発明の半導体装置の製造方法は、外部接続用の接続ランドが形成された基板表面に絶縁層を形成した後、接続ランドを開口させる開口部を絶縁層に形成する工程と、この開口された接続ランドを第1の導体層で被覆する工程と、第1の導体層の上に樹脂層を形成した後、上記開口部の開口径よりも径大の応力緩和層をパターニングする工程と、応力緩和層を第2の導体層で被覆する工程と、応力緩和層を被覆する第2の導体層の上にICチップを実装する工程とを有する。   According to a method of manufacturing a semiconductor device of the present invention, an insulating layer is formed on a substrate surface on which a connection land for external connection is formed, and then an opening for opening the connection land is formed in the insulating layer. A step of covering the connection land with the first conductor layer, a step of patterning a stress relaxation layer having a diameter larger than the opening diameter of the opening after forming the resin layer on the first conductor layer, A step of covering the relaxation layer with a second conductor layer, and a step of mounting an IC chip on the second conductor layer covering the stress relaxation layer.

本発明においては、応力緩和層を内部に有する突起電極を配線基板側に形成することにより、当該突起電極をICチップ側へ形成する場合に比べて、製造の低コスト化を図るようにしている。   In the present invention, a protruding electrode having a stress relaxation layer is formed on the wiring substrate side, so that the manufacturing cost is reduced as compared with the case where the protruding electrode is formed on the IC chip side. .

また、本発明の配線基板において、突起電極は、第1接続部と第2接続部とで構成される。この突起電極の形成径は、絶縁層の開口部の大きさに基づいて設定でき、接続ランドの形成径に依存しない。つまり、突起電極の形成径と接続ランドの形成径とを互いに独立して設定可能であるので、配線密度の高い基板に対しても、信頼性の高い接続構造を得ることができる。   In the wiring board of the present invention, the protruding electrode is composed of a first connection portion and a second connection portion. The formation diameter of the protruding electrode can be set based on the size of the opening of the insulating layer, and does not depend on the formation diameter of the connection land. That is, since the formation diameter of the protruding electrode and the formation diameter of the connection land can be set independently of each other, a highly reliable connection structure can be obtained even for a substrate having a high wiring density.

以上述べたように、本発明によれば、応力緩和層を内部に有する突起電極を配線基板側に形成しているので、製造の低コスト化を図ることができる。また、この突起電極の形成径を配線基板の接続ランドの形成径とは独立して設定することができるので、配線密度の高い基板に対しても信頼性の高い接続構造を得ることができ、IC多ピン化、パッケージ小型化にも十分に対応することが可能となる。   As described above, according to the present invention, since the protruding electrode having the stress relaxation layer inside is formed on the wiring board side, the manufacturing cost can be reduced. In addition, since the formation diameter of the protruding electrode can be set independently of the formation diameter of the connection land of the wiring board, a highly reliable connection structure can be obtained even for a board having a high wiring density, It is possible to sufficiently cope with the increase in the number of IC pins and the downsizing of the package.

以下、本発明の各実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1の実施の形態]
図1〜図3は本発明の第1の実施の形態による配線基板の製造方法を説明する工程断面図である。まず、一表面に、外部接続用の接続ランド22および配線23が形成された絶縁基材21を用意する(図1A)。
[First Embodiment]
1 to 3 are process cross-sectional views for explaining a method of manufacturing a wiring board according to the first embodiment of the present invention. First, the insulating base material 21 in which the connection land 22 for external connection and the wiring 23 are formed on one surface is prepared (FIG. 1A).

絶縁基材21として本実施の形態では、熱可塑性樹脂あるいは熱硬化性樹脂材料を主体とする樹脂基材で構成され、適用対象や用途等に応じて適宜選定される。例えば、ガラス繊維にエポキシ樹脂あるいはポリイミド樹脂を含浸させたもの、紙にフェノール樹脂を含浸させたもの等が適用でき、そのほかにも、ビスマレイミドトリアジン樹脂やベンゾシクロブデン樹脂、液晶ポリマー等も適用可能である。   In the present embodiment, the insulating base material 21 is made of a resin base material mainly composed of a thermoplastic resin or a thermosetting resin material, and is appropriately selected according to the application object, application, or the like. For example, glass fiber impregnated with epoxy resin or polyimide resin, paper impregnated with phenolic resin, etc. can be applied, and bismaleimide triazine resin, benzocyclobutene resin, liquid crystal polymer, etc. are also applicable It is.

接続ランド22および配線23は銅で形成されるが、勿論これに限らずに他の金属材料も適用可能である。また、絶縁基材21の一方側の表面だけに限らず、反対側の表面にも形成されていてもよい。   The connection land 22 and the wiring 23 are made of copper, but of course, other metal materials can be applied without being limited thereto. Moreover, you may form not only in the surface of one side of the insulating base material 21 but in the surface of the other side.

次に、絶縁基材21の処理面(接続ランド22の形成面)に感光性樹脂を塗布して絶縁層24を形成する(図1B)。絶縁層24はソルダーレジストやめっきレジスト等が適用可能である。そして、この絶縁層24に対して、適切なマスクを施して露光、現像の各処理を行い、接続ランド22を開口させる開口部24aを形成する(図1C)。   Next, a photosensitive resin is applied to the processing surface of the insulating base material 21 (formation surface of the connection land 22) to form the insulating layer 24 (FIG. 1B). As the insulating layer 24, a solder resist, a plating resist, or the like can be applied. Then, an appropriate mask is applied to the insulating layer 24 to perform exposure and development processes, thereby forming an opening 24a for opening the connection land 22 (FIG. 1C).

ここで、開口部24aは、接続ランド22の形成領域の全域を開口させる大きさに形成する必要はなく、図示するように、接続ランド22の一部を開口させる程度の大きさでよい。開口部24aの開口径は任意に設定可能であり、後述する応力緩和層26の形成径の大きさ等に応じて設定することができる。また、開口部24aは、上述のようにフォトリソグラフィ技術を用いて形成したが、レーザー加工等によって形成されてもよい。この場合、絶縁層24の構成材料として感光性は必要とされない。   Here, the opening 24a does not need to be formed to a size that opens the entire region of the connection land 22 and may be a size that opens a part of the connection land 22 as illustrated. The opening diameter of the opening 24a can be arbitrarily set, and can be set according to the size of the formation diameter of the stress relaxation layer 26 described later. Moreover, although the opening part 24a was formed using the photolithographic technique as mentioned above, you may form by laser processing etc. In this case, photosensitivity is not required as a constituent material of the insulating layer 24.

次いで、開口部24aを介して開口された接続ランド22の一部領域を含む処理面全域をCuめっき層25で被覆する(図1D)。Cuめっき層25は、本発明の「第1の導体層」に対応し、本実施の形態では、無電解Cuめっきにより処理面全域にシード層を形成した後、電界Cuめっきを行うことによって形成されるが、勿論これに限られない。   Next, the entire processing surface including a partial region of the connection land 22 opened through the opening 24a is covered with the Cu plating layer 25 (FIG. 1D). The Cu plating layer 25 corresponds to the “first conductor layer” of the present invention. In this embodiment, the Cu plating layer 25 is formed by forming a seed layer over the entire processing surface by electroless Cu plating and then performing electric field Cu plating. Of course, this is not a limitation.

続いて、開口部24aの形成位置に対応する接続ランド22上に、応力緩和層26を形成する(図2A)。   Subsequently, the stress relaxation layer 26 is formed on the connection land 22 corresponding to the position where the opening 24a is formed (FIG. 2A).

応力緩和層26の構成樹脂材料としては、はんだ接続時のリフロー温度(例えば250℃〜300℃程度)に耐えられるものであれば特に限定されず、目的に合わせて任意の物性値を有する材料が選定可能であり、例えば、ポリイミド、エポキシ樹脂、ジビニルベンゼン系樹脂等が挙げられる。   The constituent resin material of the stress relaxation layer 26 is not particularly limited as long as it can withstand a reflow temperature (for example, about 250 ° C. to 300 ° C.) at the time of solder connection, and a material having an arbitrary physical property value according to the purpose. For example, polyimide, epoxy resin, divinylbenzene resin, and the like can be used.

応力緩和層26の形成方法は特に限定されず、例えば、樹脂材料を絶縁層24の開口部24a上に目的の径で印刷したり、当該樹脂材料が感光性を有する場合には、処理面の全域にスピンコートした後、開口部24a上に目的の径の樹脂層が残留するように露光、現像を行うことによって形成可能であり、も可能であり、印刷あるいはパターニングされた樹脂層をキュアすることによって所定形状の応力緩和層26を完成させることができる。   The method of forming the stress relaxation layer 26 is not particularly limited. For example, when the resin material is printed on the opening 24a of the insulating layer 24 with a desired diameter, or when the resin material has photosensitivity, After the entire area is spin-coated, it can be formed by exposure and development so that a resin layer having a target diameter remains on the opening 24a, and the printed or patterned resin layer is cured. Thus, the stress relaxation layer 26 having a predetermined shape can be completed.

次に、形成した応力緩和層26を含む処理面全域を無電解Cuめっき層27で被覆した後(図2B)、この無電解Cuめっき層27の上を電解Cuめっき層28で被覆する(図2C)。無電解Cuめっき層27および電解Cuめっき層28は、本発明の「第2の導体層」に対応し、応力緩和層26の表面と接続ランド22との間を電気的に接続する。   Next, the entire treated surface including the formed stress relaxation layer 26 is coated with an electroless Cu plating layer 27 (FIG. 2B), and then the electroless Cu plating layer 27 is covered with an electrolytic Cu plating layer 28 (FIG. 2). 2C). The electroless Cu plating layer 27 and the electrolytic Cu plating layer 28 correspond to the “second conductor layer” of the present invention, and electrically connect the surface of the stress relaxation layer 26 and the connection land 22.

続いて、絶縁基材21の処理面全域に感光性レジスト29を塗布し(図3A)、これを乾燥させた後、露光、現像の各処理を行って、応力緩和層26の上面およびその周囲を被覆するレジストパターン29Aをパターニング形成する(図3B)。そして、このレジストパターン29AをマスクとしてCuめっき層25、27,28をそれぞれエッチング除去して絶縁層24を露出させると共に、レジストパターン29Aを除去することによって応力緩和層26が個々に電気的に切り離された突起電極30が形成される(図3C)。   Subsequently, a photosensitive resist 29 is applied to the entire processing surface of the insulating base material 21 (FIG. 3A), dried, and then subjected to exposure and development processes, and the upper surface of the stress relaxation layer 26 and its surroundings. A resist pattern 29A is formed by patterning (FIG. 3B). Then, using the resist pattern 29A as a mask, the Cu plating layers 25, 27, and 28 are removed by etching to expose the insulating layer 24, and the stress relaxation layer 26 is electrically separated individually by removing the resist pattern 29A. The protruding electrode 30 thus formed is formed (FIG. 3C).

なお、必要に応じて、突起電極30の上面に、無電解Ni/Auめっきなどの表面処理を行ってもよい。また、これに代えて又はこれに加えて、ディップ(Dip)法あるいはめっき法等により、はんだプリコートを行うことも可能である。   If necessary, surface treatment such as electroless Ni / Au plating may be performed on the upper surface of the bump electrode 30. Alternatively, or in addition to this, solder pre-coating can be performed by a dip method or a plating method.

突起電極30は、応力緩和層26を内部に有する導電用バンプとして構成され、応力緩和層26の上面および周囲を被覆しているCuめっき層27,28と、応力緩和層26の下面と接続ランド22との間に介在しているCuめっき層25とを介して、突起電極30にはんだ付けされる例えばICチップの電極パッドと接続ランド22との間が電気的に接続される。   The bump electrode 30 is configured as a conductive bump having the stress relaxation layer 26 therein, and Cu plating layers 27 and 28 covering the upper surface and the periphery of the stress relaxation layer 26, and the lower surface of the stress relaxation layer 26 and the connection land. For example, an electrode pad of an IC chip soldered to the protruding electrode 30 and the connection land 22 are electrically connected via a Cu plating layer 25 interposed between the connection land 22 and the electrode 22.

ここで、突起電極30は、絶縁層24の開口部24aを閉塞する第1接続部30Aと、この第1接続部30Aよりも径大の第2接続部30Bとで構成される。第1接続部30Aは接続ランド22の形成径よりも小さく、第2接続部30Bは接続ランド22の形成径よりも大きい。第2接続部30Bは、開口部24a周縁の絶縁層24上に形成される。この第2接続部30Bの形成径は、開口部24aの開口径よりも径大に形成される応力緩和層26の形成径によって調整される。   Here, the protruding electrode 30 includes a first connection portion 30A that closes the opening 24a of the insulating layer 24, and a second connection portion 30B having a larger diameter than the first connection portion 30A. The first connection portion 30 </ b> A is smaller than the formation diameter of the connection land 22, and the second connection portion 30 </ b> B is larger than the formation diameter of the connection land 22. The second connection portion 30B is formed on the insulating layer 24 at the periphery of the opening 24a. The formation diameter of the second connection portion 30B is adjusted by the formation diameter of the stress relaxation layer 26 formed larger than the opening diameter of the opening 24a.

また、突起電極30の第2接続部30Bは図示するように高さ方向に断面一様とする例に限らず、例えば図4に示すように、トップ径がボトム径よりも小さくなるような台形状としてもよく、これにより、はんだブリッジ等の接合不良抑制に効果的となる。   Further, the second connecting portion 30B of the protruding electrode 30 is not limited to the example in which the cross section is uniform in the height direction as shown in the figure, but a table whose top diameter is smaller than the bottom diameter, for example, as shown in FIG. It is good also as a shape, and it becomes effective for joint defect suppression, such as a solder bridge.

以上のようにして本実施の形態の配線基板20(図3C)が製造される。本実施の形態の配線基板20においては、応力緩和層26を内部に有する突起電極30を配線基板20側に形成するようにしているので、当該突起電極30をICチップ側に形成する場合に比べて製造コストの低減を図ることができる。   As described above, the wiring board 20 (FIG. 3C) of the present embodiment is manufactured. In the wiring substrate 20 of the present embodiment, the protruding electrode 30 having the stress relaxation layer 26 inside is formed on the wiring substrate 20 side, so that compared to the case where the protruding electrode 30 is formed on the IC chip side. Thus, the manufacturing cost can be reduced.

また、突起電極30は、第1接続部30Aと第2接続部30Bとで構成され、この突起電極30の形成径は、絶縁層24の開口部24の大きさに基づいて設定できるので、接続ランド22の形成径に依存しない。すなわち、突起電極30の形成径と接続ランド22の形成径とを互いに独立して設定可能であるので、図示するように開口部24aよりも径大の突起電極30を形成することを可能とし、これにより配線密度の高い基板に対しても、信頼性の高い接続構造を得ることができる。   In addition, the protruding electrode 30 includes a first connecting portion 30A and a second connecting portion 30B, and the diameter of the protruding electrode 30 can be set based on the size of the opening 24 of the insulating layer 24. It does not depend on the formation diameter of the land 22. That is, since the formation diameter of the projection electrode 30 and the formation diameter of the connection land 22 can be set independently of each other, it is possible to form the projection electrode 30 having a diameter larger than that of the opening 24a as illustrated in FIG. Thereby, a highly reliable connection structure can be obtained even for a substrate having a high wiring density.

[第2の実施の形態]
図5および図6は本発明の第2の実施の形態による半導体装置の製造方法を説明する工程断面図である。なお、図において上述の第1の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略するものとする。本実施の形態の半導体装置は、上述の構成の配線基板20の突起電極30形成面に対し、ICチップがフリップチップ実装されることによって構成される。配線基板20は製品サイズに個々に形成されていてもよいし、大面積の基板に複数のICチップを実装した後、個片化するようにしてもよい。
[Second Embodiment]
5 and 6 are process cross-sectional views illustrating a method for manufacturing a semiconductor device according to the second embodiment of the present invention. In the figure, portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. The semiconductor device of this embodiment is configured by flip-chip mounting an IC chip on the surface on which the protruding electrode 30 of the wiring substrate 20 having the above-described configuration is formed. The wiring substrate 20 may be formed individually for each product size, or may be separated into pieces after mounting a plurality of IC chips on a large-area substrate.

図5Aに示すように、本実施の形態における配線基板20は、その上面側および下面側に各々接続ランド22,32および配線23,33をそれぞれ有している。上面側の接続ランド22にあっては、配線基板20上面を被覆する絶縁層24に形成された開口部24を介して上述した構成の突起電極30が接続され、下面側の接続ランド32にあっては、配線基板20下面を被覆する絶縁層34に形成された開口部34aを介して外部へ露出している。   As shown in FIG. 5A, the wiring board 20 in the present embodiment has connection lands 22 and 32 and wirings 23 and 33, respectively, on the upper surface side and the lower surface side thereof. In the connection land 22 on the upper surface side, the protruding electrode 30 having the above-described configuration is connected through the opening 24 formed in the insulating layer 24 covering the upper surface of the wiring substrate 20, and the connection land 32 on the lower surface side is connected. In other words, it is exposed to the outside through an opening 34 a formed in the insulating layer 34 covering the lower surface of the wiring board 20.

なお、突起電極30は、上述の第1の実施の形態で説明した工程を経て形成される。上面側の配線23と下面側の配線33との間の一部は、層間接続部35を介して互いに電気的に接続され、下面側の開口部34aは接続ランド32の形成径よりも大きな径で形成されているが、勿論これに限らない。   The protruding electrode 30 is formed through the process described in the first embodiment. A portion between the upper surface side wiring 23 and the lower surface side wiring 33 is electrically connected to each other through the interlayer connection portion 35, and the lower surface side opening 34 a has a diameter larger than the diameter of the connection land 32. Of course, it is not limited to this.

そこで先ず、突起電極30の第2接続部30Bの上面にソルダーペースト31を例えばディスペンス方式によって供給する(図5A)。このソルダーペースト31としては、無鉛はんだ材料をペースト状にしたものが用いられる。無塩はんだ材料としては、例えば、Sn−Ag系、Sn−Ag−Cu系、Sn−Ag−Bi−Cu系、Sn−Cu系、Sn−Zn系等が適用可能である。   Therefore, first, the solder paste 31 is supplied to the upper surface of the second connection portion 30B of the protruding electrode 30 by, for example, a dispensing method (FIG. 5A). As the solder paste 31, a paste made of a lead-free solder material is used. As the salt-free solder material, for example, Sn—Ag, Sn—Ag—Cu, Sn—Ag—Bi—Cu, Sn—Cu, Sn—Zn, and the like are applicable.

続いて、突起電極30の上にICチップ36をマウントする(図5B)。ICチップ36の電極パッド37にはあらかじめ、はんだバンプ38が形成されている。はんだバンプ38は上述と同様な無鉛はんだ材料でなり、めっき、印刷、ボールマウント等の公知の手法で形成可能である。ICチップ36のマウントには、通常用いられるフリップチップマウンタが使用できる。突起電極30は、電極パッド38の形成位置に対応して配列されている。マウント直後は、ソルダーペースト31の粘着作用によって突起電極30とはんだバンプ38との間が仮止めされる。   Subsequently, the IC chip 36 is mounted on the protruding electrode 30 (FIG. 5B). Solder bumps 38 are formed in advance on the electrode pads 37 of the IC chip 36. The solder bump 38 is made of a lead-free solder material similar to that described above, and can be formed by a known method such as plating, printing, or ball mounting. A normally used flip chip mounter can be used for mounting the IC chip 36. The protruding electrodes 30 are arranged corresponding to the positions where the electrode pads 38 are formed. Immediately after mounting, the gap between the bump electrode 30 and the solder bump 38 is temporarily fixed by the adhesive action of the solder paste 31.

次に、配線基板20およびこれに仮止めされたICチップ36をリフロー炉へ装填し、はんだバンプ38をリフロー加熱して、突起電極30とはんだバンプ38とを互いに接合する(図5C)。これにより、配線基板20の突起電極30とICチップ36の電極パッド37とが機械的、電気的に接続される。なお、このリフロー工程では、突起電極30は溶融せず、当該突起電極30の形成高さが確保される。   Next, the wiring substrate 20 and the IC chip 36 temporarily fixed thereto are loaded into a reflow furnace, the solder bumps 38 are reflow-heated, and the protruding electrodes 30 and the solder bumps 38 are joined to each other (FIG. 5C). Thereby, the protruding electrode 30 of the wiring board 20 and the electrode pad 37 of the IC chip 36 are mechanically and electrically connected. In this reflow process, the protruding electrode 30 is not melted, and the formation height of the protruding electrode 30 is ensured.

続いて、ICチップ36と配線基板20との間にアンダーフィル樹脂39を注入し、このアンダーフィルム樹脂39でICチップ36と配線基板20との間のギャップ領域を充填するとともに、モールド樹脂40によってICチップ36を封止する(図6A)。これらアンダーフィル樹脂39およびモールド樹脂40は、例えば、エポキシ樹脂が適用される。   Subsequently, an underfill resin 39 is injected between the IC chip 36 and the wiring substrate 20, the gap region between the IC chip 36 and the wiring substrate 20 is filled with the under film resin 39, and the mold resin 40 The IC chip 36 is sealed (FIG. 6A). For example, an epoxy resin is applied to the underfill resin 39 and the mold resin 40.

そして、配線基板20の下面側に、絶縁層34の開口部34aを介して接続ランド32に接続される外部端子41を形成する(図6B)。外部端子41は例えば無鉛はんだ材料でなり、めっき、印刷、ボールマウント等の公知の手法で形成することができる。以上のようにして、パッケージタイプの半導体装置42が製造される。   And the external terminal 41 connected to the connection land 32 through the opening part 34a of the insulating layer 34 is formed in the lower surface side of the wiring board 20 (FIG. 6B). The external terminal 41 is made of, for example, a lead-free solder material and can be formed by a known method such as plating, printing, or ball mounting. As described above, the package type semiconductor device 42 is manufactured.

本実施の形態の半導体装置42では、応力緩和層26を内部に有する突起電極30で、配線基板20の接続ランド22とICチップ36の電極パッド37との間のはんだ接続部を構成しているので、接続ランド22と電極パッド37との間に常に一定以上のギャップ(スタンドオフ)を安定して確保できるとともに、はんだ接続部に作用する応力を応力緩和層26で緩和できる。これにより、配線基板20とICチップ36との間の熱膨張率の相違に起因して発生する熱応力に対して、はんだ接続部に耐久性をもたせることができ、接続信頼性を高めることができる。   In the semiconductor device 42 of the present embodiment, the protruding electrode 30 having the stress relaxation layer 26 therein constitutes a solder connection portion between the connection land 22 of the wiring board 20 and the electrode pad 37 of the IC chip 36. Therefore, a gap (standoff) of a certain level or more can always be stably secured between the connection land 22 and the electrode pad 37, and stress acting on the solder connection portion can be relaxed by the stress relaxation layer 26. Thereby, durability can be given to a solder connection part with respect to the thermal stress which originates in the difference in the thermal expansion coefficient between the wiring board 20 and the IC chip 36, and connection reliability can be improved. it can.

そして、本実施の形態では、このような突起電極30をICチップ36側ではなく、配線基板20側に形成しているので、パッケージ全体で考えた際の製造コストを低減することができる。   In the present embodiment, since such protruding electrodes 30 are formed not on the IC chip 36 side but on the wiring substrate 20 side, the manufacturing cost when considering the entire package can be reduced.

一方、突起電極30は、第1接続部30Aと第2接続部30Bとで構成され、この突起電極30の形成径は、絶縁層24の開口部24の大きさに基づいて設定できるので、接続ランド22の形成径に依存しない。すなわち、突起電極30の形成径と接続ランド22の形成径とを互いに独立して設定可能であるので、図示するように開口部24aよりも径大の突起電極30を形成することを可能とし、これにより配線密度の高い基板に対しても、信頼性の高い接続構造を得ることができるとともに、今後の更なるICチップの大サイズ化、IC多ピン化、パッケージ小型化にも十分に対応することが可能となる。   On the other hand, the protruding electrode 30 includes a first connecting portion 30A and a second connecting portion 30B, and the diameter of the protruding electrode 30 can be set based on the size of the opening 24 of the insulating layer 24. It does not depend on the formation diameter of the land 22. That is, since the formation diameter of the projection electrode 30 and the formation diameter of the connection land 22 can be set independently of each other, it is possible to form the projection electrode 30 having a diameter larger than that of the opening 24a as illustrated in FIG. As a result, a highly reliable connection structure can be obtained even on a substrate with high wiring density, and it will be fully compatible with future increases in IC chip size, IC pin count, and package size. It becomes possible.

また、突起電極30を、開口部24aを充填する第1接続部30Aと、この第1接続部30Aよりも径大の第2接続部30Bとで構成することにより、第2接続部30Bに作用する応力をこれを支持する絶縁層24の上面で受けるようにして、第1接続部30Aと接続ランド22との界面への応力の伝搬を低減している。これにより、はんだ接続部における接続信頼性の更なる向上を図ることができる。   Further, the projection electrode 30 is configured by the first connection portion 30A filling the opening 24a and the second connection portion 30B having a diameter larger than the first connection portion 30A, thereby acting on the second connection portion 30B. The stress propagated to the interface between the first connection portion 30A and the connection land 22 is reduced by receiving the stress to be applied on the upper surface of the insulating layer 24 that supports the stress. Thereby, the further improvement of the connection reliability in a solder connection part can be aimed at.

更に、本実施の形態では、ICチップ36の電極パッド37と突起電極30との間に、硬質のはんだバンプ38を介在させているので、電極パッド37と突起電極30との間の接合界面の強度を高め、突起電極30に作用する応力が電極パッド37側へ与える影響を少なくすることができる。すなわち、IC製造分野において近年注目されているlow−k(低誘電率)材料が層間の絶縁層として用いられている場合、はんだ接続部に作用する応力が直接電極パッドへ伝搬することによる当該絶縁層の損壊が懸念されるが、本実施の形態によれば、電極パッド37と突起電極30との間に硬質のはんだバンプ38を介在させることにより、これを回避することができる。   Furthermore, in the present embodiment, since the hard solder bump 38 is interposed between the electrode pad 37 and the protruding electrode 30 of the IC chip 36, the bonding interface between the electrode pad 37 and the protruding electrode 30 is not affected. The strength can be increased and the influence of the stress acting on the protruding electrode 30 on the electrode pad 37 side can be reduced. That is, when a low-k (low dielectric constant) material that has recently been attracting attention in the field of IC manufacturing is used as an insulating layer between layers, the stress acting on the solder connection portion is directly propagated to the electrode pad, thereby the insulation. Although there is a concern about damage to the layer, according to the present embodiment, this can be avoided by interposing the hard solder bump 38 between the electrode pad 37 and the protruding electrode 30.

[第3の実施の形態]
図7は本発明の第3の実施の形態を示している。なお、図において上述の第1,第2の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略するものとする。
[Third Embodiment]
FIG. 7 shows a third embodiment of the present invention. In the figure, portions corresponding to those in the first and second embodiments described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、配線基板20の突起電極30の形成面とは反対側の表面をICチップ36のワイヤボンド実装面とし、突起電極30は、図示しないマザー基板への実装用の外部端子として構成している。なお、この突起電極30は、上述の第1の実施の形態と同様な工程を経て製造される。   In the present embodiment, the surface of the wiring substrate 20 opposite to the surface on which the protruding electrodes 30 are formed is the wire bonding mounting surface of the IC chip 36, and the protruding electrodes 30 are used as external terminals for mounting on a mother substrate (not shown). It is composed. The protruding electrode 30 is manufactured through the same process as in the first embodiment.

このような構成の半導体装置45において、ICチップ36は、その電極パッドと配線基板20上の接続端子43との間がボンディングワイヤ44を介して接続され、モールド樹脂40により封止されている。   In the semiconductor device 45 having such a configuration, the IC chip 36 is connected between the electrode pad and the connection terminal 43 on the wiring substrate 20 via the bonding wire 44 and sealed with the mold resin 40.

また、外部端子として構成される突起電極30の第2接続部30B側表面は、必要に応じて、Snめっき、はんだめっき、無電解Ni/Auめっきなどの表面処理を施してもよく、また、マザー基板との実装に際しては、ボールマウント法、めっき法、印刷法等により、突起電極30の先端にはんだバンプ46を形成してもよい。   Further, the surface on the second connection portion 30B side of the protruding electrode 30 configured as an external terminal may be subjected to surface treatment such as Sn plating, solder plating, electroless Ni / Au plating, if necessary, When mounting on the mother substrate, the solder bump 46 may be formed on the tip of the bump electrode 30 by a ball mount method, a plating method, a printing method, or the like.

以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の第2,第3の実施の形態では、本発明に係る半導体装置として、配線基板20に対して単一のICチップ36が実装された形態の半導体パッケージ部品を例に挙げて説明したが、これに限らず、配線基板に対して複数のICチップが実装されたマルチチップパッケージ部品に対しても本発明は適用可能である。   For example, in the above second and third embodiments, the semiconductor device according to the present invention has been described by taking as an example a semiconductor package component in which a single IC chip 36 is mounted on the wiring board 20. However, the present invention is not limited to this, and the present invention can also be applied to a multi-chip package component in which a plurality of IC chips are mounted on a wiring board.

また、本発明に係る配線基板は、半導体パッケージ部品のインターポーザ基板として構成される場合に限らず、例えば、半導体パッケージ部品が実装されるマザー基板として構成することも可能である。   In addition, the wiring board according to the present invention is not limited to being configured as an interposer substrate for semiconductor package components, and may be configured as a mother substrate on which semiconductor package components are mounted, for example.

本発明の第1の実施の形態として、本発明に係る配線基板の製造方法を説明する工程断面図であり、Aは接続ランド22を有する絶縁基材21の準備工程、Bは接続ランド22を覆う絶縁層24の形成工程、Cは絶縁層24に対する開口部24aの形成工程、そして、Dは第1の導体層としてのCuめっき層25の形成工程をそれぞれ示している。FIG. 2 is a process cross-sectional view illustrating a method for manufacturing a wiring board according to the present invention as a first embodiment of the present invention, wherein A is a preparation process of an insulating base material 21 having a connection land 22, and B is a connection land 22. A process for forming the insulating layer 24 to be covered, C represents a process for forming the opening 24a in the insulating layer 24, and D represents a process for forming the Cu plating layer 25 as the first conductor layer. 本発明に係る配線基板の製造方法を説明する図1に続く工程断面図であり、Aは応力緩和層26の形成工程、BおよびCは第2の導体としてのCuめっき層27,28の形成工程をそれぞれ示している。FIG. 2 is a process cross-sectional view subsequent to FIG. 1 for explaining the method for manufacturing a wiring board according to the present invention, wherein A is a process of forming a stress relaxation layer 26, and B and C are Cu plating layers 27 and 28 as second conductors. Each process is shown. 本発明に係る配線基板の製造方法を説明する図1に続く工程断面図であり、A〜Cの順で第1,第2の導体層25,27,28の不要領域の除去工程をそれぞれ示している。It is process sectional drawing following FIG. 1 explaining the manufacturing method of the wiring board based on this invention, and each shows the removal process of the unnecessary area | region of the 1st, 2nd conductor layers 25, 27, 28 in order of AC. ing. 第1の実施の形態で示した配線基板20の構成において、突起電極30の形状の変形例を示す要部側断面図である。5 is a cross-sectional side view of a main part showing a modified example of the shape of the protruding electrode 30 in the configuration of the wiring board 20 shown in the first embodiment. FIG. 本発明の第2の実施の形態として、本発明に係る半導体装置の製造方法を説明する工程断面図であり、Aはソルダーペースト31の供給工程、BはICチップ36の実装工程、そして、Cははんだ接続部のリフロー工程をそれぞれ示している。FIG. 4 is a process cross-sectional view illustrating a method for manufacturing a semiconductor device according to the present invention as a second embodiment of the present invention, where A is a solder paste 31 supply process, B is a mounting process of an IC chip 36, and C Indicates the reflow process of the solder connection part. 本発明に係る半導体装置の製造方法を説明する図5に続く工程断面図であり、Aは封止工程、Bは外部端子41の形成工程をそれぞれ示している。FIG. 6 is a process cross-sectional view subsequent to FIG. 5 for explaining the method for manufacturing a semiconductor device according to the present invention, in which A represents a sealing process and B represents a process for forming an external terminal 41. 本発明の第3の実施の形態による半導体装置の構成を示す要部側断面図である。It is principal part sectional drawing which shows the structure of the semiconductor device by the 3rd Embodiment of this invention. 第1の従来例による半導体装置の構成を示す要部側断面図である。It is principal part sectional drawing which shows the structure of the semiconductor device by a 1st prior art example. 第2の従来例による半導体装置のはんだ接続部の構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the solder connection part of the semiconductor device by a 2nd prior art example.

符号の説明Explanation of symbols

20…配線基板、22…接続ランド、24…絶縁層、24a…開口部、25…Cuめっき層(第1の導体層)、26…応力緩和層、27…無電解Cuめっき層(第2の導体層)、28…電解Cuめっき層(第2の導体層)、30…突起電極、30A…第1接続部、30B…第2接続部、36…ICチップ、37…電極パッド、38,46…はんだバンプ、39…アンダーフィル樹脂、41…外部端子、42,45…半導体装置。   DESCRIPTION OF SYMBOLS 20 ... Wiring board, 22 ... Connection land, 24 ... Insulating layer, 24a ... Opening, 25 ... Cu plating layer (1st conductor layer), 26 ... Stress relaxation layer, 27 ... Electroless Cu plating layer (2nd Conductor layer), 28 ... Electrolytic Cu plating layer (second conductor layer), 30 ... Projection electrode, 30A ... First connection portion, 30B ... Second connection portion, 36 ... IC chip, 37 ... Electrode pad, 38, 46 ... Solder bumps, 39 ... Underfill resin, 41 ... External terminals, 42, 45 ... Semiconductor devices.

Claims (2)

接続ランドと、この接続ランドを開口させる開口部を有する絶縁層とが形成された第1の表面と、外部端子が形成された第2の表面とを有する基板と、
前記接続ランド上に設けられ、前記開口部を閉塞し前記接続ランドへ接続された第1接続部と、この第1接続部よりも径大に前記絶縁層上に形成された第2接続部とでなる樹脂製の応力緩和層を内部に有する突起電極と、
前記接続ランドと対向する電極パッドを有するICチップ
前記突起電極と前記電極パッドとの間に設けられ前記応力緩和層よりも硬質のはんだバンプと、
前記ICチップと前記第1の表面との間に形成されたアンダーフィル樹脂と、
前記第1の表面に形成され前記ICチップを封止するモールド樹脂と
を具備する半導体装置。
A substrate having a first surface on which a connection land and an insulating layer having an opening for opening the connection land are formed; and a second surface on which an external terminal is formed;
A first connection portion provided on the connection land, closing the opening and connected to the connection land, and a second connection portion formed on the insulating layer having a diameter larger than that of the first connection portion; A protruding electrode having a resin-made stress relaxation layer formed therein,
An IC chip having electrode pads facing the connection land,
A solder bump which is provided between the protruding electrode and the electrode pad and is harder than the stress relaxation layer;
An underfill resin formed between the IC chip and the first surface;
A mold resin formed on the first surface and sealing the IC chip;
A semiconductor device comprising:
外部接続用の接続ランドが形成された基板の第1の表面に絶縁層を形成した後、前記接続ランドを開口させる開口部を前記絶縁層に形成する工程と、
前記開口された接続ランドを第1の導体層で被覆する工程と、
前記第1の導体層の上に樹脂層を形成した後、前記開口部の開口径よりも径大の応力緩和層をパターニングする工程と、
前記応力緩和層を第2の導体層で被覆する工程と、
ICチップの電極パッド上に、前記応力緩和層よりも硬質のはんだバンプを形成する工程と、
前記応力緩和層を被覆する第2の導体層の上に、前記はんだバンプを介して前記ICチップを実装する工程と
前記第1の表面と前記ICチップとの間にアンダーフィル樹脂を注入する工程と、
前記第1の表面に、前記ICチップを封止するモールド樹脂を形成する工程と、
前記第1の表面とは反対側の前記基板の第2の表面に外部端子を形成する工程と
を有する半導体装置の製造方法。
Forming an insulating layer on the first surface of the substrate on which a connection land for external connection is formed, and then forming an opening in the insulating layer for opening the connection land;
Covering the opened connection land with a first conductor layer;
After forming a resin layer on the first conductor layer, patterning a stress relaxation layer having a diameter larger than the opening diameter of the opening; and
Coating the stress relaxation layer with a second conductor layer;
Forming a solder bump harder than the stress relaxation layer on the electrode pad of the IC chip;
Mounting the IC chip on the second conductor layer covering the stress relaxation layer via the solder bump ;
Injecting an underfill resin between the first surface and the IC chip;
Forming a mold resin for sealing the IC chip on the first surface;
Forming an external terminal on the second surface of the substrate opposite to the first surface .
JP2004117458A 2004-04-13 2004-04-13 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4525148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117458A JP4525148B2 (en) 2004-04-13 2004-04-13 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117458A JP4525148B2 (en) 2004-04-13 2004-04-13 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005303021A JP2005303021A (en) 2005-10-27
JP4525148B2 true JP4525148B2 (en) 2010-08-18

Family

ID=35334160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117458A Expired - Fee Related JP4525148B2 (en) 2004-04-13 2004-04-13 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4525148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186657B2 (en) 2019-04-02 2022-12-09 鹿島建設株式会社 Construction method of steel pipe sheet pile foundation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096216A1 (en) * 2008-01-30 2009-08-06 Nec Corporation Electronic part mounting structure, electronic part mounting method, and electronic part mounting substrate
JP5067247B2 (en) * 2008-04-10 2012-11-07 東レ株式会社 Electronic equipment
US8895359B2 (en) 2008-12-16 2014-11-25 Panasonic Corporation Semiconductor device, flip-chip mounting method and flip-chip mounting apparatus
JP2012019244A (en) * 2011-10-24 2012-01-26 Fujitsu Ltd Semiconductor device, circuit wiring board, and method of manufacturing semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326108A (en) * 1993-05-11 1994-11-25 Citizen Watch Co Ltd Bump electrode and its manufacture
JPH08102467A (en) * 1994-09-30 1996-04-16 Tanaka Kikinzoku Kogyo Kk Conduction bump, conduction bump structure and their manufacture
JPH1050770A (en) * 1996-08-05 1998-02-20 Hitachi Ltd Semiconductor device and its manufacture
JPH113956A (en) * 1997-04-14 1999-01-06 Hitachi Aic Inc Formation of bump
JPH11233545A (en) * 1997-11-10 1999-08-27 Citizen Watch Co Ltd Semiconductor device and its manufacture
JP2000315706A (en) * 1999-04-28 2000-11-14 Shinko Electric Ind Co Ltd Manufacture of circuit substrate and circuit substrate
JP2002118210A (en) * 2000-10-10 2002-04-19 Hitachi Cable Ltd Interposer for semiconductor device and semiconductor using the same
JP2003037135A (en) * 2001-07-24 2003-02-07 Hitachi Cable Ltd Wiring substrate and method of manufacturing the same
JP2004080005A (en) * 2002-06-17 2004-03-11 Takashi Nakajima Semiconductor device, its manufacturing method and photosensitive liquid seal resin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326108A (en) * 1993-05-11 1994-11-25 Citizen Watch Co Ltd Bump electrode and its manufacture
JPH08102467A (en) * 1994-09-30 1996-04-16 Tanaka Kikinzoku Kogyo Kk Conduction bump, conduction bump structure and their manufacture
JPH1050770A (en) * 1996-08-05 1998-02-20 Hitachi Ltd Semiconductor device and its manufacture
JPH113956A (en) * 1997-04-14 1999-01-06 Hitachi Aic Inc Formation of bump
JPH11233545A (en) * 1997-11-10 1999-08-27 Citizen Watch Co Ltd Semiconductor device and its manufacture
JP2000315706A (en) * 1999-04-28 2000-11-14 Shinko Electric Ind Co Ltd Manufacture of circuit substrate and circuit substrate
JP2002118210A (en) * 2000-10-10 2002-04-19 Hitachi Cable Ltd Interposer for semiconductor device and semiconductor using the same
JP2003037135A (en) * 2001-07-24 2003-02-07 Hitachi Cable Ltd Wiring substrate and method of manufacturing the same
JP2004080005A (en) * 2002-06-17 2004-03-11 Takashi Nakajima Semiconductor device, its manufacturing method and photosensitive liquid seal resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186657B2 (en) 2019-04-02 2022-12-09 鹿島建設株式会社 Construction method of steel pipe sheet pile foundation

Also Published As

Publication number Publication date
JP2005303021A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US7880276B2 (en) Wiring board and semiconductor device
US9698118B2 (en) Method and apparatus for connecting packages onto printed circuit boards
US7728429B2 (en) Semiconductor device having recessed connector portions
US7713787B2 (en) Mounted body and method for manufacturing the same
TWI419300B (en) Electronic component built-in substrate and method of manufacturing electronic component built-in substrate
KR100969441B1 (en) A printed circuit board comprising a semiconductor chip and a method for manufacturing the same
US20140346673A1 (en) Methods and Apparatus for bump-on-trace Chip Packaging
US20070120268A1 (en) Intermediate connection for flip chip in packages
CN110459521B (en) Flip chip package substrate and electronic package
US7719853B2 (en) Electrically connecting terminal structure of circuit board and manufacturing method thereof
US20200251436A1 (en) Semiconductor device package with improved die pad and solder mask design
JP2009004454A (en) Electrode structure, forming method thereof, electronic component, and mounting substrate
JP2009200067A (en) Semiconductor chip and semiconductor device
EP3301712B1 (en) Semiconductor package assembley
KR101131230B1 (en) A printed circuit board comprising a bump supporiting part and a method of manufacturing the same
JP5015065B2 (en) Wiring board
JP4525148B2 (en) Semiconductor device and manufacturing method thereof
US8168525B2 (en) Electronic part mounting board and method of mounting the same
US7901997B2 (en) Method of manufacturing semiconductor device
JP2019186330A (en) Wiring board, semiconductor package and manufacturing method of wiring board
KR101153675B1 (en) Printed Circuit Board and Manufacturing Method Thereof
JP4045708B2 (en) Semiconductor device, electronic circuit device and manufacturing method
KR20110013902A (en) Package and manufacturing method thereof
JP4561969B2 (en) Semiconductor device
KR101664481B1 (en) Wafer and substrate having structure for penetrationn of solder ball and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees