JP2002118210A - Interposer for semiconductor device and semiconductor using the same - Google Patents

Interposer for semiconductor device and semiconductor using the same

Info

Publication number
JP2002118210A
JP2002118210A JP2000314439A JP2000314439A JP2002118210A JP 2002118210 A JP2002118210 A JP 2002118210A JP 2000314439 A JP2000314439 A JP 2000314439A JP 2000314439 A JP2000314439 A JP 2000314439A JP 2002118210 A JP2002118210 A JP 2002118210A
Authority
JP
Japan
Prior art keywords
semiconductor device
interposer
layer
adhesive
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000314439A
Other languages
Japanese (ja)
Inventor
Takaharu Yonemoto
隆治 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000314439A priority Critical patent/JP2002118210A/en
Publication of JP2002118210A publication Critical patent/JP2002118210A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

PROBLEM TO BE SOLVED: To provide an interposer for a semiconductor device which is suited to miniaturization and is inexpensive by carrying out flip-chip bonding without bumps. SOLUTION: The interposer has a wiring layer 5 in which a wiring pattern 51 is formed on one surface of an adhesive 4 which is an insulator having adhesive properties. Metallic columns 3 electrically connected are arranged perpendicularly to the layer 5. The columns 3 are insulated from each other by the adhesive 4 in the transverse direction (direction of a plane). On the surface not contacting with the columns 3 of the layer 5, gold is plated on a nickel plated base layer. The end surface of the columns 3 other than the layer 5 side is plated with any of gold, tin, silver and solder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSIチップと外
部端子間を中継するインタポーザ、特にLSIチップの
大きさとほぼ同程度の大きさのチップサイズパッケージ
(Chip Size Package ;以下、CSPと略称する)とす
るのに適した半導体装置用インタポーザ及びこれを用い
た半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interposer for relaying between an LSI chip and an external terminal, and more particularly, to a chip size package (hereinafter, abbreviated as CSP) having a size substantially equal to the size of the LSI chip. The present invention relates to a semiconductor device interposer and a semiconductor device using the same.

【0002】[0002]

【従来の技術】半導体パッケージは薄型、小型化の一途
をたどっており、最近では半導体チップと同一サイズの
CSP(チップサイズパッケージ)と称されるパッケー
ジが多く用いられている。
2. Description of the Related Art Semiconductor packages are continually becoming thinner and smaller. Recently, a package called a CSP (chip size package) having the same size as a semiconductor chip is often used.

【0003】従来、このようなCSP半導体装置の種類
としては、LSIチップと外部端子間のインタポーザと
して、セラミック配線基板(Ceramics)を用いたもの
(CCSP)や、TAB(Tape Automated Bonding)や
TCP(Tape Carrier Package)と同様のフレキシブル
配線基板を用いたもの(TCSP)等が知られている。
Conventionally, the types of such CSP semiconductor devices include those using a ceramic wiring board (Ceramics) as an interposer between an LSI chip and external terminals (CCSP), TAB (Tape Automated Bonding) and TCP (TCP). A device using a flexible wiring board (TCSP) similar to that of a tape carrier package (TCSP) is known.

【0004】代表的なCSPの構造を図4に示すが、い
ずれもポリイミド樹脂製絶縁フィルム等の絶縁基材21
上に所定のパターンの配線層22を形成した構造の配線
基板20をインタポーザとして用いている。そして、こ
れに搭載した半導体チップ24の電極25と配線基板2
0の配線層22との接続には、図4(a)に示すよう
な、ボンディングワイヤ23を用いたワイヤボンディン
グ法や、図4(b)に示すようなインナーリード26の
先端にバンプ27を設けて電極25と接続するTABボ
ンディング法が採用されている。さらには、狭ピッチの
接続を行うために、図4(c)に示すような配線層22
上にバンプ28を設け、これを介して直接に電極25と
の接続を行うフリップチップ接続法が考えられている。
FIG. 4 shows a typical CSP structure. In each case, an insulating base material 21 such as an insulating film made of a polyimide resin is used.
A wiring board 20 having a structure in which a wiring layer 22 having a predetermined pattern is formed thereon is used as an interposer. Then, the electrodes 25 of the semiconductor chip 24 mounted thereon and the wiring board 2
For connection to the wiring layer 22 of No. 0, a wire bonding method using a bonding wire 23 as shown in FIG. 4A or a bump 27 at the tip of an inner lead 26 as shown in FIG. The TAB bonding method of providing and connecting to the electrode 25 is employed. Further, in order to make a connection at a narrow pitch, a wiring layer 22 as shown in FIG.
A flip-chip connection method has been considered in which a bump 28 is provided on the upper surface, and the bump 28 is directly connected to the electrode 25 via the bump 28.

【0005】このフリップチップ接続法としては、図5
(a)〜(f)に示すように、種々の方法が提案されて
いる(図5、エレクトロニクス実装学会誌Vol、1N
o、5(1998)p423−p428)、が、いずれ
の場合においても、半導体チップ21側にバンプ(突出
電極)28a〜28fを形成する必要がある点で共通し
ている。
FIG. 5 shows the flip chip connection method.
As shown in (a) to (f), various methods have been proposed (FIG. 5, Journal of Electronics Packaging Society, Vol, 1N).
o, 5 (1998) p423-p428) are common in that in each case, bumps (protruding electrodes) 28a to 28f need to be formed on the semiconductor chip 21 side.

【0006】図5中、(a)はSn−Pbバンプ又はA
uバンプ28aによる金属接合(はんだ又は金バンプ)
の例であり、(b)はボールバンプ28b及び導電ペー
スト29による導電ペースト接合(ボールバンプ)の例
であり、(c)はAuバンプ28cと光硬化性樹脂30
を用いた光硬化性樹脂接合の例であり、(d)はボール
バンプ28d及びIn合金はんだ31による金属接合
(合金バンプ)の例であり、(e)はAuバンプ28e
と導電ペースト29を用いた導電ペースト接合(金バン
プ)の例であり、(f)はAuバンプ28fとACF
(異方導電性フィルム:Anisotropic Conductive Film
)32を用いたACF接合の例である。
In FIG. 5, (a) shows a Sn-Pb bump or A
Metal bonding by u bump 28a (solder or gold bump)
(B) is an example of conductive paste bonding (ball bump) using a ball bump 28b and a conductive paste 29, and (c) is an Au bump 28c and a photocurable resin 30.
(D) is an example of metal bonding (alloy bump) using a ball bump 28d and an In alloy solder 31, and (e) is an Au bump 28e.
(F) shows an example of conductive paste bonding (gold bump) using a conductive paste 29 and an Au bump 28f and an ACF.
(Anisotropic Conductive Film
) 32 is an example of ACF bonding.

【0007】[0007]

【発明が解決しようとする課題】上記したように、従来
のフリップチップ接続法では、いずれの場合も半導体チ
ップにバンプを形成する必要がある。このバンプの形成
方法には、めっき法、ワイヤボンディング法、転写法等
があるが、いずれも長い工程と時間を要するものであ
り、コストアップの原因となっている。したがって、バ
ンプ無しでフリップチップ接続を行える方法が求められ
ている。
As described above, in the conventional flip chip connection method, it is necessary to form bumps on a semiconductor chip in any case. The bump forming method includes a plating method, a wire bonding method, a transfer method, and the like, all of which require a long process and time, and cause an increase in cost. Therefore, there is a need for a method capable of flip-chip connection without bumps.

【0008】この問題の解決策としては、例えば図3に
示すように、バンプなしで半導体チップ9と配線基板1
4とを接続するために、厚さ方向に金属柱15が整列
し、且つ横方向(平面方向)には各々の金属柱15は絶
縁され、その金属柱15は各々が絶縁されているフィル
ム(以下「金属柱埋設異方性導電フィルム」と呼ぶ)1
2を、半導体チップ9と配線基板14の間に介在させる
ことによって、半導体チップ9側のボンディングパッド
10と、配線基板14側の配線パターン13におけるボ
ンディングパッド16とを連結する方法が考えられる。
As a solution to this problem, for example, as shown in FIG.
4, the metal pillars 15 are aligned in the thickness direction, and each metal pillar 15 is insulated in the horizontal direction (planar direction), and each metal pillar 15 is insulated from the film ( Hereinafter referred to as “metal pillar embedded anisotropic conductive film”) 1
A method of connecting the bonding pads 10 on the semiconductor chip 9 side to the bonding pads 16 on the wiring pattern 13 on the wiring substrate 14 side by interposing the semiconductor chip 9 between the semiconductor chip 9 and the wiring substrate 14 is conceivable.

【0009】しかしながら、この図3の構成では、半導
体装置用インタポーザとして、金属柱埋設異方性導電フ
ィルム12及び配線基板14の双方を必要とし、小型化
及び低価格化に適しない。また、半導体チップ側のボン
ディングパッドのピッチが狭くなると、配線基板側の接
合パッドのピッチも同様に狭くする必要が生ずるが、半
導体チップに比べて配線基板においては微細ピッチの配
線を形成することは困難であり、何らかの方法によって
配線基板に対応した配線ピッチにまで拡大(ピッチ変
換)することが必要である。
However, the configuration shown in FIG. 3 requires both the metal pillar buried anisotropic conductive film 12 and the wiring board 14 as an interposer for a semiconductor device, and is not suitable for miniaturization and cost reduction. Also, if the pitch of the bonding pads on the semiconductor chip becomes narrower, the pitch of the bonding pads on the wiring board also needs to be narrowed, but it is not possible to form fine pitch wiring on the wiring board compared to the semiconductor chip. It is difficult, and it is necessary to enlarge (pitch conversion) to the wiring pitch corresponding to the wiring board by some method.

【0010】そこで本発明の目的は、上記課題を解決
し、バンプなしでフリップチップ接続を行うことがで
き、小型化に適した安価な半導体装置用インタポーザ及
びこれを用いた半導体装置を提供することにある。
It is an object of the present invention to solve the above-mentioned problems and to provide an inexpensive semiconductor device interposer which can be flip-chip connected without bumps and is suitable for miniaturization, and a semiconductor device using the same. It is in.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、次のように構成したものである。
Means for Solving the Problems In order to achieve the above object, the present invention is configured as follows.

【0012】(1)本発明の半導体装置用インタポーザ
は、接着性を有する絶縁体層の片面にパターンが形成さ
れた配線層を有し、その配線層に対して垂直に電気的に
接続された金属柱が整列し、且つ横方向(平面方向)に
は各々の金属柱間が上記接着性を有する絶緑体によって
絶縁され、上記配線層の金属柱と接しない面にはニッケ
ルめっき下地層の上に金がめっきが施され、この金属柱
の配線層側ではない端面に、金、すず、銀、はんだのい
ずれか一種類のめっきが施されていることを特徴とする
ものである。
(1) The interposer for a semiconductor device of the present invention has a wiring layer in which a pattern is formed on one surface of an insulating layer having adhesiveness, and is electrically connected to the wiring layer vertically. The metal pillars are aligned, and in the horizontal direction (plane direction), the metal pillars are insulated from each other by the adhesive green body, and the surface of the wiring layer that is not in contact with the metal pillar has a nickel plating base layer. The upper surface is plated with gold, and the end surface of the metal column other than the wiring layer side is plated with any one of gold, tin, silver, and solder.

【0013】本発明においては、上記接着性を有する絶
縁体層のガラス転移温度が100℃〜200℃の範囲で
あること(請求項2)、上記接着性を有する絶縁体層の
弾性率が1000MPa 以下の範囲であること(請求項
3)、さらには上記接着性を有する絶縁体層の熱膨張係
数が20ppm 〜100ppm の範囲であること(請求項
4)が好ましい。
In the present invention, the glass transition temperature of the above-mentioned adhesive insulating layer is in the range of 100 ° C. to 200 ° C. (claim 2), and the elasticity of the above-mentioned insulating layer having adhesiveness is 1000 MPa. It is preferable that the ratio be in the following range (Claim 3), and that the thermal expansion coefficient of the insulating layer having the adhesiveness be in the range of 20 ppm to 100 ppm (Claim 4).

【0014】(2)本発明の半導体装置は、請求項1、
2、3又は4のいずれかに記載の半導体装置用インター
ポーザを用い、上記金属柱を半導体チップの電極に上記
金属柱端面のめっきを利用して接続するとともに、上記
接着性を有する絶縁体層の接着性を用いて半導体チップ
を半導体装置用インターポーザに接着し、上記配線層の
所定の位置にはんだボールを設けたことを特徴とする。
(2) The semiconductor device according to the present invention is characterized in that
The metal pillar is connected to an electrode of a semiconductor chip by using plating of an end face of the metal pillar using the interposer for a semiconductor device according to any one of 2, 3, and 4, and the insulating layer having the adhesive property is formed. The semiconductor chip is bonded to the semiconductor device interposer by using adhesiveness, and solder balls are provided at predetermined positions of the wiring layer.

【0015】<発明の要点>本発明では、上記金属柱埋
設異方性導電フィルムの片側の面に導体層が形成され、
金属柱埋設異方性導電フィルム内の金属柱の片端が、こ
の導体層に電気的に接続された構造の金属柱埋設異方性
導電フィルムを用いる。そして、この金属柱埋設異方性
導電フィルムの導体層を所定の配線パターンに形成し、
実装配線基板との接続ピッチを合わせることを可能にし
た。実装配線基板との接続は、はんだボール等を用いた
接続を行う。そして、反対側は金属柱の先端のめっきを
利用して半導体チップのボンディングパッドと接続する
とともに、接着剤によってフィルムとチップを接続す
る。
<The gist of the invention> In the present invention, a conductive layer is formed on one surface of the anisotropic conductive film embedded with metal pillars,
An anisotropic conductive film embedded with metal pillars having a structure in which one end of a metal pillar in the metal pillar embedded anisotropic conductive film is electrically connected to the conductor layer is used. Then, the conductor layer of the metal pillar buried anisotropic conductive film is formed in a predetermined wiring pattern,
It is possible to match the connection pitch with the mounting wiring board. The connection with the mounting wiring board is performed using a solder ball or the like. The other side is connected to the bonding pad of the semiconductor chip by using the plating at the tip of the metal pillar, and the film and the chip are connected by an adhesive.

【0016】金属層の材質はCuが最適であるが、半導
体チップとの熱膨張係数の一致を考える場合にはFe−
42Ni合金の使用も考えられる。
Although the material of the metal layer is optimally Cu, when considering the coincidence of the thermal expansion coefficient with that of the semiconductor chip, Fe-
The use of a 42Ni alloy is also conceivable.

【0017】金属柱としてはCuが最も一般的である
が、その他にAu、Agなど電気抵抗の小さい金属の使
用が考えられる。
As the metal pillar, Cu is the most common, but other metals such as Au and Ag having a small electric resistance may be used.

【0018】接着性を有する絶縁体つまり接着剤は、半
導体チップと配線基板との熱膨張の不一致によって発生
する応力を緩和する機能を発揮させるため、常温での弾
性率が1000MPa 以下であることが必要である。弾性
率が1000MPa を越える場合には応力緩衝剤としての
役割を十分に果たすことができない。
An insulator having an adhesive property, that is, an adhesive, has an elastic modulus at room temperature of 1000 MPa or less at a normal temperature in order to exhibit a function of relieving a stress generated by a mismatch in thermal expansion between a semiconductor chip and a wiring board. is necessary. When the elastic modulus exceeds 1000 MPa, it cannot sufficiently serve as a stress buffer.

【0019】また接着剤の熱膨張係数は20ppm 〜10
0ppm の範囲であることが必要である。この範囲からは
ずれると、チップとの熱膨張差が著しくなり、温度サイ
クル試験などにおいて剥離などが発生する。
The adhesive has a coefficient of thermal expansion of from 20 ppm to 10 ppm.
It must be in the range of 0 ppm. If it is out of this range, the difference in thermal expansion from the chip becomes remarkable, and peeling or the like occurs in a temperature cycle test or the like.

【0020】[0020]

【発明の実施の形態】以下、本発明を図示の実施形態に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the illustrated embodiment.

【0021】図1に示すインタポーザは、接着性を有す
る絶縁体である接着剤4の層の片面に、配線パターン5
1が形成された配線層5を有し、その配線層5に対して
垂直に電気的に接続されたCuから成る金属柱3が整列
し、且つ横方向(平面方向)には各々の金属柱3間が接
着性を有する絶緑体たる接着剤4によって絶縁された構
造の金属柱埋設異方性導電フィルム50を有する。そし
て、配線パターン51が形成された配線層5の金属柱3
と接しない面には、ニッケルめっき下地層の上に金がめ
っき(Ni、Auめっき7)が施され、この金属柱3の
配線層5側ではない端面に、金、すず、銀、はんだのい
ずれか一種類のめっき、ここでは金めっき(Auめっき
6)が施された構造を有している。
The interposer shown in FIG. 1 has a wiring pattern 5 on one surface of a layer of an adhesive 4 which is an insulator having adhesive properties.
1 are formed, metal columns 3 made of Cu electrically connected perpendicularly to the wiring layer 5 are aligned, and each metal column 3 is arranged in the horizontal direction (in the plane direction). There is an anisotropic conductive film 50 buried in a metal column having a structure in which the three are insulated by an adhesive 4 which is a chloroplast having adhesiveness. Then, the metal pillar 3 of the wiring layer 5 on which the wiring pattern 51 is formed
Gold plating (Ni, Au plating 7) is applied on the nickel plating base layer on the surface not in contact with the metal plating layer 3 and gold, tin, silver, solder It has a structure in which any one type of plating, here, gold plating (Au plating 6) is applied.

【0022】上記の接着性を有する絶縁体たる接着剤4
の層は、ガラス転移温度が100〜200℃の範囲で、
弾性率が1000MPa 以下の範囲のものが適する。ま
た、上記の接着性を有する絶縁体たる接着剤4として熱
膨張係数が20ppm 〜100ppm の範囲のものが適す
る。具体的には、接着剤4としては、エポキシ系、ポリ
イミド系、ポリアミドイミド系などの樹脂が用いられ
る。
The above-mentioned adhesive 4 as an insulator having adhesive properties
The layer has a glass transition temperature in the range of 100 to 200 ° C.,
Those having an elastic modulus of 1000 MPa or less are suitable. Further, as the adhesive 4 as an insulator having the above adhesive property, an adhesive having a coefficient of thermal expansion in the range of 20 ppm to 100 ppm is suitable. Specifically, an epoxy-based, polyimide-based, polyamide-imide-based resin, or the like is used as the adhesive 4.

【0023】また、図1は、上記インタポーザを使用し
たCSP半導体装置の一例をも示している。
FIG. 1 also shows an example of a CSP semiconductor device using the interposer.

【0024】即ち、上記金属柱埋設異方性導電フィルム
50のCu柱から成る金属柱3の端面が露出している面
にAuめっき6を施し、このAuめっき6を利用して半
導体チップ9のボンディングパッド10と金属柱3を接
続する。半導体チップ9は、接着性を有する絶縁体であ
る接着剤4の接着性を用いて、金属柱埋設異方性導電フ
ィルム50に接着されている。半導体チップ9のボンデ
ィングパッド10と接続されている金属柱3の半導体チ
ップ9と反対側の面においては、Cuから成る配線層5
が予め接続されている。この配線層5は、Cuから成る
導体層をエッチングによって配線パターン51を形成し
たものであり、Niめっき、Auめっき(Ni、Auめ
っき7)が行われると共に、実装配線基板との接続のた
めにはんだボール11が搭載される。
That is, Au plating 6 is applied to the surface of the metal pillar buried anisotropic conductive film 50 where the end faces of the metal pillars 3 made of Cu pillars are exposed, and the Au plating 6 is used to form the semiconductor chip 9. The bonding pad 10 and the metal pillar 3 are connected. The semiconductor chip 9 is adhered to the metal pillar buried anisotropic conductive film 50 using the adhesive property of the adhesive 4 which is an insulator having adhesive property. On the surface of the metal pillar 3 connected to the bonding pad 10 of the semiconductor chip 9 opposite to the semiconductor chip 9, the wiring layer 5 made of Cu is formed.
Are connected in advance. The wiring layer 5 is obtained by forming a wiring pattern 51 by etching a conductor layer made of Cu, and is subjected to Ni plating and Au plating (Ni and Au plating 7), and is used for connection with a mounting wiring board. The solder ball 11 is mounted.

【0025】配線層5と電気的に接続された金属柱3を
形成する方法として、金属板をエッチングして金属柱3
を形成する方法、金属板にめっきによって金属柱3を成
長させる方法、金属板を切削することによって溝を形成
して金属柱3を形成する方法などがあり、いずれの方法
も用いることができる。
As a method of forming the metal pillar 3 electrically connected to the wiring layer 5, the metal pillar is etched by etching a metal plate.
, A method of growing the metal column 3 by plating on a metal plate, a method of forming a groove by forming a groove by cutting the metal plate, and the like, and any method can be used.

【0026】次に、上記構成の半導体装置用インタポー
ザ及びこれを用いた半導体装置の製造方法の一実施例に
ついて、図2を参照しながら説明する。
Next, an embodiment of the semiconductor device interposer having the above structure and a method of manufacturing a semiconductor device using the same will be described with reference to FIG.

【0027】まず、厚さ18μmの電解Cu箔1にフォ
トレジスト2を塗布し、直径20μm、ピッチ50μm
のパターンを露光、現像して、マスクを形成した(図2
(a)(b))。このCu箔1に電気めっきによって高
さ50μmのCu柱から成る金属柱3を形成した(図2
(c))。めっき終了後、フォトレジスト2を除去し
(図2(d))、Cu箔1に直径20μm、高さ50μ
m、ピッチ50μmのCuの金属柱(Cu柱)3が整列
しているものが得られた(図2(d))。
First, a photoresist 2 is applied to an electrolytic Cu foil 1 having a thickness of 18 μm, and has a diameter of 20 μm and a pitch of 50 μm.
The pattern was exposed and developed to form a mask (FIG. 2).
(A) (b)). A metal column 3 made of a Cu column having a height of 50 μm was formed on the Cu foil 1 by electroplating.
(C)). After plating, the photoresist 2 was removed (FIG. 2D), and the Cu foil 1 was 20 μm in diameter and 50 μm in height.
A metal column (Cu column) 3 of m and a pitch of 50 μm was obtained (FIG. 2D).

【0028】このCu箔1に接着剤4のワニスを塗布し
(図2(e))、ワニスの乾燥を90℃−4時間
(h)、150℃−4時間(h)の加熱条件で行ない、
金属柱(Cu柱)3と同じ厚さとした(図2(f):整
面)。このとき金属柱(Cu柱)3の端面は接着剤4と
同一面となっている。接着剤4のワニスとしては、エポ
キシ系接着剤にNBRゴム粒子の分散した樹脂を溶剤に
溶解させてワニス状にしたものを使用した。
A varnish of an adhesive 4 is applied to the Cu foil 1 (FIG. 2E), and the varnish is dried under heating conditions of 90 ° C. for 4 hours (h) and 150 ° C. for 4 hours (h). ,
The thickness was the same as that of the metal pillar (Cu pillar) 3 (FIG. 2 (f): uniform surface). At this time, the end surface of the metal column (Cu column) 3 is flush with the adhesive 4. As the varnish of the adhesive 4, a varnish formed by dissolving a resin in which NBR rubber particles were dispersed in an epoxy-based adhesive in a solvent was used.

【0029】上記の如く構成した金属柱埋設異方性導電
フィルム50のCu箔1に所定の配線パターン51を通
常のエッチング法によって形成した(図2(g))。配
線パターン51側に、はんだボール搭載パッド52を除
いて、他の部分にソルダーレジスト8を塗布した(図2
(h))。
A predetermined wiring pattern 51 was formed on the Cu foil 1 of the metal pillar buried anisotropic conductive film 50 configured as described above by a normal etching method (FIG. 2 (g)). On the wiring pattern 51 side, a solder resist 8 was applied to other portions except for the solder ball mounting pads 52 (FIG. 2).
(H)).

【0030】上記フィルムの金属柱(Cu柱)3の端面
にAuめっき6を3μm施した(図2(h))。
An Au plating 6 was applied to the end face of the metal pillar (Cu pillar) 3 of the film at 3 μm (FIG. 2 (h)).

【0031】さらに、この配線パターン51に厚さ2μ
mのNiめっき、その上に厚さ1μmのAuめっき(N
i、Auめっき7)を電気めっき法によって形成した
(図2(h))。
The wiring pattern 51 has a thickness of 2 μm.
m Ni plating, and a 1 μm thick Au plating (N
i, Au plating 7) was formed by electroplating (FIG. 2 (h)).

【0032】この配線パターン51の形成された金属柱
埋設異方性導電フィルム50を所定の大きさに切断し、
半導体チップ9に熱圧着によって貼りつけた。この際、
半導体チップ9のボンディングパッド10と配線パター
ン51のはんだボール搭載パッド52が一致するように
位置合わせを行う。加熱、加圧によって、Cu柱端面の
Auめっき6と半導体チップ9のボンディングパッド1
0のAlが熱圧着され、同時に半導体チップ9に接着剤
4を介して金属柱埋設異方性導電フィルム50が接着さ
れる(図2(i))。その後、150℃−2時間(h)
のキュアを行い、接着剤4を硬化させる。キュア後の常
温の弾性率は400MPa 、ガラス転移温度は110℃、
熱膨張係数は50ppm である。
The metal pillar buried anisotropic conductive film 50 on which the wiring pattern 51 is formed is cut into a predetermined size.
It was attached to the semiconductor chip 9 by thermocompression. On this occasion,
Positioning is performed so that the bonding pads 10 of the semiconductor chip 9 and the solder ball mounting pads 52 of the wiring pattern 51 match. By heating and pressing, the bonding pad 1 of the Au plating 6 on the Cu column end face and the semiconductor chip 9 is formed.
Al of 0 is thermocompression-bonded, and at the same time, anisotropic conductive film 50 buried with metal pillars is bonded to semiconductor chip 9 via adhesive 4 (FIG. 2 (i)). Thereafter, 150 ° C. for 2 hours (h)
To cure the adhesive 4. The modulus at room temperature after curing is 400 MPa, the glass transition temperature is 110 ° C,
The coefficient of thermal expansion is 50 ppm.

【0033】そして金属柱埋設異方性導電フィルム12
の配線パターン51側に設けられたはんだボール搭載パ
ッド52に、はんだボール11を搭載して、CSP半導
体装置が完成する。
Then, the metal column buried anisotropic conductive film 12
The solder ball 11 is mounted on the solder ball mounting pad 52 provided on the wiring pattern 51 side, thereby completing the CSP semiconductor device.

【0034】<最適条件についての根拠> (1)上記実施例と同様の工程で金属柱埋設異方性導電
フィルム50を作製した。ただし接着剤4のキュア後の
弾性率を400、800、1000、1500、200
0MPa と変化させた接着剤を使用した。その金属柱埋設
異方性導電フィルム50を使用して実施例と同様の方法
でCSP半導体装置を作製した。このCSP半導体装置
を実装配線基板に搭載し、温度サイクル試験(−25℃
−30min 、125℃−30min 、500サイクル)行
った。温度サイクル試験後の半導体チップ−フィルム間
の接続状態を観察した。表1は弾性率を変えた接着剤を
用いたフィルムの温度サイクル試験結果を示したもので
ある。
<Basis for Optimum Conditions> (1) An anisotropic conductive film 50 buried with metal pillars was manufactured in the same process as in the above embodiment. However, the elasticity of the adhesive 4 after curing is 400, 800, 1000, 1500, 200.
An adhesive changed to 0 MPa was used. Using the anisotropic conductive film 50 with the metal pillars embedded therein, a CSP semiconductor device was manufactured in the same manner as in the example. This CSP semiconductor device is mounted on a mounting wiring board and subjected to a temperature cycle test (−25 ° C.).
(−30 min, 125 ° C.−30 min, 500 cycles). The connection state between the semiconductor chip and the film after the temperature cycle test was observed. Table 1 shows the results of a temperature cycle test of a film using an adhesive having a changed elastic modulus.

【0035】[0035]

【表1】 [Table 1]

【0036】その結果、表1に示すように、弾性率が1
000MPa を越える値の接着剤を使用した金属柱埋設異
方性導電フィルム50については、500サイクルまで
に接続部に接続不良(オープン)が発生した(表1)。
これは弾性率が高いために温度サイクル試験時に発生す
る応力を十分に吸収できないために、半導体チップとフ
ィルムまたは配線基板とフィルムの間に剥離が発生した
ためと考えられる。従って、接着剤4は、弾性率が10
00MPa 以下の範囲が適当であることが分かる。
As a result, as shown in Table 1, the elastic modulus was 1
Regarding the anisotropic conductive film 50 buried in metal pillars using an adhesive having a value exceeding 000 MPa, a connection failure (open) occurred at the connection portion by 500 cycles (Table 1).
This is presumably because the stress generated during the temperature cycle test could not be sufficiently absorbed due to the high elastic modulus, and peeling occurred between the semiconductor chip and the film or the wiring board and the film. Therefore, the adhesive 4 has an elastic modulus of 10
It turns out that the range below 00 MPa is appropriate.

【0037】(2)次に、上記実施例と同様の工程で金
属柱埋設異方性導電フィルム50を作製した。ただし接
着剤4のキュア後の熱膨張係数を10、20、50、1
00、200MPa と変化させた接着剤を使用した。その
金属柱埋設異方性導電フィルム50を使用して実施例と
同様の方法でCSP半導体装置を作製した。このCSP
半導体装置を実装配線基板に搭載し、温度サイクル試験
(−25℃−30min、125℃−30min 、500サ
イクル)を行った。温度サイクル試験後の半導体チップ
−フィルム間の接続状態を観察した。表2は熱膨張係数
を変えた接着剤を用いたフィルムの温度サイクル試験結
果を示したものである。
(2) Next, the metal column buried anisotropic conductive film 50 was manufactured in the same process as in the above embodiment. However, the coefficient of thermal expansion of the adhesive 4 after curing is 10, 20, 50, 1
The adhesive used was changed to 00 and 200 MPa. Using the anisotropic conductive film 50 with the metal pillars embedded therein, a CSP semiconductor device was manufactured in the same manner as in the example. This CSP
The semiconductor device was mounted on a mounting wiring board and subjected to a temperature cycle test (−25 ° C. for 30 minutes, 125 ° C. for 30 minutes, 500 cycles). The connection state between the semiconductor chip and the film after the temperature cycle test was observed. Table 2 shows the results of a temperature cycle test of a film using an adhesive having a different coefficient of thermal expansion.

【0038】[0038]

【表2】 [Table 2]

【0039】その結果、熱膨張係数が20ppm 未満ある
いは100ppm を超える値の接着剤を使用した金属柱埋
設異方性導電フィルム50については、500サイクル
までに接続部に接続不良(オープン)が発生した(表
2)。これは半導体チップあるいは配線基板との熱膨張
係数の差が大きいために温度サイクル試験時に発生する
応力を大きく、半導体チップとフィルムまたは配線基板
とフィルムの間に剥離が発生したためと考えられる。従
って、接着剤4は、熱膨張係数が20ppm 以上100pp
m 以下の範囲が適当であることが分かる。
As a result, in the anisotropic conductive film 50 buried in a metal pillar using an adhesive having a coefficient of thermal expansion of less than 20 ppm or more than 100 ppm, a connection failure (open) occurred at the connection portion by 500 cycles. (Table 2). This is presumably because the difference in thermal expansion coefficient between the semiconductor chip and the wiring board was large, so that the stress generated during the temperature cycle test was large, and peeling occurred between the semiconductor chip and the film or the wiring board and the film. Therefore, the adhesive 4 has a thermal expansion coefficient of 20 ppm or more and 100 pp.
It turns out that the range below m is appropriate.

【0040】上記実施形態では、金属柱3としてCuを
例にしたが、Cuの他にAu、Agを使用することもで
きる。
In the above embodiment, Cu is used as an example of the metal pillar 3. However, Au and Ag can be used instead of Cu.

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、接
着性を有する絶縁体層の片面にパターンが形成された配
線層を有し、その配線層に対して垂直に電気的に接続さ
れた金属柱が整列し、且つ横方向には各々の金属柱間が
上記接着性を有する絶緑体によって絶縁され、上記配線
層の金属柱と接しない面にはニッケルめっき下地層の上
に金がめっきが施され、この金属柱の配線層側ではない
端面に、金、すず、銀、はんだのいずれか一種類のめっ
きが施されている構造の半導体装置用インタポーザを用
いているので、バンプなしでフリップチップ接続が可能
になり、電気特性に優れ、小型化に適したフリップチッ
プ接続のCSP半導体装置を安価に得ることができる。
As described above, according to the present invention, a wiring layer having a pattern formed on one surface of an insulating layer having adhesiveness is provided, and is electrically connected to the wiring layer vertically. Metal pillars are aligned, and between the metal pillars are insulated in the lateral direction by the above-mentioned adhesive green body. On the surface of the wiring layer not in contact with the metal pillars, gold is placed on a nickel plating base layer. Since the metal pillar is plated with an end face other than the wiring layer side of the metal column, a gold or tin, silver or solder interposer is used. Flip-chip connection can be performed without using the same, and a flip-chip-connected CSP semiconductor device having excellent electric characteristics and suitable for miniaturization can be obtained at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置用インタポーザ及びこれを
用いたCSP構造の半導体装置を示した断面図である。
FIG. 1 is a cross-sectional view illustrating a semiconductor device interposer of the present invention and a semiconductor device having a CSP structure using the same.

【図2】本発明の半導体装置用インタポーザ及びこれを
用いたCSP構造の半導体装置の製造工程を示した図で
ある。
FIG. 2 is a view showing a manufacturing process of a semiconductor device interposer of the present invention and a semiconductor device having a CSP structure using the same.

【図3】金属柱埋設異方性導電フィルムを使用した接続
方法を示した断面図である。
FIG. 3 is a cross-sectional view showing a connection method using an anisotropic conductive film embedded in a metal column.

【図4】従来の代表的なCSPの接続構造を示したもの
である。
FIG. 4 shows a conventional typical CSP connection structure.

【図5】従来のフリップチップ接続方法の種類を示した
図である。
FIG. 5 is a diagram showing types of a conventional flip chip connection method.

【符号の説明】[Explanation of symbols]

1 Cu箔 2 フォトレジスト 3 金属柱 4 接着剤(接着性を有する絶縁体) 5 配線層 6 Auめっき 7 Ni、Auめっき 8 ソルダーレジスト 9 半導体チップ 10 ボンディングパッド 11 はんだボール 50 金属柱埋設異方性導電フィルム 51 配線パターン 52 はんだボール搭載パッド DESCRIPTION OF SYMBOLS 1 Cu foil 2 Photoresist 3 Metal pillar 4 Adhesive (insulator with adhesiveness) 5 Wiring layer 6 Au plating 7 Ni, Au plating 8 Solder resist 9 Semiconductor chip 10 Bonding pad 11 Solder ball 50 Metal pillar burying anisotropy Conductive film 51 Wiring pattern 52 Solder ball mounting pad

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】接着性を有する絶縁体層の片面にパターン
が形成された配線層を有し、その配線層に対して垂直に
電気的に接続された金属柱が整列し、且つ横方向には各
々の金属柱間が上記接着性を有する絶緑体によって絶縁
され、上記配線層の金属柱と接しない面にはニッケルめ
っき下地層の上に金がめっきが施され、この金属柱の配
線層側ではない端面に、金、すず、銀、はんだのいずれ
か一種類のめっきが施されていることを特徴とする半導
体装置用インタポーザ。
1. A wiring layer having a pattern formed on one surface of an insulating layer having adhesiveness, and metal columns electrically connected to the wiring layer are aligned vertically and in a horizontal direction. The metal pillars are insulated from each other by the adhesive green body, and the surface of the wiring layer that is not in contact with the metal pillars is plated with gold on a nickel plating base layer, and the wiring of the metal pillars is An interposer for a semiconductor device, wherein an end face other than the layer side is plated with one of gold, tin, silver, and solder.
【請求項2】上記接着性を有する絶縁体層のガラス転移
温度が100℃〜200℃の範囲であることを特徴とす
る請求項1記載の半導体装置用インタポーザ。
2. The interposer for a semiconductor device according to claim 1, wherein a glass transition temperature of said insulating layer having adhesiveness is in a range of 100 ° C. to 200 ° C.
【請求項3】上記接着性を有する絶縁体層の弾性率が1
000MPa 以下の範囲であることを特徴とする請求項1
記載の半導体装置用インタポーザ。
3. An adhesive layer having an elastic modulus of 1
2. The pressure range of 000 MPa or less.
An interposer for a semiconductor device as described in the above.
【請求項4】上記接着性を有する絶縁体層の熱膨張係数
が20ppm 〜100ppm の範囲であることを特徴とする
請求項1記載の半導体装置用インタポーザ。
4. The interposer for a semiconductor device according to claim 1, wherein the thermal expansion coefficient of the insulating layer having adhesiveness is in a range of 20 ppm to 100 ppm.
【請求項5】請求項1、2、3又は4のいずれかに記載
の半導体装置用インターポーザを用い、上記金属柱を半
導体チップの電極に上記金属柱端面のめっきを利用して
接続するとともに、上記接着性を有する絶縁体層の接着
性を用いて半導体チップを半導体装置用インターポーザ
に接着し、上記配線層の所定の位置にはんだボールを設
けたことを特徴とする半導体装置。
5. The method according to claim 1, wherein the metal pillar is connected to an electrode of a semiconductor chip by using plating of an end face of the metal pillar, using the interposer for a semiconductor device according to claim 1. A semiconductor device, wherein a semiconductor chip is bonded to a semiconductor device interposer using the adhesiveness of the insulating layer having adhesiveness, and a solder ball is provided at a predetermined position of the wiring layer.
JP2000314439A 2000-10-10 2000-10-10 Interposer for semiconductor device and semiconductor using the same Withdrawn JP2002118210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000314439A JP2002118210A (en) 2000-10-10 2000-10-10 Interposer for semiconductor device and semiconductor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314439A JP2002118210A (en) 2000-10-10 2000-10-10 Interposer for semiconductor device and semiconductor using the same

Publications (1)

Publication Number Publication Date
JP2002118210A true JP2002118210A (en) 2002-04-19

Family

ID=18793697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314439A Withdrawn JP2002118210A (en) 2000-10-10 2000-10-10 Interposer for semiconductor device and semiconductor using the same

Country Status (1)

Country Link
JP (1) JP2002118210A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303021A (en) * 2004-04-13 2005-10-27 Sony Corp Wiring substrate, semiconductor device and manufacturing method thereof
JP2008294415A (en) * 2007-04-27 2008-12-04 Sanyo Electric Co Ltd Element packaging board and method for manufacturing same, semiconductor module and method for manufacturing same, and portable device
JP2009246175A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Substrate for mounting element, semiconductor module, an portable apparatus
JP2010153797A (en) * 2008-12-24 2010-07-08 Internatl Business Mach Corp <Ibm> Semiconductor interposer and manufacturing method thereof (silicon interposer testing for three dimensional chip stack)
JP5123664B2 (en) * 2005-09-28 2013-01-23 スパンション エルエルシー Semiconductor device and manufacturing method thereof
US8438724B2 (en) 2007-12-27 2013-05-14 Sanyo Electric Co., Ltd. Method for producing substrate for mounting device and method for producing a semiconductor module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303021A (en) * 2004-04-13 2005-10-27 Sony Corp Wiring substrate, semiconductor device and manufacturing method thereof
JP4525148B2 (en) * 2004-04-13 2010-08-18 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP5123664B2 (en) * 2005-09-28 2013-01-23 スパンション エルエルシー Semiconductor device and manufacturing method thereof
JP2008294415A (en) * 2007-04-27 2008-12-04 Sanyo Electric Co Ltd Element packaging board and method for manufacturing same, semiconductor module and method for manufacturing same, and portable device
US8438724B2 (en) 2007-12-27 2013-05-14 Sanyo Electric Co., Ltd. Method for producing substrate for mounting device and method for producing a semiconductor module
JP2009246175A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Substrate for mounting element, semiconductor module, an portable apparatus
JP2010153797A (en) * 2008-12-24 2010-07-08 Internatl Business Mach Corp <Ibm> Semiconductor interposer and manufacturing method thereof (silicon interposer testing for three dimensional chip stack)

Similar Documents

Publication Publication Date Title
US10068873B2 (en) Method and apparatus for connecting packages onto printed circuit boards
KR100523495B1 (en) Semiconductor device and fabrication method thereof
TW501208B (en) Semiconductor device and manufacturing method of the same
US7547850B2 (en) Semiconductor device assemblies with compliant spring contact structures
US6420787B1 (en) Semiconductor device and process of producing same
TW200303588A (en) Semiconductor device and its manufacturing method
JP2004055628A (en) Semiconductor device of wafer level and its manufacturing method
JP3625815B2 (en) Semiconductor device and manufacturing method thereof
KR20000063759A (en) High reliability non-conductive adhesives for non-solder flip chip bondings and flip chip bonding method using the same
KR20010070094A (en) Semiconductor device and method for manufacturing same
US20070120268A1 (en) Intermediate connection for flip chip in packages
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
KR20100080352A (en) Semiconductor package substrate with metal bumps
JP3116926B2 (en) Package structure and semiconductor device, package manufacturing method, and semiconductor device manufacturing method
JP2002118210A (en) Interposer for semiconductor device and semiconductor using the same
JP2002231765A (en) Semiconductor device
JP2001007155A (en) Flip chip connection structure body
JP4863861B2 (en) Semiconductor device
US11862544B2 (en) Electronic assembly
JP2002261192A (en) Wafer level csp
JPH10261735A (en) Semiconductor device and its manufacture
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JP2002076265A (en) Semiconductor element, method of mounting the same and semiconductor device
KR100900480B1 (en) Semiconductor package
JP2002176267A (en) Electronic parts, circuit device, manufacturing method therefor and semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108