JP5236742B2 - 波長変換レーザ光源及び画像表示装置 - Google Patents

波長変換レーザ光源及び画像表示装置 Download PDF

Info

Publication number
JP5236742B2
JP5236742B2 JP2010536276A JP2010536276A JP5236742B2 JP 5236742 B2 JP5236742 B2 JP 5236742B2 JP 2010536276 A JP2010536276 A JP 2010536276A JP 2010536276 A JP2010536276 A JP 2010536276A JP 5236742 B2 JP5236742 B2 JP 5236742B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
fundamental wave
conversion element
mirror
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010536276A
Other languages
English (en)
Other versions
JPWO2010098115A1 (ja
Inventor
信之 堀川
博之 古屋
哲郎 水島
弘一 楠亀
知也 杉田
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010536276A priority Critical patent/JP5236742B2/ja
Publication of JPWO2010098115A1 publication Critical patent/JPWO2010098115A1/ja
Application granted granted Critical
Publication of JP5236742B2 publication Critical patent/JP5236742B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3542Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/17Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、基本波レーザ光の波長を変換する波長変換レーザ光源及び該光源を用いた画像表示装置に関するものである。
産業用途や民生用機器への組み込みデバイスとして広く用いられているレーザ光源には、半導体レーザダイオードや固体レーザ光源などがある。また、半導体レーザダイオードや固体レーザ光源の直接発振が困難な波長のレーザ光を得るための光源として波長変換レーザ光源がある。
波長変換レーザ光源では、波長変換素子に入射された基本波レーザ光(以下、基本波と略す)の2倍の周波数の光(第2高調波)を発生するSHG(Second Harmonic Generation)や、2つの周波数の光が入射されることにより2つの周波数の和の周波数の光(和周波)を発生するSFG(Sum frequency Generation)などの非線形光学効果により、レーザ光の周波数、つまり波長が変換される。
従来から提案されている、第2高調波を発生させる波長変換レーザ光源の一例を図23に示す。波長変換レーザ光源は、基本波を生成する基本波レーザ光源111、基本波レーザ光源111から出射された基本波を集光して波長変換素子113に入射するためのレンズ112、基本波の第2高調波を発生する波長変換素子113、及び、基本波FL(透過基本波レーザ)と第2高調波SL(波長変換レーザ)とを分離するダイクロイックミラー114により構成され、基本波を集光して一度だけ波長変換素子113を通過させて第2高調波を発生させる。
波長変換素子113は非線形光学結晶からなり、基本波と第2高調波との位相が一致するように、結晶の方位や分極反転構造の周期を制御する必要がある。特に、周期状分極反転構造を用いた擬似位相整合方式の波長変換素子は、高効率の波長変換を行うことができることと、分極反転周期の設計により任意の波長の基本波を第2高調波へと変換することとができるため、幅広く利用されている。
ここで、基本波から第2高調波への波長変換効率ηは、波長変換素子の相互作用長をL、基本波のパワーをP、波長変換素子でのビーム断面積をA、位相整合条件に対する基本波と第2高調波との位相差をΔkとすると、下記の式(1)となる。
η∝(L×P/A)×sinc(Δk×L) … (1)
上記の式(1)から、波長変換素子の相互作用長Lを長くすることにより、高効率な波長変換を行うことができることがわかる。
しかしながら、相互作用長Lが長くなると、基本波と第2高調波との位相差Δkを小さくする条件(例えば、基本波の入射角度や波長変換素子の温度条件)が厳しくなるため、波長変換効率の低下が顕著となり、実用上、相互作用長Lは制限される。例えば、波長変換素子の温度条件により、相互作用長Lが制限され、高効率化が困難となっていた。なお、基本波と第2高調波との位相差Δkが0となる時の波長変換素子の温度を位相整合温度、波長変換効率が半分となる波長変換素子の温度幅を温度許容幅と呼んでいる。
これまで波長変換レーザ光源の波長変換効率を向上するため、多くの提案がある。例えば、特許文献1では、複数個の波長変換素子と集光手段とを用いることで、波長変換効率を高めることが提案されている。また、特許文献2では、基本波の反射手段により波長変換素子に基本波の反射体を設け、波長変換素子に再入射させることが提案されている。また、特許文献3では、対向する凹面ミラー間に波長変換素子を配置し、往復する基本波の波長変換を行うことが提案されている。
特開平11−44897号公報 特開2006−208629号公報 特開2005−268780号公報
しかしながら、従来提案されている上記の各構成では、波長変換レーザ光源の波長変換効率を向上させることはできるが、波長変換素子の温度変化により波長変換効率が大きく変動するという課題があった。
本発明の目的は、高い波長変換効率を維持した状態で、波長変換素子の温度許容幅を拡大することができるとともに、不要な基本波による波長変換素子の波長変換効率の変動を抑制することができる、高出力且つ高安定な波長変換レーザ光源を提供することである。
本発明の一局面に従う波長変換レーザ光源は、基本波を生成するための基本波レーザ光源と、互いに向かい合うように配置された第1のミラー及び第2のミラーと、前記第1のミラーと前記第2のミラーとの間に配置され、前記基本波の波長を変換するための波長変換素子と、前記波長変換素子の温度を制御するための温度制御部とを備え、前記波長変換素子において前記基本波の一部が波長変換され、且つ、波長変換されていない基本波が前記第1のミラー及び前記第2のミラーにより反射されて前記波長変換素子に繰り返し入射されて波長変換され、前記温度制御部は、前記波長変換素子に接するように配置され、前記温度制御部へ入射される前記基本波の光量が低減される。
上記の波長変換レーザ光源においては、高い波長変換効率を維持した状態で、波長変換素子の温度許容幅を拡大することができるとともに、不要な基本波による波長変換素子の波長変換効率の変動を抑制することができるので、高出力且つ高安定な波長変換レーザ光源を実現することができる。
本発明の実施の形態1における波長変換レーザ光源の上面図である。 図1に示す波長変換レーザ光源の側面図である。 図1に示す第2の凹面ミラーを中心軸方向から見た正面図である。 第1の凹面ミラーの焦点距離f1を25mm、第2の凹面ミラーの焦点距離f2を20mmに設定したときに、各パスにおいて基本波が波長変換素子へ入射する位置を示す説明図である。 図4に示す各パスにおいて基本波が波長変換素子へ入射する位置における基本波のビームの直径を示す図である。 第1の凹面ミラー4の焦点距離f1を25mm、第2の凹面ミラー5の焦点距離f2を20mmに設定したときに、波長変換素子3の中心位置における各パスの基本波の位置を示す説明図である。 図6に示す各パスにおいて波長変換素子の中心位置における基本波のビームの直径を示す図である。 基本波吸収部が省略された構成を用いて、波長変換レーザ光源を電流一定制御下で動作させて第2高調波出力がおよそ6Wとなるように調整したときの、第2高調波出力の時間変化を示す図である。 実施の形態1の構成を用いて、波長変換レーザ光源を電流一定制御下で動作させて第2高調波出力がおよそ6Wとなるように調整したときの、第2高調波出力の時間変化を示す図である。 図1に示す波長変換レーザ光源に放熱機構を追加した例を示す図である。 図1に示す波長変換レーザ光源において基本波吸収部に代えてアパーチャーを用いた波長変換レーザ光源の上面図である。 図11に示す波長変換レーザ光源の側面図である。 図1に示す波長変換レーザ光源において基本波吸収部に代えて基本波反射ミラーを用いた波長変換レーザ光源の上面図である。 図13に示す波長変換レーザ光源の側面図である。 本発明の実施の形態2における波長変換レーザ光源の上面図である。 図15に示す波長変換レーザ光源の側面図である。 本発明の実施の形態3における波長変換レーザ光源の上面図である。 図17に示す波長変換レーザ光源の側面図である。 本発明の実施の形態4における波長変換レーザ光源の上面図である。 図19に示す波長変換レーザ光源の側面図である。 本発明の実施の形態4における波長変換素子への入射時の素子厚方向における基本波のビームの直径の変化を示す図である。 本発明の実施の形態5における液晶表示装置の構成の一例について示す概略構成図である。 従来の波長変換レーザ光源の模式図である。
以下、本発明の実施の形態における波長変換レーザ光源について図面を用いながら説明する。なお、各図面において、同一の符号は同一の構成要素又は同様の作用及び動作をなすものを表す。
(実施の形態1)
図1及び図2は、本発明の実施の形態1における波長変換レーザ光源の構成の一例を示す図であり、図1は、本実施の形態における波長変換レーザ光源の構成を上面から見た図であり、図2は、図1に示す波長変換レーザ光源の構成を側面から見た図である。以下において、図1中の矢印10及び図2中の矢印11で示す方向をそれぞれ素子幅方向(波長変換素子3の幅方向)、素子厚方向(波長変換素子3の厚さ方向)とする。
図1及び図2において、1は基本波を生成するための基本波レーザ光源、2は基本波を集光するための集光光学系、3は基本波を第2高調波へと変換させるための波長変換素子、4は曲率R1を有する第1の凹面ミラー、5は曲率R1と異なる曲率R2を有する第2の凹面ミラー、6は波長変換素子3の温度を制御するための温度制御素子、7は波長変換素子3を固定するための素子固定台、18は基本波レーザ遮光部となる基本波吸収部(基本波遮光部の一例)を示す。
温度制御素子6及び素子固定台7から温度制御部8が構成され、温度制御部8は、一方の主面が波長変換素子3の一方の主面に接するように配置されている。基本波吸収部18は、第1の凹面ミラー4と温度制御部8との間に配置され、波長変換素子3に入射することができない基本波が温度制御部8に吸収されることを防ぎ、温度制御部8に吸収される基本波の光量を低減する。なお、基本波吸収部18の上面は、図2に示すように、波長変換素子3から第1の凹面ミラー4へ入射する基本波及び第2高調波を遮光することなく、第1の凹面ミラー4により反射された基本波を遮光する位置、例えば、波長変換素子3と素子固定台7との接触面の高さに設置されることが好ましい。
また、図1及び図2中に示す9は、第1の凹面ミラー4、第2の凹面ミラー5及び波長変換素子3の中心を通る軸である中心軸を示し、12で示す破線は、基本波レーザ光の光路と、本実施の形態において波長変換レーザ装置を構成する光学系内での集光状態とを模式的に示している。
ここで、基本波レーザ光源1として、ファイバレーザ光源を用い、また、集光光学系2は、コリメータレンズと平凸レンズとで構成している。また、第1の凹面ミラー4には、焦点距離f1=25mmの凹面ミラー、第2の凹面ミラー5には、焦点距離f2=20mmの凹面ミラーを用いている。また、波長変換素子3には、周期状分極反転構造を有するMgO:LiNbO結晶(PPLN)を用いている。波長変換素子3の長さ(中心軸9方向の長さ)は26mm、幅(矢印10方向の長さ)は10mm、厚さ(矢印11方向の長さ)は0.5mmである。
また、第1の凹面ミラー4は、基本波の反射率が高く且つ第2高調波の透過率が高くなるようなコーティングを備え、第2の凹面ミラー5は、基本波と第2高調波の反射率が共に高くなるようなコーティングを備えている。また、第1の凹面ミラー4と第2の凹面ミラー5とは、凹面部が向かい合うように配置されており、波長変換素子3は、2つの凹面ミラー4、5の間に配置されている。
図3は、第2の凹面ミラー5を中心軸9方向から見た正面図である。第1の凹面ミラー4は円形であるが、図3に示すように、第2の凹面ミラー5は、円形凹面ミラーからその下部(図中の破線で示す領域)が切断され、基本波レーザ光源1から生成された基本波を波長変換素子3に入射するための切り欠き領域CAを有している。なお、切り欠き領域CAの形状は、上記の例に特に限定されず、基本波レーザ光源1から生成された基本波を波長変換素子3に入射することができれば、他の形状を用いてもよい。
温度制御素子6と、熱伝導率の高い銅からなる素子固定台7とにより温度制御部8を構成しており、素子固定台7と波長変換素子3とは、放熱性及び熱伝導性の高い接着剤により固定され接触している。本実施の形態では、温度制御素子6として、ペルチェ素子を用いており、図示省略の制御回路等を用いてペルチェ素子すなわち波長変換素子3の温度が所定の温度になるように温度制御素子6を制御している。
基本波レーザ遮光部となる基本波吸収部18としては、例えば、基本波を吸収する色ガラスフィルターを用い、温度制御部8と第1の凹面ミラー4との間に配置されている。色ガラスフィルターとしては、例えば、基本波の波長が1064nmの場合、1064±1nmの周波数帯域の光を99%以上吸収する長方形の吸収フィルターを用いることができる。なお、基本波吸収部18の形状は、上記の例に特に限定されず、不要な基本波を吸収することができれば、他の形状を用いてもよい。
以下に、上記のように構成された波長変換レーザ光源の動作及び機能を説明する。まず、基本波レーザ光源1から発振された基本波(以下、基本波レーザ光ともいう)は、集光光学系2により集光される。このとき、本実施の形態では、第2の凹面ミラー5の一部を切断しており、切り欠き領域CAすなわち第2の凹面ミラー5が無い領域から、中心軸9と平行になるように、基本波が波長変換素子3に入射される。
2枚の凹面ミラー4、5は、共焦点配置とならない間隔で配置されており、且つ、異なる焦点距離を持つ凹面ミラー4、5を用いることで、基本波が凹面ミラー4、5間を反射する間に、複数の集光点を波長変換素子3内に設けることができる仕組みとなっている。共焦点配置とならない間隔で凹面ミラー4、5を配置することにより、集光点が波長変換素子3内で一点に集中することを防ぎ、波長変換素子3の破壊や局所的な発熱を防ぐことができる。また、この光学配置により、基本波は、凹面ミラー4、5間を往復し、十回以上波長変換素子3の通過を繰り返す。
ここで、2枚の凹面ミラー4、5の曲率R1、R2が、R1>R2となるようにしている。つまり、2枚の凹面ミラー4、5の焦点距離f1、f2が、f1>f2となるようにしている。そのことにより、例えば、図1において、第2の凹面ミラー5から第1の凹面ミラー4に向かって進む基本波は集光され、第1の凹面ミラー4から第2の凹面ミラー5へ戻る基本波は、略平行光になる。
本実施の形態は、片方の凹面ミラーから他方の凹面ミラーまで向かう基本波の光路を一つの光学パスとし、基本波がn回目に波長変換素子3を通過するパスをn番目のパスとする。したがって、基本波は集光光学系2で集光され、波長変換素子3に入射された基本波の一部は第2高調波に変換され、波長変換されていない残りの基本波と、波長変換された第2高調波とは共に第1の凹面ミラー4に到達する(1番目のパス)。
次に、波長変換されていない基本波は、第1の凹面ミラー4で反射され、第2高調波は、第1の凹面ミラー4を透過して外部に出力される。第1の凹面ミラー4で反射した基本波は、再び波長変換素子3に入射し、第2高調波に一部変換され、第2の凹面ミラー5に達する(2番目のパス)。
次に、第2の凹面ミラー5で反射された基本波と第2高調波とは、波長変換素子3に再入射され、基本波の一部は第2高調波に変換され、第1の凹面ミラー4に達する(3番目のパス)。
以上の様に、基本波が2つの凹面ミラー4、5間を往復する間に、波長変換素子3を繰り返し通過し、第2高調波を発生させる仕組みとなっている。第1の凹面ミラー4には、第2高調波に対する透過率を高くするコーティングが施されているため、発生した第2高調波は、第1の凹面ミラー4側から外部へ出力される。このとき、温度制御部8により第2高調波出力が最大となるように、波長変換素子3の温度が制御されている。
以上の構成により、波長変換素子3を一度だけ通過する従来の波長変換レーザ光源と比べて、波長変換効率を向上することができる。
また、第2の凹面ミラー5方向から第1の凹面ミラー4方向に向かうパス時(奇数番目のパス時)に、波長変換素子3内で基本波を集光するように制御するのが望ましい。このとき、第1の凹面ミラー4から第2の凹面ミラー5に向かうパス時(偶数番目のパス時)の基本波は、略平行光となり、基本波から第2高調波への波長変換は、奇数番目のパスと比較して無視できるほど小さくなる。以上の構成により、波長変換素子3を一度だけ通過する従来の波長変換レーザ光源に比べ、基本波から第2高調波への波長変換効率を2倍にすることができる。
また、本実施の形態の波長変換レーザ光源では、通過パス毎に基本波が波長変換素子3へ入射する角度が変化しており、各パスで基本波の入射角に応じて、位相整合条件を満たす、基本波の波長、非線形光学材料(波長変換素子3)の屈折率(温度)などの位相整合条件が異なる。つまり、ある波長の基本波を波長変換する時、パス毎に位相整合条件を満たす波長変換素子3の温度が異なるため、波長変換素子3の温度があるひとつのパスの位相整合条件を満たす温度から外れた場合でも、他のパスの位相整合条件と合致し、波長変換効率の低下を抑制する効果がある。
例えば、図23に示す従来の構成の場合、温度許容幅(半値全幅)は1.1度であったが、本実施の形態の温度許容幅(半値全幅)は2.6度となり、従来構成の2倍以上の温度許容幅を持たせることができた。
また、波長変換素子3に入射される基本波のビームの直径は、2つの凹面ミラー4、5の間を往復する間に広がる。図4は、第1の凹面ミラー4の焦点距離f1を25mm、第2の凹面ミラー5の焦点距離f2を20mmに設定したときに、各パスにおいて基本波が波長変換素子3へ入射する位置を示す説明図であり、図5は、各パスにおいて、基本波が波長変換素子3へ入射する位置(例えば、図4に示す位置)における基本波のビームの直径を示す図である。
また、図6は、第1の凹面ミラー4の焦点距離f1を25mm、第2の凹面ミラー5の焦点距離f2を20mmに設定したときに、波長変換素子3の中心位置における各パスの基本波の位置を示す説明図であり、図7は、各パスにおいて、波長変換素子3の中心位置(例えば、図6に示す位置)における基本波のビームの直径を示す図である。なお、図5及び図7の横軸にはパス数を示しており、縦軸には基本波のビームの直径(mm)を示している。
図5より、基本波のビームの直径は、凹面ミラー4、5間を往復する間に波長変換素子3の厚さ0.5mmを上回り(図5中の点線よりも上に示される)、基本波の一部は、波長変換素子3に入射されないことが分かる。また、図7に示すように、1番目のパスで基本波のビームの直径が最適集光ビーム直径となるように集光光学系2を選択している。前述した通り、奇数番目グループOGのパス時には、波長変換素子3内で集光点を持ち、一方、偶数番目グループEGのパス時には、集光点を持たないことが分かる。
上記のように基本波のビームの直径が変化するため、本実施の形態では、少なくとも第1の凹面ミラー4と温度制御部8との間に基本波吸収部18を配置するのが望ましい。その理由について以下に説明する。
基本波が第1の凹面ミラー4で反射され、波長変換素子3に入射する偶数番目のパスでは、基本波のビーム直径が波長変換素子3の厚さを上回り(例えば、図5中の8番目のパス)、基本波が素子固定台7に照射されて吸収される光量が多くなるのに対し、基本波が第2の凹面ミラー5で反射され、波長変換素子3に入射される奇数番目のパスでは、偶数番目のパスと比較して、波長変換素子3に入射する位置でのビーム直径が小さく、素子固定台7に照射されて吸収される基本波の光量が少ないためである。
ここで、素子固定台7の温度変化は、照射されて吸収される基本波の光量に依存するので、基本波吸収部18を、第1の凹面ミラー4と温度制御部8との間に設けることにより、効果的に素子固定台7の温度変化を抑えることができ、この結果、第2高調波出力が安定な光源となる。
このように、本実施の形態では、基本波吸収部18を温度制御素子6と第1の凹面ミラー4との間に配置することにより、基本波吸収部18が波長変換されない不要な基本波を吸収し、温度制御部8により基本波が吸収されることを防ぐ作用がある。この作用により、波長変換されない基本波による波長変換素子3の温度上昇を妨げ、第2高調波出力の低下を低減することができる。もちろん、さらに第2の凹面ミラー5と温度制御部8との間にも、基本波吸収部を設けてもよく、その場合には、さらに出力が安定な光源を提供することができる。
上記構成により得られる効果を図8及び図9を用いて具体的に説明する。図8は、基本波吸収部18が省略された構成(例えば、図4に示す構成)を用いて、波長変換レーザ光源を電流一定制御下で動作させて第2高調波出力がおよそ6Wとなるように調整したときの、第2高調波出力の時間変化を示す図であり、図9は、本実施の形態の構成を用いて、波長変換レーザ光源を電流一定制御下で動作させて第2高調波出力がおよそ6Wとなるように調整したときの、第2高調波出力の時間変化を示す図である。図8及び図9の横軸に時間(s)、縦軸には第2高調波出力の規格化値を示している。
上記の各例では、温度制御部8により波長変換素子3の温度を制御しているが、図8に示すように、基本波吸収部18がない構成を用いて第2高調波出力6Wで3分以上の連続動作を行うと、温度制御部8により波長変換素子3の温度を十分に制御することができず、温度制御部8が不要な基本波を吸収して波長変換素子3の温度が上昇し、第2高調波出力が最大で40%変動する。一方、図9に示すように、本実施の形態の構成を用いることで、基本波吸収部18が不要な基本波を吸収し、不要な基本波による波長変換素子3の温度上昇を妨げることができるので、第2高調波出力の変動を3%以下に抑制することができ、高出力且つ高安定な波長変換レーザ光源を得ることができた。
また、基本波吸収部18は、吸収した基本波による熱を温度制御部8に伝達することなく、外部へ放熱する放熱機構を備えるようにしてもよい。図10は、図1に示す波長変換レーザ光源に放熱機構を追加した例を示す図である。図10に示すように、基本波吸収部18は、放熱性及び熱伝導性の高い接着剤により放熱機構19に固定され、放熱機構19は、基本波吸収部18に接合される固定部19aと、固定部19aから伝達された熱を外部へ放熱する複数のフィン19bとを備え、固定部19aと複数のフィン19bとが一体に形成されている。
放熱機構19としては、熱伝導率の高い金属を用いることができ、例えば、銅、銀、アルミニウムなどを用いることができる。また、グリスを用いて基本波吸収部18を放熱機構19に接触させてもよい。グリスを用いることで、放熱性及び熱伝導性をさらに向上することができる。なお、放熱機構19としては、上記の例に特に限定されず、基本波吸収部18が吸収した熱を温度制御部8に伝達することなく、外部へ放熱することができれば、種々の形状及び構造の放熱機構を用いることができ、例えば、熱伝導率の高い平板金属を用いてもよい。
上記の構成により、基本波吸収部18が基本波を吸収することによる熱は、放熱機構19の固定部19aに伝達され、さらに、複数のフィン19bへ伝達される。この結果、基本波を吸収することによる熱は、温度制御部8に伝達されることなく、外部へ効率よく放熱される。
また、本実施の形態では、基本波吸収部18(又は放熱機構19)と温度制御部8との間を所定距離だけ離間したり、断熱材を挟んだりすることにより、基本波吸収部18と温度制御部8とを熱的に分離し、基本波吸収部18と温度制御部8との熱抵抗が大きくなるようにしている。この結果、基本波吸収部18が基本波を吸収することによる温度上昇を低減し、さらに基本波吸収部18から発する熱により波長変換素子3の温度が変化することを防ぎ、さらに出力が安定な光源を提供することができる。
また、本実施の形態1の基本波レーザ光源1には、ファイバレーザ光源を用いている。ファイバレーザ光源を用いることで、高いビーム品質(横モード)の基本波を得ることができる。高いビーム品質の基本波は、波長変換素子3を1回通過するときの波長変換効率を高めることができる。このように、各パスの波長変換効率を高めることで、複数回波長変換素子3を通過したときの合計の波長変換効率としても向上させることができる。
なお、基本波レーザ光源1として、ファイバレーザ光源の他、半導体レーザ光源、固体レーザ光源など各種レーザ光源を用いてもよい。半導体レーザ光源や固体レーザ光源を用いることで、基本波レーザ光源を小型化することができ、波長変換レーザ全体として小型化できる。
また、集光光学系2としては、コリメータレンズと平凸レンズとを用いているが、コリメータレンズ、平凸レンズ、凸レンズ、平凹レンズ、凹レンズ、非球面レンズなど各種レンズの少なくとも1つを用いて波長変換素子3内に集光させてもよい。各種レンズを組み合わせることで、焦点距離を短くすることが可能となり、波長変換レーザ光源を小型化することができる。
また、本実施の形態では、1番目のパスからの第2高調波出力が大きくなるように、集光光学系2により基本波のビームの直径を最適集光ビーム直径に調整しているが、3番目のパス以降の基本波のビームの直径が最適集光ビーム直径となるようにしてもよい。この場合、基本波のビームの直径の広がりを抑えることができ、基本波吸収部18に吸収される熱量を低減し、基本波吸収部18に備えられた放熱機構をよりシンプルな機構にすることができる。
また、本実施の形態では、基本波を第2の凹面ミラー5の無い領域(本実施の形態では第2の凹面ミラー5の一部を切断している)から、中心軸9と平行になるように、基本波を波長変換素子3に入射していたが、第2の凹面ミラー5の一部を切断することなく、第2の凹面ミラー5の一部の領域に基本波を反射しないコーティングを備えてもよい。第2の凹面ミラー5の一部の領域に基本波を反射しないコーティングを備えることで、第2の凹面ミラー5を切断加工する工程を省くことができ、工程を簡略化することができる。
また、本実施の形態では、波長変換素子3に厚さ0.5mmのPPLNを用いているが、0.9mmより厚いPPLNを用いてもよい。この場合、基本波吸収部18に吸収される熱量を50%以下にすることができ、基本波吸収部18に備えられた放熱機構をよりシンプルな機構にすることができる。また、波長変換素子3の厚さを厚くすることで、波長変換素子3に入射することができる基本波の成分が増加し、波長変換効率が向上するため、低電力での駆動が可能となる。
また、本実施の形態では、波長変換素子3に長さ26mmのPPLNを用いているが、26mmよりも短いPPLNを用いてもよい。波長変換素子3の長さを短くすることで、温度許容幅をより広げることができる。
また、波長変換素子3には、PPLNを用いているが、各種非線形光学材料を用いてもよい。例えば、リチウムトリボレート結晶(LiB:LBO)、リン酸チタニルカリウム(KTiOPO:KTP)結晶、周期状分極反転構造を有するLiTaO結晶(PPLT)が用いられる。PPLNやPPLTは、周期状分極反転構造の周期を変えることにより任意の基本波波長で位相整合条件を満たすことができる。そのため、任意の第2高調波波長の波長変換レーザ光源を実現できる。
また、PPLNは、二次の非線形定数が高いため、基本波入力が20W以下の時にも高い波長変換効率を得ることができ、低電力での駆動が可能となる。PPLTは、基本波の光吸収率及び第2高調波の光吸収率が低く、20W以上の基本波入力時において、さらに安定した出力を得ることができる。LBOは、高出力耐性に優れているため、基本波入力100W以上の高いピークのパルスを入力する波長変換レーザ光源において、高い波長変換効率を得ることができ、高いピーク出力の波長変換レーザ光源を提供することができる。
また、本実施の形態では、温度制御素子6としてペルチェ素子を用いているが、ペルチェ素子に代わってヒーターを用いてもよい。ヒーターを用いた場合、急速に加熱することで波長変換素子3を低温側から位相整合温度まで上昇させる時間を短縮できるため、波長変換レーザ光源の起動時間を短縮できる。
また、素子固定台7には熱伝導率の高い銅を用いているが、銀やアルミニウムなどを用いても良い。銅と比較してさらに熱伝導率の高い銀を素子固定台7に用いることで、波長変換素子3の温度制御性を向上することができ、さらに安定に第2高調波出力を得ることができる。
また、波長変換素子3の上部にも熱伝導率の高い銅を配置してもよい。上部にも熱伝導率の高い金属を配置することで、さらに波長変換素子3の温度を均一化し、高い波長変換効率を得ることができ、低電力での駆動が可能となる。この場合、上部に配置された熱伝導率の高い銅を素子固定台とし、この素子固定台に温度制御素子を接着することにより、波長変換素子3の上部にも温度制御部を設け、波長変換素子の温度を制御するようにしてもよい。さらに、この温度制御部と第1の凹面ミラー4との間に基本波吸収部を配置するようにしてもよい。
また、素子固定台7と波長変換素子3とは、放熱性及び熱伝導性の高い接着剤により固定され接触しているとしたが、グリスを用いて接触させてもよい。グリスを用いることで、放熱性及び熱伝導性をさらに向上することができ、さらに安定に第2高調波出力を得ることができる。
また、基本波吸収部18は、断熱材を挟み、温度制御部8と一体化してもよい。この場合、基本波吸収部18の位置調整を簡略化することができ、基本波吸収部18の位置を調整するためのコストを削減することができる。
また、温度制御部8と第1の凹面ミラー4との間に基本波吸収部18として、基本波を吸収する色ガラスフィルターを配置しているが、基本波を遮る又は吸収するアパーチャーを配置してもよい。図11は、図1に示す波長変換レーザ光源において基本波吸収部に代えてアパーチャーを用いた波長変換レーザ光源の構成を上面から見た図、図12は、図11に示す波長変換レーザ光源の構成を側面から見た図である。
図11及び図12に示すように、アパーチャー48は、長方形の基板の内側中央部に長方形の開口部を設けたアパーチャーであり、開口部の形状は、波長変換素子3の第1の凹面ミラー4側の端面の形状に対応しており、開口部の大きさは、例えば、波長変換素子3の第1の凹面ミラー4側の端面の大きさ以下に設定されている。アパーチャー48は、第1の凹面ミラー4と温度制御部8との間に配置され、その開口部から基本波を通過させて波長変換素子3に入射し、また、波長変換素子3に入射することができない基本波を遮光するので、波長変換素子3に入射することができない基本波が温度制御部8に吸収されることを防ぎ、温度制御部8に吸収される基本波の光量を低減する。また、2つの凹面ミラー4、5の位置ずれで基本波の反射角度が設計角度から逸脱した際も、波長変換素子3に入射されない基本波をアパーチャー48で遮ることができる。そのため、温度制御部8に基本波が吸収されることを防ぎ、第2高調波の出力強度を安定させることができる。
なお、アパーチャーの形状は、上記の例に特に限定されず、波長変換素子3に入射することができない基本波が温度制御部8に吸収されることを防止することができれば、円形の基板に長方形の開口部を設けたアパーチャーを用いたり、上下に2枚のアパーチャーを配置し、その間に開口を設けるようにしたりしてもよい。
また、基本波吸収部18の代わりに、基本波を反射するミラー(以下、基本波反射ミラーという)を配置してもよい。基本波反射ミラーを備えることにより、波長変換素子3に入射できなかった基本波が温度制御部8へ入射することを防ぐことができる。基本波反射ミラーでは、基本波の吸収は起こらないため、発熱も生じない。よって、放熱機構を省略することができ、放熱機構のコストを削減することができる。
また、基本波反射ミラーを基本波の光軸に対して波長変換素子3の厚さ方向に傾けて配置することにより、基本波反射ミラーで一度反射した基本波を第1の凹面ミラー4と第2の凹面ミラー5とで反射させることなく、2枚の凹面ミラー4、5の間から外部へと出射させることができる。基本波を凹面ミラー対の外部へと反射することで、波長変換素子3に入射されない基本波が温度制御部8に吸収されることを妨げ、第2高調波の出力変動を低減する効果を得ることができる。
図13は、図1に示す波長変換レーザ光源において基本波吸収部に代えて基本波反射ミラーを用いた波長変換レーザ光源の構成を上面から見た図、図14は、図13に示す波長変換レーザ光源の構成を側面から見た図である。
図13及び図14に示すように、基本波反射ミラー58は、第1の凹面ミラー4と温度制御部8との間に、基本波の光路に対して垂直でも平行でもなく、基本波の光軸に対して波長変換素子3の厚さ方向に傾けて配置され、波長変換素子3に入射することができない基本波が温度制御部8に吸収されることを防ぎ、温度制御部8に吸収される基本波の光量を低減する。
ここで、波長変換素子3の厚さをT、第1の凹面ミラー4の直径(素子厚方向の長さ)をr、第1の凹面ミラー4側の波長変換素子3の端面と第1の凹面ミラー4との距離をdとすると、基本波反射ミラー58に入射する基本波の光軸と基本波反射ミラー58の反射面との成す角θは、(r−T)/2>d×tan(π−2θ)を満たすことが望ましい。
上記条件を満たすことで、基本波反射ミラー58により反射された基本波は、再び第1の凹面ミラー4に反射することなく、外部へと出射される。出射された基本波を、例えば色ガラスフィルターやビームディフューザーなどで吸収及び/又は拡散することで、波長変換素子3の温度への影響を無くすことができる。
また、本実施の形態では、奇数番目のパスの時に波長変換素子3内で基本波を集光しているが、偶数番目のパスの時に波長変換素子3内で基本波を集光してもよい。偶数番目のパスは、奇数番目のパスと比較して、基本波の波長変換素子3へ入射する角度が各パスで大きく異なるため、パス毎に位相整合条件を満たす波長変換素子3の温度が異なり、温度許容幅をより広げることができるので、さらに安定な出力が得られる波長変換レーザを提供することができる。
このとき、基本波が第2の凹面ミラー5で反射されて波長変換素子3に入射する奇数番目のパスでは、基本波のビームの直径が波長変換素子3の厚さを上回り、基本波が素子固定台7に照射されて吸収される量が多くなる。そのため、基本波レーザ遮光部として、例えば、基本波吸収部18又はアパーチャー48を第2の凹面ミラー5と温度制御部8との間に配置することにより、効果的に素子固定台7の温度変化を抑えることができるので、第2高調波出力が安定な光源となる。また、この場合にも、第1の凹面ミラー4と温度制御部8の間にも、基本波吸収部を配置してもよい。
また、基本波レーザ遮光部として、例えば、基本波反射ミラー58を第2の凹面ミラー5と温度制御部8との間に配置するようにしてもよい。ここで、波長変換素子3の厚さをT、第2の凹面ミラー5の直径(素子厚方向の長さ)をr、第2の凹面ミラー5側の波長変換素子3の端面と第2の凹面ミラー5との距離をdとすると、基本波反射ミラー58に入射する基本波の光軸と基本波反射ミラー58の反射面との成す角θは、(r−T)/2>d×tan(π−2θ)を満たすことが望ましい。
上記条件を満たすことで、基本波反射ミラー58により反射された基本波は、再び第2の凹面ミラー5に反射することなく、外部へと出射される。出射された基本波を、例えば色ガラスフィルターやビームディフューザーなどで吸収及び/又は拡散することで、波長変換素子3の温度への影響を無くすことができる。
(実施の形態2)
図15及び図16は、本発明の実施の形態2における波長変換レーザ光源の構成の一例を示す図であり、図15は、本実施の形態における波長変換レーザ光源の構成を上面から見た図であり、図16は、図15に示す波長変換レーザ光源の構成を側面から見た図である。以下において、図15中の矢印10及び図16中の矢印11で示す方向をそれぞれ素子幅方向、素子厚方向とする。
図15及び図16において、1は基本波を生成するための基本波レーザ光源、2は基本波を集光するための集光光学系、3は基本波を第2高調波へと変換させるための波長変換素子、4は曲率R1を有する第1の凹面ミラー、5は曲率R1と異なる曲率R2を有する第2の凹面ミラー、6は波長変換素子3の温度を制御するための温度制御素子、67は波長変換素子3を固定するための素子固定台を示し、温度制御素子6及び素子固定台67から温度制御部68が構成されている。
また、図15及び図16中に示す9は、第1の凹面ミラー4、第2の凹面ミラー5及び波長変換素子3の中心を通る軸である中心軸を示し、12で示す破線は、基本波レーザ光の光路と、本実施の形態において波長変換レーザを構成する光学系内での集光状態とを模式的に示している。
本実施の形態に示す波長変換レーザ光源が実施の形態1に示す波長変換レーザ光源と異なる点は、基本波吸収部18を省略し、その代わりに素子固定台67の端面を反射端面RPとし、素子固定台67の形状により基本波レーザ光を所望の方向(例えば、波長変換レーザ光源の外部)に反射させる点である。この結果、素子固定台67に照射されて吸収される基本波レーザ光の光量を低減し、波長変換素子3の温度上昇を防止することができるので、波長変換レーザ出力を安定化することができる。
以下に、本実施の形態について、実施の形態1と異なる動作及び機能を説明する。本実施の形態に示す波長変換レーザ光源において、図16に示すように、波長変換素子3の温度を均一化するための素子固定台67の端面を、基本波の入射角度と直交しない角度に加工し、反射端面RPを形成している。
具体的には、波長変換素子3の厚さをT、第1の凹面ミラー4の直径(素子厚方向の長さ)をr、第1の凹面ミラー4と第1の凹面ミラー4側の波長変換素子3の端面との距離をdとすると、素子固定台67の反射端面RPに入射する基本波の光軸と素子固定台67の反射端面RPとの成す角φは、(r−T)/2>d×tan(π−2φ)を満たす。
上記条件を満たすことで、素子固定台67の反射端面RPで反射された光は、再び第1の凹面ミラー4で反射されることなく、基本波を反射する凹面ミラー対(第1の凹面ミラー4及び第2の凹面ミラー5)の間から外部へと出射される。このような構成により、素子固定台67と凹面ミラー対との間で基本波レーザ光が繰り返し反射されることを防ぐことで、素子固定台67での基本波レーザ光の吸収量を低減することができるという効果が得られる。
また、素子固定台67として、基本波の波長の光をよく反射する金属材料を用いることにより、基本波レーザ光に対して高反射面を得ることができる。この場合、基本波レーザ光を反射するミラーや吸収フィルターを備える必要が無く、シンプルな構成で第2高調波出力の変動を低減することができるといった利点がある。
なお、素子固定台67の端面に基本波の波長の光をよく反射するコーティングや基本波を反射するミラーを貼り付けることで、反射時の吸収をさらに小さくすることができるので、さらに高いパワーの基本波が照射された時にも、第2高調波出力の変動を低減できる。
また、温度制御部68に対して熱抵抗が高くなるように配置した色ガラスフィルターやビームディフューザーなどを用い、素子固定台67の端面で反射された基本波レーザ光を吸収又は散乱させることにより、波長変換素子3への熱的影響を低減できる。また、色ガラスフィルターやディフューザーなどは、温度制御素子6から独立して放熱機構を備えることにより、波長変換素子3の温度への影響を無くすことができ、安定した出力を得ることができる。
また、第2の凹面ミラー5側の素子固定台67の端面も、基本波の入射角度と直交しない角度に加工し、反射端面を形成してもよい。このとき、波長変換素子3の厚さをT、第2の凹面ミラー5の直径(素子厚方向の長さ)をr、第2の凹面ミラー5と第2の凹面ミラー5側の波長変換素子3の端面との距離をdとすると、第2の凹面ミラー5側の素子固定台67の反射端面に入射する基本波の光軸と第2の凹面ミラー5側の素子固定台67の反射端面との成す角φは、(r−T)/2>d×tan(π−2φ)を満たすことが望ましい。
この場合も、素子固定台67の反射端面RPと同様の効果を得ることができる。また、同様に、色ガラスフィルターやビームディフューザーなどを用い、素子固定台67の第2の凹面ミラー5側の端面で反射された基本波レーザ光を吸収又は散乱させることにより、波長変換素子3への熱的影響を低減でき、さらに出力が安定な光源を提供することができる。
また、本実施の形態では、素子固定台67の端面にのみ反射端面を形成したが、この例に特に限定されず、温度制御素子6の端面にも反射端面を形成したり、温度制御素子6の端面にのみ反射端面を形成したりする等の種々の変更が可能である。
(実施の形態3)
図17及び図18は、本発明の実施の形態3における波長変換レーザ光源の構成の一例を模式的に示す図であり、図17は、本実施の形態における波長変換レーザ光源の構成を上面から見た図であり、図18は、図17に示す波長変換レーザ光源の構成を側面から見た図である。以下において、図17中の矢印10及び図18中の矢印11で示す方向をそれぞれ素子幅方向、素子厚方向とする。
図17及び図18において、1は基本波を生成するための基本波レーザ光源、2は基本波を集光するための集光光学系、3は基本波を第2高調波へと変換させるための波長変換素子、74は曲率R1を有する第1の凹面ミラー、5は曲率R1と異なる曲率R2を有する第2の凹面ミラー、6は波長変換素子3の温度を制御するための温度制御素子、7は波長変換素子3を固定するための素子固定台を示し、温度制御素子6及び素子固定台7から温度制御部8が構成されている。
また、図17及び図18中に示す9は、第1の凹面ミラー74、第2の凹面ミラー5及び波長変換素子3の中心を通る軸である中心軸を示し、12で示す破線は、基本波レーザ光の光路と、本実施の形態において波長変換レーザを構成する光学系内での集光状態とを模式的に示している。
本実施の形態に示す波長変換レーザ光源が実施の形態1に示す波長変換レーザ光源と異なる点は、基本波吸収部18を省略し、第1の凹面ミラー74の上下方向(素子厚方向)の所望の部分を、例えば切断等により加工し、波長変換素子3の厚さよりも小さくしている点である。この結果、素子固定台7に照射されて吸収される基本波レーザ光の光量を低減し、波長変換素子3の温度上昇を防止することができるので、波長変換レーザ出力を安定化することができる。
以下に、本実施の形態について、実施の形態1と異なる動作及び機能を説明する。図18に示すように、第1の凹面ミラー74は、上下方向(素子厚方向)の所望の部分を例えば切断等により加工され、波長変換素子3の厚さよりも第1の凹面ミラー74の上下幅が小さくなるようにしている。
具体的には、第1の凹面ミラー74で反射した基本波レーザ光が全て波長変換素子3に入射するような大きさ及び形状とするため、第1の凹面ミラー74の素子厚方向の反射領域の厚さは、波長変換素子3の厚さと同じ0.5mmとなるように、円形の第1の凹面ミラー74の上部及び下部が切断されている。このような構成をとることにより、第1の凹面ミラー74に到達した基本波レーザ光のうち、第1の凹面ミラー74の中心から上下0.25mmを超える領域に存在する基本波レーザ光は、反射されることなく、第1の凹面ミラー74の外部へと出射される。
一方、第1の凹面ミラー74により反射された基本波レーザ光の第1の凹面ミラー74の面上でのビーム直径は、波長変換素子3の厚さ(本実施の形態では0.5mm)以下となるため、第1の凹面ミラー74により反射された基本波レーザ光は、必ず波長変換素子3内を通過し、基本波レーザ光から第2高調波へと波長変換される。
本構成により、第1の凹面ミラー74により反射された基本波レーザ光が素子固定台7や温度制御素子6に照射されることがなくなる(すなわち、波長変換素子3に入射することができない基本波レーザ光は、第1の凹面ミラー74で反射されない)ため、原理的に温度制御部8で基本波の吸収に起因する温度変化が発生することはなく、波長変換素子3の温度上昇を防ぐことができ、第2高調波出力の変動を低減することができる。
なお、第2の凹面ミラー5の上下(素子厚方向)を切断等により形状加工し、第2の凹面ミラー5で反射された基本波レーザ光がすべて波長変換素子3に入射する構成とすることにより、同様の効果を得ることができる。また、第1の凹面ミラー74と第2の凹面ミラー5の双方の素子厚方向の形状及び大きさを所望の形状及び大きさに加工することで、装置全体の波長変換素子3の厚さ方向のサイズを小さくすることができるという利点がある。
また、本実施の形態では、第1の凹面ミラー74の素子厚方向の上部及び下部を切断加工する例を示したが、この切断部分に対応する第1の凹面ミラー74の外周部に基本波を反射しない材料からなる部材、例えば、基本波を吸収する吸収部材又は基本波を透過して外部へ出射する透過部材を備えても、素子固定台7及び温度制御素子6に照射される基本波レーザ光をなくすことができ、波長変換素子3の温度変動を低減することができる。また、第1の凹面ミラー74の所望の部分(例えば、第1の凹面ミラー74の中心から素子厚方向に上下0.25mm以上の面内領域)に基本波に対する無反射コーティングを施しても、同様の効果を得ることができる。
また、第1の凹面ミラー74及び/又は第2の凹面ミラー5により反射されずに外部へ出射された基本波レーザ光は、例えば、熱伝導率の高い金属に貼り付けられた吸収体や、ビームディフューザーを用いて処理することにより、波長変換素子3の温度変動への影響をなくすことができる。
(実施の形態4)
本実施の形態では、第2の凹面ミラー5の代わりにシリンドリカルミラー51を用いることにより基本波のビーム直径の広がりを制限し、素子固定台7に基本波レーザ光が照射されないようにする構成について説明する。本構成を用いることにより、上記実施の形態1から実施の形態3で述べてきたのと同様の波長変換素子3の温度変動に起因する第2高調波出力の変動低減効果が得られることを示す。
図19及び図20は、本発明の実施の形態4における波長変換レーザ光源の構成の一例を示す図であり、図19は、本実施の形態における波長変換レーザ光源の構成を上面から見た図であり、図20は、図19に示す波長変換レーザ光源の構成を側面から見た図である。以下において、図19中の矢印10及び図20中の矢印11で示す方向をそれぞれ素子幅方向、素子厚方向とする。
図19及び図20において、1は基本波を生成するための基本波レーザ光源、2は基本波を集光するための集光光学系、3は基本波を第2高調波へと変換させるための波長変換素子、4は曲率R1を有する第1の凹面ミラー、51は一方向(素子幅方向)にのみ曲率R1と異なる曲率R2を有するシリンドリカルミラーからなる第2のミラー、6は波長変換素子3の温度を制御するための温度制御素子、7は波長変換素子3を固定するための素子固定台を示し、温度制御素子6及び素子固定台7から温度制御部8が構成されている。
また、図19及び図20中に示す9は、第1の凹面ミラー4、第2のミラー51及び波長変換素子3の中心を通る軸である中心軸を示し、12で示す破線は、基本波レーザ光の光路と、本実施の形態において波長変換レーザを構成する光学系内での集光状態とを模式的に示している。
本実施の形態に示す波長変換レーザ光源が実施の形態1に示す波長変換レーザ光源と異なる点は、基本波吸収部18を省略し、第2の凹面ミラー5の代わりに第2のミラー51を用い、基本波のビームの直径の上下方向(素子厚方向)の広がりを抑制している点である。この結果、素子固定台7に照射されて吸収される基本波の光量を低減し、波長変換素子3の温度上昇を防止することができるので、波長変換レーザ出力を安定化することができる。
ここで、第1の凹面ミラー4には焦点距離f1=22mmの凹面ミラー、第2のミラー51には焦点距離f2=20mmのシリンドリカルミラーを用いている。また、波長変換素子3には、周期状分極反転構造を有するMgO:LiNbO(長さ26mm、幅10mm、厚さ0.5mm)を用いている。
以下に、本実施の形態について、実施の形態1と異なる動作及び機能を説明する。上記構成を用いることにより、第1の凹面ミラー4及び第2のミラー51で反射され、繰り返し波長変換素子3に入射される基本波は、素子幅方向と素子厚方向とで集光位置がずれるため、そのビーム形状が楕円ビームとなる。このとき、素子幅方向においては、実施の形態1と同様に、第1の凹面ミラー4で反射された光は略平行光となり、第2のミラー51で反射された光は素子内で集光されるので、素子幅方向における基本波レーザ光のビーム直径とパス数の関係は、図5に示すとおりである。
一方、素子厚方向における基本波のビーム直径は、図21に示すようになる。図21には、各パスにおける波長変換素子3の入射端面(例えば、図4に示す位置)での素子厚方向における基本波のビームの直径を示す図である。図21において、横軸はパス数を示しており、縦軸には基本波のビームの直径(mm)を示している。
図21に示すように、第2のミラー51においては、素子厚方向における基本波の反射が平面ミラーによる反射となるため、第2のミラー51で反射されて波長変換素子3に入射されるビームは収束ビームとなり、波長変換素子3の端面での素子厚方向における基本波のビームの直径は、必ず0.5mm以下となる。
したがって、基本波のビームの直径が波長変換素子3の厚さよりも大きくなることがなく、基本波は、必ず波長変換素子3に入射されるため、温度制御素子6や素子固定台7に照射されることはなく、温度制御素子6や素子固定台7が基本波レーザ光を吸収して発熱することを防止することができる。
これにより、本実施の形態では、波長変換素子3の温度上昇を防ぐことができ、第2高調波の出力変動を3%以内に抑えることができた。また、この構成により、素子幅方向の集光位置と素子厚方向の集光位置とがずれるので、波長変換素子3内部での基本波レーザ光の光密度を低くすることでき、波長変換素子3による基本波及び第2高調波の吸収を低減することができる。さらに、本構成によれば、第2のミラー51の素子厚方向の位置合わせをする必要がなく、組立て調整工程を簡略化できる。
(実施の形態5)
図22は、画像表示装置の一例として、上記の実施の形態1から実施の形態4において示した波長変換レーザ光源のいずれか一つを含むバックライト照明装置を用いた液晶表示装置の構成を示す概略図である。
図22において、101はバックライト照明装置、102はレーザ光源、103は光ファイバ、104は導光部、105は導光板、107は空間変調素子である液晶表示パネル、108は偏光板、109は液晶板を示す。ここで、バックライト照明装置101に含まれるレーザ光源102は、赤色レーザ光源102a(以下、R光源と表記する)、緑色レーザ光源102b(以下、G光源と表記する)、及び青色レーザ光源102c(以下、B光源と表記する)からなる。
このレーザ光源102において、G光源102bが本発明の実施の形態1から4のいずれかで示した波長変換レーザ光源である。また、R光源102aには波長640nmのAlGaInP/GaAs系材料からなる半導体レーザを、B光源102cには波長450nmのGaN系材料からなる半導体レーザを用いている。
バックライト照明装置101は、レーザ光源102、レーザ光源102からの赤色レーザ光、緑色レーザ光及び青色レーザ光をまとめて導光部104を介して導光板105に導く光ファイバ103、及び導入した赤色レーザ光、緑色レーザ光及び青色レーザ光を均一に主面(図示せず)から出射する導光板105から構成されている。
また、G光源102bは、実施の形態1から4のいずれかで示した波長変換レーザ光源に集光レンズ(図示せず)などの光学部品を付加して、出力光が光ファイバ103に効率よく結合されて導光板105に導かれるようにしている。本構成により、色再現性に優れ、低消費電力で画像表示装置を実現することができる。また、画像表示装置の大画面化には、安定で高出力なレーザ光源が必要となり、本実施の形態1〜4のいずれかで示した波長変換レーザ光源を用いることで、画像表示装置の大画面化が可能となる。
また、ここでは、レーザ光源を用いた画像表示装置として、透過型の液晶パネルを空間光変調素子として用いた液晶表示装置を例に説明したが、DMD(Digital Micro−mirror Device)や反射型液晶(Liquid Crystal On Silicon:LCOS)等を空間変調素子に用いたプロジェクタなどの画像表示装置であっても、同様の効果を発現することができる。
また、レーザ光源から出射した光を空間変調素子に導く光学系には、光ファイバ、導光部、導光板を用いているが、ダイクロイックミラーやクロスプリズムやロッドインテグレータなどを用いてもよい。
なお、以上に説明した実施の形態1〜5は一例であって、本発明の趣旨を逸脱しない範囲でさまざまな形態を採り得ることは言うまでもない。
上記の各実施の形態から本発明について要約すると、以下のようになる。即ち、本発明に係る波長変換レーザ光源は、基本波を生成するための基本波レーザ光源と、互いに向かい合うように配置された第1のミラー及び第2のミラーと、前記第1のミラーと前記第2のミラーとの間に配置され、前記基本波の波長を変換するための波長変換素子と、前記波長変換素子の温度を制御するための温度制御部とを備え、前記波長変換素子において前記基本波の一部が波長変換され、且つ、波長変換されていない基本波が前記第1のミラー及び前記第2のミラーにより反射されて前記波長変換素子に繰り返し入射されて波長変換され、前記温度制御部は、前記波長変換素子に接するように配置され、前記温度制御部へ入射される前記基本波の光量が低減される。
この波長変換レーザ光源においては、基本波の一部が波長変換素子によって波長変換され、且つ、波長変換されていない基本波が第1のミラー及び第2のミラーにより反射されて波長変換素子に繰り返し入射されることにより、基本波は波長変換素子の内部で入射角度を変えながら繰り返し波長変換されるので、高い波長変換効率を維持した状態で、波長変換素子の温度許容幅を拡大することができる。また、温度制御部が波長変換素子に接するように配置され、温度制御部へ入射される基本波の光量が低減されているので、波長変換素子に入射されない基本波が温度制御部に吸収されることを防ぐことができ、波長変換レーザ光源の出力の変動を低減することができる。この結果、不要な基本波による波長変換素子の波長変換効率の変動を抑制することができるとともに、基本波から第2高調波への波長変換効率が高く、高出力且つ高安定な波長変換レーザ光源を実現することができる。
前記第1のミラーは、第1の曲率を有する第1の凹面ミラーを含み、前記第2のミラーは、前記第1の曲率と異なる第2の曲率を有する第2の凹面ミラーを含み、前記波長変換レーザ光源は、前記基本波が前記波長変換素子内に集光点を持つように配置された集光光学系と、前記第1の凹面ミラーと前記温度制御部との間及び/又は前記第2の凹面ミラーと前記温度制御部との間に配置され、前記温度制御部に吸収される基本波の光量を低減するための基本波遮光部とをさらに備えることが好ましい。
この場合、曲率の異なる2枚の凹面ミラー対の間に波長変換素子を配置することにより、基本波は入射角度を変えながら繰り返し波長変換素子に入射され、第2高調波へと変換される。また、基本波遮光部により、波長変換素子に入射されない基本波が温度制御部に吸収されることを防ぐことができるので、波長変換レーザ光源の出力変動を低減することができる。
前記基本波遮光部は、前記基本波が前記温度制御部に入射しないように前記基本波を吸収する基本波吸収部を含み、前記基本波吸収部は、前記温度制御部とは熱的に分離されることが好ましい。
この場合、基本波吸収部が波長変換素子に入射されない基本波を吸収し、波長変換素子に入射されない基本波が温度制御部に吸収されることを防ぐことができるので、波長変換レーザ光源の出力変動を低減することができる。また、基本波吸収部と温度制御部とが熱的に分離されているので、基本波吸収部が基本波を吸収することによる温度上昇を低減し、基本波吸収部から発する熱により波長変換素子の温度が変化することを防ぎ、さらに出力が安定な波長変換レーザ光源を提供することができる。
前記基本波遮光部は、前記基本波が前記温度制御部に入射しないように前記基本波を反射する反射ミラーを含むことが好ましい。
この場合、基本波が温度制御部に入射しないように基本波を反射することができるので、波長変換素子に入射できなかった基本波が温度制御部へ入射することを防ぐことができるとともに、反射ミラーでは基本波の吸収が発生せず、発熱も生じないので、放熱機構を省略することができ、放熱機構のコストを削減することができる。
前記波長変換素子の厚さをT、前記波長変換素子の厚さ方向における前記第1の凹面ミラーの長さをr、前記波長変換素子の厚さ方向における前記第2の凹面ミラーの長さをr、前記第1の凹面ミラーと前記波長変換素子の前記第1の凹面ミラー側の端面との間の距離をd、前記第2の凹面ミラーと前記波長変換素子の前記第2の凹面ミラー側の端面との間の距離をdとすると、前記反射ミラーが前記第1の凹面ミラーと前記温度制御部との間に配置される場合、前記反射ミラーに入射する基本波の光軸と前記反射ミラーの反射面との成す角θは、(r−T)/2>d×tan(π−2θ)を満たし、前記反射ミラーが前記第2の凹面ミラーと前記温度制御部との間に配置される場合、前記反射ミラーに入射する基本波の光軸と前記反射ミラーの反射面との成す角θは、(r−T)/2>d×tan(π−2θ)を満たすことが好ましい。
この場合、反射ミラーにより反射された基本波を、第1の凹面ミラー及び第2の凹面ミラーにより再び反射することなく、第1の凹面ミラー及び第2の凹面ミラーの外部へ出射することができる。
前記温度制御部は、前記基本波が前記温度制御部に入射しないように前記基本波を反射する反射端面を有することが好ましい。
この場合、基本波が温度制御部に入射しないように基本波を反射することができるので、波長変換素子に入射できなかった基本波が温度制御部へ入射することを防ぐことができるとともに、温度制御部の端面を反射面として用いることができるので、部品点数を削減して装置の低コスト化を図ることができる。
前記波長変換素子の厚さをT、前記波長変換素子の厚さ方向における前記第1の凹面ミラーの長さをr、前記波長変換素子の厚さ方向における前記第2の凹面ミラーの長さをr、前記第1の凹面ミラーと前記波長変換素子の前記第1の凹面ミラー側の端面との間の距離をd、前記第2の凹面ミラーと前記波長変換素子の前記第2の凹面ミラー側の端面との間の距離をdとすると、前記反射端面が前記第1の凹面ミラー側に設けられる場合、前記反射端面に入射する基本波の光軸と前記反射端面との成す角φは、(r−T)/2>d×tan(π−2φ)を満たし、前記反射端面が前記第2の凹面ミラー側に設けられる場合、前記反射端面に入射する基本波の光軸と前記反射端面との成す角φは、(r−T)/2>d×tan(π−2φ)を満たすことが好ましい。
この場合、反射端面により反射された基本波を、第1の凹面ミラー及び第2の凹面ミラーにより再び反射することなく、第1の凹面ミラー及び第2の凹面ミラーの外部へ出射することができる。
前記第1のミラーは、第1の曲率を有する第1の凹面ミラーを含み、前記第2のミラーは、前記第1の曲率と異なる第2の曲率を有する第2の凹面ミラーを含み、前記第1及び第2の凹面ミラーの少なくとも一方は、前記波長変換素子の厚さ方向において、前記波長変換素子の厚さ方向の中心を0とし、前記波長変換素子の厚さをTとしたとき、−T/2からT/2までの領域のみ前記基本波を反射することが好ましい。
この場合、第1及び第2の凹面ミラーの少なくとも一方により反射された基本波は、温度制御部に入射されることなく、必ず波長変換素子内を通過して基本波から第2高調波へと波長変換されるので、温度制御部に吸収される基本波の光量を低減することができる。この結果、波長変換素子の温度上昇を防止することができ、波長変換レーザ光源の出力変動を低減することができる。
前記第1及び第2のミラーの一方は、第1の曲率を有する凹面ミラーを含み、他方は、前記波長変換素子の幅方向に前記第1の曲率と異なる第2の曲率を有するシリンドリカルミラーを含み、前記シリンドリカルミラーは、前記波長変換素子の厚さ方向における前記基本波の直径を前記波長変換素子の厚さ以下に制限することが好ましい。
この場合、波長変換素子の厚さ方向における基本波の直径の広がりを抑制することができるので、基本波の直径が波長変換素子の厚さよりも大きくなることがなく、基本波が必ず波長変換素子に入射されるため、温度制御部に吸収される基本波の光量を低減することができる。この結果、波長変換素子の温度上昇を防止することができ、波長変換レーザ光源の出力変動を低減することができる。
前記第1及び第2のミラーの少なくとも一方は、前記基本波レーザ光源から生成された基本波を前記波長変換素子に入射するための切り欠き領域を有することが好ましい。
この場合、切り欠き領域から基本波を波長変換素子に容易に入射することができる。
本発明に係る画像表示装置は、青色、緑色、及び赤色のうち少なくとも1色のレーザ光を発生するレーザ光源と、空間光変調素子と、前記レーザ光源から出射する光を前記空間光変調素子に導く光学系とを備え、前記レーザ光源は、上記のいずれかに記載の波長変換レーザ光源である。
この画像表示装置においては、安定で高出力な波長変換レーザ光源をレーザ光源として用いることができるので、画像表示装置の大画面化が可能となり、色再現性に優れ且つ低消費電力な大型画像表示装置を実現することができる。
本発明の波長変換レーザ光源は、優れた温度制御性及び出力安定性を有する高効率な波長変換レーザ光源として有用である。

Claims (5)

  1. 基本波を生成するための基本波レーザ光源と、
    互いに向かい合うように配置された第1のミラー及び第2のミラーと、
    前記第1のミラーと前記第2のミラーとの間に配置され、前記基本波の波長を変換するための波長変換素子と、
    前記波長変換素子の温度を制御するための温度制御部とを備え、
    前記波長変換素子において前記基本波の一部が波長変換され、且つ、波長変換されていない基本波が前記第1のミラー及び前記第2のミラーにより反射されて前記波長変換素子に繰り返し入射されて波長変換され、
    前記温度制御部は、前記波長変換素子に接するように配置され、前記基本波が前記温度制御部に入射しないように前記基本波を反射する反射端面を有することを特徴とする波長変換レーザ光源。
  2. 前記波長変換素子の厚さをT、前記波長変換素子の厚さ方向における前記第1の凹面ミラーの長さをr、前記波長変換素子の厚さ方向における前記第2の凹面ミラーの長さをr、前記第1の凹面ミラーと前記波長変換素子の前記第1の凹面ミラー側の端面との間の距離をd、前記第2の凹面ミラーと前記波長変換素子の前記第2の凹面ミラー側の端面との間の距離をdとすると、前記反射端面が前記第1の凹面ミラー側に設けられる場合、前記反射端面に入射する基本波の光軸と前記反射端面との成す角φは、(r−T)/2>d×tan(π−2φ)を満たし、前記反射端面が前記第2の凹面ミラー側に設けられる場合、前記反射端面に入射する基本波の光軸と前記反射端面との成す角φは、(r−T)/2>d×tan(π−2φ)を満たすことを特徴とする請求項に記載の波長変換レーザ光源。
  3. 基本波を生成するための基本波レーザ光源と、
    互いに向かい合うように配置された第1のミラー及び第2のミラーと、
    前記第1のミラーと前記第2のミラーとの間に配置され、前記基本波の波長を変換するための波長変換素子と、
    前記波長変換素子の温度を制御するための温度制御部とを備え、
    前記波長変換素子において前記基本波の一部が波長変換され、且つ、波長変換されていない基本波が前記第1のミラー及び前記第2のミラーにより反射されて前記波長変換素子に繰り返し入射されて波長変換され、
    前記温度制御部は、前記波長変換素子に接するように配置され、
    前記第1及び第2のミラーの一方は、第1の曲率を有する凹面ミラーを含み、他方は、前記波長変換素子の幅方向に前記第1の曲率と異なる第2の曲率を有するシリンドリカルミラーを含み、
    前記シリンドリカルミラーは、前記波長変換素子の厚さ方向における前記基本波の直径を前記波長変換素子の厚さ以下に制限することを特徴とする波長変換レーザ光源。
  4. 前記第1及び第2のミラーの少なくとも一方は、前記基本波レーザ光源から生成された基本波を前記波長変換素子に入射するための切り欠き領域を有することを特徴とする請求項1〜のいずれかに記載の波長変換レーザ光源。
  5. 青色、緑色、及び赤色のうち少なくとも1色のレーザ光を発生するレーザ光源と、
    空間光変調素子と、
    前記レーザ光源から出射する光を前記空間光変調素子に導く光学系とを備え、
    前記レーザ光源は、請求項1〜のいずれかに記載の波長変換レーザ光源であることを特徴とする画像表示装置。
JP2010536276A 2009-02-26 2010-02-25 波長変換レーザ光源及び画像表示装置 Active JP5236742B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536276A JP5236742B2 (ja) 2009-02-26 2010-02-25 波長変換レーザ光源及び画像表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009043356 2009-02-26
JP2009043356 2009-02-26
JP2010536276A JP5236742B2 (ja) 2009-02-26 2010-02-25 波長変換レーザ光源及び画像表示装置
PCT/JP2010/001292 WO2010098115A1 (ja) 2009-02-26 2010-02-25 波長変換レーザ光源及び画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2010098115A1 JPWO2010098115A1 (ja) 2012-08-30
JP5236742B2 true JP5236742B2 (ja) 2013-07-17

Family

ID=42665328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536276A Active JP5236742B2 (ja) 2009-02-26 2010-02-25 波長変換レーザ光源及び画像表示装置

Country Status (4)

Country Link
US (1) US8339697B2 (ja)
JP (1) JP5236742B2 (ja)
CN (1) CN102007448A (ja)
WO (1) WO2010098115A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754516B2 (en) 2010-08-26 2014-06-17 Intel Corporation Bumpless build-up layer package with pre-stacked microelectronic devices
JP2013041051A (ja) * 2011-08-12 2013-02-28 Gigaphoton Inc 波長変換装置、固体レーザ装置およびレーザシステム
US9551619B1 (en) * 2011-09-23 2017-01-24 Rockwell Collins, Inc. Terahertz laser
JP2014090849A (ja) * 2012-11-02 2014-05-19 Canon Inc 放射線発生装置、放射線撮影システム及びこれらに用いる照準投光手段
US9804334B2 (en) * 2015-10-08 2017-10-31 Teramount Ltd. Fiber to chip optical coupler
US11585991B2 (en) 2019-02-28 2023-02-21 Teramount Ltd. Fiberless co-packaged optics
US20230296853A9 (en) 2015-10-08 2023-09-21 Teramount Ltd. Optical Coupling
US11550162B2 (en) 2018-05-07 2023-01-10 Phoseon Technology, Inc. Methods and systems for efficient separation of polarized UV light
US11563305B2 (en) * 2021-04-15 2023-01-24 Coherent Lasersystems Gmbh & Co. Kg Resonantly enhanced frequency conversion with adaptive thermal-lensing compensation
CN117255938A (zh) * 2022-04-05 2023-12-19 富士电机株式会社 气体分析仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138507A (ja) * 1992-10-29 1994-05-20 Asahi Glass Co Ltd 高調波発生装置
JPH07120799A (ja) * 1993-10-22 1995-05-12 Nec Corp 波長変換器
JP2002350613A (ja) * 2001-05-28 2002-12-04 Fuji Photo Film Co Ltd 光学装置の迷光遮断構造
JP2003121895A (ja) * 2001-10-10 2003-04-23 Sumitomo Heavy Ind Ltd 高調波発生装置、レーザアニール装置及び高調波発生方法
WO2009044517A1 (ja) * 2007-10-01 2009-04-09 Panasonic Corporation 波長変換レーザ装置およびこれを用いた画像表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898718A (en) * 1997-05-19 1999-04-27 Altos Inc. Method and apparatus for optimizing the output of a multi-peaked frequency harmonic generator
JP3944959B2 (ja) 1997-07-25 2007-07-18 三菱電機株式会社 波長変換レーザ装置
CN1499679A (zh) 2002-11-11 2004-05-26 中国科学院物理研究所 非线性光学晶体内基频激光相位控制装置
JP2004219911A (ja) 2003-01-17 2004-08-05 Sumitomo Heavy Ind Ltd 高調波発生装置
JP2006208629A (ja) 2005-01-27 2006-08-10 Optoquest Co Ltd 波長変換素子、波長変換装置ならびに波長変換方法
JP2005268780A (ja) 2005-03-03 2005-09-29 Sumitomo Heavy Ind Ltd 高調波発生装置、レーザアニール装置及び高調波発生方法
CN2932767Y (zh) 2006-03-16 2007-08-08 中国科学院安徽光学精密机械研究所 激光器上使用的光吸收筒
CN101506730B (zh) * 2006-10-27 2011-12-07 松下电器产业株式会社 短波长光源和激光图像形成装置
JP2008224932A (ja) 2007-03-12 2008-09-25 Matsushita Electric Ind Co Ltd 波長変換装置
US8287131B2 (en) * 2007-11-27 2012-10-16 Panasonic Corporation Wavelength conversion laser
JP2010020285A (ja) * 2008-03-28 2010-01-28 Panasonic Corp レーザ光源、画像表示装置、及び加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138507A (ja) * 1992-10-29 1994-05-20 Asahi Glass Co Ltd 高調波発生装置
JPH07120799A (ja) * 1993-10-22 1995-05-12 Nec Corp 波長変換器
JP2002350613A (ja) * 2001-05-28 2002-12-04 Fuji Photo Film Co Ltd 光学装置の迷光遮断構造
JP2003121895A (ja) * 2001-10-10 2003-04-23 Sumitomo Heavy Ind Ltd 高調波発生装置、レーザアニール装置及び高調波発生方法
WO2009044517A1 (ja) * 2007-10-01 2009-04-09 Panasonic Corporation 波長変換レーザ装置およびこれを用いた画像表示装置

Also Published As

Publication number Publication date
JPWO2010098115A1 (ja) 2012-08-30
WO2010098115A1 (ja) 2010-09-02
US20110032598A1 (en) 2011-02-10
US8339697B2 (en) 2012-12-25
CN102007448A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
JP5236742B2 (ja) 波長変換レーザ光源及び画像表示装置
JP5295969B2 (ja) 波長変換レーザ装置およびこれを用いた画像表示装置
JP5290958B2 (ja) レーザ波長変換装置
JP5312947B2 (ja) 短波長光源およびレーザ画像形成装置
JP4392024B2 (ja) モード制御導波路型レーザ装置
JP5180235B2 (ja) 波長変換レーザ及び画像表示装置
JP2892938B2 (ja) 波長変換装置
US7692848B2 (en) Wavelength conversion module, laser light source device, two-dimensional image display device, backlight light source, liquid crystal display device and laser processing device
WO2014087468A1 (ja) 平面導波路型レーザ励起モジュールおよび平面導波路型波長変換レーザ装置
JP2009094537A (ja) レーザ光源装置、照明装置、画像表示装置、及びモニタ装置
US7701986B2 (en) Laser light source apparatus and image generating apparatus using such laser light source apparatus
JP4760954B2 (ja) レーザ光源装置及びこれを用いた画像生成装置
US8294979B2 (en) Wavelength conversion device and image display apparatus using the same
JP2008198980A (ja) レーザ光源装置、照明装置、画像表示装置、及びモニタ装置
WO2018108251A1 (en) Laser
JP2007250800A (ja) レーザー装置
WO2021006236A1 (ja) レーザー装置
JP2007156177A (ja) 波長変換デバイス、およびレーザ装置
JP2006186071A (ja) 光励起固体レーザ装置
JP2009003210A (ja) 二次高調波発生装置
JPH10321932A (ja) 固体レーザ装置
JP2008216531A (ja) レーザ装置
JPH05142606A (ja) 共振器型波長変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3