JP5208128B2 - 加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置 - Google Patents

加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置 Download PDF

Info

Publication number
JP5208128B2
JP5208128B2 JP2009544522A JP2009544522A JP5208128B2 JP 5208128 B2 JP5208128 B2 JP 5208128B2 JP 2009544522 A JP2009544522 A JP 2009544522A JP 2009544522 A JP2009544522 A JP 2009544522A JP 5208128 B2 JP5208128 B2 JP 5208128B2
Authority
JP
Japan
Prior art keywords
gas
processing
pressure
pressurized gas
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009544522A
Other languages
English (en)
Other versions
JPWO2009072187A1 (ja
Inventor
吉雄 古田
直吉 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FULLTECH INC.
Original Assignee
FULLTECH INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FULLTECH INC. filed Critical FULLTECH INC.
Publication of JPWO2009072187A1 publication Critical patent/JPWO2009072187A1/ja
Application granted granted Critical
Publication of JP5208128B2 publication Critical patent/JP5208128B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、原料ガスの接触に基づいて、成膜、焼成、焼結等の化学的ないし物理的処理を行う加圧ガスパルス制御処理方法及びその加圧ガスパルス制御処理方法を用いた加圧ガスパルス制御処理装置に関する。
被処理物の基材面に同質又は異質の被覆層を形成する処理には、気相成長法(CVD:Chemical Vapor Deposition)が多く用いられている(特許文献1参照)。CVD法は、被処理物を収容した反応室内に処理ガスを導入し、熱分解反応により被処理物上に処理ガスに由来する反応生成物を析出させる方法である。
CVD法は、金属又は非金属等の種々素材のコーティング処理に適用でき、しかも、多層膜、エピタキシャル膜等の析出態様の多様性があるといった利点を有する。しかし、CVD法では、原料ガスを反応室内に流通させながら反応処理するため、反応処理に供されないまま回収されるガス分が多く生じて原料ガスの利用効率が低くなる不具合があった。反応処理に供されなかったガスを再利用するには、処理済ガスと一緒に回収された回収ガスから有効ガスを分離するための分離費用がかかってしまう不具合もあった。
気相析出法の一つとして、パルス気相化学含浸法(CVI:Chemical Vapor Impregnation)が知られている(特許文献2参照)。このパルスCVI法は、多孔質基材を被処理体とし、その気孔内部を含めてセラミックスや炭素、金属等の各種物質を析出させる処理に使用されている。パルスCVI法は、原料ガスを加熱基材にガス状態で接触させる操作を短周期の減圧、昇圧下で間欠的に(パルス状に)反復するプロセスからなる。パルスCVI法によれば、被覆物質を基材組織内部にまで均一に含浸させることができ、原料ガスの利用効率がよい。
特開平7−106326公報 特開平6−57433公報
従来のパルスCVI法による処理装置では、特許文献2に示されるように、原料ガスを一旦、リザーバータンク(貯留槽)に貯留し、その貯留ガスを処理室に供給している。しかしながら、リザーバータンクから原料ガスを処理室に導入したとき、原料ガスを低圧状態で加熱基材に接触することとなるため、所定の処理条件(含浸量等)を達成するには、減圧、昇圧の反復回数を多くする必要があり、処理時間の増加に伴って処理コストがアップする問題を生じた。
従って、本発明の目的は、上記問題を解消して、原料ガスを有効利用して効率的に処理が行え、処理コストの低減を図ることのできる加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置を提供することである。
本発明の第1の形態は、被処理物を収容した処理室に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して導入充填する処理ガス導入工程と、前記処理ガス導入工程の後、前記処理室内の前記被処理物を前記処理ガスにより所定温度下で単位処理時間だけ処理し、前記処理ガスを処理済ガスにする被処理物処理工程と、前記被処理物処理工程の後、前記加圧ガス圧力を有した前記処理済ガスを大気圧以下の低圧力に設定された低圧力排気部へと圧力差を利用して自然排気して、前記処理済ガスのガス圧力を前記低圧力にまで低下させる低圧力化工程と、前記低圧力化工程の後、前記処理室内の低圧力化された前記処理済ガスを強制排気して前記処理室を真空にする真空化工程とから構成され、前記処理ガス導入工程・前記被処理物処理工程・前記低圧力化工程・前記真空化工程を1パルスとして、前記処理を完了するために要請されるパルス数だけ前記被処理物を反復的に処理する加圧ガスパルス制御処理方法である。
本発明の第2の形態は、前記第1の形態において、前記加圧ガス圧力を高圧化して前記処理ガス導入工程を行う導入時間と前記低圧力化工程を行う低圧力化時間を短縮し、前記1パルスの周期を、前記被処理物処理工程を行う前記単位処理時間と前記真空化工程を行う真空化時間の合計に接近させる加圧ガスパルス制御処理方法である。
本発明の第3の形態は、前記第1又は第2の形態において、前記処理が、成膜処理、CVD処理、焼成処理又は焼結処理である加圧ガスパルス制御処理方法である。
本発明の第4の形態は、前記第1、第2又は第3の形態において、前記処理室内に導入された前記処理ガスの前記加圧ガス圧力は、0.5MPa[abs]〜100MPa[abs]の範囲に設定される加圧ガスパルス制御処理方法である。なお、本願明細書においては圧力単位は絶対圧力のPa[abs](以下Paと略す)とする。
本発明の第5の形態は、前記第1〜第4のいずれかの形態において、前記処理ガスは、単一種ガス又は複数種混合ガスである加圧ガスパルス制御処理方法である。
本発明の第6の形態は、被処理物を収容し、処理ガスを室内に導入して前記被処理物に接触させて処理済ガスにする処理室と、前記処理室を所定温度に加熱保持する加熱手段と、前記処理ガスを大気圧を越える加圧ガス圧力で供給する処理ガス貯留手段と、大気圧以下の低圧力に設定された低圧力排気部と前記処理室とを連通して前記処理室を前記加圧ガス圧力から前記低圧力にまで低圧力化させる自然排気路を開閉する自然排気路開閉手段と、前記処理室と連通した真空排気路を通じて前記処理室内を真空化する真空排気手段と、前記真空排気路を開閉する真空排気路開閉手段と、前記処理室と前記処理ガス貯留手段を連通する加圧ガス導入路を開閉する加圧ガス導入路開閉手段と、前記処理ガスによる処理内容に応じて、前記自然排気路開閉手段、前記真空排気路開閉手段及び前記加圧ガス導入路開閉手段の開閉を制御する制御手段とを有し、前記制御手段は、前記処理ガスの導入、前記被処理物の処理、前記低圧力化及び前記真空化を1パルスとして、前記処理内容を完了するために要請されるパルス数だけ前記被処理物を反復的に処理する加圧ガスパルス制御処理装置である。
本発明の第7の形態は、前記制御手段は、前記加圧ガス導入路開閉手段を開成して、前記処理ガス貯留手段に貯留された処理ガスを前記加圧ガス圧力を有させて、真空化された前記処理室に圧力差を利用して導入充填するガス導入処理手段と、前記処理室内の前記被処理物を前記処理ガスの導入により所定温度下で単位処理時間だけ処理し、前記処理ガスを処理済ガスにするガス処理手段を有する加圧ガスパルス制御処理装置である。
本発明の第8の形態は、前記第6又は第7の形態において、前記制御手段は、前記ガス処理手段の処理後、前記自然排気路開閉手段を開成して、前記加圧ガス圧力を有した前記処理済ガスを前記低圧力排気部へと圧力差を利用して自然排気して、前記処理済ガスのガス圧力を前記低圧力にまで低下させる低圧力化処理手段と、前記低圧力化の後、前記真空排気路開閉手段を開成して、前記処理室内の低圧力化された前記処理済ガスを強制排気して前記処理室を前記真空化する真空化処理手段を有する加圧ガスパルス制御処理装置である。
本発明の第9の形態は、前記第7の形態において、前記加圧ガス圧力を高圧化して前記ガス導入処理手段によるガス導入時間と前記大気圧化処理手段による大気圧化時間を短くし、前記1パルスの周期を、前記ガス処理手段による前記単位処理時間と前記真空化処理手段による真空化時間の合計に近づける加圧ガスパルス制御処理装置である。
本発明の第10の形態は、前記第7、第8又は第9の形態において、前記自然排気路開閉手段、前記真空排気路開閉手段及び前記加圧ガス導入路開閉手段は、前記制御手段からの開閉動作指示の受信に基づいて開閉動作する電磁バルブからなる加圧ガスパルス制御処理装置である。
本発明の第11の形態は、前記第7〜第10のいずれかの形態において、前記処理ガス貯留手段は、高圧ガス出口を流量制御器を介して前記加圧ガス導入路に接続した高圧ガスボンベからなる加圧ガスパルス制御処理装置である。
本発明の第12の形態は、前記第7〜第11のいずれかの形態において、前記処理室の内圧を測定する圧力計を少なくとも、排気側とガス導入側に設け、前記圧力計の計測圧に基づき前記制御手段による開閉動作を行う加圧ガスパルス制御処理装置である。
本発明の第13の形態は、前記第7〜第12のいずれかの形態において、前記処理室内に導入された前記処理ガスの前記加圧ガス圧力は、0.5MPa[abs]〜100MPa[abs]の範囲に設定される加圧ガスパルス制御処理装である。
本発明の第14の形態は、前記第7〜第13のいずれかの形態において、前記処理ガスは、単一種ガス又は複数種混合ガスである加圧ガスパルス制御処理装置である。
本発明の第1の形態によれば、前記処理ガス導入工程・前記被処理物処理工程・前記低圧力化工程・前記真空化工程を1パルスとして、前記処理を完了するために要請されるパルス数だけ前記被処理物を反復的に処理するので、前記処理ガス導入工程において、前記処理室に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して導入充填して、前記処理室内において、高圧状態の処理ガスによって前記被処理物に対し、所定温度下の加圧ガス処理を行うことができる。従って、高圧の処理ガスを高圧ガスボンベから短時間に前記処理室に導入して、ガス導入時間の短縮化が可能になり、また従来のリザーバータンク(貯留槽)に一旦貯留することによる低圧化を回避でき、しかも、リザーバータンクの設備及びその開閉処理が不要になるため、処理ガス(原料ガス)を有効利用して効率的に処理が行え、且つ処理コストの低減を図ることができる。
特に、前記低圧力化工程においては、前記加圧ガス圧力を有した前記処理済ガスを大気圧以下の低圧力に設定された低圧力排気部へと圧力差を利用して自然排気して低圧力化するので、前記被処理物処理工程の後の処理済ガスの排気処理を簡易に行え、且つ一度に大量に排気することにより排気処理時間の短縮化を図ることができる。排気設備をより簡素化するためには、前記低圧力化工程の前記低圧力は大気圧又はその近傍の圧力に設定するのが好ましい。
本発明の第2の形態によれば、前記加圧ガス圧力を高圧化して前記処理ガス導入工程を行う導入時間と前記低圧力化工程を行う低圧力化時間を短縮し、前記1パルスの周期を、前記被処理物処理工程を行う前記単位処理時間と前記真空化工程を行う真空化時間の合計に接近させるので、上記ガス導入時間及び排気処理時間の短縮とともに、従来のリザーバータンクを用いたときのガス貯留工程時間を不要にして効率的な加圧ガス処理を行うことができる。
本発明の第3の形態によれば、本発明の加圧ガス処理を、成膜処理、CVD処理、焼成処理又は焼結処理に適用して、被覆層形成処理、表面処理、焼結処理等の処理時間短縮化と低コスト化を図ることができる。
本発明の第4の形態によれば、前記処理ガス導入工程において、前記処理室に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して導入充填して、高圧状態で処理ガスを加圧ガス処理を行うことができるので、前記処理室内に導入された前記処理ガスの前記加圧ガス圧力を、0.5MPa〜100MPaの範囲の大気圧以上に設定して、高圧状態の加圧ガス処理を低処理コストで実施することができる。
本発明の第5の形態によれば、前記処理ガスは、単一種ガス又は複数種混合ガスであるので、前記処理ガス導入工程により前記処理室に導入する処理ガスに単一種ガス又は複数種の混合ガスを用いて、加圧ガス処理態様の多様化を図ることができる。
本発明の第6の形態によれば、前記制御手段によって、前記処理ガスによる処理内容に応じて、前記自然排気路開閉手段、前記真空排気路開閉手段及び前記加圧ガス導入路開閉手段の開閉を制御して、前記処理ガスの導入、前記被処理物の処理、前記低圧力化及び前記真空化を1パルスとして、前記処理内容を完了するために要請されるパルス数だけ前記被処理物を反復的に処理するので、前記処理ガス貯留手段から、前記処理室に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して供給して、前記処理室内に高圧状態で処理ガスの導入充填を行い、前記加熱手段により所定温度に加熱した被処理物に対して加圧ガス処理を行うことができる。従って、高圧の処理ガスを高圧ガスボンベ等の前記処理ガス貯留手段から短時間に前記処理室に導入でき、ガス導入時間の短縮化を図り、また従来のリザーバータンク(貯留槽)に一旦貯留することによる低圧化を回避でき、しかも、リザーバータンクの設備及びその開閉処理が不要になるため、処理ガス(原料ガス)を有効利用して効率的に処理が行え、且つ処理コストの低減を図ることができる。
本発明の第7の形態によれば、前記ガス導入処理手段により、前記加圧ガス導入路開閉手段を開成して、前記処理ガス貯留手段に貯留された処理ガスを前記加圧ガス圧力を有させて、真空化された前記処理室に圧力差を利用して導入充填し、前記ガス処理手段により、前記処理室内の前記被処理物を前記処理ガスの導入により所定温度下で単位処理時間だけ処理し、前記処理ガスを処理済ガスにするので、前記制御手段により、前記処理室内への高圧状態の処理ガスの導入及び加圧ガス処理を管理、制御して、1パルスの前処理段階を円滑に制御することができる。
本発明の第8の形態によれば、前記低圧力化処理手段により、前記ガス処理手段の処理後、前記自然排気路開閉手段を開成して、前記加圧ガス圧力を有した前記処理済ガスを前記低圧力排気部へと圧力差を利用して自然排気して、前記処理済ガスのガス圧力を前記低圧力にまで低下させ、前記真空化処理手段により、前記低圧力化の後、前記真空排気路開閉手段を開成して、前記処理室内の低圧力化された前記処理済ガスを強制排気して前記処理室を前記真空化するので、前記制御手段により、前記処理室内に滞留する前記処理済ガスのガス圧力の前記低圧力化処理と、前記処理済ガスの強制排気による前記真空化処理を管理、制御して、1パルスの後処理段階を円滑に制御することができる。更に、前記第7の形態の前処理段階と組み合わせて、高圧の処理ガスを用いた一連の加圧パルス処理を自動制御することができる。
本発明の第9の形態によれば、前記加圧ガス圧力を高圧化して前記ガス導入処理手段によるガス導入時間と前記大気圧化処理手段による大気圧化時間を短くし、前記1パルスの周期を、前記ガス処理手段による前記単位処理時間と前記真空化処理手段による真空化時間の合計に近づけるので、上記ガス導入時間及び排気処理時間の短縮とともに、従来のリザーバータンクを用いたときのガス貯留工程時間を不要にして効率的な加圧ガス処理を可能にした加圧ガスパルス制御処理装置を実現することができる。
本発明の第10の形態によれば、前記自然排気路開閉手段、前記真空排気路開閉手段及び前記加圧ガス導入路開閉手段は、前記制御手段からの開閉動作指示の受信に基づいて開閉動作する電磁バルブからなるので、前記制御手段の制御下において、前記処理ガスの導入、前記被処理物の処理、前記低圧力化及び前記真空化を1パルスとして、前記処理内容を完了するために要請されるパルス数だけ前記被処理物を反復的に処理する加圧パルス処理の自動制御が可能となる。
本発明においては、前記記処理室へ供給する高圧の前記処理ガスは別途、ガス加圧処理設備により加圧化したガスを使用してもよいが、本発明の第11の形態によれば、前記処理ガス貯留手段は、高圧ガス出口を流量制御器を介して前記加圧ガス導入路に接続した高圧ガスボンベからなるので、高圧ガスボンベに付随した流量制御器(以下、レギュレータという。)や任意設置可能なマスフローコントローラ等を用いて所定の供給圧力に調整するだけで、前記処理室への高圧の前記処理ガスの導入を簡易に行うことができる。
本発明においては、前記処理ガス導入・前記被処理物処理・前記低圧力化・前記真空化の各処理につき、前記処理室内の圧力を直接計測して行うのが好ましいが、本発明の第12の形態によれば、前記処理室の内圧を測定する圧力計を少なくとも、排気側とガス導入側に設け、前記圧力計の計測圧に基づき前記制御手段による開閉動作を行うので、圧力計設置による前記処理室内部の構造に制約を加えることなく、簡易に圧力計測系を形成することができる。
本発明の第13の形態によれば、前記処理室に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して導入充填するので、前記処理室内に導入された前記処理ガスの前記加圧ガス圧力を、0.5MPa〜100MPaの範囲の大気圧以上に設定して導入でき、高圧状態の加圧ガス処理を低処理コストで実施することができる。
本発明の第14の形態によれば、単一種ガス又は複数種混合ガスである前記処理ガスを前記処理室に導入することにより、加圧ガス処理態様の多様化を図ることのできる加圧ガスパルス制御処理装置を実現することができる。
本実施形態の加圧ガスパルス制御処理装置の概略構成図である。 前記実施形態の制御部2の概略構成を示すブロック図である。 本実施形態における加圧ガスパルス制御処理過程における電磁バルブ11〜16等の制御タイミングチャートである。 前記加圧ガスパルス制御処理の概略フローチャートである。 本実施形態における処理室1の真空処理のフローチャートである。 前記実施形態に用いる電磁バルブ11の概略構成を示すブロック図である。
符号の説明
1 処理室
2 制御部
3 真空排気装置
4 高圧ガスボンベ
5 高圧ガスボンベ
6 高圧ガスボンベ
7 レギュレータ
8 レギュレータ
9 レギュレータ
10 混合室
11 電磁バルブ
12 電磁バルブ
13 電磁バルブ
14 電磁バルブ
15 電磁バルブ
16 電磁バルブ
17 圧力計
18 圧力計
19 被処理物
20 CPU
21 ROM
22 RAM
23 入力インターフェース
24 出力インターフェース
25 設定入力装置
110 バルブ
111 アーマチャー
112 電磁石
113 ドライバ回路
114 開閉変位検出部
A 大気排気部
H1 ヒータ
H2 ヒータ
H3 ヒータ
H4 加熱ヒータ
G1 ガス路
G2 ガス路
G3 ガス路
G4 ガス導入路
P1 排気管路
P2 排気管路
M1 計測出力
M2 計測出力
C11 動作信号
C12 動作信号
C13 動作信号
C14 動作信号
C15 動作信号
C16 動作信号
V1 開閉信号
V2 開閉信号
V3 開閉信号
V4 開閉信号
V5 開閉信号
V6 開閉信号
以下に、本発明に係る加圧ガスパルス制御処理装置の実施形態を図面に従って詳細に説明する。
図1は本実施形態の加圧ガスパルス制御処理装置の概略構成を示す。この加圧ガスパルス制御処理装置は、被処理物19を収容し、処理ガスを室内に導入して被処理物19に接触させて処理済ガスにする処理室1と、処理室1を所定温度に加熱保持する加熱ヒータH4と、処理ガスを大気圧を越える加圧ガス圧力で供給する処理ガス貯留手段としての高圧ガスボンベ4、5、6と、処理室1へのガス導入及び排気処理を管理、制御する制御部2を有する。本実施形態においては3種の混合処理ガスを使用するために3本のボンベを用意している。被処理物19の一例として、スポンジ状樹脂体を用い、それに炭化珪素を析出するための原料ガスとして、SiCl、CH、Hを使用する。
ガス導入経路は図中の実線の矢印で示す。高圧ガスボンベ4、5、6にはそれぞれ、レギュレータ7、8、9が付属されており、レギュレータ7、8、9の調整により所定圧の処理ガスが供給可能になっている。レギュレータ7、8、9の各出口側には電磁バルブ11、12,13が設置されている。高圧ガスボンベ4、5、6の貯留ガスは電磁バルブ11、12,13を介して、ガス路G1、G2、G3を通じて混合室10に導入される。混合室10と処理室1の間にはガス導入路G4の管路が配設されている。ガス導入路G4には電磁バルブ14及び導入ガス圧計測用圧力計17が設置されている。
ガス路G1、G2、G3及びガス導入路G4の管路には、供給ガスを予熱するためのヒータH1、H2、H3が外被、設置されている。各ヒータの加熱温度は、処理室1用加熱ヒータH4の設定温度と同じか同程度でよいが、ガス路G1、G2、G3のヒータH1、ガス導入路G4の混合室側のヒータH2、処理室1側のヒータH3の設定温度をそれぞれ徐々に高くして温度勾配を設けるようにしてもよい。
処理室1からのガス排気経路は図中の破線の矢印で示す。処理室1の排気口は排気管路P1とP2に分岐、接続している。排気管路P1は電磁バルブ15を介して大気排気部Aに連通している。排気管路P2は電磁バルブ16を介して真空排気装置3に連通している。真空排気装置3は真空ポンプからなり、制御部2からの制御信号VAに基づき遠隔運転可能になっている。処理室1の排気口側には処理室1の内圧計測用圧力計18が設置されている。圧力計17、18の計測出力M1、M2は制御部2に与えられる。大気排気部Aは大気圧に保持された処理ガス回収部からなり、大気圧より低い圧力に設定された低圧力排気部で構成されてもよい。
電磁バルブ11〜16の開閉動作は制御部2からの開閉信号(V1〜V6)に基づいて遠隔制御される。電磁バルブ15は、大気排気部Aと処理室1を連通して処理室1を加圧ガス圧力から大気圧にまで低圧力化させる自然排気路を開閉する自然排気路開閉手段を構成する。電磁バルブ16は、真空排気装置3により処理室1を真空引きする真空排気路を開閉する真空排気路開閉手段を構成する。
電磁バルブ14は、処理室1と混合室10を連通する加圧ガス導入路を開閉する加圧ガス導入路開閉手段を構成する。
図2は制御部2の概略構成を示す。制御部2はCPU20からなるマイクロプロセッサで構成され、CPU20には、加圧ガスパルス制御プログラムを内蔵したROM21、各種制御データを記憶するワーキングメモリ用RAM22が接続されている。電磁バルブ11〜16の開閉状態を示す動作信号C11〜C16は入力インターフェース23を介してCPU20に与えられる。CPU20には圧力計17、18の計測出力M1、M2が入力インターフェース23を介して与えられる。各ヒータH1〜H4の温度調整も感温センサ(図示せず)により所定値に監視され、制御部2に温度データが出力されて自動温度調節が行われる。
制御部2には加圧ガス処理条件を設定する設定入力装置25が設けられている。設定入力装置25はキー入力装置からなり、使用ガス、ガス流量、ガス圧力、処理室1の加熱温度、真空排気装置3による真空度、加圧パルス条件等が入力設定可能になっている。設定入力装置25による設定入力データは入力インターフェース23を介してCPU20に与えられる。
図6は電磁バルブ11の概略構成を示す。電磁バルブ12〜16も電磁バルブ11と同様の構成を有する。
電磁バルブ11は、バルブ110、アーマチャー111、電磁石112、ドライバ回路113及び開閉変位検出部114を有する。電磁石112は、開弁側電磁石および閉弁側電磁石の一対の電磁石から構成されている。ドライバ回路113は、制御装置2からの開閉信号V1をバルブ開閉タイミング指令として受信して、定電圧源(図示せず)から供給される電圧をパルス幅変調し、電磁石112に供給する。電磁石112に印加された電圧により、電磁石112に電流が流れてアーマチャー111に変位が生じ、このアーマチャー111の変位に応じて、バルブ110の開閉が行われる。開閉変位検出部114は、アーマチャー111の変位を検出する永久磁石、及び変位によって生じた時間当たりの磁束密度の変化に応じて誘起電圧を出力するサーチコイルを有し、出力された誘起電圧からアーマチャー111の変位、即ち、開閉状態を検出し、開閉状態に応じた動作信号C11を出力する。
上記構成の加圧ガスパルス制御処理装置において、制御部2の制御下、予め設定されたガス処理内容に応じて、電磁バルブ11〜16の開閉を制御して、処理ガスの導入、被処理物19の加圧ガス処理、大気排気部Aへの自然排気による低圧力化及び真空排気装置3による真空化を1パルスとして、設定処理内容を完了するために要請されるパルス数だけ被処理物19を反復的に処理する加圧ガスパルス制御処理を行う。本実施形態においては、混合室10経由で供給される混合処理ガスは0.5MPAに設定される。
図4は本実施形態における加圧ガスパルス制御処理フローの概略を示す。まず、ステップS1において起動スイッチがオンにされると、処理条件の設定有無が確認される(ステップS2)。設定入力済みでないときは、設定入力装置25により使用ガス(ボンベ)、ガス流量、ガス圧力、処理室1の加熱温度、真空排気装置3による真空度、加圧パルス条件等が入力される(ステップS3)。設定入力済みの場合には、ステップS4以下に進むが、この時点では高圧ガスボンベの設置作業等は完了しているものとする。加圧処理ガスの導入前には、処理室1の真空度が確認される(ステップS4)。
図5は処理室1の真空処理の概略フローを示す。また、図3は加圧処理ガスのパルス供給制御過程における電磁バルブ11〜16等の制御タイミングを示す。
処理室1のガス導入側及び排気側の真空度は、圧力計17、18による計測出力M1、M2から確認される(ステップS20)。計測出力M2に基づき処理室1の内圧が判別される(ステップS21)。前回のパルス実行が行われた後では、処理室1の内圧が大気圧より大きくなるので、処理室1の大気圧への低圧化処理が行われる(ステップS22)。
大気圧への低圧化処理(ステップS22)は、電磁バルブ15を開成して、加圧ガス圧力を有した処理済ガスを大気圧排気部Aへと圧力差を利用して自然排気して行われる。電磁バルブ15の開閉処理は図3の(3g)に示すように、制御部2からの開閉制御信号SV3、SV4により行われる。このとき、処理室1内に滞留している処理済ガスの圧力は略0.5MPaの高圧であるから、自然排気により一気に大気圧排気部Aに排出され、短時間に低圧化処理を終えることができる。図3の(3h)のT3は自然排気時間を示す。処理室1内が大気圧に低圧化されたことを計測出力M2により確認すると、電磁バルブ15が閉成される(ステップS23、S24)。
次に処理室1の高真空化処理が行われる。電磁バルブ16を開成して、真空排気装置3を真空引き駆動して、処理室1内の低圧力化された残留処理済ガスを強制排気して処理室1を真空化する(ステップS25、S26)。電磁バルブ16の開閉処理は図3の(3i)に示すように、制御部2からの開閉制御信号SV5、SV6により行われる。図3の(3j)のT4は真空引き期間を示す。処理室1内が所定の真空度に真空引きされたことを計測出力M2により確認すると、電磁バルブ16が閉成される(ステップS27、S28)。
なお、1回目のパルス実行時には、事前の予備処理段階で処理室1の内圧が大気圧より低くされているので、処理室1の大気圧への低圧化処理が行わずに(ステップS21)、上記高真空化処理に移行する(ステップS25〜S28)。
処理室1の真空処理を終了すると(ステップS5)、原料ガス(処理ガス)の導入可能条件の判定が行われる(ステップS6)。原料ガス導入可能条件の判定は、設定ガスボンベの残量検出やガス圧力の検出に基づき行われ、設定ガスボンベの残量不足やガス圧低下時にはエラー処理が実施される(ステップS7)。ガスの定常供給が可能であるときには、設定ガスボンベの出口側の電磁バルブ(11〜13のいずれか又はすべて)を開成して、混合室10に導入し、ついで電磁バルブ14を開成して、処理室1内に加圧ガス圧力を有した処理ガスを真空化された処理室1に圧力差を利用して導入充填する(ステップS8)。電磁バルブ11〜13の開閉処理は図3の(3a)に示すように、制御部2からの開閉制御信号SV1、SV2により行われる。図3の(3b)〜(3d)は同時に3本の高圧ガスボンベ4〜6を開放した状態を示し、またT1はその開放期間(ガス供給時間)を示す。電磁バルブ14の開閉処理は図3の(3e)に示すように、制御部2からの開閉制御信号SV7、SV8により行われる。図3の(3f)は加圧混合ガスによる処理期間T2を示す。処理室1内の被処理物19は処理ガスの導入により所定温度下で単位処理時間T2だけ処理され(ステップS10)、導入処理ガスは処理済ガス化される。
次に、パルス数nが所定パルス数Nより小さければ(ステップS11)、ステップ4に帰還してガス導入可能条件の判別が行われ、ステップS5にて処理室真空処理が行われる。具体的には、図5に示されるように、大気排気部Aへの自然排気による低圧力化処理(図3(3h))及び真空排気装置3による真空化処理(図3(3j))が実行される。このようにして、図3に示される(3a)〜(3j)の過程が反復されることになる。換言すれば、電磁バルブ11〜16の開閉を制御して、処理ガスの導入、被処理物19の加圧ガス処理、大気排気部Aへの自然排気による低圧力化及び真空排気装置3による真空化を1パルスとして(ステップS9)、設定処理内容を完了するために要請されるパルス数だけ被処理物19を反復的に処理する加圧ガスパルス制御処理が行われる(ステップS9〜S12)。パルス数nが所定パルス数Nになった段階で、終了処理(S12)が行われる。
本実施形態によれば、処理ガス導入工程(ステップS8)・被処理物処理工程(ステップS10)・低圧力化工程(ステップS22〜S24)・真空化工程(ステップS25〜S28)を1パルスとして、設定処理を完了するために要請されるパルス数だけ被処理物19を反復的に処理することができる。図3において、1パルス時間TはT1+T2+T3+T4に等しい。これにより、処理ガス導入工程において、処理室1に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して導入充填して、処理室1内において、高圧状態の処理ガスによって被処理物1に対し、所定温度下の加圧ガス処理を行え、高圧の処理ガスを高圧ガスボンベから短時間(ガス導入時間T1)に処理室1に導入して、ガス導入時間T1の短縮化が可能になる。特に、従来のリザーバータンクに一旦貯留することによる低圧化を行うことなく、リザーバータンクの設備及びその開閉処理が不要にして、原料ガスを有効利用して効率的に処理が行え、且つ処理コストの低減を図ることができる。
特に、低圧力化工程においては、処理済ガスを大気圧排気部Aへと圧力差を利用して自然排気して低圧力(大気圧)化するので、自然排気時間T3が短くて済み、被処理物処理工程の後の処理済ガスの排気処理を簡易に行え、且つ一度に大量に排気することにより排気処理時間の短縮化を図ることができ、処理全体に要する処理時間及びコストの削減を実現することができる。即ち、1パルス所要時間Tは、実質的に真空引き時間T4(図3の(3j))と、ガス単位処理時間T2(図3の(3f))の合計、即ちT≒T2+T4となる。
しかも、導入されるガス圧力Pは1気圧を超える高圧であるから、前記単位処理時間T2は減圧ガスで行われる従来処理時間よりもかなり小さくなり、単純には前記圧力Pに反比例すると考えられる。つまり、従来処理のガス圧力を0.1気圧(約0.01MPa[abs])とし、本発明のガス圧力を5気圧(約0.5MPa[abs])とすると、単位処理時間T2は1/50に短縮されると言ってもよい。強力な真空ポンプを使用することにより、前記真空引き時間T2を短縮すれば、1パルス時間TをT≒T2に接近させることが可能になる。従って、処理室内に配置された被処理物に対し、前記パルスを所定パルス数Nだけ反復すると、全処理時間TTはTT=N×(T1+T2+T3+T4)で与えられるが、前述した結果を用いると、TT≒N×(T2+T4)と近似され、更に真空ポンプの選択によりT4≒0が実現できれば、TT≒N×T2が実現できる。この近似式から、ガス圧力Pが高いほど全処理時間TTは反比例的に短縮できることが理解される。従って、本発明では、減圧ガスを使用する従来処理法と比較すると、大幅に処理時間及び処理コストが低減されることができる。
本発明では、ガス圧力PはP>1気圧(約0.1MPa[abs])であればよいが、処理室の耐圧設計により、前記ガス圧力Pは1気圧<P≦100気圧の範囲から選択されることが好ましい。通常のガスパルス処理では、前記ガス圧力Pは3気圧≦P≦20気圧の範囲から選択されることが多い。このような圧力範囲を選択することにより、従来の常圧CVD法や減圧CVD法と処理時間を比較した場合、本発明による処理時間は約1/3〜1/60に低減されることができる。
[実施例1:切削用超硬工具表面への高圧パルスTiCコーティング]
処理室に切削用超硬工具を配置した後、予備処理として処理室を1.0×10−4Torr(1.3×10−7気圧)の真空状態にし、処理室内部を850℃に加熱保持した。この処理室に、ガス圧力Pが0.5MPa[abs](約5気圧)に調整された等モル比の3種類の混合ガス、即ちTiCl+CH+Hをパルス的に導入する。ここでは、TiClは蒸気であるが、ガスと称することにする。また、Hはキャリアガスである。1パルス時間Tは12秒からなり、ガス導入時間T1=0.5秒、単位処理時間T2=7秒、自然排気時間T3=0.5秒、真空引き時間T4=4秒により構成された。所定パルス数N=450回からなり、全処理時間はTT=T×N=5400秒=1.5時間であった。低圧力排気部の低圧力は大気圧に設定された。
TiCl及びCHはHをキャリアガスとして処理室にパルス的に導入され、処理室内において、前記3種類のガスは反応式(1)に従って熱分解される。
TiCl+CH+H → TiC+4HCl+H (1)
生成されたTiCは被処理物である切削用超硬工具の表面に堆積し、全処理時間後に膜厚を測定すると、約500nmであった。TiC膜により切削用超硬工具の表面のビッカース硬度Hvは3600であり、TiCコーティングによる良好な硬度特性が得られることが分かった。
[比較例1:切削用超硬工具表面への減圧熱CVDによるTiCコーティング]
実施例1と比較するため、従来方式の連続フロー形式により、TiC膜が切削用超硬工具の表面に成膜された。反応室の流入側から、等モル比の3種類の混合ガス、即ち、TiCl+CH+Hを反応室内が常に76Torr(0.1気圧)になるようにフローさせ、流出側を真空ポンプにより排気した。反応室内の温度は1060℃に設定された。この熱CVDを連続的に9時間行った後、切削用超硬工具を取り出し、表面に成膜されたTiC膜の膜厚を測定したところ、約480nmであった。
実施例1では約500nmのTiC膜厚を生成させるために1.5時間の反応時間で済むが、比較例1(従来の熱CVD)では約480nmのTiC膜厚を生成させるために9時間の反応時間を要した。この相違は、本発明の実施例1が5気圧という高圧ガスパルス法を用いることにより、常圧熱CVD法や減圧熱CVD法による従来法より、生成速度を格段に増加できるからである。この比較実験により、本発明の有効性が実証された。
[実施例2:金型表面への高圧パルスTiNコーティング]
実施例1と同様に、処理室に金型を配置した後、予備処理として処理室を1.0×10−4Torr(1.3×10−7気圧)の真空状態にし、処理室内部を900℃に加熱保持した。この処理室に、ガス圧力Pが0.5MPa[abs](約5気圧)に調整された3種類の混合ガス、即ちTiCl+1/2N+2Hをパルス的に導入する。混合モル比は、TiCl:N:H=1:1/2:2である。ここでは、TiClは蒸気であるが、ガスと称することにする。1パルス時間Tは12秒からなり、ガス導入時間T1=0.5秒、単位処理時間T2=7秒、自然排気時間T3=0.5秒、真空引き時間T4=4秒により構成された。所定パルス数N=600回からなり、全処理時間はTT=T×N=7200秒=2時間であった。低圧力排気部の低圧力は大気圧に設定された。
TiCl+1/2N+2Hの混合ガスは処理室にパルス的に導入され、処理室内において、前記3種類のガスは反応式(2)に従って熱分解される。
TiCl+1/2N+2H → TiN+4HCl (2)
生成されたTiNは被処理物である金型の表面にコーティングされ、全処理時間後に膜厚を測定すると、約600nmであった。TiN膜により金型の表面のビッカース硬度Hvは3900であり、TiNコーティングによる良好な硬度特性が得られることが分かった。
[比較例2:金型表面への減圧熱CVDによるTiNコーティング]
実施例2と比較するため、従来方式の連続フロー形式により、TiN膜が金型の表面に成膜された。反応室の流入側から、3種類の混合ガス、即ち、TiCl+1/2N+2Hを反応室内が常に76Torr(0.1気圧)になるようにフローさせ、流出側を真空ポンプにより排気した。反応室内の温度は1150℃に設定された。この熱CVDを連続的に12時間行った後、金型を取り出し、表面に成膜されたTiN膜の膜厚を測定したところ、約540nmであった。
実施例2では約600nmのTiN膜厚を生成させるために2時間の反応時間で済むが、比較例2(従来の熱CVD)では約540nmのTiN膜厚を生成させるために12時間の反応時間を要した。この相違は、本発明の実施例2が5気圧という高圧ガスパルス法を用いることにより、常圧熱CVD法や減圧熱CVD法による従来法より、生成速度を格段に増加できるからである。この比較実験により、本発明の有効性が実証された。また、多種類のコーティング膜に対し、本発明が有効であることが確認された。
本発明は上記実施形態に限定されるものではなく、本発明の技術的逸脱しない範囲における種々の変形例や設計変更なども本発明の技術的範囲に包含されるのは言うまでもない。
本発明によれば、成膜、焼成、焼結等の化学的ないし物理的処理、例えば、多孔質基材内部への物質の充填などを行う加圧ガスパルス制御処理方法及びその加圧ガスパルス制御処理方法を用いた加圧ガスパルス制御処理装置を提供することができる。

Claims (14)

  1. 被処理物を収容した処理室に大気圧を越える加圧ガス圧力を有した処理ガスを圧力差を利用して導入充填する処理ガス導入工程と、前記処理ガス導入工程の後、前記処理室内の前記被処理物を前記処理ガスにより所定温度下で単位処理時間だけ処理し、前記処理ガスを処理済ガスにする被処理物処理工程と、前記被処理物処理工程の後、前記加圧ガス圧力を有した前記処理済ガスを大気圧以下の低圧力に設定された低圧力排気部へと圧力差を利用して自然排気して、前記処理済ガスのガス圧力を前記低圧力にまで低下させる低圧力化工程と、前記低圧力化工程の後、前記処理室内の低圧力化された前記処理済ガスを強制排気して前記処理室を真空にする真空化工程とから構成され、前記処理ガス導入工程・前記被処理物処理工程・前記低圧力化工程・前記真空化工程を1パルスとして、前記処理を完了するために要請されるパルス数だけ前記被処理物を反復的に処理し、前記処理ガス導入工程、前記被処理物処理工程、前記低圧力化工程及び前記真空化工程は、CPUを有し且つ加圧ガスパルス制御プログラムを内蔵した制御部により自動制御される加圧ガスパルス制御処理方法であり、前記加圧ガスパルス制御プログラムは、前記処理室の真空度が充分であるか否かの真空度判断が行われるステップS4と、前記真空度判断において前記真空度が充分であると判断された場合に、前記処理ガス貯留手段から前記処理ガスが導入可能であるか否かの処理ガス導入可能判断が行われ、前記処理ガス導入可能判断が否であればエラー処理が行われるステップS6と、前記処理ガス導入可能判断において前記処理ガスが導入可能であると判断された場合に、前記処理ガス導入工程における前記処理ガスの導入を制御するステップS8と、前記被処理物処理工程における前記単位処理時間を制御するステップS10と、前記単位処理時間が経過した後に、前記1パルスの反復数が前記パルス数未満であるか否かのパルス数判断が行われ、前記パルス数判断が否であれば終了処理が行われ、前記パルス数未満であれば前記ステップS4に戻るステップS11と、前記真空度判断が否とされた場合において、前記低圧力化工程における前記処理済ガスの自然排気を制御し、前記処理済ガスの前記ガス圧力が前記低圧力まで低下されたか否かの低圧力化判断が行われるステップS22〜S24と、前記低圧力化判断において前記低圧力まで低下されたと判断された場合に、前記真空化工程における前記処理済ガスの強制排気を制御し、前記真空度判断ステップに戻るステップS25〜28を少なくとも有することを特徴とする加圧ガスパルス制御処理方法。
  2. 前記加圧ガス圧力を高圧化して前記処理ガス導入工程を行う導入時間と前記低圧力化工程を行う低圧力化時間を短縮し、前記1パルスの周期を、前記被処理物処理工程を行う前記単位処理時間と前記真空化工程を行う真空化時間の合計に接近させる請求項1に記載の加圧ガスパルス制御処理方法。
  3. 前記処理が、成膜処理、CVD処理、焼成処理又は焼結処理である請求項1又は2に記載の加圧ガスパルス制御処理方法。
  4. 前記処理室内に導入された前記処理ガスの前記加圧ガス圧力は、0.5MPa[abs]〜100MPa[abs]の範囲に設定される請求項1、2又は3に記載の加圧ガスパルス制御処理方法。
  5. 前記処理ガスは、単一種ガス又は複数種混合ガスである請求項1〜4のいずれかに記載の加圧ガスパルス制御処理方法。
  6. 被処理物を収容し、処理ガスを室内に導入して前記被処理物に接触させて処理済ガスにする処理室と、前記処理室を所定温度に加熱保持する加熱手段と、前記処理ガスを大気圧を越える加圧ガス圧力で供給する処理ガス貯留手段と、大気圧以下の低圧力に設定された低圧力排気部と前記処理室とを連通して前記処理室を前記加圧ガス圧力から前記低圧力にまで低圧力化させる自然排気路を開閉する自然排気路開閉手段と、前記処理室と連通した真空排気路を通じて前記処理室内を真空化する真空排気手段と、前記真空排気路を開閉する真空排気路開閉手段と、前記処理室と前記処理ガス貯留手段を連通する加圧ガス導入路を開閉する加圧ガス導入路開閉手段と、前記処理ガスによる処理内容に応じて、前記自然排気路開閉手段、前記真空排気路開閉手段及び前記加圧ガス導入路開閉手段の開閉を制御し且つ加圧ガスパルス制御プログラムを内蔵した、CPUを有する制御部を含む制御手段とを有し、前記制御手段は、前記処理ガスの導入、前記被処理物の処理、前記低圧力化及び前記真空化を1パルスとして、前記処理内容を完了するために要請されるパルス数だけ前記被処理物を、前記制御部の自動制御下において反復的に処理する加圧ガスパルス制御処理装置であり、前記制御手段は、前記処理室内の前記被処理物を前記処理ガスの導入により所定温度下で単位処理時間だけ処理し、前記処理ガスを処理済ガスにするガス処理手段を有し、前記加圧ガスパルス制御プログラムは、前記処理室の真空度が充分であるか否かの真空度判断が行われるステップS4と、前記真空度判断において前記真空度が充分であると判断された場合に、前記処理ガス貯留手段から前記処理ガスが導入可能であるか否かの処理ガス導入可能判断が行われ、前記処理ガス導入可能判断が否であればエラー処理が行われるステップS6と、前記処理ガス導入可能判断において前記処理ガスが導入可能である判断がされた場合に、前記加圧ガス導入路開閉手段を開成させて前記処理ガスを前記処理室へ導入させるステップS8と、前記ガス処理手段において前記単位処理時間を経過させることにより前記被処理物を前記単位処理時間だけ処理するステップS10と、前記単位処理時間が経過した後に、前記1パルスの反復数が前記パルス数未満であるか否かが判断され、前記パルス数判断が否であれば終了処理が行われ、前記パルス数未満であれば前記真空度判断ステップに戻るステップS11と、前記真空度判断が否とされた場合において、前記自然排気路開閉手段を開成させ、前記処理室が前記低圧力にまで低圧力化されたか否かの低圧力化判断が行われ、前記低圧力まで低圧力化された場合は前記自然排気路開閉手段が閉成されるステップS22〜S24と、前記低圧力化判断において前記低圧力まで低圧力化されたと判断された場合に、前記真空排気路開閉手段を開成させ、前記処理室の真空化後に前記真空排気路開閉手段を閉成させ,前記真空度判断ステップに戻るステップS25〜28を少なくとも有することを特徴とする加圧ガスパルス制御処理装置。
  7. 前記制御手段は、前記加圧ガス導入路開閉手段を開成して、前記処理ガス貯留手段に貯留された処理ガスを前記加圧ガス圧力を有させて、真空化された前記処理室に圧力差を利用して導入充填するガス導入処理手段と、前記処理室内の前記被処理物を前記処理ガスの導入により前記所定温度下で前記単位処理時間だけ処理し、前記処理ガスを前記処理済ガスにする前記ガス処理手段を有する請求項6に記載の加圧ガスパルス制御処理装置。
  8. 前記制御手段は、前記ガス処理手段の処理後、前記自然排気路開閉手段を開成して、前記加圧ガス圧力を有した前記処理済ガスを前記低圧力排気部へと圧力差を利用して自然排気して、前記処理済ガスのガス圧力を前記低圧力にまで低下させる低圧力化処理手段と、前記低圧力化の後、前記真空排気路開閉手段を開成して、前記処理室内の低圧力化された前記処理済ガスを強制排気して前記処理室を前記真空化する真空化処理手段を有する請求項6又は7に記載の加圧ガスパルス制御処理装置。
  9. 前記加圧ガス圧力を高圧化して前記ガス導入処理手段によるガス導入時間と前記低圧力化処理手段による低圧力化時間を短くし、前記1パルスの周期を、前記ガス処理手段による前記単位処理時間と前記真空化処理手段による真空化時間の合計に近づける請求項8に記載の加圧ガスパルス制御処理装置。
  10. 前記自然排気路開閉手段、前記真空排気路開閉手段及び前記加圧ガス導入路開閉手段は、前記制御手段からの開閉動作指示の受信に基づいて開閉動作する電磁バルブからなる請求項7、8又は9に記載の加圧ガスパルス制御処理装置。
  11. 前記処理ガス貯留手段は、高圧ガス出口を流量制御器を介して前記加圧ガス導入路に接続した高圧ガスボンベからなる請求項7〜10のいずれかに記載の加圧ガスパルス制御処理装置。
  12. 前記処理室の内圧を測定する圧力計を少なくとも、排気側とガス導入側に設け、前記圧力計の計測圧に基づき前記制御手段による開閉動作を行う請求項7〜11のいずれかに記載の加圧ガスパルス制御処理装置。
  13. 前記処理室内に導入された前記処理ガスの前記加圧ガス圧力は、0.5MPa[abs]〜100MPa[abs]の範囲に設定される、請求項7〜12のいずれかに記載の加圧ガスパルス制御処理装置。
  14. 前記処理ガスは、単一種ガス又は複数種混合ガスである、請求項7〜13のいずれかに記載の加圧ガスパルス制御処理装置。
JP2009544522A 2007-12-04 2007-12-04 加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置 Active JP5208128B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/073413 WO2009072187A1 (ja) 2007-12-04 2007-12-04 加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置

Publications (2)

Publication Number Publication Date
JPWO2009072187A1 JPWO2009072187A1 (ja) 2011-04-21
JP5208128B2 true JP5208128B2 (ja) 2013-06-12

Family

ID=40717373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009544522A Active JP5208128B2 (ja) 2007-12-04 2007-12-04 加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置

Country Status (2)

Country Link
JP (1) JP5208128B2 (ja)
WO (1) WO2009072187A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589519B2 (ja) * 2010-04-09 2014-09-17 住友電気工業株式会社 化合物半導体結晶の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657433A (ja) * 1992-08-13 1994-03-01 Tokai Carbon Co Ltd パルスcvi装置
JPH07106326A (ja) * 1993-10-05 1995-04-21 Nec Corp 半導体装置の製造方法
JP2000328249A (ja) * 1999-03-04 2000-11-28 Applied Materials Inc 堆積チャンバへのプロセス材料の流れを制御する装置と方法
JP2001220677A (ja) * 2000-02-03 2001-08-14 Denso Corp 薄膜製造方法及び薄膜製造装置
JP2003209103A (ja) * 2002-01-17 2003-07-25 Tokyo Electron Ltd 処理装置および処理方法
JP2005528808A (ja) * 2002-06-04 2005-09-22 アプライド マテリアルズ インコーポレイテッド 銅膜の堆積
JP2006093653A (ja) * 2004-09-22 2006-04-06 Asm Internatl Nv バッチリアクター内でのTiN膜の堆積
JP2006097136A (ja) * 1994-11-16 2006-04-13 Goodrich Corp Cvi/cvdプロセスに使用するための装置
JP2006124832A (ja) * 2004-09-30 2006-05-18 Nichias Corp 気相成長装置及び気相成長法
JP2007027723A (ja) * 2005-07-11 2007-02-01 Interuniv Micro Electronica Centrum Vzw 層を堆積させるための原子層成長法
JP2007505993A (ja) * 2003-09-16 2007-03-15 東京エレクトロン株式会社 バッチタイプ処理システムにおける順次ガス露出による金属含有膜の形成

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657433A (ja) * 1992-08-13 1994-03-01 Tokai Carbon Co Ltd パルスcvi装置
JPH07106326A (ja) * 1993-10-05 1995-04-21 Nec Corp 半導体装置の製造方法
JP2006097136A (ja) * 1994-11-16 2006-04-13 Goodrich Corp Cvi/cvdプロセスに使用するための装置
JP2000328249A (ja) * 1999-03-04 2000-11-28 Applied Materials Inc 堆積チャンバへのプロセス材料の流れを制御する装置と方法
JP2001220677A (ja) * 2000-02-03 2001-08-14 Denso Corp 薄膜製造方法及び薄膜製造装置
JP2003209103A (ja) * 2002-01-17 2003-07-25 Tokyo Electron Ltd 処理装置および処理方法
JP2005528808A (ja) * 2002-06-04 2005-09-22 アプライド マテリアルズ インコーポレイテッド 銅膜の堆積
JP2007505993A (ja) * 2003-09-16 2007-03-15 東京エレクトロン株式会社 バッチタイプ処理システムにおける順次ガス露出による金属含有膜の形成
JP2006093653A (ja) * 2004-09-22 2006-04-06 Asm Internatl Nv バッチリアクター内でのTiN膜の堆積
JP2006124832A (ja) * 2004-09-30 2006-05-18 Nichias Corp 気相成長装置及び気相成長法
JP2007027723A (ja) * 2005-07-11 2007-02-01 Interuniv Micro Electronica Centrum Vzw 層を堆積させるための原子層成長法

Also Published As

Publication number Publication date
JPWO2009072187A1 (ja) 2011-04-21
WO2009072187A1 (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
KR102651215B1 (ko) 순차적 침윤 합성 장치
KR101161020B1 (ko) 원자층 성장 장치
JP5157147B2 (ja) カーボンナノチューブ製造装置及びその製造方法
US6905549B2 (en) Vertical type semiconductor device producing apparatus
KR101819721B1 (ko) 플라즈마 소오스를 갖는 원자층 퇴적
KR101754479B1 (ko) 원료 가스 공급 장치
TWI648791B (zh) Etching method
WO2005067634A2 (en) Advanced multi-pressure worpiece processing
KR102308032B1 (ko) 드라이 에칭 방법 및 에칭 장치
TWI648790B (zh) Etching method
KR102146180B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
KR102410555B1 (ko) 기판 처리 방법 및 성막 시스템
CN113498547A (zh) 干蚀刻方法、半导体设备的制造方法和蚀刻装置
TWI336906B (ja)
JP5208128B2 (ja) 加圧ガスパルス制御処理方法及び加圧ガスパルス制御処理装置
EP2251451B1 (en) Raw material supplying device
CN106232859B (zh) 生产涂覆钢部件的方法和系统
US20160276147A1 (en) Silicon Nitride Film Forming Method and Silicon Nitride Film Forming Apparatus
US20220259732A1 (en) Film formation method and film formation device
KR20200017471A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
CN110268506A (zh) 半导体装置的制造方法、基板处理装置及程序
JP2003071270A (ja) 真空処理装置
US20230093323A1 (en) Film forming apparatus, film forming method, and film forming system
CN114616651A (zh) 干式蚀刻方法、半导体器件的制造方法和蚀刻装置
KR20230094178A (ko) 웨이퍼의 박막에 대한 탄소 도핑 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250