JP5201431B1 - 圧延銅箔 - Google Patents

圧延銅箔 Download PDF

Info

Publication number
JP5201431B1
JP5201431B1 JP2012113853A JP2012113853A JP5201431B1 JP 5201431 B1 JP5201431 B1 JP 5201431B1 JP 2012113853 A JP2012113853 A JP 2012113853A JP 2012113853 A JP2012113853 A JP 2012113853A JP 5201431 B1 JP5201431 B1 JP 5201431B1
Authority
JP
Japan
Prior art keywords
plane
copper foil
rolled copper
crystal
fwhm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012113853A
Other languages
English (en)
Other versions
JP2013241630A (ja
Inventor
岳海 室賀
聡至 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012113853A priority Critical patent/JP5201431B1/ja
Priority to KR1020120089954A priority patent/KR101967748B1/ko
Priority to CN201210332530.7A priority patent/CN103421977B/zh
Application granted granted Critical
Publication of JP5201431B1 publication Critical patent/JP5201431B1/ja
Publication of JP2013241630A publication Critical patent/JP2013241630A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)

Abstract

【課題】高い耐屈曲性とともに優れた耐折り曲げ性を具備させる。
【解決手段】主表面に平行な複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された各結晶面の回折ピーク強度比が、I{022}+I{002}≧75であり、{022}面、{113}面、{111}面、{133}面、及び{002}面を有する粉末銅の、合計値が100となるように換算された回折ピーク強度比に対する各結晶面の回折ピーク強度比、および回折ピークの半価幅が、[(I{113}/I0{113})×FWHM{113}]+[(I{111}/I0{111})×FWHM{111}]+[(I{133}/I0{133})×FWHM{133}]≦1.5であり、主表面の十点平均粗さ≦1.2μmである。
【選択図】図1

Description

本発明は、圧延銅箔に関し、特に、フレキシブルプリント配線板に用いられる圧延銅箔に関する。
フレキシブルプリント配線板(FPC:Flexible Printed Circuit)は、薄くて可撓性に優れることから、電子機器等への実装形態における自由度が高い。そのため、FPCは、折り畳み式携帯電話の折り曲げ部やデジタルカメラ、プリンタヘッド等の可動部、ハードディスクドライブ(HDD:Hard Disk Drive)等のほか、デジタルバーサタイルディ
スク(DVD:Digital Versatile Disk)やコンパクトディスク(CD:Compact Disk)等のディスク関連機器の可動部の配線等に用いられることが多い。したがって、FPCやその配線材として用いられる圧延銅箔には、高屈曲特性、つまり、繰り返しの曲げに耐える優れた耐屈曲性が要求されてきた。
FPC用の圧延銅箔は、熱間圧延、冷間圧延等の工程を経て製造される。圧延銅箔は、その後のFPCの製造工程において、接着剤を介し或いは直接的に、ポリイミド等の樹脂からなるFPCのベースフィルム(基材)と加熱等により貼り合わされる。基材上の圧延銅箔は、エッチング等の表面加工を施されて配線となる。圧延銅箔の耐屈曲性は、圧延されて硬化した冷間圧延後の硬質な状態よりも、再結晶により軟化した焼鈍後の状態の方が著しく向上する。そこで、例えば上述のFPCの製造工程においては、冷間圧延後の圧延銅箔を用いて伸びやしわ等の変形を避けつつ圧延銅箔を裁断し、基材上に重ね合わせる。その後、圧延銅箔の再結晶焼鈍も兼ねて加熱することにより、圧延銅箔と基材とを密着させ一体化する。
上述のFPCの製造工程を前提として、耐屈曲性に優れた圧延銅箔やその製造方法についてこれまでに種々の研究がなされ、圧延銅箔の表面に立方体方位である{002}面({200}面)が発達するほど耐屈曲性が向上することが数多く報告されている。
そこで、例えば、特許文献1では、最終冷間圧延の直前の焼鈍を、再結晶粒の平均粒径が5μm〜20μmになる条件下で行う。また、最終冷間圧延での圧延加工度を90%以上とする。これにより、再結晶組織となるよう調質された状態において、圧延面のX線回折で求めた{200}面の強度をIとし、微粉末銅のX線回折で求めた{200}面の強度をIとしたとき、I/I>20である立方体集合組織を得る。
また、例えば、特許文献2では、最終冷間圧延前の立方体集合組織の発達度を高め、最終冷間圧延での加工度を93%以上とする。更に再結晶焼鈍を施すことにより、{200}面の積分強度がI/I≧40の、立方体集合組織が著しく発達した圧延銅箔を得る。
また、例えば、特許文献3では、最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15%〜50%に制御する。これにより、再結晶焼鈍後には、所定の結晶粒配向状態が得られる。つまり、X線回折極点図測定により得られる圧延面の{200}面に対する{111}面の面内配向度Δβが10°以下となる。また、圧延面における立方体集合組織である{200}面の規格化した回折ピーク強度[a]と{200}面の双晶関係にある結晶領域の規格化した回折ピーク強度[b]との比が、[a]/[b
]≧3となる。
このように、従来技術では、最終冷間圧延工程の総加工度を高くすることで、再結晶焼
鈍工程後に圧延銅箔の立方体集合組織を発達させて耐屈曲性の向上を図っている。
特許第3009383号公報 特許第3856616号公報 特許第4285526号公報
一方、近年では、電子機器の小型化や薄型化に伴い、小スペースへFPCを折り曲げて組み込むことが多くなってきている。特に、スマートフォン等のパネル部分では、配線の形成されたFPCが180°に折り曲げられて組み込まれることもある。このため、圧延銅箔に対し、小さな曲げ半径を許容する耐折り曲げ性の要求が高まってきている。
このように、用途等の違いに応じて、繰り返しの曲げに耐える耐屈曲性と、小さな曲げ半径に耐える耐折り曲げ性と、の異なる要求が生じ得る。これらの異なる要求に応えるため、従来は、それぞれの用途ごとに、異なる特性の圧延銅箔を分けて製造していた。しかしながら、このような状況は生産性の面から効率的とはいえず、採算性が悪いという課題があった。
本発明の目的は、再結晶焼鈍工程後に、高い耐屈曲性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔を提供することである。このように、両特性を兼ね備える圧延銅箔が実現可能となれば、耐屈曲性を重視する用途と耐折り曲げ性を重視する用途とのどちらへも適用可能となる。よって、生産効率を著しく向上させることができる。
本発明の第1の態様によれば、
主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
前記圧延銅箔は、純銅又は希薄銅合金からなり、
前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
前記主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI[022]、I[002]、I[113]、I[111]、及びI[133]としたとき、
[022]+I[002]≧75であり、
{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅についてのJCPDSカード又はICDDカードに記載の前記各結晶面の標準的な回折ピークの相対強度から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比のうち、前記{113}面、前記{111}面、及び前記{133}面の回折ピーク強度比をそれぞれI0[113]、I0[111]、及びI0[133]とし、
前記主表面に対する前記X線回折測定から求められる前記{113}面、前記{111}面、及び前記{133}面の回折ピークの半価幅をそれぞれFWHM[113]、FWHM[111]、及びFWHM[133]としたとき、
[(I[113]/I0[113])×FWHM[113]]+[(I[111]/I0[111])×FWHM[111]]+[(I[133]/I0[133])×FWHM[133]]≦1.5であり、
前記主表面の十点平均粗さによる表面粗さが、
十点平均粗さ≦1.2μmである
圧延銅箔が提供される。

本発明の第2の態様によれば、
JIS C1020に規定の無酸素銅、又はJIS C1100に規定のタフピッチ銅を主成分とする
第1の態様に記載の圧延銅箔が提供される。
本発明の第3の態様によれば、
銀、硼素、チタン、錫の少なくともいずれかが添加されている
第1又は第2の態様に記載の圧延銅箔が提供される。
本発明の第4の態様によれば、
総加工度が90%以上の前記最終冷間圧延工程により厚さが20μm以下となっている第1〜第3の態様のいずれかに記載の圧延銅箔が提供される。
本発明の第5の態様によれば、
フレキシブルプリント配線板用である
第1〜第4の態様のいずれかに記載の圧延銅箔が提供される。
本発明によれば、再結晶焼鈍工程後に、高い耐屈曲性とともに優れた耐折り曲げ性を具備させることが可能な圧延銅箔が提供される。
本発明の一実施形態に係る圧延銅箔の製造工程を示すフロー図である。 2θ/θ法を用いたX線回折の測定結果であって、(a)は本発明の実施例2に係る圧延銅箔のX線回折チャートであり、(b)は比較例2に係る圧延銅箔のX線回折チャートであり、(c)は比較例11に係る圧延銅箔のX線回折チャートである。 本発明の実施例に係る圧延銅箔の耐屈曲性を測定する摺動屈曲試験装置の模式図である。 本発明の実施例に係る圧延銅箔の耐折り曲げ性の試験方法の概要を示す図である。 純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。 最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔の結晶方位を示す逆極点図である。
<本発明者等が得た知見>
上述のように、FPC用途で求められる優れた耐屈曲性の圧延銅箔を得るには、圧延面の立方体方位を発達させるほど良い。本発明者等も、立方体方位の占有率を増大させるべく種々の実験を行ってきた。そして、それまでの実験結果から、最終冷間圧延工程後に存在していた{022}面が、その後の再結晶焼鈍工程によって再結晶に調質されると、{002}面、すなわち立方体方位となることを確認した。つまり、最終冷間圧延工程後、再結晶焼鈍工程前においては、{022}面が主方位となっていることが好ましい。
一方、上述の特許文献1〜3に記載があるように、また、本発明者等が試みたように、立方体集合組織を多く発現させたとしても、多結晶構造をとる圧延銅箔において立方体集合組織である{002}面が100%を占めることはない。これは再結晶焼鈍工程前でも同じであり、再結晶焼鈍工程前の状態では主方位である{022}面や、再結晶前後に結
晶方位の保たれる{002}面以外にも、{113}面、{111}面、{133}面等の副方位の結晶面が制御されることなく複数混在する。そして、これらの複数の結晶面を有する結晶粒は、圧延銅箔の諸特性に種々の影響を及ぼすと考えられる。そこで、本発明者等は、これまで不要とされてきた副方位の結晶面に着目し、主方位の占有率を減少させることなく高い耐屈曲性を維持しながら、これら副方位の結晶面によって圧延銅箔の特性を更に高めることができないかを検討してきた。
係る検討において、本発明者等は、{113}面、{111}面、{133}面等の副方位を含む各結晶面の、圧延銅箔の主表面における回折ピークの解析を進めた。回折ピークは各副方位の存在を示し、その強度比から各副方位の占有率を知ることができる。このような鋭意研究の結果、本発明者等は、係る回折ピークの状態を様々に規定し、これらを制御することで、主方位の{022}面の制御によって所定の耐屈曲性が既に得られている状況下であっても、耐屈曲性を更に向上させることができることを見いだした。
また、これと併せて、本発明者等は、FPC用途で求められる耐折り曲げ性の高い圧延銅箔を得るべく、鋭意研究を行った。その結果、耐折り曲げ性には、圧延銅箔の主表面の結晶方位のみならず、凹凸の状態が大きく影響していることを見いだした。
本発明は、発明者等が見いだしたこれらの知見に基づくものである。
<本発明の一実施形態>
(1)圧延銅箔の構成
まずは、本発明の一実施形態に係る圧延銅箔の結晶構造等の構成について説明する。
(圧延銅箔の概要)
本実施形態に係る圧延銅箔は、例えば主表面としての圧延面を備える板状に構成されている。この圧延銅箔は、例えば無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料とする鋳塊に、後述の熱間圧延工程や冷間圧延工程等を施し所定厚さとした、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔である。
本実施形態に係る圧延銅箔は、例えばFPCの可撓性の配線材用途に用いられるよう構成されている。すなわち、総加工度が90%以上、より好ましくは94%以上の最終冷間圧延工程により厚さが20μm以下に構成されている。係る圧延銅箔は、この後、上述のように、例えばFPCの基材との貼り合わせの工程を兼ねて再結晶焼鈍工程が施され、再結晶することにより優れた耐屈曲性を具備させることが企図されている。
原材料となる無酸素銅は、例えばJIS C1020,H3100等に規定の純度が99.96%以上の銅材である。酸素含有量は完全にゼロでなくともよく、例えば数ppm程度の酸素が含まれていてもよい。また、タフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。タフピッチ銅の場合、酸素含有量は例えば100ppm〜600ppm程度である。これらの銅材に銀(Ag)等の所定の添加材を微量に加えて希薄銅合金とし、耐熱性等の諸特性が調整された圧延銅箔とする場合もある。本実施形態に係る圧延銅箔には純銅と希薄銅合金との両方を含むことができ、原材料の銅材質や添加材による本実施形態の効果への影響はほとんど生じない。
最終冷間圧延工程における総加工度は、最終冷間圧延工程前の加工対象物(銅の板材)の厚さをTとし、最終冷間圧延工程後の加工対象物の厚さをTとすると、総加工度(%)=[(T−T)/T]×100で表わされる。総加工度を90%以上、より好ましくは94%以上とすることで、耐屈曲性に優れる圧延銅箔が得られる。
(圧延面の結晶構造)
また、本実施形態に係る圧延銅箔は、圧延面に平行な複数の結晶面を有している。具体的には、最終冷間圧延工程後、再結晶焼鈍工程前の状態で、複数の結晶面には、{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれる。{022}面は圧延面における主方位となっており、その他の各結晶面は副方位である。
上述のように、係る各結晶面の状態は、各結晶面について測定される回折ピーク強度等の状態を様々に規定した比例関係式によって制御される。各結晶面の回折ピーク強度は、圧延銅箔の圧延面に対する2θ/θ法を用いたX線回折測定から求めることができる。
このX線回折により測定した上述の5つの結晶面の回折ピーク強度を合計値が100となるような比に換算したものが、各結晶面の回折ピーク強度比である。係る回折ピーク強度比は、圧延面における各結晶面の占有率に略等しい。
各結晶面の回折ピーク強度から、代表として{022}面の回折ピーク強度比を求める換算式(A)を以下に示す。ここで、各結晶面の回折ピーク強度比をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}とし、各結晶面の回折ピーク強度をそれぞれI’{022}、I’{002}、I’{113}、I’{111}、及びI’{133}とする。
本実施形態に係る圧延銅箔において、{022}面および{002}面の回折ピーク強度比は、例えば以下の式(1)が成り立つ関係にある。
{022}+I{002}≧75・・・(1)
また、他の結晶面である{113}面、{111}面、及び{133}面の各回折ピークの状態については、以下のように、銅の標準的な回折ピーク強度比および各回折ピークの半価幅を用いて規定することができる。
銅の標準的な回折ピークとしては、例えば、{022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅の回折ピークが挙げられる。例えばJCPDS(Joint Committee for Powder Diffraction Standards)カード(カード番号:40836)、又はICDD(International Center for Diffraction Data)カード
には、係る回折ピークの相対強度が記載されている。
これら5つの結晶面の標準的な回折ピークの相対強度を合計値が100となるような比に換算し直し、粉末銅について各結晶面の回折ピーク強度比を求め、これを上述の圧延銅箔の各結晶面の回折ピーク強度比に対する基準値とすることができる。
粉末銅の各結晶面の回折ピークの相対強度から、代表として{113}面の回折ピーク強度比を求める換算式(B)を以下に示す。ここで、粉末銅における各結晶面の回折ピーク強度比をそれぞれI0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}とし、各結晶面の回折ピーク強度をそれぞれI{022}、I{002}、I{113}、I{111}、及びI{133}とする。
更に上述の圧延銅箔の{113}面、{111}面、及び{133}面の回折ピークの半価幅(半値幅ともいう:Full Width at Half Maximum)をそれぞれFWHM{113}、FWHM{111}、及びFWHM{133}とした場合、上述の式(1)を満たしたうえで、更に、例えば以下の式(2)が成り立つ関係にある。
[(I{113}/I0{113})×FWHM{113}]+[(I{111}/I0{111})×FWHM{111}]+[(I{133}/I0{133})×FWHM{133}]≦1.5・・・(2)
以上により、本実施形態に係る圧延銅箔は、再結晶焼鈍工程後には、繰り返しの曲げに耐える高い耐屈曲性を具備するよう構成される。
(圧延面の表面粗さ)
本実施形態に係る圧延銅箔は、上述の構成に加え、更に以下の構成を備える。すなわち、本実施形態に係る圧延銅箔の圧延面は、十点平均粗さで以下の表面粗さを備える。
十点平均粗さ≦1.2μm・・・(3)
なお、ここでいう十点平均粗さとは、JIS規格により規定される表面粗さの1つであり、粗さ測定によって得られた粗さ曲線から求められる。つまり、粗さ曲線からその平均線の方向に基準長さだけ抜き取る。この抜き取り部分の平均線から縦倍率の方向に所定数の山頂と谷底とを測定する。このとき、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和を求める。これらの平均値の和をマイクロメートル(μm)で表わしたものが十点平均粗さである。
つまり、ここでいう十点平均粗さとは、JIS B 0601:2001の規定によれば、十点平均粗さRzjisのことである。但し、JIS規格で各々定義される表面粗さの表示記号には変遷がみられ、いささか混同が生じ易い。よって、本明細書においては、Rzjisの表示記号は用いず、単に「十点平均粗さ」とだけ記す。
以上により、本実施形態に係る圧延銅箔は、再結晶焼鈍工程後には、繰り返しの曲げに耐える高い耐屈曲性とともに、小さな曲げ半径に耐える優れた耐折り曲げ性を具備するよう構成される。
(圧延銅箔が備える特性)
以上のような結晶構造や表面粗さを備えることで、圧延銅箔が備えることとなる特性について以下に説明する。
上述のように、再結晶焼鈍工程前の{022}面は再結晶焼鈍工程後に{002}面へと変化し、再結晶焼鈍工程前の{002}面は再結晶焼鈍工程後もそのまま残存することで、圧延銅箔の耐屈曲性を向上させる。また、再結晶焼鈍工程の際、{002}面は、自身の結晶方位は変化しないものの、種結晶となって、{022}面が{002}面へと変化し成長することを促進する。したがって、再結晶焼鈍工程前において上述の式(1)を満たすことで、このような効果を充分に得ることができる。
一方で、これ以外の副方位の{113}面、{111}面、及び{133}面は、耐屈曲性には寄与しない不要な結晶面である。すなわち、結晶中に混在する{113}面、{111}面、及び{133}面は{022}面の再結晶の妨げとなる。上述の式(2)における各結晶面についてのI/Iの部分は、基準値となる銅の標準的な回折ピーク強度比からの各結晶面の回折強度ピーク比のズレをみている。つまり、粉末銅を基準として、圧延銅箔における各結晶面の占有率の多寡を表わしている。I/Iの数値が所定値以下であれば、これらの不要な結晶面が少ない状態を表わしており、耐屈曲性の向上に有利な状態となっているといえる。
また、本発明者等は、再結晶前における副方位の各結晶面の加工ひずみにも着目し、係る加工ひずみを上述の式(2)における各結晶面の回折ピークの半価幅により規定した。
結晶中に混在する{113}面、{111}面、及び{133}面に加工ひずみが蓄積していると、{022}面の再結晶をいっそう妨げてしまう。これら各結晶面の半価幅FWHM{113}、FWHM{111}、及びFWHM{133}が所定値以下であれば、再結晶前の状態で加工ひずみが小さい(あまり蓄積されていない)状態を表わし、{022}面の再結晶が阻害され難い状態となっているといえる。
半価幅のような回折ピークのピーク幅は、その回折ピークに対応する結晶面(格子面)の間隔のバラツキを示す。これは、ブラッグの式2d・sinθ=nλにより説明することができる。ここで、nは正の整数、λは波長、dは格子面の間隔、θは視射角(入射角)である。回折ピークに幅があるということは、2θ、ひいては、視射角θそのものに幅、つまり、バラツキがあることを意味する。一方、ブラッグの式において、正の整数nと、X線発生装置の管球の波長である波長λとは、一定の条件でX線回折測定を行えばともに一定となる。視射角θにバラツキがあるにも関わらず、2d・sinθが一定ということは、格子面の間隔dにもバラツキがあることを意味する。
このように、同じ結晶面(結晶方位)の銅結晶であっても、視射角θが異なれば格子面の間隔dが異なる。格子面の間隔dの違い(バラツキ)は、例えば圧延銅箔を製造する際に蓄積される加工ひずみからくる。したがって、回折ピークの半価幅が狭いほど、その格子面の間隔dのバラツキが小さく、その格子面の結晶中に蓄積される加工ひずみが小さいこととなる。一方、回折ピークの半価幅が広いほど、その格子面の結晶中に蓄積される加工ひずみが大きいこととなる。
よって、上述の式(2)を満たした状態とすること、つまり、{113}面、{111}面、{133}面等の副方位の結晶面の比率を低く抑えることに加え、これらの3つの結晶面の加工ひずみを小さく抑えることで、既に高い耐屈特性が得られている状況下でも、圧延銅箔の耐屈特性を更に向上させることができる。
以上のように、各結晶面の回折ピーク強度比、つまり、回折ピーク強度のバランスが、圧延銅箔の耐屈特性や耐折り曲げ性に多大な影響を及ぼす。係る各結晶面の回折ピーク強度のバランスは、後述するように、主に最終冷間圧延工程時の圧縮応力と引張応力との応力バランスにより決まる。
次に、圧延銅箔の表面粗さについて説明する。
本発明者等は、各結晶面の回折ピーク強度比の制御に加え、圧延銅箔の圧延面の表面粗さが所定値以下であるとき、つまり、上述の式(3)を満たすとき、圧延銅箔の耐折り曲げ性を向上させることができることを見いだした。これは、圧延銅箔の圧延面の凹凸差が
大きいと、圧延銅箔を折り曲げたときに凹部が開く方向に変形し、ここを起点に割れが発生し易くなるためと考えられる。
ここで、圧延面の表面粗さを山頂、谷底それぞれの標高の絶対値の平均値の和である十点平均粗さ、つまり、圧延面の凹凸の高低差の平均値で規定しているので、圧延面の凹凸差を正しく評価することができる。すなわち、十点平均粗さが大きいほど圧延面の凹凸差も大きく、押し広げられた凹部を起点に割れが発生して耐折り曲げ性が低下する。また、十点平均粗さが小さいほど圧延面の凹凸差も小さく、耐折り曲げ性に優れた圧延銅箔とすることができる。
(2)圧延銅箔の製造方法
次に、本発明の一実施形態に係る圧延銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係る圧延銅箔の製造工程を示すフロー図である。
(鋳塊の準備工程S10)
図1に示すように、まずは、無酸素銅(OFC:Oxygen-Free Copper)やタフピッチ銅等の純銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所定厚さ、所定幅を備える板状に形成する。原材料となる無酸素銅やタフピッチ銅等の純銅は、圧延銅箔の諸特性を調整するため、所定の添加材が添加された希薄銅合金となっていてもよい。
添加材で調整可能な諸特性には、例えば耐熱性がある。上述のように、FPC用の圧延銅箔では、高い耐屈特性を得るための再結晶焼鈍工程は、例えばFPCの基材との貼り合わせの工程を兼ねて行われる。貼り合わせの際の加熱温度は、例えばFPCの樹脂等からなる基材の硬化温度や、使用する接着剤の硬化温度等に併せて設定され、温度条件の範囲は広く多種多様である。このように設定された加熱温度に圧延銅箔の軟化温度を合わせるべく、圧延銅箔の耐熱性を調整可能な添加材が添加される場合がある。
本実施形態に使用される鋳塊として、添加材が無添加の鋳塊や、幾種類かの添加材を添加した鋳塊を以下の表1に例示する。
また、表1に示す添加材やその他の添加材として、耐熱性を上昇又は降下させる添加材には、例えば10ppm〜500ppm程度の硼素(B)、ニオブ(Nb)、チタン(Ti)、ニッケル(Ni)、ジルコニウム(Zr)、バナジウム(V)、マンガン(Mn)、ハフニウム(Hf)、タンタル(Ta)、及びカルシウム(Ca)のいずれか1つ又は複数の元素を添加した例がある。或いは、第1の添加元素としてAgを添加し、第2の添加元素として代表例に挙げたこれらの元素のいずれか1つ又は複数の元素を添加した例がある。そのほか、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、砒素(As)、Cd(カドミウム)、インジウム(In)、錫(Sn)、アンチモン(Sb)、金(Au)等を微量添加することも可能である。
なお、鋳塊の組成は、後述の最終冷間圧延工程S40を経た後の圧延銅箔においても略そのまま維持され、鋳塊中に添加材を加えた場合には、鋳塊と圧延銅箔とは略同じ添加材濃度となる。
また、後述の焼鈍工程S32における温度条件は、銅材質や添加材による耐熱性に応じて適宜変更する。但し、このような銅材質や添加材、これに応じた焼鈍工程S32の温度条件の変更等は、本実施形態の効果に対してほとんど影響を与えない。
(熱間圧延工程S20)
次に、準備した鋳塊に熱間圧延を施して、鋳造後の所定厚さよりも薄い板厚の板材とする。
(繰り返し工程S30)
続いて、冷間圧延工程S31と焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。
なお、繰り返し工程S30中、繰り返し途中の焼鈍工程S32を「中間焼鈍工程」と呼ぶ。中間焼鈍工程の繰り返し回数によって、後述の最終圧延工程S40後の各結晶の格子面の間隔、すなわち、各結晶面の回折ピークの半価幅を制御することができる。
また、繰り返しの最後、つまり、後述の最終冷間圧延工程S40の直前に行われる焼鈍工程S32を「最終焼鈍工程」又は「生地焼鈍工程」と呼ぶ。生地焼鈍工程では、銅条(生地)に生地焼鈍処理を施し、焼鈍生地を得る。生地焼鈍工程においても、銅材の耐熱性に応じて温度条件を適宜変更する。このとき、生地焼鈍工程は、上述の各工程に起因する加工歪みを充分に緩和することのできる温度条件、例えば完全焼鈍処理と略同等の温度条件で実施することが好ましい。
(最終冷間圧延工程S40)
次に、最終冷間圧延工程S40を実施する。最終冷間圧延は仕上げ冷間圧延とも呼ばれ、仕上げとなる冷間圧延を複数回に亘って焼鈍生地に施して薄い銅箔状とする。このとき、高い耐屈特性を有する圧延銅箔が得られるよう、総加工度を90%以上、より好ましくは94%以上とする。これにより、再結晶焼鈍工程後において、いっそう優れた耐屈曲特性が得られ易い圧延銅箔となる。
また、冷間圧延を複数回繰り返すごとに焼鈍生地が薄くなるのに応じて、1回(1パス)あたりの加工度を徐々に小さくしていくことが好ましい。ここで、1パスあたりの加工度は、上述の総加工度の例に倣い、nパス目の圧延前の加工対象物の厚さをTBnとし、圧延後の加工対象物の厚さをTAnとすると、1パスあたりの加工度(%)=[(TBn−TAn)/TBn]×100で表わされる。
このように、1パスあたりの加工度を変化させることで、圧延銅箔の各結晶面の回折ピーク強度比を制御することができる。
すなわち、圧延加工時、焼鈍生地等の加工対象物は、例えば互いに対向する1対のロール間の間隙に引き込まれ、反対側に引き出されることで減厚される。加工対象物の速度は、ロールに引き込まれる前の入り口側ではロールの回転速度より遅く、ロールから引き出された後の出口側ではロールの回転速度より速い。したがって、加工対象物には、入り口側では圧縮応力が、出口側では引張応力がかかる。加工対象物を薄く加工するためには、圧縮応力>引張応力でなければならない。1パスあたりの加工度を調整することで、圧縮応力>引張応力であることを前提として、それぞれの応力成分(圧縮成分と引張成分)の比を調整することができる。
また、最終冷間圧延工程S40では、応力成分(圧縮成分と引張成分)の比の調整を、以下に説明する中立点の位置移動の制御という観点から行うことも可能である。すなわち、上述のように、ロールの回転速度に対して入り口側と出口側とで大小関係が逆転する加工対象物の速度は、入り口側及び出口側の間のどこかの位置でロールの回転速度と等しくなる。この両者の速度が等しい位置を中立点といい、中立点では加工対象物にかかる圧力が最大となる。
中立点の位置は、前方張力、後方張力、圧延速度(ロールの回転速度)、ロール径、加工度、圧延荷重等の組み合わせを調整することで制御することができる。つまり、中立点の位置を制御することによっても、圧縮応力及び引張応力の比を調整することができる。
各結晶面の回折ピーク強度のバランスは、主に最終冷間圧延工程時の圧縮応力と引張応力との応力バランスにより決まる。
具体的には、最終冷間圧延工程S40等の圧延加工時、銅材中の銅結晶は、圧延加工時の応力により回転現象を起こし、いくつかの経路で{022}面へと変化する。圧縮応力が大きくなるほど{002}面や{113}面を経由し易く、引張応力が大きくなるほど{111}面や{133}面を経由し易い。そして、それぞれが{022}面へと変化する。{022}面まで到達しなかった結晶や、{022}面に到達したものの引張応力によって{111}面や{133}面へと回転してしまった結晶が副方位となる。
このように、圧縮応力と引張応力との応力バランスを変えることで、副方位の結晶面の回折ピーク強度のバランスを調整することができる。係る結晶面の回折ピーク強度のバランスは、上述の通り、圧延銅箔の耐屈曲性や耐折り曲げ性に多大な影響を与える。
また、最終冷間圧延工程S40においては、表面粗さが算術平均粗さRaで0.075μm以下の圧延ロールを用いることが好ましい。
圧延ロールの表面粗さは、上述の圧縮応力と引張応力との応力バランスや圧延銅箔の表面粗さに影響を与える。よって、圧延ロールの表面粗さを所定値に制御することで、各結晶面の比率を制御することができる。また、表面粗さが上述の式(3)を満たす圧延銅箔を得ることができる。なお、ここでいう算術平均粗さRaとは、JIS B 0601:2001により規定される表面粗さの1つである。具体的には、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し、平均した値である。
このように、各パスにおける加工度の大きさ制御や中立点の位置制御、圧延ロールの表面粗さの制御等を行いつつ、最終冷間圧延工程S40を施すことで、上述の式(1)〜(3)を満たす圧延銅箔を得ることができる。よって、再結晶焼鈍工程後には、繰り返しの曲げに耐える高い耐屈曲性とともに、小さな曲げ半径に耐える優れた耐折り曲げ性を具備する圧延銅箔が得られる。
(表面処理工程S50)
以上の工程を経た銅箔に所定の表面処理を施す。以上により、本実施形態に係る圧延銅箔が製造される。
(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係る圧延銅箔を用いたフレキシブルプリント配線板(FPC)の製造方法について説明する。
(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係る圧延銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなるFPCの基材と貼り合わせてCCL(Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法のいずれを用いてもよい。接着剤を用いる場合には、加熱処理により接着剤を硬化させて圧延銅箔と基材とを密着させ一体化する。接着剤を用いない場合には、加熱・加圧により圧延銅箔と基材とを直接密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができ、例えば150℃以上400℃以下の温度で、1分以上120分以下とすることができる。
上述のように、圧延銅箔の耐熱性は、このときの加熱温度に合わせて調整されている。したがって、CCL工程での加熱により圧延銅箔が軟化し再結晶される。つまり、基材に圧延銅箔を貼り合わせるCCL工程が、圧延銅箔に対する再結晶焼鈍工程を兼ねている。圧延銅箔に対し再結晶焼鈍工程が施されることにより、再結晶組織を有する圧延銅箔が得られる。つまり、高い耐屈曲性とともに優れた耐折り曲げ性を備えた圧延銅箔となる。
また、このように、CCL工程が再結晶焼鈍工程を兼ねることで、圧延銅箔を基材に貼り合わせるまでの工程では、冷間圧延工程後の加工硬化した状態で圧延銅箔を取り扱うことができ、圧延銅箔を基材に貼り合わせる際の、伸び、しわ、折れ等の変形を起こり難くすることができる。
また、副方位の各結晶面は再結晶焼鈍工程前後でほとんど変化しない。したがって、耐屈曲性及び耐折り曲げ性を得るには、最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔について、上述の関係式を満たすように副方位を制御しておけばよい。
(表面加工工程)
次に、基材に貼り合わせた圧延銅箔に表面加工工程を施す。表面加工工程では、圧延銅箔に例えばエッチング等の手法を用いて銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等の表面処理を施す表面処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
以上により、本実施形態に係る圧延銅箔を用いたFPCが製造される。
<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
例えば、上述の実施形態においては、圧延銅箔の耐熱性を調整する添加材として主にAgを用いることとしたが、添加材は、Agや上述の代表例等に挙げたものに限られない。また、添加材により調整可能な諸特性は耐熱性に限られず、調整を必要とする諸特性に応じて添加材を適宜選択してもよい。
また、上述の実施形態においては、FPCの製造工程におけるCCL工程は圧延銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程は、CCL工程とは別工程として行ってもよい。
また、上述の実施形態においては、圧延銅箔はFPC用途に用いられることとしたが、圧延銅箔の用途はこれに限られず、耐屈曲性及び耐折り曲げ性を必要とする用途に用いる
ことができる。圧延銅箔の厚さについても、FPC用途をはじめとする各種用途に応じて20μm超などとしてもよい。
なお、本発明の効果を奏するために、上述した工程のすべてが必須であるとは限らない。上述の実施形態や後述の実施例で挙げる種々の条件もあくまで例示であって、適宜変更可能である。
次に、本発明に係る実施例について比較例とともに説明する。
(1)無酸素銅を用いた圧延銅箔
まずは、無酸素銅を用いた実施例1〜7および比較例1〜15に係る圧延銅箔を以下のとおり製作し、それぞれについて各種評価を行った。
(圧延銅箔の製作)
目標濃度を200ppmとするAgを添加した無酸素銅を用い、上述の実施形態と同様の手順及び手法で、実施例1〜7および比較例1〜15に係る圧延銅箔を製作した。但し、比較例1〜15については構成を外れる処理等が含まれる。
具体的には、無酸素銅に所定量のAgを溶解して鋳造した厚さ150mm、幅500mmの鋳塊を準備した。以下の表2に、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により分析した、鋳塊中のAg濃度の分析値を示す。
表2に示すように、目標濃度の200ppmに対し、分析値は180ppm〜218ppmと、いずれも200ppm±20ppm(10%)程度内のバラツキに抑えられている。Agは元々、主原材料である無酸素銅に不可避不純物として数ppm〜十数ppm程度含有されている場合があるほか、鋳塊を鋳造する際のバラツキ等の種々の原因により、±20ppm程度内のバラツキは金属材料分野では一般的なものである。
次に、上述の実施形態と同様の手順及び手法で、熱間圧延工程にて厚さ8mmの板材を得た後、冷間圧延工程と、750℃〜850℃の温度で約2分間保持する中間焼鈍工程とを繰り返し実施し、厚さ0.6mmの銅条(生地)を製作した。続いて、約750℃の温度で約2分間保持する生地焼鈍工程にて焼鈍生地を得た。
ここで、各焼鈍工程の温度条件等は、Agを180ppm〜218ppm含有する無酸
素銅材の耐熱性に合わせた。なお、組成が同じ銅材に対して各焼鈍工程で異なる温度条件を用いたのは、銅材の厚さに応じて耐熱性が変化するためであり、銅材が薄いときは温度を下げることができる。
最後に、上述の実施形態と同様の手順及び手法で最終冷間圧延工程を行い、実施例1〜7および比較例1〜15に係る圧延銅箔を得た。最終冷間圧延工程での条件を以下の表3に示す。
表3に示すように、各表の上段から下段へと順次板厚が薄くなるのに応じて、右欄のように条件を切り替えて、最終冷間圧延を行った。つまり、厚さが200μm以下における冷間圧延加工の、1パスあたりの加工度を変化させた。すなわち、このとき、中立点の位置も変化させていることになる。また、表面粗さ、つまり、算術平均粗さRaの小さい圧延ロールを実施例1〜7に使用し、算術平均粗さRaの大きい圧延ロールを比較例1〜15に使用した。
また、優れた耐屈曲性を得るため、実施例1〜7および比較例1〜15の全てにおいて、最終冷間圧延工程での総加工度が94%となるように条件を設定した。具体的には、実施例1〜7および比較例1〜15ともに、総加工度を98%とした。以上により、厚さが12μmの実施例1〜7および比較例1〜15に係る圧延銅箔を製作した。
次に、以上のように製作した各圧延銅箔について次の評価を行った。
(2θ/θ法によるX線回折測定)
まずは、実施例1〜7および比較例1〜15に係る圧延銅箔に対し、2θ/θ法によるX線回折測定を行った。係る測定は、株式会社リガク製のX線回折装置(型式:Ultima IV)を用い、以下の表4に示す条件で行った。代表として、図2(a)に実施例2のX線回折チャートを、図2(b),(c)に比較例2,11のX線回折チャートをそれぞれ示す。
次に、2θ/θ法により測定した銅結晶の{022}面、{002}面、{113}面、{111}面、及び{133}面の回折ピーク強度を合計値が100となるような比に換算し、各結晶面の回折ピーク強度比を求めた。また、上述の式(1)に係る値、つまり、(I{022}+I{002})の値を求めた。以下の表5に、実施例1〜7および比較例1〜15に係る圧延銅箔について、上述のように求めた各結晶面の回折ピーク強度比I{022}、I{002}、I{113}、I{111}、I{133}の値、および、式(1)の値を示す。
また、粉末銅について、カード番号:40836のJCPDSカードの記載から、上述の各結晶面と同様の各結晶面の標準的な回折ピークの相対強度を取得した。すなわち、{
111}面を100とする各結晶面{022}面、{002}面、{113}面、{133}面の
それぞれの相対強度20,46,17,9を得た。
係る5つの回折ピークの相対強度を合計値が100となるような比に換算し直し、粉末銅について各結晶面の回折ピーク強度比を求めた。
さらに、表5に示す圧延銅箔に係る回折ピーク強度比と、粉末銅に係る回折ピーク強度比とを用い、上述の式(2)に係る各I/Iの数値を求めた。以下の表6の上段に、粉末銅の各結晶面の回折ピーク強度比I0{022}、I0{002}、I0{113}、I0{111}、及びI0{133}の値を示す。また、下段に、上述のように求めた式(2)に係る各I/Iの数値を示す。
また、実施例1〜7および比較例1〜15のX線回折チャートから、各結晶面の回折ピークの半価幅を求めた。以下の表7に、係る半価幅FWHM{113}、FWHM{111}、及びFWHM{133}の値を示す。また、表7の右端に、上述の式(2)に係る数値を示す。
上述のように、本実施例及び比較例では、最終冷間圧延工程での1パスあたりの加工度や中立点の位置を変化させている。また、実施例と比較例とで圧延ロールの表面粗さを変えている。これにより、冷間圧延加工時に、加工対象物にかかる圧縮成分と引張成分との応力成分の比が変化する。その結果、各結晶面の比率が変わり、表5に示す各結晶面の回折ピーク強度比や、表6に示す各I/Iの数値、表7に示す半価幅、ひいては式(2)に係る値も変化している。
また、表5,7に示すように、実施例1〜7の各条件の組み合わせでは、式(1),(2)の各値はいずれも上述の所定範囲内にあった。
一方、比較例1〜15の各条件の組み合わせでは、いくつかの圧延銅箔において、式(1),(2)の各値のうち、1つ、または、両方の値が上述の所定範囲外となった。表5,7中、上述の所定範囲を外れた値を下線付きの太字で示した。
(十点平均粗さ測定)
続いて、実施例1〜7および比較例1〜15に係る圧延銅箔の表面粗さをみるため、十点平均粗さ測定を行った。係る測定には、株式会社小坂研究所製の表面粗さ測定機(型式:SE500)を用いた。測定条件としては、触針径が2μm、測定速度が0.2mm/sec、測定長が4mm、抜き取り基準長さが0.8mm、荷重が0.75mN以下とした。測定結果を、以下の表8に示す。

上述のように、本実施例及び比較例では、最終冷間圧延工程において、表面粗さ、つまり、算術平均粗さRaの異なる圧延ロールをそれぞれ用いている。よって、表8に示すように、実施例1〜7の各条件の組み合わせでは、圧延銅箔の表面は比較的平坦化され、式(3)の値は上述の所定範囲内となった。
一方、比較例1〜15の各条件の組み合わせでは、いくつかの圧延銅箔において、式(3)の値が上述の所定範囲外となった。表8中、上述の所定範囲を外れた値を下線付きの太字で示した。
以下の表9に、各圧延銅箔における式(1)〜(3)の値を示す。
上述のように、再結晶焼鈍工程後の圧延銅箔について、元々高い耐屈曲性を更に向上させると共に、優れた耐折り曲げ性を得るには、上述の式(1)〜(3)までを満たしている必要がある。実施例1〜7においては、いずれの圧延銅箔においても、上述の式(1)〜(3)の値の全てを満たしている。一方、比較例1〜15においては、いずれの圧延銅箔においても、上述の式(1)〜(3)のいずれか1つ、または複数の値が所定範囲外となった。
(屈曲疲労寿命試験)
次に、各圧延銅箔の耐屈曲性を調べるため、各圧延銅箔が破断するまでの繰返し曲げ回数(屈曲回数)を測定する屈曲疲労寿命試験を行った。係る試験は、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31B2S)を用い、IPC(米国プリント回路工業会)規格に準拠して行った。図3には、信越エンジニアリング株式会社製のFPC高速屈曲試験機等も含む、一般的な摺動屈曲試験装置10の模式図を示す。
まずは、実施例1〜7および比較例1〜15に係る圧延銅箔を幅12.5mm、長さ2
20mmに切り取った、厚さが12μmの試料片Fに、上述の再結晶焼鈍工程に倣い、300℃、60分間の再結晶焼鈍を施した。係る条件は、フレキシブルプリント配線板のCCL工程で、基材との密着の際に圧延銅箔が実際に受ける熱量の一例を模している。
次に、図3に示すように、圧延銅箔の試料片Fを、摺動屈曲試験装置10の試料固定板11にネジ12で固定した。続いて、試料片Fを振動伝達部13に接触させて貼り付け、発振駆動体14により振動伝達部13を上下方向に振動させて試料片Fに振動を伝達し、屈曲疲労寿命試験を実施した。屈曲疲労寿命の測定条件としては、曲げ半径Rを1.5mmとし、ストロークSを10mmとし、振幅数を25Hzとした。係る条件下、各圧延銅箔から切り取った試料片Fを5枚ずつ測定し、破断が発生するまでの屈曲回数の平均値を比較した。以下の表10に結果を示す。
表10に示すように、実施例1〜7および比較例1〜3においては、上述の式(1),(2)を共に満たすので、屈曲回数が200万回以上の高い耐屈曲性が得られた。一方、上述の式(1),(2)のいずれか若しくは両方を満たさない比較例4〜15においては
、いずれも屈曲回数が200万回を下回る結果となってしまった。
ここで、着目すべきは、比較例4〜15であっても、もともと比較的高水準の耐屈曲性を備えている点である。これは、例えば上述の特許文献3等で実績が得られている総加工度が94%以上、具体的には、総加工度が98%の最終冷間圧延工程を経ているためである。実施例1〜7においては、更に、上述の式(1),(2)を満たすこととすることにより、耐屈曲性の更なる向上が可能となった。
(耐折り曲げ性の評価)
続いて、各圧延銅箔の耐折り曲げ性を調査した。耐折り曲げ性についての一般的な試験の規格では、例えばFPC用途等で要求される180°の折り曲げについての標準化がなされていない。そこで、図4に示す手法により、各圧延銅箔に割れが生じるまでの折り曲げ回数を測定する折り曲げ試験を行った。
すなわち、まずは、実施例1〜7および比較例1〜15に係る圧延銅箔を圧延方向に対し、幅15mm、長さ100mmに切り取った試料片Fに、300℃、60分間の再結晶焼鈍を施した。次に、図4に示すように、厚さが0.25mmのスペーサ20を挟み込むように試料片Fを180°折り曲げ、この状態で折り曲げ部分を金属顕微鏡で観察して割れの有無を確認した。割れがなければ、圧延銅箔を折り曲げた状態から元の伸ばした状態に戻した。これを1サイクルとして、各圧延銅箔から切り取った試料片Fの5枚ずつについて、1サイクル毎に折り曲げ部分の観察をしつつ、割れが発生するまでサイクルを繰り返し、折り曲げ回数を測定した。以下の表11に、割れが発生するまでの折り曲げ回数の平均値を比較した結果を示す。
表11に示すように、実施例1〜7のいずれにおいても、折り曲げ回数は90回近く、或いはそれ以上となり、優れた耐折り曲げ性が得られた。
一方、優れた耐屈曲性を示した比較例1〜3のいずれにおいても式(3)は満たしておらず、折り曲げ回数は50回未満となって、充分な耐折り曲げ性は得られなかった。ここで、特に、実施例4,7や比較例2等を比較すると、式(3)において定めた数値範囲(≦1.2μm)の内側と外側とで、耐折り曲げ性について量的に顕著な差異が存在することがわかる。
また、式(1),(2)の少なくともいずれか及び式(3)を満たさない比較例4〜6,10〜12においては、耐折り曲げ性においても充分な値を得ることはできなかった。また、比較例7〜9,13〜15においては、式(3)を満たすにも関わらず、充分な耐折り曲げ性を得ることはできなかった。比較例7〜9,13〜15においては、式(1),(2)の少なくともいずれかを満たしておらず、耐折り曲げ性を向上させるには、高水準の耐屈曲性が得られていることが前提であることがわかる。
(2)タフピッチ銅を用いた圧延銅箔
次に、目標濃度を200ppmとするAgを添加したタフピッチ銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例8および比較例16,17に係る圧延銅箔を製作した。但し、比較例16,17については構成を外れる処理等が含まれる。
実施例8および比較例16,17の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ210ppm、205ppmおよび195ppmであった。全て±10%程度内のバラツキであって、金属材料の分野では一般的なものである。なお、係る濃度のAgを含有するタフピッチ銅材の耐熱性に合わせ、中間焼鈍工程および生地焼鈍工程では、上述の条件とは異なる条件を用いた。具体的には、中間焼鈍工程では650℃〜750℃の温度で約2分〜4分の間保持し、生地焼鈍工程では約700℃の温度で約2分間保持した。
以上のように製作した実施例8および比較例16,17に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定を行い、上述の式(1),(2)を求めた。その結果、実施例8に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が各式の所定範囲内となった。一方、比較例16に係る圧延銅箔については、式(1)の所定範囲を外れてしまった。また、比較例17に係る圧延銅箔については、式(1),(2)いずれについても所定範囲を外れてしまった。
また、実施例8および比較例16,17に係る圧延銅箔の十点平均粗さを測定したところ、実施例8については、式(3)の所定範囲内となった。一方、比較例16,17については、いずれも式(3)の所定範囲を外れてしまった。
また、実施例8および比較例16,17に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験を行った。その結果、上述の式(1),(2)を共に満たす実施例8については、屈曲回数が2,096,000回と、200万回以上の高い耐屈曲性が得られた。一方、上述の式(1),(2)のいずれか若しくは両方を満たさない比較例16,17においては、屈曲回数がそれぞれ1,571,000回、1,578,000回と、いずれも200万回を下回る結果となってしまった。
また、実施例8および比較例16,17に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で折り曲げ試験を行った。その結果、実施例8については折り曲げ回数が94回と良好であったのに対し、比較例16,17については、それぞれ39回、40回と、劣った結果であった。
以上のことから、各結晶面が所定範囲内であれば、タフピッチ銅を主原材料とする圧延銅箔についても、良好な耐折り曲げ性を得て、更に耐屈曲性の向上を図ることができることがわかった。
(3)異なる添加材を用いた圧延銅箔
次に、目標濃度を120ppmとするAgおよび目標濃度を40ppmとするチタン(Ti)を添加材として加えた無酸素銅を用い、上述の実施例と同様の手順及び手法で、厚さが12μmの実施例9および比較例18,19に係る圧延銅箔を製作した。但し、比較例18,19については構成を外れる処理等が含まれる。
実施例9および比較例18,19の鋳塊中におけるAg濃度は、IPC発光分光分析法により得た分析値で、それぞれ121ppm、119ppmおよび124ppmであった。また、Ti濃度は、それぞれ41ppm、41ppmおよび44ppmであった。全て±10%程度内のバラツキであって、金属材料の分野では一般的なものである。
また、このような濃度のAgおよびTiを含有する無酸素銅材の耐熱性に合わせ、中間焼鈍工程および生地焼鈍工程には、上述の条件とは異なる条件を用いた。具体的には、中間焼鈍工程では温度650℃〜750℃で約1分〜3分の間保持し、生地焼鈍工程では約700℃の温度で約1分間保持した。
以上のように製作した実施例9および比較例18,19に係る圧延銅箔について、上述の実施例と同様の手法及び手順で2θ/θ法によるX線回折測定を行い、上述の式(1),(2)を求めた。その結果、実施例9に係る圧延銅箔については、各結晶面の回折ピーク強度の関係が式(1),(2)の所定範囲内となった。一方、比較例18に係る圧延銅箔については、式(1),(2)いずれも所定範囲を外れてしまった。また、比較例19に係る圧延銅箔については、式(2)の所定範囲を外れてしまった。
また、実施例9および比較例18,19に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で屈曲疲労寿命試験を行った。その結果、上述の式(1),(2)を共に満たす実施例9については、屈曲回数が2,109,000回と、200万回以上の高い耐屈曲性が得られた。一方、上述の式(1),(2)のいずれか若しくは両方を満たさない比較例18、19においては、屈曲回数がそれぞれ1,544,000回、1,538,000回と、いずれも200万回を下回る結果となってしまった。
また、実施例9および比較例18,19に係る圧延銅箔に対し、上述の実施例と同様の手法及び手順で折り曲げ試験を行った。その結果、実施例9については折り曲げ回数が95回と良好であったのに対し、比較例18,19については、それぞれ41回、43回と、劣った結果であった。
以上のことから、各結晶面が所定範囲内であれば、AgとTiとのような異なる添加材を添加した圧延銅箔についても、良好な耐屈曲性及び耐折り曲げ性が得られることがわかった。
<本発明者等による考察>
本発明における副方位の結晶面の制御および圧延銅箔の表面粗さの制御について、本発明者等の考察を以下に述べる。
(1)耐屈曲性について
まずは、副方位の結晶面を制御することで圧延銅箔に更に優れた耐屈曲性が付与される原理、及び、上述の圧延銅箔の製造工程における副方位の結晶面の制御の仕組みについて、本発明者等の考察を交えて以下に説明する。
(更に優れた耐屈曲性付与の原理)
本発明者等は、結晶方位学の知見と金属学の知見とこれまでの実験経験とから、副方位の結晶面を制御することで更に優れた耐屈曲性が得られる原理について以下の考察を行った。
本発明者等によれば、本発明にて得られる高い耐屈曲性には、再結晶焼鈍工程前後での主方位の変化や副方位の不変化、また、各結晶面の加工ひずみの大きさが関係していると考えられる。上述のように、再結晶焼鈍工程において、主方位である{022}面は再結晶後に{002}面となる。また、再結晶焼鈍工程前の{002}面は、{022}面が{002}面へと変化するのを促進させる。一方、他の副方位である{002}面、{113}面、{111}面、及び{133}面は、再結晶後も略変化しないままであり、これら副方位と、再結晶後の主方位の結晶面である{002}面とのなす角度が、圧延銅箔
の耐屈曲性に関与していると考えられる。
再結晶{002}面∠{113}面 : 25.2°
再結晶{002}面∠{111}面 : 54.7°
再結晶{002}面∠{133}面 : 46.5°
このように、{113}面は{002}面と25.2°の角度関係にあり、{111}面は{002}面と54.7°の角度関係にあり、{133}面は{002}面と46.5°の角度関係にある。つまり、いずれも再結晶後の{002}面とのなす角度は大きい。このことから、これら副方位と、再結晶後の主方位の結晶面である{002}面とのなす角度が、更に優れた耐屈曲性の向上に関与していると考えられる。
これらの余分な3つの結晶面は、排除することができればそれに越したことはない。しかし、圧延銅箔は多結晶体であり、少なからず副方位が存在してしまう。そこで、これら3つの副方位をできるだけ少なくすると同時に、圧延加工でこれらの3つの結晶面に蓄積する加工ひずみをできるだけ小さくすることが重要である。一方、主方位である{022}面には、圧延銅箔による加工ひずみをできるだけ蓄積させることが重要である。これは、再結晶焼鈍工程においては、加熱処理による熱と共に、加工ひずみも再結晶の駆動力になるためである。
このとき、加熱処理による熱は主方位と副方位とに対して一定であるので、加工ひずみの大きさの違いによって各結晶面の再結晶の駆動力に違いが生じる。主方位の{022}面については、加工ひずみが{002}面へと変化する駆動力として有効に働くが、副方位の{113}面、{111}面、{133}面は余分な方位であるので、加工ひずみが大きいほど余計な挙動をしてしまう。つまり、これらの副方位は、再結晶後も結晶面は変わらないが、再結晶焼鈍工程の際、加工ひずみを解放して再結晶となる。副方位から加工ひずみが解放されるということは、副方位からエネルギーが放出されるということであり、これは不要なエネルギーである。よって、主方位である{022}面が{002}面に変わる際の障害となってしまうおそれがある。
このため、上述のように、これらの副方位の結晶面の回折ピーク強度比、つまり、占有率を低減するとともに、副方位の加工ひずみを小さくすることで、主方位の再結晶成長における障害が減り、結果的に耐屈曲性が向上したと考えられる。
(副方位の結晶面の制御の仕組)
上述のように、最終冷間圧延工程等の圧延加工時、銅材には圧縮応力と、圧縮応力よりも弱い引張応力とがかかっている。圧延される銅材中の銅結晶は、圧延加工時の応力によって{022}面への回転現象を起こし、圧延加工の進展とともに、圧延面に平行な結晶面の方位が主に{022}面である圧延集合組織を形成する。このとき、上述のように、圧縮応力と引張応力との比により、{022}面へと向かって回転する経路が変わる。これについて、図5を用いて説明する。
図5は、下記の技術文献(イ)から引用した純銅型金属の逆極点図であって、(a)は引張変形による結晶回転方向を示す逆極点図であり、(b)は圧縮変形による結晶回転方向を示す逆極点図である。なお、逆極点図では、{002}面を{001}面と表記し、{022}面を{011}面と表記することになっている。つまり、{002}面は、{002}面に平行な面の最小数値である{001}面で表わし、{022}面は、{022}面に平行な面の最小数値である{011}面で表わす。
(イ)編著者 長嶋晋一、“集合組織”、丸善株式会社、昭和59年1月20日、p9
6の図2.52(a),(c)
図5に示すように、銅材中の銅結晶は、引張変形のみでは{111}面へと向かって回転し、圧縮変形のみでは{011}面へと向かって回転する。圧延加工では、圧縮成分と引張成分とが合わさった変形をするため、結晶回転方向はこれほど単純ではない。ただし、引張成分より圧縮成分が優勢となって変形し、圧延加工がされるので、総じて{011}面へと向かう結晶回転を起こしつつ、圧縮成分と引張成分との割合によって{111}面へも一部回転しようとする。このとき、圧縮成分の方が優勢であるので、{111}面へと回転しかけた結晶が{011}面へと戻される結晶回転も起きる。また、これとは逆に、{011}面へと向かって回転している結晶や{011}面に到達した結晶が、引張成分によって{133}面や{111}面へ向かって回転する場合もある。
このように、圧縮成分と引張成分とが、圧縮成分>引張成分の関係を保ちながら混在する中で結晶回転が起こると、最終的には図6の逆極点図に示すような主方位および副方位の結晶面の分布になると考えられる。圧縮成分>引張成分であるから、最終的な主方位の結晶面は{011}面となり、また、圧縮成分と引張成分との混合による結晶回転の結果、副方位の結晶面は、{001}面、{113}面、{111}面、{133}面になると考えられる。
ここで、図6には、これらの特定方位の結晶面のみが分布しているように示したが、これは以下の理由による。銅は面心立方構造の結晶なので、2θ/θ法によるX線回折測定では、{hkl}面のh,k,lが全て奇数値または全て偶数値でなければ回折ピークとして現れない。h,k,lが奇数値と偶数値との混在となっていると、消滅則によって回折ピークが消失し、測定できないためである。したがって、上述の実施形態等に係る圧延銅箔の構成を示すにあたっては、回折ピークとして現れる{001}面({002}面)、{113}面、{111}面、及び{133}面の副方位で規定した。上述の実施例等の結果からも本構成の効果は明白であるから、上述した副方位の結晶面を考えれば充分であるといえる。
(加工度による制御)
以上のことから、圧縮応力>引張応力であることを前提として、圧縮成分と引張成分との比を調整すると、{022}面へと向かって回転する経路が変わる。具体的には、圧縮成分が大きくなるほど{002}面や{113}面を経由し易く、引張成分が大きくなるほど{111}面や{133}面を経由し易い。主な副方位の結晶面が{002}面、{113}面、{111}面、及び{133}面となるのは、{022}面へと回転しきれなかった結晶面が銅材中に残るためであり、最終冷間圧延工程での圧縮成分と引張成分との調整により、銅材中に残る各副方位の結晶面の割合を調整することができる。
具体的には、圧縮成分と引張成分とは、圧延加工時の1パスあたりの圧延条件を変化させることで制御することができる。具体的には、上述の実施形態や実施例にて試みたように、例えば1パスあたりの加工度の変化に着目することができる。
1パスあたりの加工度を高くするには、例えば圧延荷重(ロール荷重)を大きくして圧延対象である銅材を押しつぶす方法があり、この場合、圧縮応力が大きくなる。よって、結晶の回転経路は{002}面や{113}面となって、{022}面へと向かって回転する。
一方、圧縮応力>引張応力を前提とし、引張成分を大きくして銅材を薄くすることで加工度を高くする方法もある。引張成分を大きくしているので、結晶の回転経路は{111}面や{133}面となって、{022}面へと向かって回転する。なお、圧延後、銅材
中に残る{133}面には、引張成分により結晶の回転途中で得られたものと、圧縮成分により一旦、{022}面へと到達した結晶が、引張成分により{133}面へと再び回転したものとが含まれると考えられる。また、引張応力による加工度の変化は、圧縮荷重を大きくした場合に比べると小さい。つまり、加工度への寄与は、圧縮応力の方が大きい。
(圧延ロールの表面粗さによる制御)
ここで、圧延ロールの表面粗さも圧縮応力と引張応力とのバランスに影響する。例えば、圧延ロールの表面粗さが小さくなると、圧延ロールと、圧延対象である銅材とが接する面積が増え、この接触面にかかる圧力が大きくなる。これは、圧延ロールから銅材への荷重が大きくなったことを意味しており、銅材は圧延ロール間の間隙を通りぬけ難くなる。これにより、銅材にかかる応力が圧縮応力>引張応力であることを前提に、圧縮応力がより大きく優勢な状態で、圧延加工が施される。よって、この場合、結晶は{002}面や{113}面を通って{022}面へと回転する。
一方、例えば、圧延ロールの表面粗さが大きくなると、圧延ロールと銅材とが接する面積が減り、この接触面にかかる圧力が小さくなる。これは、圧延ロールから銅材への荷重が小さくなったことを意味しており、銅材は圧延ロール間の間隙を通りぬけ易くなる。これにより、銅材にかかる応力が圧縮応力>引張応力であることを前提に、引張応力が大きくなった状態で、圧延加工が施される。よって、この場合、結晶は{111}面や{133}面を通って{022}面へと回転する。
(他の制御因子)
なお、上述の実施形態や実施例においては、1パスあたりの加工度や圧延ロールの表面粗さによって結晶回転を制御することとしたが、結晶回転の制御因子はこれらに限られない。すなわち、1パスあたりの加工度や圧延ロールの表面粗さに加えて、或いは替えて、他の制御因子を用いてもよい。このように、どのような制御因子を用いても、圧縮応力と引張応力とを制御できればよい。実際、制御因子をどのように選択するかで、結晶回転については複数の制御方法が考えられる。
また、圧延銅箔の結晶回転に影響を与える制御因子は圧延機の構成に関わるところであり、それぞれの制御因子の具体的な条件や数値等は、圧延機の仕様に依存するところが大きい。具体的には、ロールの段数、ロールの総数、ロールの組み合わせ配置、各ロールの径や材質や表面状態(表面粗さ)等のロールの構成などの違いにより、銅材への圧縮応力のかかり方に違いが生じる。つまり、圧延機が異なれば、上述の実施例で挙げた条件に係る各制御因子もその絶対値が異なるため、圧延機ごとに適宜調整することができる。また、同じ圧延機においても、圧延ロールの表面状態や圧延ロールの材質が異なれば、各制御因子の絶対値が異なる。よって、同じ圧延機であっても、それぞれの状態に応じて適宜調整することができる。
(2)耐折り曲げ性について
(表面粗さの制御による耐折り曲げ性付与)
上述のように、圧延銅箔の耐折り曲げ性は圧延銅箔の表面粗さを所定値以下に抑えることで付与される。圧延銅箔の表面粗さを制御する因子としては、主に、圧延油の粘度η、圧延ロールの回転速度U、圧延時の銅材の速度U、噛み込み角α、平均圧延圧力p、圧延ロールの表面粗さ(算術平均粗さRa)等がある。これらの因子のうち、圧延ロールの算術平均粗さRa以外の諸因子は、油膜の厚みに対応する油膜当量tdとして、下記の技術文献(ロ)を参考とする次式(C)のように1つにまとめることができる。
td={η(U+U)}/αp・・・(C)
(ロ)小豆島明、“圧延中の油膜厚み及びロールと材料の表面あらさについて”、日本機械学会論文集(第3部)、44巻377号、昭和53年1月、p332−339
圧延ロールの算術平均粗さRa以外の諸因子により規定される油膜当量tdを一定に保つことができれば、これら諸因子の影響を軽減して、主に圧延ロールの算術平均粗さRaのみによって、圧延銅箔の表面粗さを制御することができる。
ここで、上述の式(C)に係る圧延ロールの回転速度U、圧延時の銅材の速度U、平均圧延圧力pは、圧延条件での1パスあたりの加工度や中立点を制御する制御因子でもある。1パスあたりの加工度や中立点を制御するため、これらの制御因子を変化させた場合、油膜当量tdを一定に保つには、例えば以下の手法がある。つまり、例えば圧延油の粘度ηを3×10−3N/m・s〜5×10−3N/m・sの範囲で一定に制御すると、噛み込み角αが一定となる。よって、油膜当量tdを一定に制御することができる。油膜当量をtd一定に制御できれば、圧延ロールの算術平均粗さRaを変化させることで、圧延銅箔の表面粗さを種々に制御することができる。
なお、耐折り曲げ性を向上させる圧延銅箔の表面粗さは、他の制御因子を用いて制御してもよい。
(表面粗さの補足説明)
また、本明細書においては、圧延銅箔の表面粗さと圧延ロールの表面粗さとを、それぞれ十点平均粗さと算術平均粗さRaとの異なる規定に基づき定めている。これら表面粗さの使い分けについて、以下に説明する。
十点平均粗さと算術平均粗さRaとは、いずれもJIS規格に則って表面の粗さ具合を数値化したものである。JIS規格により表面粗さを数値化した規定は他にもいくつかある。表面の粗さ具合によっては、それぞれの数値が大きく異なることがあり、個々の状況や目的に応じてどの規定を用いるか使い分けが必要である。
例えば、最凸部と最凹部との差が重要であるようなときは、最大高さRz(JIS B
0601:2001)を用いるのが好適である。圧延銅箔の表面粗さの規定に用いた十点平均粗さは、このような最凸部と最凹部とを含むそれぞれ5点ずつの差を抜き出して数値化したものである。つまり、山頂と谷底との合計10点を用いて数値化するため、上述の最大高さRzのように1つの凹凸差だけでなく、平均的にどれくらいの凹凸差があるかの情報が得られる。
圧延銅箔では折り曲げられた際に凹部が開く方向に変形し、この部分から割れが発生することを踏まえると、耐折り曲げ性の向上を狙って圧延銅箔の表面粗さを規定するに際しては、表面の凹凸差を捉えることが重要である。それも、局所的な1点の凹凸差をみるのではなく、十点平均粗さを用いていくつかの凹凸差の平均値をみることで、圧延銅箔の耐折り曲げ性をより正確に把握することができる。
一方、圧延ロールの表面粗さの規定に用いた算術平均粗さRaは、凹凸差に着目する十点平均粗さ等とは異なり、測定箇所全体でどれだけうねりがあるか、に着目する。つまり、中心となる直線状の平均線に対して、粗さ曲線がどれだけ外れているかであり、全体の平均である平均線と粗さ曲線の凹凸との間の面積をみていることになる。
表面粗さを規定した圧延ロールは、最終冷間圧延工程S40で使用され、銅材の変形加工に係る重要な工具である。よって、圧延ロール全体の状態をできるだけ隈なく捉えるこ
とが重要となる。したがって、凹凸差を点で捉えるのではなく、面または線で捉える算術平均粗さRaを用いることで、圧延ロールの全体的な表面粗さを把握することができる。
10 摺動屈曲試験装置
11 試料固定板
12 ネジ
13 振動伝達部
14 発振駆動体
20 スペーサ
F 試料片

Claims (5)

  1. 主表面を備え、前記主表面に平行な複数の結晶面を有する最終冷間圧延工程後、再結晶焼鈍工程前の圧延銅箔であって、
    前記圧延銅箔は、純銅又は希薄銅合金からなり、
    前記複数の結晶面には{022}面、{002}面、{113}面、{111}面、及び{133}面が含まれ、
    前記主表面に対する2θ/θ法を用いたX線回折測定から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比をそれぞれI[022]、I[002]、I[113]、I[111]、及びI[133]としたとき、
    [022]+I[002]≧75であり、
    {022}面、{002}面、{113}面、{111}面、及び{133}面を有する粉末銅についてのJCPDSカード又はICDDカードに記載の前記各結晶面の標準的な回折ピークの相対強度から求められ、合計値が100となるように換算された前記各結晶面の回折ピーク強度比のうち、前記{113}面、前記{111}面、及び前記{133}面の回折ピーク強度比をそれぞれI0[113]、I0[111]、及びI0[133]とし、
    前記主表面に対する前記X線回折測定から求められる前記{113}面、前記{111}面、及び前記{133}面の回折ピークの半価幅をそれぞれFWHM[113]、FWHM[111]、及びFWHM[133]としたとき、
    [(I[113]/I0[113])×FWHM[113]]+[(I[111]/I0[111])×FWHM[111]]+[(I[133]/I0[133])×FWHM[133]]≦1.5であり、
    前記主表面の十点平均粗さによる表面粗さが、
    十点平均粗さ≦1.2μmである
    ことを特徴とする圧延銅箔。
  2. JIS C1020に規定の無酸素銅、又はJIS C1100に規定のタフピッチ銅を主成分とする
    ことを特徴とする請求項1に記載の圧延銅箔。
  3. 銀、硼素、チタン、錫の少なくともいずれかが添加されている
    ことを特徴とする請求項1又は2に記載の圧延銅箔。
  4. 総加工度が90%以上の前記最終冷間圧延工程により厚さが20μm以下となっている
    ことを特徴とする請求項1〜3のいずれかに記載の圧延銅箔。
  5. フレキシブルプリント配線板用である
    ことを特徴とする請求項1〜4のいずれかに記載の圧延銅箔。
JP2012113853A 2012-05-17 2012-05-17 圧延銅箔 Active JP5201431B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012113853A JP5201431B1 (ja) 2012-05-17 2012-05-17 圧延銅箔
KR1020120089954A KR101967748B1 (ko) 2012-05-17 2012-08-17 압연동박
CN201210332530.7A CN103421977B (zh) 2012-05-17 2012-09-10 轧制铜箔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113853A JP5201431B1 (ja) 2012-05-17 2012-05-17 圧延銅箔

Publications (2)

Publication Number Publication Date
JP5201431B1 true JP5201431B1 (ja) 2013-06-05
JP2013241630A JP2013241630A (ja) 2013-12-05

Family

ID=48712995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113853A Active JP5201431B1 (ja) 2012-05-17 2012-05-17 圧延銅箔

Country Status (3)

Country Link
JP (1) JP5201431B1 (ja)
KR (1) KR101967748B1 (ja)
CN (1) CN103421977B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714382B (zh) * 2016-02-23 2017-12-29 北京大学 大尺寸Cu(100)单晶铜箔的制备方法
JP6618410B2 (ja) * 2016-03-31 2019-12-11 Jx金属株式会社 チタン銅箔、伸銅品、電子機器部品およびオートフォーカスカメラモジュール

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106312A (ja) * 2006-10-26 2008-05-08 Hitachi Cable Ltd 圧延銅箔およびその製造方法
JP2010150598A (ja) * 2008-12-25 2010-07-08 Hitachi Cable Ltd 圧延銅箔

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432124B (en) * 1996-05-13 2001-05-01 Mitsui Mining & Amp Smelting C Electrolytic copper foil with high post heat tensile strength and its manufacturing method
JP3009383B2 (ja) 1998-03-31 2000-02-14 日鉱金属株式会社 圧延銅箔およびその製造方法
JP3856616B2 (ja) 2000-03-06 2006-12-13 日鉱金属株式会社 圧延銅箔及びその製造方法
JP4833692B2 (ja) * 2006-03-06 2011-12-07 古河電気工業株式会社 銅箔、銅箔の製造方法および前記銅箔を用いた積層回路基板
JP4215093B2 (ja) * 2006-10-26 2009-01-28 日立電線株式会社 圧延銅箔およびその製造方法
JP5321788B2 (ja) * 2007-05-23 2013-10-23 ソニー株式会社 二次電池用集電体、二次電池用負極、二次電池および電子機器
JP4466688B2 (ja) * 2007-07-11 2010-05-26 日立電線株式会社 圧延銅箔
JP5320638B2 (ja) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ 圧延銅箔およびその製造方法
JP5390852B2 (ja) * 2008-12-24 2014-01-15 株式会社Shカッパープロダクツ 圧延銅箔

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106312A (ja) * 2006-10-26 2008-05-08 Hitachi Cable Ltd 圧延銅箔およびその製造方法
JP2010150598A (ja) * 2008-12-25 2010-07-08 Hitachi Cable Ltd 圧延銅箔

Also Published As

Publication number Publication date
CN103421977B (zh) 2016-06-29
KR101967748B1 (ko) 2019-04-10
JP2013241630A (ja) 2013-12-05
KR20130129053A (ko) 2013-11-27
CN103421977A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4285526B2 (ja) 圧延銅箔およびその製造方法
JP4215093B2 (ja) 圧延銅箔およびその製造方法
JP5245813B2 (ja) 圧延銅箔
JP5373941B1 (ja) 圧延銅箔
JP5373940B1 (ja) 圧延銅箔
JP5126434B1 (ja) 圧延銅箔
JP5126435B1 (ja) 圧延銅箔
JP5390852B2 (ja) 圧延銅箔
JP5201431B1 (ja) 圧延銅箔
JP5126436B1 (ja) 圧延銅箔
JP5201432B1 (ja) 圧延銅箔
TW201418005A (zh) 帶有鍍銅層的軋製銅箔
JP5246526B1 (ja) 圧延銅箔
JP5273236B2 (ja) 圧延銅箔
JP5562218B2 (ja) 圧延銅箔
JP2014139335A (ja) 銅めっき層付き圧延銅箔
JP2012117123A (ja) 圧延銅箔

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Ref document number: 5201431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250