JP5195653B2 - 廃熱回収装置及びエンジン - Google Patents

廃熱回収装置及びエンジン Download PDF

Info

Publication number
JP5195653B2
JP5195653B2 JP2009138616A JP2009138616A JP5195653B2 JP 5195653 B2 JP5195653 B2 JP 5195653B2 JP 2009138616 A JP2009138616 A JP 2009138616A JP 2009138616 A JP2009138616 A JP 2009138616A JP 5195653 B2 JP5195653 B2 JP 5195653B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
waste heat
liquid separation
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009138616A
Other languages
English (en)
Other versions
JP2010285893A (ja
Inventor
日出夫 小林
敏久 杉山
克彦 蟻沢
邦彦 林
賢一 山田
章仁 細井
周作 菅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009138616A priority Critical patent/JP5195653B2/ja
Publication of JP2010285893A publication Critical patent/JP2010285893A/ja
Application granted granted Critical
Publication of JP5195653B2 publication Critical patent/JP5195653B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、エンジンにおける廃熱のエネルギーを、蒸気を介して回収する廃熱回収装置に関する。
従来、内燃機関(エンジン)の駆動に伴って発生する廃熱を、ランキンサイクルを利用して回収する廃熱回収装置が知られている。このような廃熱回収装置には、例えば、エンジン内の冷媒通路において、エンジンを冷却する際に、エンジンと熱交換をして蒸発した冷媒、すなわち、エンジンにおける廃熱を吸収して蒸気化した冷媒により膨張機を駆動して、気相冷媒の持つエネルギーを電気エネルギー等に変換し、エンジンで発生する廃熱のエネルギーを回収することができる。こうしてエネルギーが回収された気相冷媒は、凝縮器において液化される。凝縮器で液化された冷媒は、エンジン内へ導入され、再度、廃熱を得て蒸発し、廃熱の回収に用いられることとなる。このような廃熱回収装置を改良したものが、例えば、特許文献1に開示されている。
また、冷媒の沸騰によりエンジン本体を冷却する沸騰冷却装置において、蒸気化した冷媒を気液分離器へ導入し、気相冷媒と液相冷媒とに分離する装置が特許文献2に開示されている。
特開2008−248703号公報 実開平5−47353号公報
上記のように、エンジン本体の内部で沸騰する冷却水をエンジン本体の外部に備えた気液分離器で液相の冷媒と気相の冷媒とに分離する技術は知られている。ところが、液相と気相との比重差を利用して液相の冷媒と気相の冷媒とを分離する気液分離器を用いる場合、このような気液分離器は、原理上、装置の構造が大きく、搭載スペースを必要とする。また、装置が傾くことにより機能を発揮できなくなる場合が考えられる。
そこで、本発明は、車両への搭載性を向上し、気液分離機能が安定して発揮される廃熱回収装置を提供することを課題とする。
かかる課題を解決する本発明の廃熱回収装置は、エンジンの廃熱により冷媒を蒸気化する蒸気化手段と、前記蒸気化手段から排出された冷媒が導入された状態で回転し前記冷媒を気液分離する回転部を有する気液分離手段と、前記気液分離手段により分離された気相冷媒からエネルギーを回収する膨張機と、を備え、前記気液分離手段は、前記蒸気化手段において蒸気化した冷媒を吸引するとともに、分離後の気相冷媒を前記膨張機へ送出する送出手段を備え、前記蒸気化手段から排出された冷媒の圧力に基づいて、冷媒の吸引量を制御することを特徴とする。
このような構成とすることにより、蒸気化手段において蒸気化した冷媒を吸い込むことができる。これにより、蒸気の滞留が抑制され、エンジンの過熱、蒸気による過剰な圧力上昇を抑制することができる。また、蒸気化手段の下流側で蒸気化した冷媒を吸引するため、キャビテーションの発生を抑制できる。さらには、冷媒の吸引量を制御することにより、蒸気化手段における蒸気の圧力が変化し、蒸気化手段における蒸気の発生量が変化するので、蒸気化手段の冷却状態を変更することができる。また、廃熱回収装置が傾いた場合であっても気液分離できるため、安定して廃熱のエネルギーを回収することができる。
このような廃熱回収装置において、例えば、前記蒸気化手段は、エンジンの内部に形成されたウォータジャケットを通過する冷媒にエンジンの廃熱を吸収させることにより、冷媒を蒸気化することができる。
このような廃熱回収装置において、前記蒸気化手段により蒸気化された冷媒が滞留する箇所に配置されて冷媒の圧力を測定する圧力測定手段を備え、前記気液分離手段は、前記圧力測定手段により取得される冷媒の圧力情報に基づいて、冷媒の吸引量を制御することができる。このような構成とすることにより、蒸気が滞留しやすい部位の圧力を測定し、その情報に基づき、冷媒の吸引量を制御することができる。これにより、蒸気の滞留を抑制し、エンジンの局所的な壁温の上昇や、蒸気による圧力上昇を抑制できる。
また、このような廃熱回収装置において、前記蒸気化手段と前記気液分離手段との間に配置されて冷媒の圧力を測定する圧力測定手段を備え、前記気液分離手段は、前記圧力測定手段により取得される冷媒の圧力情報に基づいて、冷媒の吸引量を制御することができる。
このような廃熱回収装置において、前記気液分離手段は、前記膨張機における動力回収効率が最大となることを考慮して、気相冷媒の送出量を制御することができる。これにより、廃熱のエネルギーを効率よく回収できる。
このような廃熱回収装置において、前記膨張機は、気相冷媒の衝撃により回転する羽根車を備えた衝動タービンであって、前記気液分離手段は、前記羽根車の回転速度と当該羽根車に衝突する気相冷媒の速度とに基づいて、気相冷媒の送出量を制御することができる。
このような衝動タービンの回収効率は、羽根車の回転速度(タービン周速)と羽根車に衝突する気相冷媒の速度(ノズル出口蒸気流速)との比率により決定される。本発明の気液分離手段は、衝動タービンの回収効率が最大となる比率が得られるように、気相冷媒の速度を制御することができる。したがって、廃熱回収装置は、エンジンの廃熱のエネルギーを効率よく回収することができ、エンジンの燃費を向上できる。
また、本発明のエンジンは、内部に形成された冷媒通路の内部を通過する冷媒が沸騰し、熱が持ち去られるエンジン本体と、前記冷媒通路から排出される冷媒を回転する分離器の遠心力により気相冷媒と液相冷媒とに分離する気液分離手段と、を備え、前記気液分離手段は、前記冷媒通路において蒸気化した冷媒を吸引するとともに、分離後の気相冷媒からエネルギーを回収する膨張機へ送出する送出手段を備え、前記冷媒通路から排出された冷媒の圧力に基づいて、冷媒の吸引量を制御することを特徴とする。このような構成とすることにより、搭載性を向上し、省スペース化を図ることができる。さらには、沸騰した蒸気冷媒の残存を抑制し、壁温の過剰上昇による熱変形を防止するとともに、ウォータジャケット内の圧力が過剰上昇による、エンジンの破損を防止する。
本発明は、冷媒を回転する分離器の遠心力により気相冷媒と液相冷媒とに分離する構成としたことにより、気液分離器を小型化し、車両への搭載性を向上することができる。また、装置が傾いた場合であっても、気液分離することができる。これにより、安定して廃熱のエネルギーを回収することができる。
廃熱回収装置を組み込んだエンジンの概略構成を示した説明図である。 ユニットの概略構成を示した説明図であって、(a)は第2配管側から見たユニットの状態を示し、(b)はユニットの断面図である。 分離器を示した説明図であって、(a)は、第2配管側から見た状態を示し、(b)は(a)のA−A断面を示した説明図である。 第2動翼を示した説明図であって、(a)は、第2配管側から見た状態を示し、(b)は側面図である。 ウォータジャケット内の圧力の制御について示したフローチャートである。 ノズルの入口における蒸気圧の制御について示したフローチャートである。 沸騰冷却を行う本発明のエンジンを示した説明図である。
以下、本発明を実施するための形態を図面と共に詳細に説明する。
本発明の実施例1について図面を参照しつつ説明する。図1は本実施例の廃熱回収装置1を組み込んだエンジン2の概略構成を示した説明図である。エンジン2の本体3内には冷媒の通過するウォータジャケット4が形成されている。このウォータジャケット4内を通過する冷媒は、エンジン本体3を冷却する際に、エンジン本体3から熱を吸収して蒸気化する。エンジン本体3は本発明の蒸気化手段として機能する。
廃熱回収装置1は、ユニット5、過熱器6、タービン7、コンデンサ8、電動ウォータポンプ9、予熱器10を備えている。また、ウォータジャケット4の上部と、ユニット5とは、第1配管11により接続されている。ユニット5と膨張機7とは、第2配管12により接続されている。膨張機7と電動ウォータポンプ9とは第3配管13により接続されている。電動ウォータポンプ9とウォータジャケット4の底部は、第4配管14により接続されている。また、ユニット5と第4配管14の経路上とが第5配管15により接続されている。
図2は、ユニット5の概略構成を示した説明図である。図2(a)は第2配管12側から見たユニット5の状態を示し、図2(b)はユニット5の断面図である。また、図3は、ユニット5の分離器510を示した説明図であって、図3(a)は、第2配管12側から見た分離器510の状態を示し、図3(b)は図3(a)のA−A断面を示した説明図である。また、図4は、ユニット5の第2動翼513を示した説明図であって、図4(a)は、第2配管12側から見た第2動翼523の状態を示し、図4(b)は図4(a)の側面図である。
ユニット5は、ケース501、分離器510、ポンプ部520、回転軸530、動力伝達部540を備えている。ケース501はほぼ円筒状の形状をしており、円筒の底面に相当する箇所に冷媒の入口502と気相出口503が形成されている。入口502には、第1配管11が接続されており、ウォータジャケット4側から液相と気相が混合した冷媒が流入する。気相出口503は入口502に対向する面に形成されており、第2配管12が接続されている。この気相出口503からケース501内で分離された気相の冷媒が送出される。
分離器510は、円筒部511と、接続部512とを備えている。円筒部511には、複数の小径5111が形成されている。接続部512は回転軸530と円筒部511との中間に位置し、回転軸530と円筒部511とを接続している。この接続部512には、気相冷媒が通過するように、隙間5121が形成されている。
また、分離器510の端部には、歯513が形成されており、動力伝達部540の傘歯車5411と噛み合うように構成されている。動力伝達部540は、傘歯車5411を備えた歯車機構541、プーリ542、ベルト543、クラッチ544を介してエンジンのクランクシャフト50と分離器510とを接続する。動力伝達部540によりクランクシャフト50の動力が分離器510に伝達されて、分離器510は回転する。分離器510は、このように回転することにより、入口502からケース501内へ流入する冷媒中、粘性の高い液相冷媒を外周側へ送り、気相冷媒を中心側に留めることにより、液相冷媒と気相冷媒とを分離する。すなわち、回転する分離器510は、遠心力により気相冷媒と液相冷媒とに分離する。また、クラッチ544は後述するECU16により、接続と切断とを制御される。
ポンプ部520は、一般的なターボ分子ポンプと同様の構造である。ポンプ部520は、第1動翼521、第2動翼522、第1静翼523、第2静翼524を備えている。第1動翼521、第2動翼522は、回転軸530に結合されている。一方、第1静翼523、第2静翼524は、ケース501に結合されている。第1動翼521、第2動翼522は、回転軸530の回転に伴い回転して、分離器510により分離された気相の冷媒を吸引し、出口530側へ送出する。このように、分離器510内の冷媒が吸引されるため、ユニット5内部は負圧となり、第1配管11内の冷媒がユニット5内へ流入する。ひいては、ウォータジャケット4内で蒸気化した冷媒を吸引することとなる。
一方、第1静翼523、第2静翼524は、気相冷媒の逆流を防止する。なお、本実施例では、動翼と静翼は2対設けているが、1対であってもよい。また、本実施例において、一般的なターボ分子ポンプほどの低い負圧は必要ないので、動翼、静翼の羽の枚数、回転数等の仕様は、一般的なターボ分子ポンプより低いものでよい。
以上のように、ユニット5は、分離器510とポンプ部520とを一体としたことで、冷媒の分離機能と冷媒の圧送機能とを備えている。これらの機能を一体にすることにより、装置自体の小型化により車両への搭載性が向上した。なお、このような回転する動翼を用いることにより、油の混入を抑制する。
分離器510により外周側へ送られた液相冷媒は、ケース501の側面の一部に形成された液相出口504に接続された第5配管15へ送られる。
過熱器6は、エンジン本体3の排気が通過する排気管と第2配管12とを引き込むように構成されている。過熱器6内では、第2配管12を通過する冷媒蒸気と排気管を通過する排気との間で熱交換が行われる。これにより、気相冷媒は、高温の排気ガスにより熱を付与されて高温高圧となる。
タービン7は、回転軸71がクランクシャフトに連結された羽根車72を備えた単段衝動型のタービンである。第2配管12のタービン7側の先端には、羽根車72の羽根73へ向けて高温高圧の蒸気を噴射するノズル121が配設されている。過熱器6を通過した高温高圧の蒸気は、ノズル121から噴射されてタービン7の羽根車72を回転させる。したがって、タービン7において、蒸気のエネルギーが羽根車72を回転する動力へ変換され、回転軸71と連結されたエンジン2のクランクシャフトの補助動力へ変換される。
コンデンサ8は、第3配管13を引き込むように構成されている。コンデンサ8内を通過する蒸気は、大気との間で熱交換が行われ、冷却されて液相冷媒へ凝縮する。コンデンサ8を通過し、液相となった冷媒は、電動ウォータポンプ9によりエンジン2側の予熱器10へ送られる。
予熱器10は、第4配管14上の第5配管15が接続する部位よりも電動ウォータポンプ9側に配設されている。予熱器10は、コンデンサ9通過後の冷媒を温める装置である。例えば、本実施例では、オイルクーラを採用している。予熱器10を通過した冷媒は、予熱器10において温められているため、ウォータジャケット4内に送られて、蒸気化しやすい。
このような廃熱回収装置1は、エンジン本体3の廃熱を回収して蒸気化し、過熱器6で過熱された蒸気の持つエネルギーは、タービン7において、動力に変換される。タービン7を通過した蒸気は、コンデンサ8において凝縮し、電動ウォータポンプ9により、再度、ウォータジャケット4内へ送られる。したがって、廃熱回収装置1では、冷媒を作動流体とするランキンサイクルシステムが構成されている。
また、廃熱回収装置1は、ECU(Electronic Control Unit)16を備えている。ECU16は、ユニット5、電動ポンプ9のそれぞれと電気的に接続されており、それぞれへ運転状態の指示信号を送る。
比較例として示すエンジンであって、エンジン内で冷媒が蒸気化するエンジンでは、エンジン内の冷却通路内で発生した蒸気が、何らかの原因によりエンジン内から排出されずに残存してしまうことにより、蒸気が残存する部位では、冷媒の蒸気化による熱の持ち去りが起こらず、壁温が過剰に上昇し、熱変形のおそれがある。また、蒸気が残存するため、ウォータジャケット内の圧力が過剰に上昇し、エンジンを破損させるおそれがある。
また、エンジン内で冷媒を蒸気化するために、エンジン内へ供給する冷媒を沸点付近まで上昇させる。このため、エンジン本体の上流側に配設されたウォータポンプにより冷媒を圧送する場合、キャビテーションが発生しやすい。このキャビテーションを抑制するためエンジン内へ供給する冷媒の温度を低下させると、ウォータジャケット内での冷媒の沸騰が抑制され、エンジンの冷却が低下し、エンジンから回収できる熱量が減少する。
本実施例の廃熱回収装置1では、ユニット5のポンプ部520の動翼が回転することにより、ウォータジャケット4内で蒸気化した冷媒を吸引する。これにより、ウォータジャケット4内に蒸気が残存することが抑制されるため、エンジンの熱変形、ウォータジャケット4内の過剰な圧力上昇が抑制される。
また、本実施例の廃熱回収装置1では、ウォータジャケット4の下流側において、気液分離した後の気相の冷媒をポンプ部520により吸引するため、キャビテーションの発生が抑制される。さらに、ウォータジャケット4の下流側から蒸気を吸引するため、ウォータジャケット4の上流側にポンプを設置する必要がない。このため、予熱した冷媒をウォータジャケット4内へ供給することができる。このため、冷媒は蒸気化しやすくなり、ウォータジャケット4内で発生する蒸気の量が増加する。蒸気の発生量が増加するため、タービン7で回収可能なエネルギーが増加し、エンジンの燃費が向上する。
また、ユニット5の搭載位置は自由度が高く、比重差を利用する気液分離器のように、エンジンの配置高さとの関係を考慮する必要がない。さらに、ユニット5の分離器510は遠心力を利用するため、廃熱回収装置1が傾いてもその性能は影響を受けない。
次に、本発明の実施例2について説明する。本実施例の廃熱回収装置は、実施例1の廃熱回収装置1とほぼ同様の構成をしている。本実施例の廃熱回収装置は、第1配管11上に圧力センサを備えている点で実施例1の廃熱回収装置1と相違する。なお、その他の構成は実施例1と同一であり、その詳細な説明は省略する。
次に、本実施例における制御について説明する。本実施例では、ユニット5のポンプ部520の回転を制御し、ウォータジャケット4内の圧力を制御する。この制御は、ECU16により行われる。図5は、ウォータジャケット4内の圧力の制御について示したフローチャートである。以下、図5を参照して説明する。
本制御は、エンジン2の運転開始とともに開始される。ECU16はステップS101で、圧力センサによりエンジンウォータジャケットの圧力Pcを計測し、取得する。ECU16はステップS101の処理を終えるとステップS102へ進む。
ECU16はステップS102で、圧力Pが許容上限値Plimit以下であるか否かを判断する。この許容上限値Plimitはウォータジャケット4内に蒸気が溜まり、エンジン本体3の冷却を阻害することのない圧力値である。ECU16はステップS102でYESと判断する場合、すなわち、圧力Pが許容上限値Plimit以下である場合、ステップS103へ進む。
ECU16はステップS103で、エンジンの運転状態を把握する。具体的には、クランク角センサからエンジン回転数Neを取得し、スロットル開度や燃料噴射量からエンジン負荷を取得する。ECU16はステップS103の処理を終えるとステップS104へ進む。
ECU16はステップS104で、ステップS103の処理により取得したエンジンの運転状態に基づいて、予め作成されたマップを参照し、目標ウォータジャケット内圧Pdesを算出する。ECU16はステップS104の処理を終えるとステップS105へ進む。
ECU16はステップS105で、ΔPを算出する。ΔPは次式(1)により算出される。
ΔP = Pdes − P (1)
ECU16はステップS105の処理を終えるとステップS106へ進む。
ECU16はステップS106で、エンジン回転数NeとステップS105で算出したΔPから動翼の目標回転速度Nu_dを算出する。動翼の目標回転速度Nu_dは次式(2)により算出される。
Nu_d = K(ΔP,Ne) (2)
ここで、Kは動翼の目標回転速度Nu_dを算出する関数を表わす。ECU16はステップS106の処理を終えるとステップS107へ進む。
ECU16はステップS107で、動翼の回転速度の実測値Nu_cを計測する。ここでは、動翼の回転速度を計測する回転センサを備え、測定値を実測値NU_cとする外に、クランクシャフトの回転から換算しても良い。ECU16はステップS107の処理を終えるとステップS108へ進む。
ECU16はステップS108で、動翼の目標回転速度Nu_dと、動翼の回転速度の実測値Nu_cとを比較し、目標回転速度Nu_dが実測値Nu_cよりも大きいか否かを判断する。ECU16はステップS108で、YESと判断する場合、すなわち、目標回転速度Nu_dが実測値Nu_cよりも大きい場合、ステップS109へ進む。
ECU16はステップS109でクラッチ544を接続させる。目標回転速度Nu_dが実測値Nu_cより大きい場合、ウォータジャケット4内の圧力が上昇している。このため、動翼の回転速度を上昇して、ウォータジャケット4内からの蒸気の吸引量を増加させる。これにより、ウォータジャケット4内に蒸気が溜まることを抑制するので、ウォータジャケット4内が過剰な圧力により破損することが抑制される。また、ウォータジャケット4内の圧力が高いために抑制されていた冷媒の沸騰が可能となるので、エンジン本体3が冷却される。また、蒸気の滞留がなくなれば、シリンダ壁と接触して熱を持ち去ることができるため、シリンダ壁の過剰な温度上昇が抑制される。
また、エンジン暖機中であっても、ウォータジャケット4内から冷媒を吸引することによりウォータジャケット4内の圧力を下げ、沸騰温度を低下することにより、蒸気を発生させることができる。これにより、暖機中であっても、蒸気のエネルギーを回収することが可能となり、燃費の向上が図られる。ECU16の制御はステップS109の処理を終えるとリターンとなる。
一方、ECU16はステップS108で、NOと判断する場合、すなわち、目標回転速度Nu_dが実測値Nu_c以下である場合、ステップS110へ進む。
ECU16はステップS110でクラッチ544を切断させる。すなわち、ユニット5における動翼の回転を減速させる。目標回転速度Nu_dが実測値Nu_c以下である場合、ウォータジャケット4内が過剰に減圧されているものと考えられる。このため、動翼の回転を減少させて、ウォータジャケット4内の蒸気の吸引を減衰させる。これにより、ウォータジャケット4内の圧力が上昇し、沸騰温度が上昇するので、冷媒の沸騰による温度の低下が抑制されて、エンジンの暖機が促進される。ECU16の制御はステップS110の処理を終えるとリターンとなる。
ところで、ECU16はステップS102でNOと判断する場合、すなわち、圧力Pが許容上限値Plimitよりも大きい場合、ステップS111へ進む。
ECU16はステップS111で、クラッチ544を接続させる。ステップS102でNOと判断する場合は、ウォータジャケット4内の圧力が過剰に高い状態である。したがって、ウォータジャケット4から蒸気を吸引し、ウォータジャケット4内の圧力を低下する。ECU16はステップS111の処理を終えるとステップS112へ進む。
ECU16はステップS112で、ウォータジャケット4内の圧力が過剰に高い状態を、ユーザへ警告し、高負荷状態で運転が継続されることを抑制する。ECU16の制御はステップS112の処理を終えるとリターンとなる。
このように、本実施例では、動翼の回転速度を変化させ、ウォータジャケット4内から吸引する冷媒量を変化し、ウォータジャケット4内の圧力を変化させる。これにより、ウォータジャケット4内の冷媒の蒸気化する温度、すなわち、沸点が変更されて、エンジン本体3の冷却状態を変更することができる。
また、本実施例では、クラッチ544に代えて無段階の変速機を備えた構成とすることができる。この場合、ステップS109、S110、S111において、ECU16はPD制御を行い、動翼回転数を制御する。なお、圧力センサの位置は、蒸気が溜まりやすい箇所であればよく、第1配管11上に限定されるものではない。例えば、圧力センサは、ウォータジャケット4内の上部に配置しても良い。
次に、本発明の実施例3について説明する。本実施例の廃熱回収装置は、実施例1の廃熱回収装置1とほぼ同様の構成をしている。本実施例の廃熱回収装置は、第2配管12上に圧力センサを備えている点で実施例1の廃熱回収装置1と相違する。なお、ノズル121の入口圧力が算出できれば、圧力センサは第2配管12のいずれに配置してもよい。また、その他の構成は実施例1と同一であり、その詳細な説明は省略する。
次に、本実施例における制御について説明する。本実施例では、ユニット5のポンプ部520の回転を制御し、タービン7における動力回収効率が最大となることを考慮して、ノズル121の入口における蒸気圧を制御する。この制御は、ECU16により行われる。図6は、ノズル121の入口における蒸気圧の制御について示したフローチャートである。以下、図6を参照して説明する。
本制御は、エンジン2の運転開始とともに開始される。ECU16はステップS201で、タービン入口圧力P、タービン出口圧力P、タービン周速U、タービン入口温度T、動翼の回転速度Nu_cを取得する。ここでは、これらのデータをそれぞれ計測するセンサを備えて計測しても良いし、これらの情報と相関関係のある他のデータに基づいて、算出しても良い。ECU16はステップS201の処理を終えるとステップS202へ進む。
ECU16はステップS202で、タービン周速Uからノズル出口流速cを算出する。ノズル出口流速cは次式(3)より算出される。
c = U/0.5 (3)
式(3)を満足するようなノズル出口流速c、タービン周速Uである場合、タービン7の動力回収効率が最大となる。なお、タービンが速度複式2段タービンである場合、タービン周速Uを0.25程度で除するのが適している。ECU16はステップS202の処理を終えるとステップS203へ進む。
ECU16はステップS203で、ノズル出口流速c、タービン入口圧力P、タービン入口温度Tからタービン入口目標圧力P1desを算出する。タービン入口目標圧力P1desは次の(数1)により算出される。
Figure 0005195653
ここで、κは比熱比、Rはガス定数を表わしている。ECU16はステップS203の処理を終えるとステップS204へ進む。
ECU16はステップS204で、ΔPを算出する。ΔPは次式(4)により算出される。
ΔP = P1des − P (4)
ECU16はステップS204の処理を終えるとステップS205へ進む。
ECU16はステップS205で、エンジン回転数NeとステップS204で算出したΔPから動翼の目標回転速度Nu_dを算出する。動翼の目標回転速度Nu_dは次式(5)により算出される。
Nu_d = K(ΔP,Ne) (5)
ここで、Kは動翼の目標回転速度Nu_dを算出する関数を表わす。ECU16はステップS205の処理を終えるとステップS206へ進む。
ECU16はステップS206で、動翼の目標回転速度Nu_dと、動翼の回転速度の実測値Nu_cとを比較し、目標回転速度Nu_dが実測値Nu_cよりも大きいか否かを判断する。ECU16はステップS206で、YESと判断する場合、すなわち、目標回転速度Nu_dが実測値Nu_cよりも大きい場合、ステップS207へ進む。
ECU16はステップS207でクラッチ544を接続させる。目標回転速度Nu_dが実測値Nu_cより大きい場合、タービン7の動力回収効率が最大となる時と比較して、ノズル出口流速cが遅い。このため、動翼の回転速度を上昇して、ユニット5から送出する蒸気量を増加させる。これにより、第2配管12内の蒸気の圧力が上昇するため、ノズル出口速度流速cが上昇し、タービン7の動力回収効率が最大となる。このように回収効率が上昇するため、エンジンの燃費が向上する。ECU16の制御はステップS207の処理を終えるとリターンとなる。
一方、ECU16はステップS206で、NOと判断する場合、すなわち、目標回転速度Nu_dが実測値Nu_c以下である場合、ステップS208へ進む。
ECU16はステップS208でクラッチ544を切断させる。すなわち、ユニット5における動翼の回転を減速させる。目標回転速度Nu_dが実測値Nu_c以下である場合、タービン7の動力回収効率が最大となる時と比較して、ノズル出口流速cが速い。このため、動翼の回転速度を低下させて、ユニット5から送出する蒸気量を減少させる。これにより、第2配管12内の蒸気の圧力が低下するため、ノズル出口速度流速cが低下し、タービン7の動力回収効率が最大となる。このように回収効率が上昇するため、エンジンの燃費が向上する。ECU16の制御はステップS208の処理を終えるとリターンとなる。
上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。
例えば、図7は、沸騰冷却を行う本発明のエンジン100を示した説明図である。エンジン100は、実施例1の廃熱回収装置1における過熱器6、タービン7を取り除いた構成となっている。すなわち、エンジン100は、内部に形成されたウォータジャケット4の内部を通過する冷媒が沸騰し、熱が持ち去られるエンジン本体3と、ウォータジャケット4から排出される冷媒を回転する分離器510の遠心力により気相冷媒と液相冷媒とに分離するユニット5を備えている。
このようなユニット5の搭載性の自由度は、高く、比重差を利用する気液分離器のように、エンジンの配置高さとの関係を考慮する必要がない。さらに、ユニット1の分離器510は遠心力を利用するため、エンジン100が傾いてもその性能は影響を受けない。
1 廃熱回収装置
2 エンジン
3 エンジン本体
4 ウォータジャケット
5 ユニット
510 分離器
520 ポンプ部
7 タービン
72 羽根車
100 エンジン

Claims (8)

  1. エンジンの廃熱により冷媒を蒸気化する蒸気化手段と、
    前記蒸気化手段から排出された冷媒が導入された状態で回転し前記冷媒を気液分離する回転部を有する気液分離手段と、
    前記気液分離手段により分離された気相冷媒からエネルギーを回収する膨張機と、
    を備え
    前記気液分離手段は、前記蒸気化手段において蒸気化した冷媒を吸引するとともに、分離後の気相冷媒を前記膨張機へ送出する送出手段を備え、前記蒸気化手段から排出された冷媒の圧力に基づいて、冷媒の吸引量を制御することを特徴とする廃熱回収装置。
  2. 請求項記載の廃熱回収装置において、
    前記蒸気化手段により蒸気化された冷媒が滞留する箇所に配置されて冷媒の圧力を測定する圧力測定手段を備え、
    前記気液分離手段は、前記圧力測定手段により取得される冷媒の圧力情報に基づいて、
    冷媒の吸引量を制御することを特徴とする廃熱回収装置。
  3. 請求項1または2記載の廃熱回収装置において、
    前記蒸気化手段と前記気液分離手段との間に配置されて冷媒の圧力を測定する圧力測定手段を備え、
    前記気液分離手段は、前記圧力測定手段により取得される冷媒の圧力情報に基づいて、
    冷媒の吸引量を制御することを特徴とする廃熱回収装置。
  4. 請求項1乃至3のいずれか一項記載の廃熱回収装置において、
    前記気液分離手段は、前記膨張機における動力回収効率が最大となることを考慮して、気相冷媒の送出量を制御することを特徴とする廃熱回収装置。
  5. 請求項1乃至4のいずれか一項記載の廃熱回収装置において、
    前記膨張機は、気相冷媒の衝撃により回転する羽根車を備えた衝動タービンであって、
    前記気液分離手段は、前記羽根車の回転速度と当該羽根車に衝突する気相冷媒の速度とに基づいて、気相冷媒の送出量を制御することを特徴とする廃熱回収装置。
  6. エンジンの廃熱により冷媒を蒸気化する蒸気化手段と、
    前記蒸気化手段から排出された冷媒が導入された状態で回転し前記冷媒を気液分離する回転部を有する気液分離手段と、
    前記気液分離手段により分離された気相冷媒からエネルギーを回収する膨張機と、
    を備え、
    前記気液分離手段は、前記蒸気化手段において蒸気化した冷媒を吸引するとともに、分離後の気相冷媒を前記膨張機へ送出する送出手段を備え、前記膨張機における動力回収効率が最大となることを考慮して、気相冷媒の送出量を制御することを特徴とする廃熱回収装置。
  7. エンジンの廃熱により冷媒を蒸気化する蒸気化手段と、
    前記蒸気化手段から排出された冷媒が導入された状態で回転し前記冷媒を気液分離する回転部を有する気液分離手段と、
    前記気液分離手段により分離された気相冷媒からエネルギーを回収する膨張機と、
    を備え、
    前記膨張機は、気相冷媒の衝撃により回転する羽根車を備えた衝動タービンであって、
    前記気液分離手段は、前記蒸気化手段において蒸気化した冷媒を吸引するとともに、分離後の気相冷媒を前記膨張機へ送出する送出手段を備え、前記羽根車の回転速度と当該羽根車に衝突する気相冷媒の速度とに基づいて、気相冷媒の送出量を制御することを特徴とする廃熱回収装置。
  8. 内部に形成された冷媒通路の内部を通過する冷媒が沸騰し、熱が持ち去られるエンジン本体と、
    前記冷媒通路から排出される冷媒を回転する分離器の遠心力により気相冷媒と液相冷媒とに分離する気液分離手段と、
    を備え
    前記気液分離手段は、前記冷媒通路において沸騰した冷媒を吸引するとともに、分離後の気相冷媒からエネルギーを回収する膨張機へ送出する送出手段を備え、前記冷媒通路から排出された冷媒の圧力に基づいて、冷媒の吸引量を制御することを特徴とするエンジン。
JP2009138616A 2009-06-09 2009-06-09 廃熱回収装置及びエンジン Expired - Fee Related JP5195653B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138616A JP5195653B2 (ja) 2009-06-09 2009-06-09 廃熱回収装置及びエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138616A JP5195653B2 (ja) 2009-06-09 2009-06-09 廃熱回収装置及びエンジン

Publications (2)

Publication Number Publication Date
JP2010285893A JP2010285893A (ja) 2010-12-24
JP5195653B2 true JP5195653B2 (ja) 2013-05-08

Family

ID=43541788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138616A Expired - Fee Related JP5195653B2 (ja) 2009-06-09 2009-06-09 廃熱回収装置及びエンジン

Country Status (1)

Country Link
JP (1) JP5195653B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044529B2 (ja) 2013-12-05 2016-12-14 トヨタ自動車株式会社 廃熱回収装置
JP6237486B2 (ja) * 2014-06-16 2017-11-29 トヨタ自動車株式会社 沸騰冷却装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345404A (ja) * 1986-08-12 1988-02-26 Zenshin Denryoku Eng:Kk 複合発電装置
JPS63302109A (ja) * 1987-06-02 1988-12-09 Mazda Motor Corp エンジンの冷却装置
JP2005180194A (ja) * 2003-12-16 2005-07-07 Mitsubishi Electric Corp 複合発電設備
JP4875546B2 (ja) * 2007-06-13 2012-02-15 株式会社荏原製作所 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法

Also Published As

Publication number Publication date
JP2010285893A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
US9964001B2 (en) Thermal energy recovery device
JP6604355B2 (ja) 廃熱回収装置
JP2009085044A (ja) 圧縮機およびヒートポンプシステム
US20130008165A1 (en) Rankine cycle system
JP5195653B2 (ja) 廃熱回収装置及びエンジン
JP4983777B2 (ja) エンジンの廃熱回収装置
US10280807B2 (en) Waste heat recovery apparatus
JP2010255604A (ja) 廃熱回収装置
JP2009097498A (ja) 廃熱回収装置
JP5229070B2 (ja) 廃熱回収装置
JP5310622B2 (ja) ランキンサイクルシステム
JP2011149373A (ja) 廃熱回収装置
EP3392590B1 (en) Supercharge air cooling unit
JP5609707B2 (ja) ランキンサイクルシステムの制御装置
EP3375988B1 (en) Supercharged air cooling unit
JP2008180172A (ja) 廃熱回収装置
US10794229B2 (en) Binary power generation system and stopping method for same
JP5493973B2 (ja) 車両用廃熱回収システム
KR20180107733A (ko) 열에너지 회수 장치
JP6083420B2 (ja) 内燃機関の冷却装置
JP2014126344A (ja) 熱交換システム
JP2011196316A (ja) ランキンサイクル装置
JP2016156342A (ja) ランキンサイクルシステム
JP2014101781A (ja) ランキンサイクルシステム
JP2014016115A (ja) ランキンサイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees