JP5194631B2 - 燃料電池用膜−電極接合体の製造方法および膜−電極接合体 - Google Patents

燃料電池用膜−電極接合体の製造方法および膜−電極接合体 Download PDF

Info

Publication number
JP5194631B2
JP5194631B2 JP2007210592A JP2007210592A JP5194631B2 JP 5194631 B2 JP5194631 B2 JP 5194631B2 JP 2007210592 A JP2007210592 A JP 2007210592A JP 2007210592 A JP2007210592 A JP 2007210592A JP 5194631 B2 JP5194631 B2 JP 5194631B2
Authority
JP
Japan
Prior art keywords
catalyst ink
electrolyte membrane
membrane
electrode assembly
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007210592A
Other languages
English (en)
Other versions
JP2009043692A (ja
Inventor
聡 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007210592A priority Critical patent/JP5194631B2/ja
Publication of JP2009043692A publication Critical patent/JP2009043692A/ja
Application granted granted Critical
Publication of JP5194631B2 publication Critical patent/JP5194631B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

この発明は、燃料電池用膜−電極接合体の製造方法および膜−電極接合体に関する。
固体高分子型燃料電池は、一般に、電解質膜上に形成される電極として、触媒と電解質とを含む電極を備えている。電解質膜上にこのような電極を形成する方法の一つとして、触媒と電解質とを含む触媒インクを、所定の転写フィルム上に塗布した後にこれを乾燥させて電極を形成し、転写フィルム上に形成した電極を電解質膜上にホットプレスする方法が知られている。このように、転写フィルム上に形成した電極を電解質膜上にホットプレスする際には、加熱によって電解質が軟化されることによって、電極中の電解質と電解質膜とが一体化され、電極と電解質膜との密着性が増す(例えば、特許文献1参照)。
特開2004−39474号公報 特開2004−193109号公報
しかしながら、上記のように転写フィルム上に形成した電極を電解質膜上にホットプレスする場合には、プレス時の加熱により電解質膜が損傷を受ける可能性があり、このような電解質膜を用いた燃料電池では、燃料電池の耐久性が低下してしまうという問題があった。耐久性の低下を抑えるためには、プレス時の加熱温度を低下させればよいが、プレス時の加熱温度を低下させると、電極を電解質膜上に転写して電解質膜上に電極を形成すること自体が困難になる可能性がある。電極と電解質膜との密着性を確保して両者間の接触抵抗を抑えるほど電池性能が向上するため、電極の電解質膜への転写を困難化するプレス時の加熱温度の低下は、電解質膜のダメージを抑える方策としては一般に採用し難い。
本発明は、上述した従来の課題を解決するためになされたものであり、電極と電解質膜との間の接触抵抗を抑えつつ、燃料電池の耐久性を向上させることを目的とする。
上記目的を達成するために、本発明の電解質膜と電極とを備える燃料電池用膜−電極接合体の製造方法は、
高分子電解質から成る前記電解質膜を用意する第1の工程と、
触媒と、高分子電解質と、水を含む溶媒とを含む触媒インクを基材上に塗布し、塗布した触媒インクを半乾燥させて、触媒インクの総重量に対する触媒インク中に残存する溶媒重量の割合である溶媒残存率を、64.3〜86.3%にする第2の工程と、
前記半乾燥させた触媒インクと前記電解質膜とを重ね合わせて、加熱を伴わない加圧接合すると共に、接合した触媒インクをさらに乾燥させて前記電極と成す第3の工程と
を備えることを要旨とする。
以上のように構成された本発明の膜−電極接合体の製造方法によれば、触媒インクの総重量に対する触媒インク中に残存する溶媒重量の割合である溶媒残存率が64.3〜86.3%となるように、触媒インクを半乾燥させた後に、電解質膜上に転写して電極を形成している。そのため、電極と電解質膜との密着性を確保して、電極と電解質膜との間の接触抵抗を抑えることができ、本発明の膜−電極接合体を用いて燃料電池を作製することにより、電池性能を向上させることができる。また、触媒インクが半乾燥状態であることにより電解質膜との間の密着性が確保されるため、触媒インクを電解質膜上に転写する際の加熱を抑制することができる。そのため、加熱に起因する電解質膜の損傷を抑制し、本発明の膜−電極接合体を備える燃料電池の耐久性を向上させることができる。さらに、本発明の膜−電極接合体の製造方法によれば、触媒インクと電解質膜との加圧接合に先だって触媒インクを半乾燥させるため、触媒インク側から電解質膜への溶媒供給を抑えることができる。これにより、電解質膜と電極との密着性を確保する効果をさらに高めることができる。また、本発明の膜−電極接合体の製造方法によれば、電解質膜との接合に先立って触媒インクを半乾燥状態にすることにより、加熱を伴わない加圧接合により電解質膜と触媒インクとを接合させても、触媒インクと電解質膜との間の密着性を確保することができる。そのため、加熱に起因する電解質膜の劣化を防止することができる。このような本発明の膜−電極接合体の製造方法において、前記触媒インクが含有する前記触媒は、カーボン粒子上に分散担持されていることとしても良い。
本発明の膜−電極接合体の製造方法において、前記第3の工程は、前記加圧接合の後に、前記触媒インクから前記基材を剥離し、その後、前記触媒インクをさらに乾燥させる工程であることとしても良い。このような構成とすれば、半乾燥触媒インク中に残存する溶媒を容易に蒸発させることができる。
本発明は、上記以外の種々の形態で実現可能であり、例えば、本発明の膜−電極接合体の製造方法により製造した膜−電極接合体や、本発明の膜−電極接合体を備える燃料電池などの形態で実現することが可能である。
A.燃料電池の構成:
図1は、本発明の好適な一実施例としての燃料電池を構成する単セル10の概略構成を表わす断面模式図である。単セル10は、電解質膜20と、電解質膜20の各々の面上に形成された電極であるアノード21およびカソード22と、電極を形成した上記電解質膜20を両側から挟持するガス拡散層23,24と、ガス拡散層23,24のさらに外側に配設されたガスセパレータ25,26と、を備えている。
本実施例の燃料電池は、固体高分子型燃料電池であり、電解質膜20は、プロトン伝導性を示す固体高分子電解質を備えている。本実施例では、電解質膜20は、フッ素系高分子電解質によって形成されている。アノード21およびカソード22は、触媒として、例えば白金、あるいは白金合金を備えている。より具体的には、アノード21およびカソード22は、上記触媒を担持したカーボン粒子と、電解質膜20を構成する高分子電解質と同様の電解質と、を備えている。アノード21およびカソード22は、電解質膜20と共に、MEA(膜−電極接合体、Membrane Electrode Assembly)30を構成している。MEA30の製造工程については、後に詳述する。
ガス拡散層23,24は、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロス、あるいは金属メッシュや発泡金属によって形成することができる。本実施例のガス拡散層23,24は、いずれも、平坦な板状部材として形成されている。このようなガス拡散層24は、電気化学反応に供されるガスの流路になると共に、集電を行なう。
ガスセパレータ25,26は、ガス不透過な導電性部材、例えば圧縮カーボンやステンレス鋼から成る部材によって形成される。ガスセパレータ25,26は、それぞれ所定の凹凸形状を有している。この凹凸形状によって、ガスセパレータ25とガス拡散層23との間には、水素を含有する燃料ガスが流れる単セル内燃料ガス流路47が形成される。また、上記凹凸形状によって、ガスセパレータ26とガス拡散層24との間には、酸素を含有する酸化ガスが流れる単セル内酸化ガス流路48が形成される。
さらに、単セル10の外周部には、単セル内燃料ガス流路47および単セル内酸化ガス流路48におけるガスシール性を確保するために、ガスケット等のシール部材が配置されている(図示せず)。また、本実施例の燃料電池は、単セル10を複数積層したスタック構造を有しているが、このスタック構造の外周部には、単セル10の積層方向と平行であって燃料ガスあるいは酸化ガスが流通する複数のガスマニホールドが設けられている(図示せず)。これら複数のガスマニホールドのうちの燃料ガス供給マニホールドを流れる燃料ガスは、各単セル10に分配され、電気化学反応に供されつつ各単セル内燃料ガス流路47内を通過し、その後、燃料ガス排出マニホールドに集合する。同様に、酸化ガス供給マニホールドを流れる酸化ガスは、各単セル10に分配され、電気化学反応に供されつつ各単セル内酸化ガス流路48内を通過し、その後、酸化ガス排出マニホールドに集合する。
B.MEA30の製造工程:
図2は、MEA30の製造方法を表わす工程図である。また、図3は、図2に示した工程の一部の様子を模式的に示す説明図である。なお、図3では、図1とは異なり、膜面が水平となる向きにMEAが表わされている。
MEA30を製造するには、まず、電解質膜20となる高分子電解質膜を用意する(ステップS100)。本実施例では、パーフルオロスルホン酸系の電解質から成る電解質膜を用意している。
また、電解質膜20とは別に、電極を形成するための触媒インクを用意し、この触媒インクを、所定の基材(例えば、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンナフタレート(PEN)あるいはポリエチレン(PE)から成る基材)上に塗布する(ステップS110)。触媒インクは、触媒である白金あるいは白金合金を担持したカーボン粒子と、電解質膜20と同様のフッ素系高分子電解質とを含有するペーストである。例えば、白金を担持したカーボン粒子は、カーボンブラック等から成るカーボン粒子を、白金化合物の溶液(例えば、テトラアンミン白金塩溶液やジニトロジアンミン白金溶液や白金硝酸塩溶液、あるいは塩化白金酸溶液など)中に分散させて、含浸法や共沈法、あるいはイオン交換法によって作製する。このようにして作製した触媒担持カーボン粒子を、適当な水および有機溶剤中に分散させると共に、既述した電解質を含有する電解質溶液(例えば、ナフィオン溶液、アルドリッチ社製)をさらに混合することで、触媒インクが得られる。このような触媒インクの基材上への塗布は、例えば、グラビア印刷、スプレー法、スクリーン印刷、ドクターブレード法、あるいはインクジェット法により行なうことができる。グラビア印刷やスクリーン印刷、あるいはインクジェット法によれば、所望の電極形状に触媒インクを塗布するパターン塗布を容易に行なうことができ、塗布の材料である触媒インクに無駄が生じることがない。なお、塗布に用いる触媒インク中の溶媒量の割合は、採用する塗布方法および溶媒種によって適宜調節すればよい。触媒インクを基材上に塗布した様子を、図3(A)に示す。
その後、基材上に塗布した触媒インクを、半乾燥させる。具体的には、「塗布した当初の触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が、20〜70%となるように、基材上に塗布した触媒インクを乾燥させる(ステップS120)。なお、触媒インク中の溶媒とは、触媒担持カーボン粒子を分散させた既述した溶媒、および、触媒インクを作製するために用いた電解質溶液中の溶媒を合わせたものをいう。触媒インクを乾燥させる際の温度は、高分子電解質などの触媒インクの構成材料が劣化しない温度であれば良く、例えば、常温(30℃程度)〜100℃で行なうことができる。ここで、半乾燥後の触媒インク中の溶媒量は、上記乾燥の工程を、基材上に塗布した触媒インクの重量を測定しながら行なうことにより知ることができる。本実施例では、温度等の乾燥の条件を一定として、基材上の触媒インクの重量を測定しながら乾燥を行ない、「塗布した当初の触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が所望の値になるまでの所要時間を予め調べている。そして、上記一定の乾燥条件の再現を上記所要時間行なうことにより、所望の半乾燥状態を実現している。基材上に塗布した触媒インクを半乾燥させた様子を、図3(B)に示す。
次に、ステップS120で半乾燥させた基材上の触媒インクを、ステップS100で用意した電解質膜20上に加圧転写する(ステップS130)。加圧転写は、触媒インクと電解質膜20との間で充分な密着性が確保できるように触媒インクの転写が行なわれる圧力を加えるものであれば良い。例えば、電解質膜20と触媒インクの接触面全体に対して圧力を加えることとしても良く、電解質膜20と触媒インクとの間に線状に順次圧力を加えるロールプレスによることとしても良い。また、ステップS120の加圧転写時には、加圧に加えてさらに加熱を行なうことも可能である。加圧転写の様子を、図3(C)に示す。
その後、基材を剥離・除去し、電解質膜20上に転写した半乾燥触媒インクをさらに乾燥させて(ステップS140)、半乾燥触媒インクから電極を形成し、MEA30を完成する。ステップS140における乾燥の工程は、ステップS120における半乾燥の工程と同様の温度条件で行なうことができる。ここで、上記のように半乾燥触媒インクの更なる乾燥に先立って基材の剥離・除去を行なえば、半乾燥触媒インク中に残存する溶媒を容易に蒸発させることができて望ましい。ただし、基材の剥離・除去に先立って半乾燥触媒インクの乾燥を行なうことも可能であり、この場合には、半乾燥触媒インクが接合された電解質膜20を介して溶媒を蒸発させることができる。半乾燥触媒インクが更に乾燥されて、電解質膜20上に電極が形成された様子を、図3(D)に示す。
なお、MEA30を作製する際に、電解質膜20の両側に電極を形成するためには、図2のステップS110からS140の工程を、アノード側とカソード側のそれぞれについて、一方ずつ行なえばよい。
以上のように構成された本実施例の燃料電池が備えるMEA30の製造方法によれば、「塗布した当初の触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が、20〜70%となるように、触媒インクを半乾燥させた後に、触媒インクを電解質膜20上に転写して電極を形成している。このように、接着性に優れた半乾燥状態で触媒インクと電解質膜20との接合を行なうため、触媒インクと電解質膜20とを良好な界面で一体化することができ、電極と電解質膜20との密着性を確保して、電極と電解質膜20との間の接触抵抗を抑え、電池性能を向上させることができる。
また、上記のように触媒インクが半乾燥状態であることにより電解質膜20との間の密着性が確保されるため、触媒インクを電解質膜20上に転写する際の加熱を抑制することができる。例えば、基材上に塗布した触媒インクを、より充分に乾燥させた後に電解質膜上に転写する場合には、加圧と共に、電解質膜を構成する高分子電解質が軟化する温度にまで加熱を行なって、電極と電解質膜との密着性を確保する必要がある。これに対して本実施例では、粘性の高い半乾燥状態の触媒インクを用いて転写を行なうため、加熱を行なうことなく電極と電解質膜との密着性を確保することが可能になる。また、転写時に加熱を行なう場合であっても、より充分に乾燥させた触媒インクを転写する場合に比べて、加熱温度をより低く、あるいは加熱時間をより短くすることができる。そのため、加熱に起因する電解質膜の損傷を抑制し、燃料電池の耐久性を向上させることができる。
さらに、本実施例によれば、電解質膜20との接合に用いる触媒インクが、高い接着性を有する半乾燥状態であるため、より充分に乾燥させた触媒インクを電解質膜上に転写する場合に比べて、電解質膜との接合のために加えるべき圧力を、より低く設定することが可能になる。そのため、加圧に起因する電解質膜20の損傷を抑制し、燃料電池の耐久性を向上させることができる。また、基材上に塗布した触媒インクにおいて、触媒担持カーボン粒子等が凝集体を形成する場合であっても、触媒インクを半乾燥状態に乾燥させた上で電解質膜20と接合するため、半乾燥触媒インク中の溶媒や軟化した電解質が、上記凝集体から電解質膜20へと加えられる衝撃を和らげることができる。そのため、より充分に乾燥させた触媒インクを電解質膜上に転写する場合に比べて、接合の動作に伴う電解質膜の損傷を抑制する効果を、さらに高めることができる。
また、本実施例によれば、基材上に塗布した触媒インクを、上記した所定の半乾燥状態にした後に電解質膜20上に転写するため、触媒インク側から電解質膜20への溶媒供給を抑えることができる。電極と電解質膜との密着性を確保可能なMEAの作製方法として、電解質膜上に触媒インクを直接塗布する方法も考えられるが、このような場合には、触媒インクから電解質膜へと供給される溶媒量が過剰になることで電解質膜が膨潤し、その後に電解質膜の乾燥に伴って電解質膜が収縮することで、電解質膜と電極との密着性がかえって低下する可能性がある。また、電解質膜でシワが発生し易くなり、電解質膜のハンドリングが困難になる可能性がある。本実施例では、触媒インクをある程度乾燥させた上で電解質膜上に転写するため、触媒インクから電解質膜への溶媒供給を抑えて、電解質膜と電極との密着性を確保することができる。
なお、既述したように、触媒インクは、固形分として、触媒担持カーボンと高分子電解質とを含むが、これらの固形分の構成割合は変動させることができる。触媒インク中の固形分の構成割合を異ならせた場合であっても、電解質膜20との接合に先立って、触媒インクを既述した半乾燥状態にすることで、転写時の触媒インクの粘性を確保して、電解質膜20への溶媒供給を抑えつつ密着性を確保する同様の効果が得られる。また、触媒インクは、触媒担持カーボンと高分子電解質以外の固形分を含んでいても良い。触媒インクが他の固形分を含む場合には、このような固形分は、導電性あるいはプロトン伝導性を有していることが望ましく、他の固形分としては、例えば、電極における多孔性を確保するための導電性材料であるカーボン繊維とすることができる。
また、半乾燥状態の触媒インクを電解質膜20上に転写する方法により、両方の電極を形成するのではなく、アノード21とカソード22のいずれか一方のみを、上記方法により形成しても良い。この場合には、他方の電極は、触媒インクを電解質膜上に直接塗布して形成しても良く、また、基材上に触媒インクを塗布して完全に乾燥させた後に、これを電解質膜上に転写しても良い。少なくともいずれか一方の電極を、半乾燥状態の触媒インクの転写により形成するならば、このようにして電極を形成した側において、電解質膜の加熱および電解質膜への溶媒供給を抑えつつ、電解質膜と電極との密着性を確保する同様の効果が得られる。
実施例では、電解質膜20が備える高分子電解質を、電極が備える高分子電解質と同様のフッ素系高分子電解質としたが、異なる構成としても良い。電解質膜20を構成する高分子電解質としては、フッ素系高分子電解質の他に、例えば、炭化水素系高分子電解質を用いることができる。異なる種類の高分子電解質によって電解質膜20が構成される場合であっても、触媒インクを既述した半乾燥状態にすることにより、転写の際の触媒インクの密着性を高めることができ、実施例と同様の効果を得ることができる。
C.実施例の燃料電池の評価結果:
既述した実施例に則して実験例1〜実験例3の燃料電池を作製し、比較例の燃料電池と共に性能を評価した。各燃料電池の製造工程は、MEAの製造工程のみが異なっており、各実施例の燃料電池が備えるMEAは、カソードのみ、既述した実施例の製造工程に従って作製した。各燃料電池が備えるMEAの作製条件は、以下の通りである。なお、実験例1以外のMEAの作製条件としては、実験例1と異なる部分のみを説明している。
実験例1(溶媒の30%を蒸発):
ステップS100では、電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体から成る厚さ50μmのイオン交換膜(商品名:ナフィオン112、デュポン社製)を用意した。
ステップS110では、触媒インクを作製するための電解質溶液として、ナフィオン溶液(デュポン社製)を用いた。また、触媒インクが含有する溶媒としては、水、エタノールおよび1−プロパノールを用いた。また、触媒担持カーボンが備える触媒としては、白金コバルト合金を用い、触媒担持カーボンにおける触媒担持量は、50wt%とした。触媒インクの組成を図4に示す。ステップS110では、図4に組成を示した各材料を混合・撹拌の後、100μmビーズを用いてビーズミルにて20分間分散を行ない、触媒インクを作製した。そして、この触媒インクを、カソードの形状となるように、基材であるPTFEシート上にグラビア印刷にてパターン塗工した。
ステップS120では、基材上に塗布した触媒インク中の溶媒の30%が蒸発するように、触媒インクを半乾燥させた。すなわち、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が、70%となるように乾燥させた。なお、乾燥の際の温度条件は、50℃とした。ステップS130では、ステップS120で半乾燥させた基材上の触媒インクを電解質膜と貼り合わせ、線圧10kgf/cmでロールプレスを行なった。ステップS140では、基材であるPTFEシートを剥離した後、触媒インク中の溶媒がさらに蒸発するように80℃で乾燥させ、溶媒残存率を8%にして、電解質膜上にカソードを形成した。なお、溶媒残存率とは、乾燥後の触媒インクの総重量に対する、乾燥後の触媒インク中に残存する溶媒重量の割合をいう。
なお、アノードは、上記のようにカソードを形成した後に、電解質膜上をアノード形状に応じてマスキングした上で、図4に組成を示した既述した触媒インクを用いて、スプレー法による塗工を行なうことにより作製した。このようなアノードを形成するためのスプレー法による塗工は、電解質膜を40〜50℃のホットプレート上に配置して行なっているため、スプレーされた触媒インクは、直ちに乾燥して電極が形成される。
実験例2(溶媒の50%を蒸発):
実験例2では、ステップS120において、50℃の温度条件下で乾燥させることによって、触媒インク中の溶媒の50%を蒸発させた。すなわち、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が、50%となるように触媒インクを半乾燥させた。また、ステップS130では、ステップS120で半乾燥させた基材上の触媒インクを、電解質膜と貼り合わせ、線圧15kgf/cmでロールプレスを行なった。ステップS120およびS130以外の工程は、実験例1と同様の工程により製造を行なった。
実験例3(溶媒の80%を蒸発):
実験例3では、ステップS110において、50℃の温度条件下で乾燥させることによって、触媒インク中の溶媒の80%を蒸発させた。すなわち、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が、20%となるように触媒インクを半乾燥させた。また、ステップS130では、ステップS120で半乾燥させた基材上の触媒インクを、電解質膜と貼り合わせ、線圧15kgf/cmでロールプレスを行なった。ステップS120およびS130以外の工程は、実験例1と同様の工程により製造を行なった。
比較例(残存溶媒率を8%にして転写):
比較例1では、ステップS110において、80℃の温度条件下で乾燥させることによって、触媒インク中の溶媒残存率を8%にした。また、ステップS130およびS140に代えて、ステップS120で乾燥させた基材上の触媒インクを電解質膜と貼り合わせ、温度150℃、圧力4MPaの条件で、触媒インクを電解質膜へと熱圧転写する工程を行なった。上記以外の工程は、実験例1と同様の工程により製造を行なった。
上記のように作製した各MEAを用いて、燃料電池を、図1に示すような単セルの状態で作製し、負荷に接続して発電を行なわせた。図5は、各燃料電池における出力特性(I−V特性)を調べた結果を示す説明図である。具体的には、各燃料電池について、温度を80℃に保ちつつ出力電流密度を変化させたときの出力電圧の測定値を示している。このような出力特性においては、所定の出力電流密度に対して、より高い出力電圧値を示すほど、電池性能が優れていると評価できる。すなわち、図5のように横軸に出力電流密度を示し、縦軸に出力電圧を示す場合には、グラフが上側にシフトするほど、電池性能が優れていると評価できる。なお、このとき、各燃料電池のアノードおよびカソードに対しては、水素および酸素が大過剰(具体的には、理論的に必要な量に対する実際の供給量の比の値であるいわゆるストイキが2)になるように水素ガスあるいは空気を供給し、供給する水素ガスおよび空気は、バブラを用いて加湿した。
図5に示すように、実験例1〜実験例3のいずれの燃料電池も、比較例に比べて優れた出力特性を示した。すなわち、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が、20〜70%となるように触媒インクを半乾燥させた後に電解質膜と接合させた場合には、初期性能として、基材上に塗布した触媒インクをより完全に乾燥させた後に電解質膜と接合させる場合に比べて、優れた性能が得られた。ここでは、特に、電解質膜との接合の際に、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が高い半乾燥状態とするほど、出力特性が優れているという結果が得られた。以上の結果から、実施例のように基材上に塗布した触媒インクを半乾燥させて接合する場合には、触媒インクをより完全に乾燥させて接合する場合に比べて、電解質膜と電極との間の密着性が高まって、電解質膜と電極との間の接触抵抗が小さくなることが確認された。また、基材上に塗布した触媒インクを半乾燥させて接合する場合には、含有する溶媒量が多いほど、電解質膜と電極との間の接触抵抗が小さくなることが確認された。
図6は、各燃料電池について、80℃の温度条件下で負荷に対する発電を行なわせると共に、一定の時間間隔で負荷との接続の入り切りを繰り返す動作を行ない、燃料電池の耐久性を調べた結果を示している。燃料電池の耐久性は、電解質膜を介したガスのクロスリーク量に基づいて調べた。すなわち、電解質膜が次第に劣化すると、例えば電解質膜に微少な損傷が生じることにより、電解質膜を介したガスのクロスリークが増加するため、このようなガスのクロスリーク量を測定することによって、燃料電池の耐久性を評価した。具体的には、一定時間発電のオン−オフを繰り返すごとに、アノードに供給する燃料ガスを窒素に置き換えて、カソード側への窒素の移動量を測定することによって、ガスのクロスリーク量を調べた。図6では、このようなガスのクロスリーク量を縦軸に示している。
上記のように電解質膜の劣化に伴ってガスのクロスリーク量が増加すると、電池反応におけるガスの利用率が低下して、発電性能が低下する。具体的には、所定の電流を出力する際の出力電圧値が次第に低下することになる。そこで、このような性能低下が起こり始めるときのガスのクロスリーク量として、クロスリーク量の基準値を予め設定した。ガスのクロスリーク量の基準値を、図6中において、横軸に平行な線によって示している。図6では、比較例の燃料電池におけるガスのクロスリーク量が、上記基準値に達するまでの経過時間(ガスのクロスリーク量を調べつつ、発電のオン−オフを繰り返す動作を行なったときの積算発電時間)を1として、他の実施例の燃料電池におけるガスのクロスリーク量が上記基準値に達するまでの経過時間の相対値を、耐久時間として横軸に示している。なお、上記耐久時間を測定する際には、各燃料電池のアノードおよびカソードに対しては、ストイキが2となるように水素ガスあるいは空気を供給しており、供給する水素ガスおよび空気は、バブラを用いて加湿した。
図6に示すように、実験例1〜実験例3のいずれの燃料電池も、比較例の燃料電池に比べて、有意に長い耐久時間を示した。ここでは、特に、電解質膜と接合する触媒インクの半乾燥状態として、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が高い状態とするほど、耐久時間が長くなるという結果が得られた。これは、電解質膜との接合時における加熱および加圧に起因する電解質膜の劣化が少ないことによると考えられる。すなわち、実施例では、基材上に塗布した触媒インクを半乾燥させて接合するため、触媒インクと電極との密着性が高く、接合時に加熱する必要が無い。そのため、加熱に起因する電解質膜の劣化が抑えられたものと考えられる。これに対して比較例では、触媒インクをより完全に乾燥させて接合するため、電解質膜との密着性を確保するために接合時に加圧と共に加熱を行なっており、加熱に起因する電解質膜の劣化により、経時的にガスのクロスリーク量が増える速度が増したものと考えられる。さらに、実施例1の燃料電池では、他の実施例に比べて半乾燥後の触媒インク中の溶媒量が多く、触媒インクの電解質膜に対する密着性が特に高いため、接合時に加える圧力をより低くしても、電極と電解質膜との間の接触抵抗を充分に低下させることができる。このように、接合時の圧力をより低く設定したことにより、実施例1の燃料電池は、接合時の加圧に起因する電解質膜の劣化が抑えられ、特に優れた耐久性を示したものと考えられる。
なお、実施例と同様に、基材上に塗布した触媒インクを半乾燥させて電解質膜と接合する場合であって、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合が70%を超える場合には、接合後の電解質膜においてシワが発生するという問題を生じた(データ示さず)。これは、半乾燥後の触媒インクの溶媒含有量が多いことに起因して、電解質膜との接合時に触媒インクから電解質膜へと過剰の溶媒が供給されて電解質膜が膨潤すると共に、その後の乾燥により電解質膜が収縮したことによると考えられる。上記のように電解質膜にシワが生じると、接合前の触媒インクの示す密着性が高いにも拘わらず、接合後の電解質膜と電極との界面の密着性がかえって低下して、電池性能の低下が引き起こされる。以上のように、電解質膜と電極との間の密着性を確保して電池性能を向上させつつ、燃料電池の耐久性を充分に高めるには、電解質膜と接合する触媒インクの半乾燥状態は、「塗布した触媒インク中の溶媒量」に対する「半乾燥後の触媒インク中の溶媒量」の割合は、20〜70%が望ましいことが確認された。
単セル10の概略構成を表わす断面模式図である。 MEA30の製造方法を表わす工程図である。 図2に示した工程の一部の様子を模式的に示す説明図である。 触媒インクの組成を示す説明図である。 実施例および比較例の燃料電池における出力特性を調べた結果を示す説明図である。 燃料電池の耐久性を調べた結果を示す説明図である。
符号の説明
10…単セル
20…電解質膜
21…アノード
22…カソード
23,24…ガス拡散層
25,26…ガスセパレータ
30…MEA
47…単セル内燃料ガス流路
48…単セル内酸化ガス流路

Claims (5)

  1. 電解質膜と電極とを備える燃料電池用膜−電極接合体の製造方法であって、
    高分子電解質から成る前記電解質膜を用意する第1の工程と、
    触媒と、高分子電解質と、水を含む溶媒とを含む触媒インクを基材上に塗布し、塗布した触媒インクを半乾燥させて、触媒インクの総重量に対する触媒インク中に残存する溶媒重量の割合である溶媒残存率を、64.3〜86.3%にする第2の工程と、
    前記半乾燥させた触媒インクと前記電解質膜とを重ね合わせて、加熱を伴わない加圧接合すると共に、接合した触媒インクをさらに乾燥させて前記電極と成す第3の工程と
    を備える膜−電極接合体の製造方法。
  2. 請求項1記載の膜−電極接合体の製造方法であって、
    前記触媒インクが含有する前記触媒は、カーボン粒子上に分散担持されている
    膜−電極接合体の製造方法。
  3. 請求項1または2記載の膜−電極接合体の製造方法であって、
    前記第3の工程は、前記加圧接合の後に、前記触媒インクから前記基材を剥離し、その後、前記触媒インクをさらに乾燥させる工程である
    膜−電極接合体の製造方法。
  4. 請求項1ないしいずれか記載の燃料電池用膜−電極接合体の製造方法により製造された膜−電極接合体。
  5. 請求項記載の膜−電極接合体を備える燃料電池。
JP2007210592A 2007-08-13 2007-08-13 燃料電池用膜−電極接合体の製造方法および膜−電極接合体 Expired - Fee Related JP5194631B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210592A JP5194631B2 (ja) 2007-08-13 2007-08-13 燃料電池用膜−電極接合体の製造方法および膜−電極接合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210592A JP5194631B2 (ja) 2007-08-13 2007-08-13 燃料電池用膜−電極接合体の製造方法および膜−電極接合体

Publications (2)

Publication Number Publication Date
JP2009043692A JP2009043692A (ja) 2009-02-26
JP5194631B2 true JP5194631B2 (ja) 2013-05-08

Family

ID=40444188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210592A Expired - Fee Related JP5194631B2 (ja) 2007-08-13 2007-08-13 燃料電池用膜−電極接合体の製造方法および膜−電極接合体

Country Status (1)

Country Link
JP (1) JP5194631B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528425A (ja) * 2009-05-29 2012-11-12 ソルビコア ゲーエムベーハー ウント コンパニー カーゲー 燃料電池の触媒層を生成する方法
JP5619841B2 (ja) * 2012-09-24 2014-11-05 本田技研工業株式会社 固体高分子形燃料電池の製造方法
JP6128099B2 (ja) 2014-11-07 2017-05-17 トヨタ自動車株式会社 膜電極接合体の製造方法および膜電極接合体
CN112599794B (zh) * 2020-12-14 2022-04-15 中国科学院大连化学物理研究所 一种燃料电池高成品率催化电极批量制备方法及其设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240272B2 (ja) * 2002-05-14 2009-03-18 トヨタ自動車株式会社 膜触媒層接合体の製造方法
JP2006286560A (ja) * 2005-04-05 2006-10-19 Asahi Glass Co Ltd 固体高分子形燃料電池用膜・電極接合体の製造方法

Also Published As

Publication number Publication date
JP2009043692A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
US8026018B2 (en) Electrolyte membrane-electrode assembly and production method thereof
EP1489677A2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
US9325017B2 (en) Method for controlling ionomer and platinum distribution in a fuel cell electrode
JP5082239B2 (ja) 触媒層−電解質膜積層体及びその製造方法
JP5286887B2 (ja) 固体高分子型燃料電池用補強シート付き膜・電極接合体およびその製造方法
JP4506796B2 (ja) 電解質膜−電極接合体および電解質膜の製造方法
JP5194631B2 (ja) 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP5375898B2 (ja) 触媒層−電解質膜積層体の製造方法
JP6571961B2 (ja) 燃料電池用電極、燃料電池用膜電極複合体および燃料電池
JP4693442B2 (ja) ガス拡散電極、その製造方法及び電極−電解質膜積層体
WO2017154475A1 (ja) 触媒組成物、高分子電解質膜電極接合体の製造方法、および高分子電解質膜電極接合体
KR101312971B1 (ko) 불소계 이오노모를 이용하여 표면 개질한 탄화수소계 고분자 전해질 분리막, 막 전극 접합체 및 연료전지
JP2009032438A (ja) 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP5245440B2 (ja) 燃料電池用膜−電極接合体の製造方法
JP5463624B2 (ja) 固体高分子型燃料電池用膜・電極接合体の製造方法
JP5885007B2 (ja) 燃料電池用電極シートの製造方法
JP5423143B2 (ja) 燃料電池用膜−電極接合体、その製造方法、および燃料電池
JP2010146765A (ja) 燃料電池用接合体、燃料電池、およびそれらの製造方法
JP5501044B2 (ja) 膜電極接合体および燃料電池
JP2009080974A (ja) 燃料電池
JP6144651B2 (ja) 燃料電池用電解質膜・電極構造体の製造方法
JP5262168B2 (ja) 燃料電池用膜−電極接合体の製造方法
CN102201578B (zh) 用于膜电极组件制造的方法以及膜电极组件
JP5765273B2 (ja) 燃料電池
JP2007103291A (ja) 直接メタノール形燃料電池用膜/電極接合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees