JP5133449B1 - Transparent touch panel - Google Patents

Transparent touch panel Download PDF

Info

Publication number
JP5133449B1
JP5133449B1 JP2011242810A JP2011242810A JP5133449B1 JP 5133449 B1 JP5133449 B1 JP 5133449B1 JP 2011242810 A JP2011242810 A JP 2011242810A JP 2011242810 A JP2011242810 A JP 2011242810A JP 5133449 B1 JP5133449 B1 JP 5133449B1
Authority
JP
Japan
Prior art keywords
glass substrate
transparent sensor
input operation
transparent
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011242810A
Other languages
Japanese (ja)
Other versions
JP2013097739A (en
Inventor
尚美 中山
努 井上
あゆみ 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMK Corp
Original Assignee
SMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMK Corp filed Critical SMK Corp
Priority to JP2011242810A priority Critical patent/JP5133449B1/en
Priority to KR20120010614A priority patent/KR101488678B1/en
Priority to TW101134725A priority patent/TWI490741B/en
Priority to CN201210434961.4A priority patent/CN103092404B/en
Application granted granted Critical
Publication of JP5133449B1 publication Critical patent/JP5133449B1/en
Publication of JP2013097739A publication Critical patent/JP2013097739A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

【課題】化学強化ガラス基板の配線領域に高密度に多数の引き出し線を配線しても、化学強化ガラス基板の強度が劣化しない透明タッチパネルを提供する。
【解決手段】複数の引き出し線が配線されるガラス基板の前記平面の配線領域に、合成樹脂からなる絶縁層を形成し、絶縁層上にスパッタリングで成膜させた導電性薄膜をフォトリソグラフィ法を用いてパターンニングし、複数の引き出し線を形成する。
【選択図】図1
Provided is a transparent touch panel in which the strength of a chemically strengthened glass substrate does not deteriorate even when a large number of lead lines are wired in a wiring region of the chemically strengthened glass substrate at high density.
An insulating layer made of a synthetic resin is formed in the planar wiring region of a glass substrate on which a plurality of lead lines are wired, and a conductive thin film formed by sputtering on the insulating layer is subjected to a photolithography method. Patterning to form a plurality of lead lines.
[Selection] Figure 1

Description

本発明は、化学強化されたガラス基板の平面に、透明センサー電極を外部に引き出す引き出し線が配線された透明タッチパネルに関し、更に詳しくは、引き出し線をスパッタリングにより成膜した薄膜からパターニングして形成する透明タッチパネルに関する。   The present invention relates to a transparent touch panel in which a lead wire for leading a transparent sensor electrode to the outside is provided on a chemically strengthened glass substrate, and more specifically, the lead wire is formed by patterning from a thin film formed by sputtering. It relates to a transparent touch panel.

表示装置の表示を指標として入力操作を行うタッチパネルは、機器の内方に配置される表示装置の表示が入力操作領域を通して目視できるように、入力操作領域に透明センサー電極を形成するとともに、入力操作領域に透明センサー電極を形成する絶縁基板としてガラス基板を使用している。また、このガラス基板は、入力操作領域が機器の表面に沿って露出し、外力を受けて破損する恐れがあることから、その表面と裏面をイオン交換し応力強化させた化学強化ガラス基板としている。   A touch panel that performs an input operation using the display of the display device as an indicator forms a transparent sensor electrode in the input operation area so that the display of the display device arranged inside the device can be seen through the input operation area, and the input operation A glass substrate is used as an insulating substrate for forming a transparent sensor electrode in the region. In addition, this glass substrate is a chemically strengthened glass substrate in which the input operation area is exposed along the surface of the device and may be damaged by receiving external force, so that the surface and the back surface are ion-exchanged to strengthen the stress. .

図7と図8は、特許文献1に記載された投影型静電容量方式の従来の透明タッチパネル100を図示するものであり、化学強化ガラス基板101の表面に設定された入力操作領域102aに、複数のX方向に沿ったX側透明センサー電極103xと複数のY方向に沿ったY側透明センサー電極103yが互いに交差して形成されている。   FIGS. 7 and 8 illustrate a projected transparent capacitive touch panel 100 described in Patent Document 1, and an input operation region 102 a set on the surface of the chemically strengthened glass substrate 101 has A plurality of X-side transparent sensor electrodes 103x along the X direction and a plurality of Y-side transparent sensor electrodes 103y along the Y direction are formed to intersect each other.

各透明センサー電極103x、103yは、透明導電性材料で菱形面が連続する帯状に形成され、両者が交差する部位では、絶縁コート104を介してX側透明センサー電極103xを乗り越える連結電極105が交差部で途切れたY側透明センサー電極103yの菱形面間を電気接続し、これにより、各透明センサー電極103x、103yは、入力操作領域102aにおいて、互いに絶縁されつつ直交方向に交差して配線される。   Each of the transparent sensor electrodes 103x and 103y is formed of a transparent conductive material in a band shape having a continuous rhomboid surface, and a connecting electrode 105 that crosses the X-side transparent sensor electrode 103x through the insulating coat 104 intersects at a portion where the two intersect. The diamond-shaped surfaces of the Y-side transparent sensor electrode 103y that are interrupted at the portion are electrically connected, whereby the transparent sensor electrodes 103x and 103y are wired so as to cross each other in the orthogonal direction while being insulated from each other in the input operation region 102a. .

各透明センサー電極103x、yの一側、若しくは両側は、入力操作領域102aの周囲の配線領域102bに配線される引き出し線106にそれぞれ接続し、配線領域102bの一部に設けられた外部接続部107まで引き出され、外部接続部107を介して入力操作位置を検出する検出回路に電気接続している。   One side or both sides of each of the transparent sensor electrodes 103x, y are respectively connected to lead wires 106 wired to the wiring region 102b around the input operation region 102a, and external connection portions provided in a part of the wiring region 102b. It is pulled out to 107 and is electrically connected to a detection circuit for detecting the input operation position via the external connection unit 107.

図7に示すように、透明センサー電極103x、103y、引き出し線106等が形成された化学強化ガラス基板101の表面側は、透明絶縁材料で形成された透明なトップコート層108でその全面が覆われ、また、配線領域102bが形成される背面側は、絶縁遮光層109が印刷形成されている。引き出し線106は、透明導電材料で形成するので、目視できないが、絶縁遮光層109を入力操作を行う表面側の引き出し線106上に形成し、引き出し線106を覆う透明タッチパネルも上記特許文献1の他の実施例として記載されている。   As shown in FIG. 7, the entire surface of the chemically tempered glass substrate 101 on which the transparent sensor electrodes 103x and 103y, the lead lines 106, etc. are formed is covered with a transparent top coat layer 108 made of a transparent insulating material. In addition, the insulating light shielding layer 109 is printed on the back side where the wiring region 102b is formed. Since the lead wire 106 is formed of a transparent conductive material, it cannot be visually observed. However, a transparent touch panel in which the insulating light shielding layer 109 is formed on the lead wire 106 on the surface side where input operation is performed and covers the lead wire 106 is also disclosed in Patent Document 1. It is described as another example.

指などの入力操作体が接近する透明センサー電極103x、103yでは、浮遊容量が増加するので、検出回路から各透明センサー電極103x、103yへ矩形パルス状の位置検出信号を出力し、浮遊容量の増加によって波形が歪んだ位置検出信号を出力した各透明センサー電極103x、103yの配置位置から、入力操作領域102aへの入力操作位置を検出する。   In the transparent sensor electrodes 103x and 103y that the input operation body such as a finger approaches, the stray capacitance increases. Therefore, a rectangular pulse-shaped position detection signal is output from the detection circuit to each transparent sensor electrode 103x and 103y, and the stray capacitance increases. The input operation position to the input operation area 102a is detected from the arrangement position of each of the transparent sensor electrodes 103x and 103y that output the position detection signal whose waveform is distorted by the above.

特開2011−192124号公報JP 2011-192124 A

透明タッチパネル100に使用される化学強化ガラス基板101は、上述したように外部からの衝撃により破損しないように、ガラス基板の表面層及び背面層のナトリウムイオンをイオン半径が大きいカリウムイオンにイオン交換したもので、これにより表面層と背面層に圧縮応力層を発生させている。ガラスの引っ張り強さは圧縮強さに比べてはるかに小さいので、化学強化ガラスでは、予めその表層に圧縮応力層を発生させておくことにより、外力に対して化学強化を行わないガラス基板に対して5倍程度の強度としている。   As described above, the chemically strengthened glass substrate 101 used for the transparent touch panel 100 ion-exchanges sodium ions in the surface layer and the back layer of the glass substrate to potassium ions having a large ion radius so as not to be damaged by an external impact. Thus, a compressive stress layer is generated on the surface layer and the back layer. Since the tensile strength of glass is much smaller than the compressive strength, chemically strengthened glass has a compressive stress layer on its surface in advance, so that it does not chemically strengthen against external forces. About 5 times stronger.

一方、高分解能で入力操作位置を検出するために、入力操作領域102aに多数の透明センサー電極103x、103yを配置する必要があり、各透明センサー電極103x、103yに接続する多数の引き出し線106を、入力操作領域102a周囲の限られた配線領域102bに高密度で配線する必要があった。その為、従来の印刷による配線に限界があり、引き出し線106を形成する導電材料をスパッタリングで化学強化ガラス基板101の表面に成膜し、フォトリソグラフィ法を用いて不要部分を取り除くパターンニングにより各引き出し線106を形成している。   On the other hand, in order to detect the input operation position with high resolution, it is necessary to arrange a large number of transparent sensor electrodes 103x and 103y in the input operation region 102a, and a large number of lead lines 106 connected to the transparent sensor electrodes 103x and 103y are provided. Therefore, it is necessary to perform wiring at a high density in the limited wiring area 102b around the input operation area 102a. Therefore, there is a limit to wiring by conventional printing, and a conductive material for forming the lead line 106 is formed on the surface of the chemically strengthened glass substrate 101 by sputtering, and each pattern is removed by photolithography to remove unnecessary portions. A lead line 106 is formed.

スパッタリングによる化学強化ガラス基板101への成膜に際しては、引き出し線106の導電材料であるクラスタが高速でガラス基板101の表面の成膜に打ち込まれることにより膜の格子に余計な原子が押し込まれ、ガラス基板と導電材料との熱膨張係数の差を考慮したとしても、表面に沿って膜を膨張させようとする方向の内部応力が生じ、成膜から化学強化ガラス基板101の表面に対し引っ張り応力が作用する。その結果、化学強化ガラス基板101の表層に発生させた圧縮応力は、その表面に導電材料を成膜するスパッタリングの工程で相殺され、化学強化したにもかかわらず、その効果が充分に得られず、外力に対して破損しやすい構造となってしまうという問題が生じた。   At the time of film formation on the chemically strengthened glass substrate 101 by sputtering, extra atoms are pushed into the lattice of the film because the clusters, which are the conductive materials of the lead wires 106, are driven into the film formation on the surface of the glass substrate 101 at a high speed. Even if the difference in thermal expansion coefficient between the glass substrate and the conductive material is taken into account, an internal stress is generated in the direction of expanding the film along the surface, and the tensile stress is applied to the surface of the chemically strengthened glass substrate 101 from the film formation. Works. As a result, the compressive stress generated in the surface layer of the chemically tempered glass substrate 101 is offset by the sputtering process of forming a conductive material on the surface, and the effect cannot be sufficiently obtained despite the chemical strengthening. As a result, there is a problem that the structure is easily damaged by external force.

本発明は、このような従来の問題点を考慮してなされたものであり、化学強化ガラス基板の配線領域にスパッタリングとフォリリソグラフィ法を用いて高密度に多数の引き出し線を配線しても、化学強化ガラス基板の強度が劣化しない透明タッチパネルを提供することを目的とする。   The present invention has been made in consideration of such conventional problems, and even if a large number of lead lines are wired in a wiring region of a chemically strengthened glass substrate at high density using sputtering and photolithography, An object is to provide a transparent touch panel in which the strength of the chemically strengthened glass substrate does not deteriorate.

上述の目的を達成するため、請求項1の透明タッチパネルは、平面側が化学強化されたガラス基板と、ガラス基板の前記平面の入力操作領域に互いに絶縁して形成される複数の透明センサー電極と、複数の各透明センサー電極をそれぞれ外部接続部へ引き出すように、ガラス基板の前記平面の入力操作領域周囲に配線される複数の引き出し線とを備え、外部接続部を介して各透明センサー電極から出力される電気信号から、入力操作領域への入力操作を検出する透明タッチパネルであって、複数の引き出し線が配線されるガラス基板の前記平面の配線領域に、合成樹脂からなり、入力操作領域の周囲を遮光する絶縁遮光層で形成する第1絶縁層を形成し、第1絶縁層上に、さらに、第2絶縁層を形成した上で、第2絶縁層上にスパッタリングで成膜させた導電性薄膜をフォトリソグラフィ法を用いてパターンニングし、前記複数の引き出し線を形成することを特徴とする。In order to achieve the above object, a transparent touch panel according to claim 1 includes a glass substrate whose plane side is chemically strengthened, and a plurality of transparent sensor electrodes formed to be insulated from each other in the input operation area on the plane of the glass substrate, A plurality of lead wires wired around the input operation area on the flat surface of the glass substrate so that each of the plurality of transparent sensor electrodes is pulled out to the external connection portion, and output from each transparent sensor electrode via the external connection portion from the electrical signal, a transparent touch panel for detecting an input operation of the input operation area, the wiring region of the plane of the glass substrate having a plurality of lead lines are wired, Ri Do a synthetic resin, the input-operation areas first forming an insulating layer formed of an insulating shielding layer for shielding the periphery, on the first insulating layer, further, after forming the second insulating layer, sputtering on the second insulating layer The deposited conductive thin film was patterned by photolithography, and forming a plurality of lead lines.

第1絶縁層、及び、第2絶縁層は、スパッタリング以外の方法で配線領域に形成でき、複数の引き出し線は、第2絶縁層上にスパッタリングして成膜させた導電性薄膜から形成するので、スパッタリングの際に導電性薄膜に発生する引っ張り応力は、第2絶縁層の表面に作用し、配線領域での化学強化ガラス基板の表面に伝達されない。 The first insulating layer and the second insulating layer can be formed in the wiring region by a method other than sputtering, and the plurality of lead lines are formed from a conductive thin film formed by sputtering on the second insulating layer . The tensile stress generated in the conductive thin film during sputtering acts on the surface of the second insulating layer and is not transmitted to the surface of the chemically strengthened glass substrate in the wiring region.

ガラス基板は、その周囲がケース等に固定されるので、中央付近の入力操作領域で外力を受けると、固定端近傍の配線領域に大きな曲げ応力が発生する。しかしながら、配線領域のガラス基板の平面は、スパッタリングによる引っ張り応力を受けず、化学強化された状態にあるので、外力を受けてもガラス基板が破損しにくい。   Since the periphery of the glass substrate is fixed to a case or the like, when an external force is applied in the input operation region near the center, a large bending stress is generated in the wiring region near the fixed end. However, since the plane of the glass substrate in the wiring region is not subjected to tensile stress due to sputtering and is in a chemically strengthened state, the glass substrate is not easily damaged even when subjected to external force.

入力操作領域以外の部分を遮光する絶縁遮光層を、第1絶縁層とするので、別に絶縁層を形成する工程が加わらない。Since the insulating light-shielding layer that shields light other than the input operation area is the first insulating layer , there is no need to separately form an insulating layer.

請求項の透明タッチパネルは、複数の透明センサー電極が、入力操作領域で互いに直交する複数のX側透明センサー電極と複数のY側透明センサー電極とからなり、X側透明センサー電極とY側透明センサー電極の各交差部でX側透明センサー電極とY側透明センサー電極間を絶縁する絶縁コートと配線領域の第2絶縁層とを、絶縁インクを用いた同一印刷工程で形成することを特徴とする。The transparent touch panel according to claim 2 , wherein the plurality of transparent sensor electrodes includes a plurality of X-side transparent sensor electrodes and a plurality of Y-side transparent sensor electrodes that are orthogonal to each other in the input operation region. An insulating coat that insulates between the X-side transparent sensor electrode and the Y-side transparent sensor electrode at each intersection of the sensor electrodes and the second insulating layer in the wiring region are formed in the same printing process using an insulating ink. To do.

交差部でX側透明センサー電極とY側透明センサー電極間を絶縁する絶縁コートの印刷工程で、同時に第2絶縁層を形成できる。 The second insulating layer can be formed at the same time in the insulating coating printing process for insulating the X-side transparent sensor electrode and the Y-side transparent sensor electrode at the intersection.

請求項の透明タッチパネルは、透明センサー電極がITOで形成され、引き出し線がモリブデンを含む導電材料で形成されることを特徴とする。The transparent touch panel of claim 3 is characterized in that the transparent sensor electrode is made of ITO and the lead wire is made of a conductive material containing molybdenum.

硬い金属であるモリブデンをスパッタリングで成膜しても、引っ張り応力がガラス基板の表面に作用しない。   Even when molybdenum, which is a hard metal, is formed by sputtering, tensile stress does not act on the surface of the glass substrate.

請求項1の発明によれば、ガラス基板の平面上の配線領域に配線される引き出し線をスパッタ法を用いて高密度で配線しても、化学強化したガラス基板の強度が劣化しない。   According to the first aspect of the present invention, the strength of the chemically strengthened glass substrate does not deteriorate even if the lead wires wired in the wiring region on the plane of the glass substrate are wired at high density using the sputtering method.

また、絶縁遮光層を第1絶縁層とするので、絶縁遮光層の形成工程で、引き出し線とガラス基板間に介在させる第1絶縁層を形成できる。 Further, since the first insulating layer an insulating shielding layer, in the step of forming the insulating shielding layer can be formed first insulating layer to be interposed between the lead wire and the glass substrate.

請求項の発明によれば、X側透明センサー電極とY側透明センサー電極間を絶縁する絶縁コートの印刷工程で、引き出し線とガラス基板間に介在させる第2絶縁層を形成できる。According to the invention of claim 2 , the second insulating layer interposed between the lead wire and the glass substrate can be formed in the printing process of the insulating coat that insulates between the X-side transparent sensor electrode and the Y-side transparent sensor electrode.

請求項の発明によれば、硬い金属であるモリブデンを含む導電材料で引き出し線を形成しても、ガラス基板の強度が劣化しない。透明センサー電極を構成する酸化インジウムに対して電気的接触特性に優れたモリブデンを含む導電材料で引き出し線を形成することができる。According to the third aspect of the present invention, the strength of the glass substrate does not deteriorate even if the lead wire is formed of a conductive material containing molybdenum, which is a hard metal. The lead wire can be formed of a conductive material containing molybdenum having excellent electrical contact characteristics with respect to indium oxide constituting the transparent sensor electrode.

(a)は、本発明の一実施の形態に係る透明タッチパネル1の平面図、(b)は、(a)の図中A−A線に沿った断面図である。(A) is a top view of the transparent touch panel 1 which concerns on one embodiment of this invention, (b) is sectional drawing along the AA line in the figure of (a). 絶縁遮光層8を形成した第1工程を示す(a)は、平面図、(b)は、A−A線に沿った位置で切断した断面図である。(A) which shows the 1st process in which the insulation light shielding layer 8 was formed is a top view, (b) is sectional drawing cut | disconnected in the position along the AA. 入力操作領域2aに連結電極6を形成した第2工程を示す(a)は、平面図、(b)は、A−A線に沿った位置で切断した断面図である。(A) which shows the 2nd process which formed the connection electrode 6 in the input operation area | region 2a is a top view, (b) is sectional drawing cut | disconnected in the position along the AA. 連結電極6と絶縁遮光層8を絶縁コート7で覆う第3工程を示す(a)は、平面図、(b)は、A−A線に沿った位置で切断した断面図である。(A) which shows the 3rd process of covering the connection electrode 6 and the insulation light shielding layer 8 with the insulation coat 7, (a) is a top view, (b) is sectional drawing cut | disconnected in the position along the AA. 配線領域2bに引き出し線5を配線する第4工程を示す(a)は、平面図、(b)は、図1(a)の図中A−A線に沿った位置で切断した断面図である。4A shows a fourth step of wiring the lead wire 5 to the wiring region 2b. FIG. 5B is a plan view, and FIG. 5B is a cross-sectional view taken along a line AA in FIG. is there. 入力操作領域2aに透明センサー電極3、4を形成する第5工程を示すA−A線に沿った位置で切断した断面図である。It is sectional drawing cut | disconnected in the position along the AA line which shows the 5th process which forms the transparent sensor electrodes 3 and 4 in the input operation area | region 2a. 従来の透明タッチパネル100の平面図である。It is a top view of the conventional transparent touch panel 100. FIG. 透明タッチパネル100の縦断面図である。2 is a longitudinal sectional view of a transparent touch panel 100. FIG.

以下、本発明の第1実施の形態に係る透明タッチパネル1を、図1乃至図6を用いて説明する。この透明タッチパネル1は、携帯電話機などの電子機器の入力装置として、図1(b)の上方を、電子機器の内方に向けてケースに取り付けられ、図中の下方側をケースの外方に臨ませて入力操作するものであるが、以下、同図に示すガラス基板の上面を平面として説明する。   The transparent touch panel 1 according to the first embodiment of the present invention will be described below with reference to FIGS. The transparent touch panel 1 is attached to a case as an input device for an electronic device such as a mobile phone, with the upper side in FIG. 1B facing the inner side of the electronic device, and the lower side in the figure is outside the case. Although the input operation is performed, the upper surface of the glass substrate shown in FIG.

透明タッチパネル1は、機器の内方に配置される表示装置を目視しながら入力操作を可能とするため、センサー電極を形成する絶縁基板としての透明なガラス基板2を用いている。ガラス基板2は、ケースの表面に沿って配置されるので、外力を受けても破損しないように、380℃程度の硝酸カリウム溶融液に浸漬し、その表裏層のナトリウムイオン(Na+)に代えてカリウムイオン(K+)を取り込む化学強化を行っている。カリウムイオン(K+)のイオン半径は、ナトリウムイオン(Na+)より大きいので、化学強化したガラス基板2の表裏層には圧縮応力が発生している。一般に、ガラス基板2は、圧縮強さに比べて引っ張り強さがはるかに小さく、表裏面に引っ張り応力が発生して破断するので、予めその表裏層に圧縮応力を発生させておくことで、化学強化前の強度に対して5倍程度の強度としている。   The transparent touch panel 1 uses a transparent glass substrate 2 as an insulating substrate on which a sensor electrode is formed in order to enable an input operation while viewing a display device arranged inside the device. Since the glass substrate 2 is disposed along the surface of the case, it is immersed in a potassium nitrate melt at about 380 ° C. so that it does not break even when subjected to external force, and is replaced with sodium ions (Na +) on the front and back layers. Chemical strengthening to incorporate ions (K +). Since the ionic radius of the potassium ion (K +) is larger than the sodium ion (Na +), compressive stress is generated in the front and back layers of the chemically strengthened glass substrate 2. In general, the glass substrate 2 has a much lower tensile strength than the compressive strength, and a tensile stress is generated on the front and back surfaces and breaks. Therefore, by generating a compressive stress on the front and back layers in advance, The strength is about 5 times the strength before strengthening.

ガラス基板2の平面は、図1に示すように、多数のX側透明センサー電極3、3・・とY側透明センサー電極4、4、・・とが直交するXY方向に沿ってマトリックス状に形成される入力操作領域2aと、その周囲の多数の引き出し線5、5・・が配線される配線領域2bとに分けられる。   As shown in FIG. 1, the plane of the glass substrate 2 is in a matrix form along the XY direction in which a large number of X-side transparent sensor electrodes 3, 3... And Y-side transparent sensor electrodes 4, 4,. The input operation area 2a to be formed and the wiring area 2b around which many lead lines 5, 5,.

入力操作領域2aに形成される複数の各X側透明センサー電極3は、Y側透明センサー電極4と交差する交差領域で隔てられる菱形のXパターン本体間が、細幅帯状の連結電極6で電気接続され、Y方向に沿って帯状に配線されている。また、入力操作領域2aに形成される複数の各Y側透明センサー電極4は、Xパターン本体とほぼ同一の菱形のYパターン本体が、X側透明センサー電極3と交差する交差領域で細幅となった連結パターンを介してX方向に沿って連続して配線されている。Y側透明センサー電極4の連結パターンは、連結電極6上に形成される絶縁コート7を介して連結電極6を跨ぎ、これにより各交差領域で交差するX側透明センサー電極3とY側透明センサー電極4間は相互に絶縁して配線される。   Each of the plurality of X-side transparent sensor electrodes 3 formed in the input operation region 2a is electrically connected by a narrow strip-shaped connecting electrode 6 between the rhombus X-pattern bodies separated by the intersecting region intersecting the Y-side transparent sensor electrode 4. They are connected and wired in a strip shape along the Y direction. Each of the plurality of Y-side transparent sensor electrodes 4 formed in the input operation area 2a has a narrow width in an intersecting area where the rhombus Y-pattern body substantially the same as the X-pattern body intersects the X-side transparent sensor electrode 3. Wiring is continued along the X direction through the connected pattern. The connection pattern of the Y-side transparent sensor electrode 4 straddles the connection electrode 6 through an insulating coat 7 formed on the connection electrode 6, thereby crossing the X-side transparent sensor electrode 3 and the Y-side transparent sensor at each intersection region. The electrodes 4 are insulated from each other and wired.

X側透明センサー電極3とY側透明センサー電極4は、薄膜からパターニングしてガラス基板2上に形成可能な能な任意の透明導電材料で形成できるが、ここでは、連結電極6とともに、ITO(Indium Tin Oxide)で形成している。また、絶縁コート7は、シリカ(SiO2)等の絶縁材料を用いている。   The X-side transparent sensor electrode 3 and the Y-side transparent sensor electrode 4 can be formed of an arbitrary transparent conductive material that can be formed on the glass substrate 2 by patterning from a thin film. (Indium Tin Oxide). The insulating coat 7 uses an insulating material such as silica (SiO 2).

入力操作領域2aの周囲の配線領域2bには、遮光性の絶縁樹脂からなる絶縁遮光層8が領域全体に印刷形成されている。絶縁遮光層8は、入力操作領域2aの周囲を遮光することにより、操作者に入力操作領域2aを際立たせると共に、その内方の表示画面以外の部分が目立たないようにするもので、遮光性であれば任意に着色することができるが、ここでは黒色としている。更に、本発明では、スパッタリング工程を経て配線領域2bに形成される引き出し線5の下地として、後述するように、ガラス基板2の配線領域2bの強度劣化を防止するようにも作用している。   In the wiring area 2b around the input operation area 2a, an insulating light-shielding layer 8 made of a light-shielding insulating resin is printed over the entire area. The insulating light-shielding layer 8 shields the periphery of the input operation area 2a so that the operator can make the input operation area 2a stand out and the portions other than the inner display screen are not noticeable. If it is, it can be arbitrarily colored, but here it is black. Furthermore, in the present invention, as described below, the base of the lead wire 5 formed in the wiring region 2b through the sputtering process also acts to prevent the strength deterioration of the wiring region 2b of the glass substrate 2.

本実施の形態では、絶縁遮光層8を光硬化性の絶縁樹脂にカーボンやクロム等を含有させた材料から形成しているので、絶縁遮光層8上に複数の引き出し線5を配線すると、引き出し線5間の充分な絶縁性が得られず、上記交差領域に絶縁コート7を印刷形成する同じ工程で、配線領域2bの絶縁遮光層8上へも絶縁コート7を形成している。   In this embodiment, since the insulating light-shielding layer 8 is formed of a material in which carbon, chromium, or the like is contained in a photocurable insulating resin, when a plurality of lead lines 5 are wired on the insulating light-shielding layer 8, the lead-out layer Insufficient insulation between the lines 5 is not obtained, and the insulating coat 7 is formed also on the insulating light-shielding layer 8 in the wiring region 2b in the same process of printing the insulating coat 7 in the intersection region.

配線領域2aの絶縁コート7上に配線される複数の引き出し線5は、それぞれ各X側透明センサー電極3と各Y側透明センサー電極4の両側に接続し、互いに絶縁して配線領域2aの外部接続部9まで引き出される。   A plurality of lead wires 5 wired on the insulating coat 7 in the wiring area 2a are connected to both sides of each X-side transparent sensor electrode 3 and each Y-side transparent sensor electrode 4, respectively, and are insulated from each other so as to be external to the wiring area 2a. It is pulled out to the connection part 9.

全ての引き出し線5は、外部接続部9において整列して配線され、異方性導電接着剤等を介してフレキシブル配線基板の対応する電極に接続され、外部接続部9を介して各X側透明センサー電極3と各Y側透明センサー電極4の両側が、入力操作領域2aへの入力操作を検出する図示しない検出回路へ接続している。   All the lead wires 5 are arranged and wired in the external connection portion 9, are connected to corresponding electrodes of the flexible wiring board through an anisotropic conductive adhesive or the like, and are transparent to each X side via the external connection portion 9. Both sides of the sensor electrode 3 and each Y-side transparent sensor electrode 4 are connected to a detection circuit (not shown) that detects an input operation to the input operation area 2a.

従って、引き出し線5の総本数は、入力操作領域2aに形成されるセンサー電極3、4の2倍となり、全ての引き出し線5を限られた配線領域2aに互いに絶縁して配線する必要があることから、スパッタリングで絶縁コート7上に成膜した後、フォトリソグラフィ法でパターンニングして高密度で配線される。   Accordingly, the total number of lead lines 5 is twice that of the sensor electrodes 3 and 4 formed in the input operation area 2a, and all the lead lines 5 need to be insulated from each other in the limited wiring area 2a. Therefore, after forming a film on the insulating coat 7 by sputtering, patterning is performed by a photolithography method and wiring is performed at a high density.

引き出し線5には、接続する透明センサー電極3、4を構成するITOと、物理的、化学的、電気的接触特性に優れ、かつ電気抵抗率が低いことから、MAM(Mo(モリブデン)・Al(アルミニウム)・Mo)を積層させた三層構造の複合材料を用いている。従って、スパッタリングによる成膜の工程は、Mo・Al・Moの三層に分けて薄膜が形成されるが、このスパッタリング工程では、クラスタ(スパッタ材料)が高速で被膜に打ち込まれることにより、膜の格子に余分な原子が押し込まれ、被膜が基材表面に沿って膨張する。その結果、基材は、表面に沿って形成される被膜から引っ張り応力を受ける。   The lead wire 5 has MAM (Mo (molybdenum) / Al) because ITO constituting the transparent sensor electrodes 3 and 4 to be connected is excellent in physical, chemical and electrical contact characteristics and has low electrical resistivity. A composite material having a three-layer structure in which (aluminum) and Mo) are laminated is used. Therefore, in the film formation process by sputtering, a thin film is formed by dividing into three layers of Mo, Al, and Mo. In this sputtering process, clusters (sputtering materials) are driven into the film at high speed, so that the film is formed. Extra atoms are pushed into the lattice and the coating expands along the substrate surface. As a result, the substrate is subjected to tensile stress from the coating formed along the surface.

特に基材表面に直接形成されるMoは、硬い金属であるので、スパッタリングによるMoの成膜工程では、基材表面に大きな引っ張り応力が発生する。ここで、従来のように、ガラス基板2の平面上に直接引き出し線5を形成する場合には、化学強化し圧縮応力を発生させたガラス基板2の平面が引っ張り応力を受けて相殺され、破損しやすいものとなる。一方、本実施の形態では、絶縁合成樹脂で形成された絶縁遮光層8と絶縁コート7を介してガラス基板2の平面上にMAMの薄膜が形成されるので、スパッタリング工程でもガラス基板2の平面は引っ張り応力を受けず、化学強化した強度が維持される。   In particular, Mo directly formed on the surface of the base material is a hard metal, and therefore a large tensile stress is generated on the surface of the base material in the Mo film forming process by sputtering. Here, when the lead wire 5 is formed directly on the plane of the glass substrate 2 as in the prior art, the plane of the glass substrate 2 that has been chemically strengthened and has generated the compressive stress is canceled by the tensile stress and is damaged. It will be easy to do. On the other hand, in the present embodiment, a MAM thin film is formed on the plane of the glass substrate 2 through the insulating light-shielding layer 8 and the insulating coat 7 formed of insulating synthetic resin. Does not receive tensile stress and maintains chemically strengthened strength.

透明センサー電極3、4と引き出し線5が形成されたガラス基板2の平面側全体は、図1に示すように、透明な絶縁樹脂からなるトップコート10で覆われ、透明センサー電極3、4や引き出し線5が保護される。   The entire plane side of the glass substrate 2 on which the transparent sensor electrodes 3 and 4 and the lead wires 5 are formed is covered with a top coat 10 made of a transparent insulating resin, as shown in FIG. The lead wire 5 is protected.

このように構成された透明タッチパネル1は、入力操作領域2aに図1(b)の下方から指等の入力操作体が接近すると、ガラス基板2を介して入力操作体が接近する透明センサー電極3、4の静電容量が増加するので、静電容量が変化するX側透明センサー電極3とY側透明センサー電極4をそれぞれで検出し、その検出電極3、4の入力操作領域2a上の配設位置から入力操作位置をXY方向で検出する。   The transparent touch panel 1 configured as described above has a transparent sensor electrode 3 that the input operation body approaches via the glass substrate 2 when the input operation body such as a finger approaches the input operation area 2a from below in FIG. 4 increases, the X-side transparent sensor electrode 3 and the Y-side transparent sensor electrode 4 whose capacitance changes are detected respectively, and the arrangement of the detection electrodes 3 and 4 on the input operation area 2a is detected. The input operation position is detected in the XY directions from the installation position.

以下、上述の透明タッチパネル1の製造工程を説明する。始めに、化学強化したガラス基板2の平面上の配線領域2bの全体に、図2(a)に示すように、第1絶縁層としての絶縁遮光層8を印刷形成する。この絶縁遮光層8の形成は、スパッタリングでの成膜工程を用いないので、配線領域2bの強度は劣化しない。Hereafter, the manufacturing process of the above-mentioned transparent touch panel 1 is demonstrated. First, as shown in FIG. 2A , an insulating light shielding layer 8 as a first insulating layer is printed and formed on the entire wiring region 2b on the plane of the chemically strengthened glass substrate 2. Since the formation of the insulating light shielding layer 8 does not use a film forming process by sputtering, the strength of the wiring region 2b does not deteriorate.

続いて、絶縁遮光層8を含むガラス基板2の平面全体にスパッタリングによりITOの薄膜を成膜する。このスパッタリング工程において、ガラス基板2の平面の入力操作領域2aに、直接ITOの薄膜が成膜されるが、ITOは、MAMを構成するMoに比べて柔らかいので、その成膜過程で大きな引っ張り応力を受けない。   Subsequently, an ITO thin film is formed on the entire plane of the glass substrate 2 including the insulating light-shielding layer 8 by sputtering. In this sputtering process, an ITO thin film is formed directly on the input operation region 2a on the plane of the glass substrate 2, but since ITO is softer than Mo constituting MAM, a large tensile stress is generated in the film forming process. Not receive.

また、ガラス基板2は、その周囲がケースに固定されて取り付けられ、外方に臨む入力操作領域2aが意図しない外力を受けると、固定端に近い配線領域2bにより大きい曲げモーメントが発生するので、入力操作領域2aの平面には、ガラス基板2を破断させるような大きな引っ張り応力は作用しない。従って、入力操作領域2aにスパッタリングで成膜しても、ガラス基板2全体の強度は損なわれない。   Further, the glass substrate 2 is attached with its periphery fixed to the case, and when the input operation area 2a facing outward receives an unintended external force, a larger bending moment is generated in the wiring area 2b near the fixed end. A large tensile stress that breaks the glass substrate 2 does not act on the plane of the input operation area 2a. Therefore, even if the film is formed by sputtering in the input operation region 2a, the strength of the entire glass substrate 2 is not impaired.

ガラス基板2の平面全体に成膜したITOの薄膜は、フォトリソグラフィ法を用いて、各交差領域の連結電極6となる部位を残してエッチングにより取り除かれ、図3(a)(b)に示すように、入力操作領域2aの各交差領域にY方向に沿って細長の連結電極6が形成される。   The ITO thin film formed on the entire plane of the glass substrate 2 is removed by etching using the photolithography method, leaving portions that will become the connecting electrodes 6 in the respective intersecting regions, as shown in FIGS. As described above, the elongated connection electrode 6 is formed along the Y direction in each intersection region of the input operation region 2a.

続いて、図4(a)(b)に示すように、入力操作領域2aでは、各連結電極6上を交差し、配線領域2bでは、第1絶縁層としての絶縁遮光層8の全体を覆う第2絶縁層となるように、SiO2からなる絶縁コート7が印刷により形成される。Subsequently, as shown in FIGS. 4A and 4B, the input operation region 2a crosses over each connection electrode 6, and the wiring region 2b covers the entire insulating light-shielding layer 8 as the first insulating layer. An insulating coat 7 made of SiO2 is formed by printing so as to be the second insulating layer .

この後、スパッタ材料を、Mo、Al、Moとしたスパッタリングを繰り返し、図4(a)(b)に示すガラス基板2の平面全体に、MAMからなる三層構造の薄膜を形成し、図5(a)(b)に示すように、フォトリソグラフィ法を用いて、X側透明センサー電極3とY側透明センサー電極4の各両側の部位から外部接続部9までの引き出し線5のパターンを残して、取り除かれる。配線領域2bにMAMの薄膜を成膜するスパッタリング工程では、絶縁遮光層8と絶縁コート7を介したガラス基板2の平面上に成膜されるので、ガラス基板2の平面に引っ張り応力が作用しない。また、同じスパッタリング工程で入力操作領域2aは一時的に引っ張り応力を受けるが、入力操作領域2a上のMAMの薄膜は全て取り除かれるので、同様に引っ張り応力は作用しない。   Thereafter, sputtering using Mo, Al, and Mo as the sputtering material was repeated to form a thin film having a three-layer structure of MAM on the entire plane of the glass substrate 2 shown in FIGS. 4 (a) and 4 (b). (A) As shown in (b), using the photolithography method, the pattern of the lead-out line 5 from the portions on both sides of the X-side transparent sensor electrode 3 and the Y-side transparent sensor electrode 4 to the external connection portion 9 is left. And removed. In the sputtering process for forming the MAM thin film in the wiring region 2b, the film is formed on the plane of the glass substrate 2 with the insulating light-shielding layer 8 and the insulating coat 7 interposed therebetween, so that no tensile stress acts on the plane of the glass substrate 2. . Further, in the same sputtering process, the input operation region 2a is temporarily subjected to tensile stress, but since all the MAM thin film on the input operation region 2a is removed, the tensile stress does not act similarly.

続いて、再び、ガラス基板2の平面全体に、スパッタリングによりITOの薄膜を成膜し、図6に示すように、フォトリソグラフィ法を用いて、X側透明センサー電極3、Y側透明センサー電極4及び引き出し線5の部位を残してITOの薄膜が取り除かれる。このフォトリソグラフィ法を用いたパターニングによって、入力操作領域2aに形成される菱形のXパターン本体間は連結電極6により電気接続され、Y方向に沿って帯状のX側透明センサー電極3が配線される。また、Y側透明センサー電極4は、細幅の連結パターンが連結電極6を跨いで交差領域に形成された絶縁コート7上に形成され、各交差領域で交差するX側透明センサー電極3とY側透明センサー電極4間が相互に絶縁して配線される。各X側透明センサー電極3と各Y側透明センサー電極4を形成するITOの薄膜は、その両側で引き出し線5上にも残されることにより、引き出し線5に電気接続する。   Subsequently, again, an ITO thin film is formed on the entire plane of the glass substrate 2 by sputtering. As shown in FIG. 6, the X-side transparent sensor electrode 3 and the Y-side transparent sensor electrode 4 are used by photolithography. And the ITO thin film is removed leaving the lead wire 5 portion. By patterning using this photolithography method, the rhombus X pattern bodies formed in the input operation region 2a are electrically connected by the connecting electrode 6, and the strip-shaped X-side transparent sensor electrode 3 is wired along the Y direction. . Further, the Y-side transparent sensor electrode 4 is formed on the insulating coat 7 in which a narrow connection pattern straddles the connection electrode 6 and is formed in the intersecting region. The side transparent sensor electrodes 4 are wired while being insulated from each other. The ITO thin film forming each X-side transparent sensor electrode 3 and each Y-side transparent sensor electrode 4 is also left on the lead-out line 5 on both sides thereof, thereby being electrically connected to the lead-out line 5.

上述の工程においても、スパッタリングによりITOをガラス基板2の入力操作領域2aに直接成膜するので、引っ張り応力を受けるが、連結電極6を形成するためにスパッタリングで成膜する工程と同様の理由で、ガラス基板2全体の外力に対する強度は損なわれない。   Even in the above-described steps, ITO is directly formed on the input operation region 2a of the glass substrate 2 by sputtering, so that it receives tensile stress, but for the same reason as the step of forming a film by sputtering to form the connection electrode 6. The strength against the external force of the entire glass substrate 2 is not impaired.

続いて、外部接続部9にフレキシブル配線基板を接続した後、ガラス基板2の平面全体をロールコータなどを用いてトップコート10で覆い、透明タッチパネル1が製造される。   Then, after connecting a flexible wiring board to the external connection part 9, the whole plane of the glass substrate 2 is covered with the topcoat 10 using a roll coater etc., and the transparent touch panel 1 is manufactured.

上述の実施の形態では、X側透明センサー電極3、Y側透明センサー電極4や引き出し線5を形成する平面とガラス基板2を挟む逆側から入力操作を行う透明タッチパネル1で説明したが、トップコート層を形成した上方から入力操作するものであってもよい。   In the above-described embodiment, the transparent touch panel 1 that performs an input operation from the opposite side of the glass substrate 2 with the plane on which the X-side transparent sensor electrode 3, the Y-side transparent sensor electrode 4 and the lead-out line 5 are formed has been described. An input operation may be performed from above the coat layer.

また、ガラス基板2の配線領域2bに、絶縁層を介して引き出し線5が形成される透明タッチパネルであれば、センサー電極3、4の形状やその形成工程は任意であり、更に、静電容量方式に限らず、センサー電極を単位長さあたりの抵抗値を均一とした抵抗被膜とした抵抗方式で入力操作を検出する透明タッチパネルであってもよい。   Moreover, as long as the lead wire 5 is formed in the wiring region 2b of the glass substrate 2 via an insulating layer, the shape of the sensor electrodes 3 and 4 and the formation process thereof are arbitrary. The transparent touch panel which detects input operation not only by a system but by the resistance system which made the sensor electrode the resistance film which made the resistance value per unit length uniform may be sufficient.

また、配線領域2bのガラス基板2の平面と引き出し線5の間に形成する絶縁層は、スパッタリングで成膜するものでなければ、上述の絶縁コート7や絶縁遮光層8に限らず、別の工程で形成するものであってもよい。   In addition, the insulating layer formed between the plane of the glass substrate 2 in the wiring region 2b and the lead wire 5 is not limited to the above-described insulating coating 7 and insulating light shielding layer 8 as long as it is not formed by sputtering. You may form in a process.

ガラス基板の入力操作領域の周囲に、高密度で引き出し線を配線する透明タッチパネルに適している。   It is suitable for transparent touch panels in which lead lines are wired at high density around the input operation area of the glass substrate.

1 透明タッチパネル
2 ガラス基板
2a 入力操作領域
2b 配線領域
3 X側透明センサー電極(透明センサー電極)
4 Y側透明センサー電極(透明センサー電極)
5 引き出し線
7 絶縁コート(絶縁層)
8 絶縁遮光層(絶縁層)
9 外部接続部
DESCRIPTION OF SYMBOLS 1 Transparent touch panel 2 Glass substrate 2a Input operation area 2b Wiring area 3 X side transparent sensor electrode (transparent sensor electrode)
4 Y side transparent sensor electrode (transparent sensor electrode)
5 Leader line 7 Insulation coat (insulation layer)
8 Insulating light shielding layer (insulating layer)
9 External connections

Claims (3)

平面側が化学強化されたガラス基板と、
ガラス基板の前記平面の入力操作領域に互いに絶縁して形成される複数の透明センサー電極と、
複数の各透明センサー電極をそれぞれ外部接続部へ引き出すように、ガラス基板の前記平面の入力操作領域周囲に配線される複数の引き出し線とを備え、
外部接続部を介して各透明センサー電極から出力される電気信号から、入力操作領域への入力操作を検出する透明タッチパネルであって、
複数の引き出し線が配線されるガラス基板の前記平面の配線領域に、合成樹脂からなり、入力操作領域の周囲を遮光する絶縁遮光層で形成する第1絶縁層を形成し、
第1絶縁層上に、さらに、第2絶縁層を形成した上で、
第2絶縁層上にスパッタリングで成膜させた導電性薄膜をフォトリソグラフィ法を用いてパターンニングし、前記複数の引き出し線を形成することを特徴とする透明タッチパネル。
A glass substrate whose plane side is chemically strengthened;
A plurality of transparent sensor electrodes formed to be insulated from each other in the planar input operation region of the glass substrate;
A plurality of lead lines wired around the input operation area on the flat surface of the glass substrate so as to draw out each of the plurality of transparent sensor electrodes to the external connection part,
A transparent touch panel that detects an input operation to an input operation area from an electrical signal output from each transparent sensor electrode via an external connection unit,
In the wiring region of the plane of the glass substrate having a plurality of lead lines are wired, Ri Do a synthetic resin, forming a first insulating layer formed of an insulating shielding layer for shielding the periphery of the input-operation areas,
After further forming a second insulating layer on the first insulating layer,
A transparent touch panel, wherein a plurality of lead lines are formed by patterning a conductive thin film formed by sputtering on a second insulating layer using a photolithography method.
複数の透明センサー電極は、入力操作領域で互いに直交する複数のX側透明センサー電極と複数のY側透明センサー電極とからなり、
X側透明センサー電極とY側透明センサー電極の各交差部でX側透明センサー電極とY側透明センサー電極間を絶縁する絶縁コートと配線領域の第2絶縁層とを、絶縁インクを用いた同一印刷工程で形成することを特徴とする請求項1に記載の透明タッチパネル。
The plurality of transparent sensor electrodes are composed of a plurality of X-side transparent sensor electrodes and a plurality of Y-side transparent sensor electrodes that are orthogonal to each other in the input operation region,
The insulating coat that insulates between the X-side transparent sensor electrode and the Y-side transparent sensor electrode at each intersection of the X-side transparent sensor electrode and the Y-side transparent sensor electrode and the second insulating layer in the wiring region are the same using an insulating ink. The transparent touch panel according to claim 1, wherein the transparent touch panel is formed by a printing process.
透明センサー電極がITOで形成され、引き出し線がモリブデンを含む導電材料で形成されることを特徴とする請求項1または2に記載の透明タッチパネル。The transparent touch panel according to claim 1 or 2 , wherein the transparent sensor electrode is made of ITO , and the lead wire is made of a conductive material containing molybdenum.
JP2011242810A 2011-11-04 2011-11-04 Transparent touch panel Expired - Fee Related JP5133449B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011242810A JP5133449B1 (en) 2011-11-04 2011-11-04 Transparent touch panel
KR20120010614A KR101488678B1 (en) 2011-11-04 2012-02-02 Transparent touch panel
TW101134725A TWI490741B (en) 2011-11-04 2012-09-21 Transparent touch panel
CN201210434961.4A CN103092404B (en) 2011-11-04 2012-11-02 Transparent touch-control panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242810A JP5133449B1 (en) 2011-11-04 2011-11-04 Transparent touch panel

Publications (2)

Publication Number Publication Date
JP5133449B1 true JP5133449B1 (en) 2013-01-30
JP2013097739A JP2013097739A (en) 2013-05-20

Family

ID=47693058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242810A Expired - Fee Related JP5133449B1 (en) 2011-11-04 2011-11-04 Transparent touch panel

Country Status (4)

Country Link
JP (1) JP5133449B1 (en)
KR (1) KR101488678B1 (en)
CN (1) CN103092404B (en)
TW (1) TWI490741B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030599A1 (en) * 2012-08-23 2014-02-27 旭硝子株式会社 Sensor-integrated cover glass
JP2014153987A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Touch panel substrate and display device
WO2014141921A1 (en) * 2013-03-15 2014-09-18 富士フイルム株式会社 Laminate for use in touch panel and manufacturing method of laminate for use in touch panel
JP2015513755A (en) * 2013-03-28 2015-05-14 ナンチャン オー−フィルム テック カンパニー リミテッド Capacitive touch screen
US9778808B2 (en) 2013-12-11 2017-10-03 Samsung Display Co., Ltd. Touch panel and method for manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164000A (en) * 2012-06-18 2015-09-10 シャープ株式会社 Touch panel, display device with touch panel, and method of manufacturing touch panel
WO2015016225A1 (en) 2013-08-01 2015-02-05 シャープ株式会社 Touch panel
CN104423666B (en) * 2013-08-30 2017-09-12 宸鸿科技(厦门)有限公司 Contact panel
JP6238655B2 (en) * 2013-09-12 2017-11-29 デクセリアルズ株式会社 Connection structure and anisotropic conductive adhesive
US10677995B2 (en) 2014-10-23 2020-06-09 Hewlett Packard Enterprise Development Lp Optical fiber interface for optical device package
US10534148B2 (en) 2014-10-24 2020-01-14 Hewlett Packard Enterprise Development Lp Optical interconnect device
CN104677399B (en) * 2014-11-24 2017-12-05 麦克思智慧资本股份有限公司 Ultrasonic sensor
KR102271113B1 (en) 2014-12-09 2021-06-30 삼성디스플레이 주식회사 Display device and touch sensor
US10261256B2 (en) 2015-01-28 2019-04-16 Hewlett Packard Enterprise Development Lp Laser-written optical routing systems and method
JP2017062744A (en) 2015-09-25 2017-03-30 富士通コンポーネント株式会社 Touch panel device
CN106211667B (en) * 2016-08-03 2022-02-22 安徽精卓光显技术有限责任公司 Glass shell and electronic product with same
JP6702067B2 (en) * 2016-08-03 2020-05-27 Agc株式会社 Cover member and display device
CN109992163B (en) * 2019-04-15 2023-01-03 业成科技(成都)有限公司 Touch sensing module, manufacturing method thereof and electronic device applying touch sensing module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174007Y (en) * 2008-03-18 2008-12-31 宸鸿光电科技股份有限公司 Capacitive touching control panel
CN100570444C (en) * 2008-06-18 2009-12-16 汕头超声显示器(二厂)有限公司 Capacitive touch control plate and preparation method thereof
TWI749283B (en) * 2008-11-28 2021-12-11 日商半導體能源研究所股份有限公司 Liquid crystal display device
JP5382418B2 (en) * 2009-01-28 2014-01-08 ソニー株式会社 Circuit board and method for manufacturing the same, touch panel and display device
JP5520093B2 (en) * 2010-03-16 2014-06-11 株式会社ジャパンディスプレイ Manufacturing method of touch panel
CN201945987U (en) * 2011-01-19 2011-08-24 漳州市百昱工贸有限公司 Approach induction touch-screen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030599A1 (en) * 2012-08-23 2014-02-27 旭硝子株式会社 Sensor-integrated cover glass
JP2014153987A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Touch panel substrate and display device
WO2014141921A1 (en) * 2013-03-15 2014-09-18 富士フイルム株式会社 Laminate for use in touch panel and manufacturing method of laminate for use in touch panel
JP2014178922A (en) * 2013-03-15 2014-09-25 Fujifilm Corp Laminate for touch panel and method of manufacturing the same
JP2015513755A (en) * 2013-03-28 2015-05-14 ナンチャン オー−フィルム テック カンパニー リミテッド Capacitive touch screen
US9778808B2 (en) 2013-12-11 2017-10-03 Samsung Display Co., Ltd. Touch panel and method for manufacturing the same

Also Published As

Publication number Publication date
TWI490741B (en) 2015-07-01
KR20130049692A (en) 2013-05-14
JP2013097739A (en) 2013-05-20
KR101488678B1 (en) 2015-02-02
TW201319890A (en) 2013-05-16
CN103092404A (en) 2013-05-08
CN103092404B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5133449B1 (en) Transparent touch panel
CN106775055B (en) Flexible touch screen and flexible touch display screen
JP5588466B2 (en) Touch panel wiring structure
CN102799308B (en) Touch window
US20130027118A1 (en) Capacitive touch panel and a method of manufacturing the same
US20140267953A1 (en) Touch screen panel and method of manufacturing the same
KR101217591B1 (en) Capacitive touch sensor
JP2014149861A (en) Touch panel and method for manufacturing the same
JP2014505942A (en) Touch panel, manufacturing method thereof, and liquid crystal display device including touch panel
TWI537792B (en) Touch structure
JP5535257B2 (en) Touch sensitive devices
US20170090625A1 (en) Conductive sheet, touch panel device, and display device
EP2690534B1 (en) Touch screen panel and fabrication method thereof
US10222915B2 (en) Input device and method of manufacturing it
KR101368684B1 (en) Panel For Detecting Touch And Method Thereof
KR20190044625A (en) Member for a touch panel
JP2013525925A (en) Capacitive touch sensor system, production process thereof, and touch sensor device using the same
JP5729725B2 (en) Glass substrate for touch panel and manufacturing method thereof
KR20120023288A (en) Touch panel and method for manufacturing the same
TWM486811U (en) Sensing layer circuit structure
JP2014102547A (en) Conductive pattern-formed substrate, capacitive sensor sheet and method for manufacturing the same
KR101469149B1 (en) Touch Panel and Method for Making the Same
JP2013156949A (en) Touch panel
KR20130005093A (en) Touch panel using monolithic metallic thin-film and manufature method thereof
JP2011113382A (en) Touch panel and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5133449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees